Global sensitivity analysis with dependence measures

Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on depende...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 85; číslo 7; s. 1283 - 1305
Hlavní autor: Da Veiga, Sebastien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.05.2015
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszár f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension.
AbstractList Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszar f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension.
Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed.We establish that this comparison yields previously proposed indices when it is performed with Csiszár f -divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert–Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in highdimension.
Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszár f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension.
Author Da Veiga, Sebastien
Author_xml – sequence: 1
  givenname: Sebastien
  surname: Da Veiga
  fullname: Da Veiga, Sebastien
  email: sebastien.daveiga@snecma.fr
  organization: IFP Energies nouvelles
BackLink https://hal.science/hal-01128666$$DView record in HAL
BookMark eNqFkE1rGzEQhkVJoI7bf9DDQi_JYV1p9WGplxBCmhQMvaRnMd4dEQVZciU5wf8-u2xyySE9DQzPO7zznJGTmCIS8o3RFaOa_qDUCKOkXHWUiZUR0vDuE1kwqXgrmeInZDEh7cR8JmelPFJKGZPdgojbkLYQmoKx-OqffD02ECEciy_Ns68PzYB7jAPGHpsdQjlkLF_IqYNQ8OvrXJK_v27ur-_azZ_b39dXm7aXTNcWJXU99tIoxdWWM7EWYzWhEJQGKbXccoe47jgYObhh4EIZpzrtmNhqNIwvycV89wGC3We_g3y0Cby9u9rYaTc-0Wml1NPEns_sPqd_ByzV7nzpMQSImA7FMqWMXjMzOlmS7-_Qx3TI49MTNfYSo009Uj9nqs-plIzO9r5C9SnWDD5YRu0k377Jt5N8O8sfw-Jd-K3-f2KXc8xHl_IOnlMOg61wDCm7DLH3xfIPL7wA2gKadw
CitedBy_id crossref_primary_10_1177_0300060520920056
crossref_primary_10_3390_app112311475
crossref_primary_10_1029_2021WR029911
crossref_primary_10_1007_s13171_024_00354_w
crossref_primary_10_1016_j_knosys_2020_106356
crossref_primary_10_1016_j_eswa_2017_04_057
crossref_primary_10_1080_00295639_2023_2197838
crossref_primary_10_1137_22M154315X
crossref_primary_10_1016_j_ress_2018_12_003
crossref_primary_10_1007_s11222_019_09887_9
crossref_primary_10_1186_s12918_017_0488_z
crossref_primary_10_1016_j_jenvman_2025_125067
crossref_primary_10_1016_j_actaastro_2022_08_032
crossref_primary_10_1080_00295639_2021_1980362
crossref_primary_10_1016_j_ejor_2019_03_034
crossref_primary_10_1007_s10596_023_10192_8
crossref_primary_10_1016_j_advwatres_2020_103714
crossref_primary_10_1016_j_ymssp_2018_08_015
crossref_primary_10_1016_j_ejor_2015_06_032
crossref_primary_10_1016_j_anucene_2024_110888
crossref_primary_10_1016_j_envsoft_2021_105208
crossref_primary_10_1016_j_ymssp_2020_106775
crossref_primary_10_1016_j_envsoft_2020_104851
crossref_primary_10_1016_j_jocs_2023_102197
crossref_primary_10_1016_j_ress_2021_108208
crossref_primary_10_1017_jog_2018_15
crossref_primary_10_1016_j_ress_2021_107795
crossref_primary_10_1007_s11063_020_10420_7
crossref_primary_10_1016_j_radphyschem_2025_112693
crossref_primary_10_1016_j_ress_2021_107711
crossref_primary_10_1145_3649463
crossref_primary_10_1016_j_asoc_2020_106292
crossref_primary_10_1111_risa_13571
crossref_primary_10_1016_j_ress_2023_109173
crossref_primary_10_3390_app9142806
crossref_primary_10_1007_s00158_018_2062_8
crossref_primary_10_1016_j_rse_2025_114784
