Deep Generative Models of LDLR Protein Structure to Predict Variant Pathogenicity

The complex structure and function of low-density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including evolutionary model of variant effect (EVE), evolutionary scale modeling (ESM), and AlphaFold 2 (AF2), have enabled sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research Jg. 64; H. 12; S. 100455
Hauptverfasser: James, Jose K., Norland, Kristjan, Johar, Angad S., Kullo, Iftikhar J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.12.2023
American Society for Biochemistry and Molecular Biology
Elsevier
Schlagworte:
ISSN:0022-2275, 1539-7262, 1539-7262
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The complex structure and function of low-density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including evolutionary model of variant effect (EVE), evolutionary scale modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM’s hidden space, benign and pathogenic variants had different distributions. In EVE these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classification in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.
AbstractList The complex structure and function of low-density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including evolutionary model of variant effect (EVE), evolutionary scale modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM’s hidden space, benign and pathogenic variants had different distributions. In EVE these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classification in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.
The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including Evolutionary model of Variant Effect (EVE), Evolutionary Scale Modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures, but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM’s hidden space, benign and pathogenic variants had different distributions. In EVE, these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL, and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK Biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classifications in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.
The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including Evolutionary model of Variant Effect (EVE), Evolutionary Scale Modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures, but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM's hidden space, benign and pathogenic variants had different distributions. In EVE, these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL, and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK Biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classifications in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including Evolutionary model of Variant Effect (EVE), Evolutionary Scale Modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures, but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM's hidden space, benign and pathogenic variants had different distributions. In EVE, these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL, and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK Biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classifications in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.
ArticleNumber 100455
Author James, Jose K.
Johar, Angad S.
Norland, Kristjan
Kullo, Iftikhar J.
Author_xml – sequence: 1
  givenname: Jose K.
  orcidid: 0000-0003-0482-7307
  surname: James
  fullname: James, Jose K.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 2
  givenname: Kristjan
  surname: Norland
  fullname: Norland, Kristjan
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 3
  givenname: Angad S.
  orcidid: 0000-0001-9698-3352
  surname: Johar
  fullname: Johar, Angad S.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 4