crossref_primary_10_1051_epjn_2021002
crossref_primary_10_1017_dce_2023_27
crossref_primary_10_1002_qre_3157
crossref_primary_10_1007_s00477_016_1245_3
crossref_primary_10_1016_j_ymssp_2020_106687
crossref_primary_10_1002_qre_3638
crossref_primary_10_1007_s00158_019_02342_3
crossref_primary_10_3390_s20010132
crossref_primary_10_1007_s10915_022_02083_4
crossref_primary_10_1016_j_matcom_2020_11_024
crossref_primary_10_1007_s40996_024_01502_w
crossref_primary_10_1080_00949655_2016_1149854
crossref_primary_10_1007_s00158_019_02257_z
crossref_primary_10_1111_risa_70002
crossref_primary_10_1016_j_envsoft_2019_01_012
crossref_primary_10_1016_j_ress_2021_107522
crossref_primary_10_1016_j_apm_2020_03_025
crossref_primary_10_1016_j_buildenv_2024_112031
crossref_primary_10_1111_risa_12555
crossref_primary_10_1016_j_envsoft_2018_09_010
crossref_primary_10_1016_j_ress_2015_01_019
crossref_primary_10_1051_epjn_2018050
crossref_primary_10_3390_e18080295
crossref_primary_10_3390_app9132714
crossref_primary_10_1080_00401706_2025_2455143
crossref_primary_10_1080_00295450_2019_1573617
crossref_primary_10_1080_00401706_2024_2336537
crossref_primary_10_1080_02626667_2024_2321332
crossref_primary_10_1109_ACCESS_2021_3063786
crossref_primary_10_1002_qre_2954
crossref_primary_10_1016_j_envsoft_2020_104954
crossref_primary_10_3390_pr12040777
crossref_primary_10_1007_s13253_018_00346_y
crossref_primary_10_1007_s10994_022_06202_y
crossref_primary_10_1016_j_quageo_2023_101489
crossref_primary_10_5194_soil_10_679_2024
crossref_primary_10_1177_1748006X18781121
crossref_primary_10_1016_j_ecoinf_2023_102079
crossref_primary_10_1016_j_ress_2021_107611
crossref_primary_10_1093_intbio_zyae020
crossref_primary_10_1109_ACCESS_2021_3056933
crossref_primary_10_1016_j_nima_2020_164135
crossref_primary_10_1016_j_envsoft_2021_105270
crossref_primary_10_1007_s00158_020_02705_1
crossref_primary_10_1016_j_csda_2023_107701
crossref_primary_10_1088_1742_6596_2505_1_012011
crossref_primary_10_1016_j_nucengdes_2025_114409
crossref_primary_10_3390_en17081823
Cites_doi 10.1016/j.ress.2006.04.015
10.1214/12-AOP803
10.1016/j.jspi.2013.03.018
10.1198/jasa.2011.tm09779
10.1007/978-1-4419-9096-9
10.2307/1428011
10.1016/j.jmva.2012.08.016
10.1016/j.jmva.2013.02.012
10.1198/TECH.2009.08124
10.1111/j.1467-9868.2009.00718.x
10.1007/s00477-006-0093-y
10.1016/j.ress.2012.06.010
10.1162/NECO_a_00537
10.1109/TPAMI.2005.159
10.1109/TMI.2003.815867
10.1016/S0010-4655(98)00156-8
10.1016/j.matcom.2009.01.023
10.1007/11564089_7
10.1002/j.1538-7305.1948.tb01338.x
10.1007/978-3-540-75225-7_5
10.1016/j.jspi.2005.01.001
10.1051/ps/2013040
10.1080/00401706.1991.10484804
10.1186/1471-2105-10-S1-S52
10.1016/j.ress.2010.06.015
10.1080/00401706.2012.727751
10.1145/2457459.2457460
10.1111/j.1467-9868.2004.05304.x
10.1103/PhysRevE.69.066138
10.1214/aoms/1177698701
10.1111/j.1467-9868.2008.00674.x
10.1016/j.ress.2008.07.008
10.1016/j.ress.2011.03.002
10.1214/009053607000000505
10.1016/S0893-6080(00)00026-5
10.1214/13-AOS1140
10.1214/12-EJS722
10.1080/10485252.2013.784762
10.1063/1.1680571
10.1080/01621459.2012.695654
10.1016/j.ress.2005.06.003
10.1080/00401706.2012.725994
10.1016/j.jmva.2006.11.013
10.1017/CBO9781139035613
10.1016/j.advwatres.2012.11.019
10.1016/j.ress.2012.11.008
10.1111/j.2517-6161.1996.tb02080.x
10.1214/aoms/1177699260
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright Taylor & Francis Ltd. 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Ltd. 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1080/00949655.2014.945932
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 1305
ExternalDocumentID oai:HAL:hal-01128666v1
3594787161
10_1080_00949655_2014_945932
945932
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c518t-e50fcec596636b3147445946ea68a5585b3fee723a95dfdd3469f628f14b8e913
IEDL.DBID TFW
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349087400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Tue Oct 14 20:44:47 EDT 2025
Wed Oct 01 15:05:28 EDT 2025
Mon Jul 14 09:00:59 EDT 2025
Sat Nov 29 06:27:53 EST 2025
Tue Nov 18 21:01:40 EST 2025
Mon Oct 20 23:32:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Global sensitivity analysis
Independance
Kernel
Mutual information
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e50fcec596636b3147445946ea68a5585b3fee723a95dfdd3469f628f14b8e913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0004-1637-7942
OpenAccessLink https://hal.science/hal-00903283v1/file/SensitivityWithIndepMeasures.pdf
PQID 1655849498
PQPubID 53118
PageCount 23
ParticipantIDs proquest_journals_1655849498
crossref_citationtrail_10_1080_00949655_2014_945932
hal_primary_oai_HAL_hal_01128666v1
crossref_primary_10_1080_00949655_2014_945932
informaworld_taylorfrancis_310_1080_00949655_2014_945932
proquest_miscellaneous_1669871956
PublicationCentury 2000
PublicationDate 2015-05-03
PublicationDateYYYYMMDD 2015-05-03
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
Kraskov A (CIT0026) 2004; 69
CIT0033
Fort JC (CIT0018) 2013
CIT0035
CIT0039
Krzykacz-Hausmann B (CIT0027) 2001; 2001
CIT0041
CIT0040
Sriperumbudur BK (CIT0048) 2009
Suzuki T (CIT0037) 2008; 4
CIT0043
CIT0042
CIT0045
CIT0044
Tibshirani R (CIT0056) 1996; 58
Fukumizu K (CIT0053) 2008; 20
CIT0002
Gamboa F (CIT0019) 2013; 351
CIT0046
CIT0005
Gretton A (CIT0047) 2005; 6
CIT0049
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
Fan J (CIT0058) 2010; 20
CIT0010
CIT0012
CIT0011
CIT0055
Saltelli A (CIT0003) 2010; 181
Sobol’ IM (CIT0001) 1993; 1
Fukumizu K (CIT0052) 2007; 8
Ferraty F (CIT0054) 2006
Kanamori T (CIT0038) 2009; 10
Baucells M (CIT0024) 2013; 59
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
Song L (CIT0050) 2012; 13
CIT0017
Csiszár I (CIT0025) 1967; 2
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0023
CIT0022
CIT0066
Ishigami T (CIT0064) 1990
CIT0068
CIT0029
CIT0028
References_xml – ident: CIT0016
  doi: 10.1016/j.ress.2006.04.015
– ident: CIT0042
  doi: 10.1214/12-AOP803
– ident: CIT0040
  doi: 10.1016/j.jspi.2013.03.018
– start-page: 1750
  volume-title: Advances in neural information processing systems, Vancouver, British Columbia Canada
  year: 2009
  ident: CIT0048
– ident: CIT0060
  doi: 10.1198/jasa.2011.tm09779
– volume: 4
  start-page: 5
  year: 2008
  ident: CIT0037
  publication-title: J Mach Learn Res
– ident: CIT0043
  doi: 10.1007/978-1-4419-9096-9
– ident: CIT0028
  doi: 10.2307/1428011
– ident: CIT0015
  doi: 10.1016/j.jmva.2012.08.016
– ident: CIT0041
  doi: 10.1016/j.jmva.2013.02.012
– ident: CIT0011
  doi: 10.1198/TECH.2009.08124
– volume: 6
  start-page: 2075
  year: 2005
  ident: CIT0047
  publication-title: J Mach Learn Res
– ident: CIT0057
  doi: 10.1111/j.1467-9868.2009.00718.x