  givenname: Iftikhar J.
  orcidid: 0000-0002-6524-3471
  surname: Kullo
  fullname: Kullo, Iftikhar J.
  email: kullo.iftikhar@mayo.edu
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37821076$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi1URKeFH8AGZckmg-3Ej4gFQi2USoMoz63lx83Uo0w8tZ2R-u_xkBZRFl1Ztu93PumeE3Q0hhEQeknwkmDC32yWmyEuKaZNueOWsSdoQVjT1YJyeoQWGFNaUyrYMTpJaYMxaVtOnqHjRkhKsOAL9PUcYFddwAhRZ7-H6nNwMKQq9NXqfPWtuoohgx-r7zlONk8RqhzKIzhvc_VLR6_HXF3pfB3WMHrr8-1z9LTXQ4IXd-cp-vnxw4-zT_Xqy8Xl2ftVbRmRuQbMKWm7xlGjW930YEA7YokzWltKO2M646AVvCPU4L6VTggtG8ukkxxI35yiy5nrgt6oXfRbHW9V0F79eQhxrXTM3g6giJS4Y5wBF651hnRa8pZw6AywDgtcWO9m1m4yW3AWxhz18AD68Gf012od9opg3nHKeCG8viPEcDNBymrrk4Vh0COEKSkqBecNbyQpo6_-Lfvbci-lDIh5wMaQUoRelb0WO-HQ7YdSqg761UYV_eqgX836S5L8l7yHP5Z5O2eKdth7iCpZD6MtiiPYXLbpH0n_BpS_x7E
CitedBy_id crossref_primary_10_1177_11779322251358314
Cites_doi 10.1038/s41467-019-13633-0
10.1038/nchembio.232
10.1073/pnas.89.22.10915
10.1038/nmeth0410-248
10.1073/pnas.2016239118
10.1016/j.gene.2022.147084
10.1038/s41588-018-0167-z
10.1038/s41436-021-01171-4
10.1002/prot.22934
10.1371/journal.pone.0282689
10.1016/j.ajhg.2016.08.016
10.1002/pro.4353
10.1038/s41587-021-01146-5
10.1038/s41598-020-72404-w
10.1126/science.aaf7000
10.1007/s00439-021-02411-y
10.1038/embor.2011.205
10.1371/journal.pone.0059004
10.1111/biom.13214
10.1101/gr.176601
10.1016/j.molcel.2004.09.038
10.1126/science.1078124
10.1038/s41525-021-00190-z
10.1038/s41588-023-01465-0
10.1093/nar/gky1049
10.1194/jlr.M000422
10.1038/s41586-021-03819-2
10.1093/protein/gzp030
10.1093/bib/bbac074
10.1038/s41467-022-29443-w
10.1038/s41586-021-03828-1
10.1093/bioinformatics/btz184
10.1093/nar/gki387
10.1038/ejhg.2016.193
10.1038/s41594-021-00714-2
10.1186/1471-2105-12-77
10.1371/journal.pgen.1004855
10.1038/nprot.2009.86
10.1093/nar/gkx1153
10.1006/jmbi.2001.5255
10.1186/1471-2105-10-S8-S8
10.15252/msb.202211474
10.1146/annurev.biochem.74.082803.133354
10.4161/fly.19695
10.1038/nbt.3769
10.1038/nrg3463
10.1371/journal.pcbi.1009818
10.3390/ijms24043330
10.3390/ijms19061676
10.1002/humu.23634
10.1016/j.ajhg.2017.07.014
10.1038/s41592-018-0138-4
10.1038/s41586-021-04043-8
10.1016/j.molcel.2006.02.021
10.1093/bioinformatics/btt473
10.1016/j.gim.2021.09.012
10.1002/humu.22768
10.1038/s41594-022-00849-w
10.1093/bioinformatics/bty880
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.jlr.2023.100455
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1539-7262
ExternalDocumentID oai_doaj_org_article_18809565e67d4db19a86416e9be59070
PMC10696256
37821076
10_1016_j_jlr_2023_100455
S0022227523001281
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: U24 HG009650
– fundername: NHGRI NIH HHS
  grantid: U41 HG009650
– fundername: NHLBI NIH HHS
  grantid: K24 HL137010
GroupedDBID ---
-~X
.55
.GJ
0SF
0VX
18M
29K
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6I.
AAEDW
AAFTH
AAFWJ
AAXUO
AAYOK
ABCQX
ABOCM
ACCCW
ACGFO
ACKIV
ACNCT
ACPRK
ADBBV
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
H~9
J5H
KQ8
L7B
MVM
OK1
P2P
RHF
RHI
ROL
RPM
TBC
TR2
TWZ
VH1
W8F
WH7
WOQ
X7M
XFK
YHG
YKV
ZA5
ZGI
ZXP
~KM
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c518t-e0621493d2ba4a3febead1c1dbaac229bb9bde476912b0f48d77a83c58d86e1f3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122300300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2275
1539-7262
IngestDate Fri Oct 03 12:46:02 EDT 2025
Thu Aug 21 18:35:57 EDT 2025
Fri Sep 05 10:10:16 EDT 2025
Sat Aug 02 01:41:22 EDT 2025
Sat Nov 29 07:29:58 EST 2025
Tue Nov 18 20:24:48 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords FH
Dyslipidemias
Genomics
GPU
AUC
Atherosclerosis
MSA
MI
LDLR
ESM
MAVE
ACMG
OR
AMP
EGF
Lipoproteins/Receptors
GMM
AI
HMM
AF2
UKB
VCEP
EVE
VUS
pLDDT
LA
Proteomics
Physical Biochemistry
VAE
atherosclerosis
genomics
lipoproteins/receptors
dyslipidemias
proteomics
physical biochemistry