– ident: CIT0068
  doi: 10.1007/s00477-006-0093-y
– ident: CIT0007
  doi: 10.1016/j.ress.2012.06.010
– ident: CIT0049
  doi: 10.1162/NECO_a_00537
– ident: CIT0061
  doi: 10.1109/TPAMI.2005.159
– ident: CIT0034
  doi: 10.1109/TMI.2003.815867
– year: 2013
  ident: CIT0018
  publication-title: arXiv preprint arXiv:13052329
– ident: CIT0066
  doi: 10.1016/S0010-4655(98)00156-8
– ident: CIT0017
  doi: 10.1016/j.matcom.2009.01.023
– ident: CIT0023
  doi: 10.1007/11564089_7
– ident: CIT0031
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: CIT0044
  doi: 10.1007/978-3-540-75225-7_5
– volume: 59
  start-page: 2536
  issue: 11
  year: 2013
  ident: CIT0024
  publication-title: to appear in Manage Sci
– ident: CIT0065
  doi: 10.1016/j.jspi.2005.01.001
– ident: CIT0005
  doi: 10.1051/ps/2013040
– ident: CIT0020
  doi: 10.1080/00401706.1991.10484804
– volume: 2
  start-page: 299
  year: 1967
  ident: CIT0025
  publication-title: Stud Sci Math Hung
– volume: 8
  start-page: 361
  year: 2007
  ident: CIT0052
  publication-title: J Mach Learn Res
– ident: CIT0032
  doi: 10.1186/1471-2105-10-S1-S52
– ident: CIT0012
  doi: 10.1016/j.ress.2010.06.015
– volume-title: Nonparametric functional data analysis: theory and practice
  year: 2006
  ident: CIT0054
– ident: CIT0063
  doi: 10.1080/00401706.2012.727751
– volume: 10
  start-page: 1391
  year: 2009
  ident: CIT0038
  publication-title: J Mach Learn Res
– ident: CIT0006
  doi: 10.1145/2457459.2457460
– ident: CIT0009
  doi: 10.1111/j.1467-9868.2004.05304.x
– volume: 69
  start-page: 1
  issue: 6
  year: 2004
  ident: CIT0026
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.066138
– ident: CIT0046
  doi: 10.1214/aoms/1177698701
– ident: CIT0059
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: CIT0010
  doi: 10.1016/j.ress.2008.07.008
– ident: CIT0013
  doi: 10.1016/j.ress.2011.03.002
– volume: 351
  start-page: 307
  issue: 7
  year: 2013
  ident: CIT0019
  publication-title: to appear in CR Acad Sci I-Math
– volume: 2001
  start-page: 53
  year: 2001
  ident: CIT0027
  publication-title: SAMO
– volume: 20
  start-page: 489
  year: 2008
  ident: CIT0053
  publication-title: Adv Neur In
– ident: CIT0022
  doi: 10.1214/009053607000000505
– volume: 181
  start-page: 259
  issue: 2
  year: 2010
  ident: CIT0003
  publication-title: design and estimator for the total sensitivity index. Comput Phys Commun
– ident: CIT0033
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 13
  start-page: 1393
  year: 2012
  ident: CIT0050
  publication-title: J Mach Learn Res
– start-page: 398
  year: 1990
  ident: CIT0064
  publication-title: IEEE
– ident: CIT0030
  doi: 10.1214/13-AOS1140
– volume: 1
  start-page: 407
  year: 1993
  ident: CIT0001
  publication-title: MMCE
– volume: 20
  start-page: 101
  issue: 1
  year: 2010
  ident: CIT0058
  publication-title: Statist Sin
– ident: CIT0029
  doi: 10.1214/12-EJS722
– ident: CIT0008
  doi: 10.1080/10485252.2013.784762
– ident: CIT0002
  doi: 10.1063/1.1680571
– ident: CIT0062
  doi: 10.1080/01621459.2012.695654
– ident: CIT0004
  doi: 10.1016/j.ress.2005.06.003
– ident: CIT0021
  doi: 10.1080/00401706.2012.725994
– ident: CIT0035
  doi: 10.1016/j.jmva.2006.11.013
– ident: CIT0039
  doi: 10.1017/CBO9781139035613
– ident: CIT0055
  doi: 10.1016/j.advwatres.2012.11.019
– ident: CIT0014