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e0621493d2ba4a3febead1c1dbaac229bb9bde476912b0f48d77a83c58d86e1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9698-3352
0000-0002-6524-3471
0000-0003-0482-7307
OpenAccessLink https://doaj.org/article/18809565e67d4db19a86416e9be59070
PMID 37821076
PQID 2876636381
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_18809565e67d4db19a86416e9be59070
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10696256
proquest_miscellaneous_2876636381
pubmed_primary_37821076
crossref_citationtrail_10_1016_j_jlr_2023_100455
crossref_primary_10_1016_j_jlr_2023_100455
elsevier_sciencedirect_doi_10_1016_j_jlr_2023_100455
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of lipid research
PublicationTitleAlternate J Lipid Res
PublicationYear 2023
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
– name: Elsevier
References Meier, Rao, Verkuil, Liu, Sercu, Rives (bib22) 2021; 34
Porta-Pardo, Ruiz-Serra, Valentini, Valencia (bib28) 2022; 18
Rives, Meier, Sercu, Goyal, Lin, Liu (bib21) 2021; 118
Akdel, Pires, Pardo, Janes, Zalevsky, Meszaros (bib33) 2022; 29
Rudenko, Henry, Henderson, Ichtchenko, Brown, Goldstein (bib54) 2002; 298
Huang, Henry, Ho, Pownall, Rudenko (bib52) 2010; 51
Chora, Iacocca, Tichy, Wand, Kurtz, Zimmermann (bib3) 2022; 24
Ding, Zou, Brooks (bib19) 2019; 10
Cingolani, Platts, Wang, Coon, Nguyen, Wang (bib44) 2012; 6
Starita, Ahituv, Dunham, Kitzman, Roth, Seelig (bib6) 2017; 101
Landrum, Lee, Benson, Brown, Chao, Chitipiralla (bib43) 2018; 46
McCaw, Lane, Saxena, Redline, Lin (bib56) 2020; 76
Hopf, Ingraham, Poelwijk, Scharfe, Springer, Sander (bib17) 2017; 35
Buel, Walters (bib31) 2022; 29
Kumar, Henikoff, Ng (bib15) 2009; 4
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez (bib46) 2011; 12
Safarova, Klee, Baudhuin, Winkler, Kluge, Bielinski (bib5) 2017; 25
McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:180203426. 2018.
Henikoff, Henikoff (bib45) 1992; 89
Iacocca, Chora, Carrie, Freiberger, Leigh, Defesche (bib12) 2018; 39
Bromberg, Rost (bib60) 2009; 10
Benito-Vicente, Uribe, Jebari, Galicia-Garcia, Ostolaza, Martin (bib7) 2018; 19
Tunyasuvunakool, Adler, Wu, Green, Zielinski, Zidek (bib51) 2021; 596
Hsu, Nisonoff, Fannjiang, Listgarten (bib65) 2022; 40
Livesey, Marsh (bib24) 2023; 19
Sundaram, Gao, Padigepati, McRae, Li, Kosmicki (bib36) 2018; 50
Mariani, Biasini, Barbato, Schwede (bib38) 2013; 29
Delgado, Radusky, Cianferoni, Serrano (bib42) 2019; 35
Ng, Henikoff (bib35) 2001; 11
Jeon, Blacklow (bib48) 2005; 74
Abul-Husn, Manickam, Jones, Wright, Hartzel, Gonzaga-Jauregui (bib2) 2016; 354
Barbosa, Hirata, Ferreira, Borges, Oliveira, Gorjao (bib29) 2023; 853
Marquet, Heinzinger, Olenyi, Dallago, Erckert, Bernhofer (bib34) 2022; 141
Nivon, Moretti, Baker (bib40) 2013; 8
Ioannidis, Rothstein, Pejaver, Middha, McDonnell, Baheti (bib10) 2016; 99
Pfisterer, Brock, Kanerva, Hlushchenko, Paavolainen, Ripatti (bib64) 2022; 2
Miller, Lee, Gordon, Amendola, Adelman, Bale (bib4) 2021; 23
Detlefsen, Hauberg, Boomsma (bib57) 2022; 13
Grimm, Azencott, Aicheler, Gieraths, MacArthur, Samocha (bib13) 2015; 36
Montanucci, Martelli, Ben-Tal, Fariselli (bib59) 2019; 35
Chakravarty, Porter (bib63) 2022; 31
Potapov, Cohen, Schreiber (bib58) 2009; 22
Lo Surdo, Bottomley, Calzetta, Settembre, Cirillo, Pandit (bib53) 2011; 12
Thormaehlen, Schuberth, Won, Blattmann, Joggerst-Thomalla, Theiss (bib8) 2015; 11
Boehr, Nussinov, Wright (bib62) 2009; 5
Frazer, Notin, Dias, Gomez, Min, Brock (bib20) 2021; 599
Gerasimavicius, Liu, Marsh (bib25) 2020; 10
Schymkowitz, Borg, Stricher, Nys, Rousseau, Serrano (bib55) 2005; 33
Pak, Markhieva, Novikova, Petrov, Vorobyev, Maksimova (bib32) 2023; 18
UniProt (bib37) 2019; 47
Balakrishnan, Kamisetty, Carbonell, Lee, Langmead (bib16) 2011; 79
Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.
Rehm (bib9) 2013; 14
Beglova, Jeon, Fisher, Blacklow (bib50) 2004; 16
Saadatagah, Jose, Dikilitas, Alhalabi, Miller, Fan (bib1) 2021; 6
Adzhubei, Schmidt, Peshkin, Ramensky, Gerasimova, Bork (bib11) 2010; 7
Larrea-Sebal, Trenti, Jebari-Benslaiman, Bertolini, Calandra, Negri (bib30) 2023; 24
Riesselman, Ingraham, Marks (bib18) 2018; 15
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger (bib26) 2021; 596
Ferrer-Costa, Orozco, de la Cruz (bib14) 2002; 315
Brandes, Goldman, Wang, Ye, Ntranos (bib23) 2023
DeepMind. Frequently asked questions.
Chen, Hassan, Jernigan, Jia, Kihara, Kloczkowski (bib61) 2023; 120
Tiberti, Terkelsen, Degn, Beltrame, Cremers, da Piedade (bib41) 2022; 23
Fisher, Beglova, Blacklow (bib49) 2006; 22
Livesey (10.1016/j.jlr.2023.100455_bib24) 2023; 19
Buel (10.1016/j.jlr.2023.100455_bib30) 2022; 29
Gerasimavicius (10.1016/j.jlr.2023.100455_bib25) 2020; 10
Safarova (10.1016/j.jlr.2023.100455_bib5) 2017; 25
Tiberti (10.1016/j.jlr.2023.100455_bib40) 2022; 23
Detlefsen (10.1016/j.jlr.2023.100455_bib56) 2022; 13
UniProt (10.1016/j.jlr.2023.100455_bib36) 2019; 47
Brandes (10.1016/j.jlr.2023.100455_bib23) 2023; 55
Rives (10.1016/j.jlr.2023.100455_bib21) 2021; 118
DeLano (10.1016/j.jlr.2023.100455_bib38) 2002; 40
Bromberg (10.1016/j.jlr.2023.100455_bib59) 2009; 10 Suppl 8
Pfisterer (10.1016/j.jlr.2023.100455_bib63) 2022; 2
Beglova (10.1016/j.jlr.2023.100455_bib49) 2004; 16
Benito-Vicente (10.1016/j.jlr.2023.100455_bib7) 2018; 19
Ioannidis (10.1016/j.jlr.2023.100455_bib10) 2016; 99
Abul-Husn (10.1016/j.jlr.2023.100455_bib2) 2016; 354
Chora (10.1016/j.jlr.2023.100455_bib3) 2022; 24
Porta-Pardo (10.1016/j.jlr.2023.100455_bib27) 2022; 18
Potapov (10.1016/j.jlr.2023.100455_bib57) 2009; 22
Rudenko (10.1016/j.jlr.2023.100455_bib53) 2002; 298
Meier (10.1016/j.jlr.2023.100455_bib22) 2021; 34
Marquet (10.1016/j.jlr.2023.100455_bib33) 2022; 141
Frazer (10.1016/j.jlr.2023.100455_bib20) 2021; 599
Lo Surdo (10.1016/j.jlr.2023.100455_bib52) 2011; 12
Starita (10.1016/j.jlr.2023.100455_bib6) 2017; 101
Huang (10.1016/j.jlr.2023.100455_bib51) 2010; 51
Landrum (10.1016/j.jlr.2023.100455_bib42) 2