  doi: 10.1016/j.ress.2012.11.008
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: CIT0056
  publication-title: J Roy Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: CIT0045
  doi: 10.1214/aoms/1177699260
SSID ssj0001152
Score 2.4531631
Snippet Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1283
SubjectTerms Computer simulation
Correlation analysis
Criteria
Dimensional measurements
global sensitivity analysis
Handles
Hilbert space
independence
kernel
Mathematical models
Mathematics
Multivariate analysis
mutual information
Random variables
Screening
Sensitivity analysis
State of the art
Statistics
Title Global sensitivity analysis with dependence measures
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2014.945932
https://www.proquest.com/docview/1655849498
https://www.proquest.com/docview/1669871956
https://hal.science/hal-01128666
Volume 85
WOSCitedRecordID wos000349087400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4B6gEO0C4gtqVVirgakvixzhFVrDhQxIECN8t2bHGABZGF39-ZOIm2QgUJjknGiTWepzP-BmBfRK84V4HFssqZcLViLq8DC97lsQxO6ha--PJ0cnamr6-r84VT_FRWSTl0TEARra0m5bau6SviDqkarlJSUmGWOKiExBgEjTB6ftLMi-nVYIqL1HKHBjAa0Z-d-89L_vFNyzdtZeQifukLe906oenGx6f_Gda7ADQ7ShLzBZbCbAQbfXOHrNP1Eaz9HgBdmxGsUlCaMJ03QaRGAVlDxe-p-0RmO3CTjDZ2s761rg_ZXdqEbLbgz_T44tcJ67ovMC8LPWdB5tEHLzEf4srxQkwETlWoYJW2ErMMx2MIk5LbStaxrjkm2lGVOhbC6VAVfBtWZvezsAOZrbmOMveO1yU6w2hFHbRVZSwjRiOTOAbe8934DpqcOmTcmmJAME08M8Qzk3g2BjaMekjQHG_Q7-GSDqSEq31ydGroHgpKqTGRey7GoBdX3MzbfZOYmpwY_vr7d3vpMJ0haEyBRJoQgPQYfg6PUYXpv4ydhfsnolEV5q2YqX59_9e_wSpeybYWk-_CyvzxKXyHT_4ZhePxR6sWfwFlkwbH
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9wwDLcGTBp7gO0G4gZsBe01W9t8NH1EaKebdpx4ODbeojZNtAe4Q_Tu_v7ZTVuBpg0J7alS66StYzu26_4M8El4qzhXjvk0j5koK8XKuHLM2TL2qSulbuCLf0yy6VRfX-eXbTVh3ZZVUgztA1BEY6tJuSkZ3ZXEfaFyuFxJSZVZ4nMuJDohG7CFh4zg82ejn70xTkLTHRrBaEj399xfZnm0O238amojHyKY_mGxm21otPsfXuAN7LQ-aHQWhOYtvHDzAex2_R2iVt0H8Pqix3StB7BNfmmAdX4HIvQKiGqqfw8NKKKixTeJKLcbdd11rYtuQx6y3oOr0dfZ-Zi1DRiYlYleMidjb52VGBJxVfJEZAIfVShXKF1IDDRK7p3LUl7ksvJVxTHW9irVPhGldnnC92Fzvpi7A4iKimsvY1vyKsX90BeicrpQqU89OiSZHwLvGG9si05OTTJuTNKDmAaeGeKZCTwbAutH3QV0jifoT3FNe1KC1h6fTQydQ0lJNcZy62QI-uGSm2WTOvGhz4nh_57_qBMP09qC2iRIpAkESA_hpL-MWkyfZoq5W6yIRuUYumKw-v75d_8Ir8azi4mZfJt-P4RtvCKb0kx-BJvL-5U7hpd2jYJy_6HRkd8Plgrx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqBA9lHYpYsujacXVkMSPdY6o7QrEdsWB181K_BCHsiB24fczEyfRIkQr0Wv8SDSeGc844-8D2BPBKs6VZyEvUiYqp1iVOs-8rdKQ-0rqGr74YjQYj_XVVXE6d4ufyiophw4RKKL21WTcdy60FXEHVA1XKCmpMEvsF0JiDLIIyxg5K9Lxs-Fl54uzyLlDIxgNaS_PvTLLs81p8boujZwHMH3hsOtdaLj2_9__ET40EWhyGFXmEyz4SQ_WWnaHpDH2Hrz_3SG6TnuwSlFpBHVeBxGZApIpVb9H-omkbNBNEjrZTVpuXeuTm3gKOf0M58NfZz-OWEO_wKzM9Ix5mQbrrcSEiKuKZ2Ig8FOF8qXSpcQ0o-LB-0HOy0K64BzHTDuoXIdMVNoXGd-ApcntxG9CUjqug0xtxV2Ou2EohfO6VHnIA4Yjg9AH3srd2AabnCgy_pisgzCNMjMkMxNl1gfWjbqL2Bz_6P8dl7TrSsDaR4cjQ89QUXKN6vOY9UHPr7iZ1QcnIbKcGP73-bdb7TCNJ5iaDDtpggDSffjWNaMN04-ZcuJvH6iPKjBxxVT1y9vf_hVWTn8Ozeh4fLIFq9gg67pMvg1Ls_sHvwPv7CPqyf1ubSFP1u4Jow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+sensitivity+analysis+with+dependence+measures&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Da+Veiga%2C+Sebastien&rft.date=2015-05-03&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=85&rft.issue=7&rft.spage=1283&rft.epage=1305&rft_id=info:doi/10.1080%2F00949655.2014.945932&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon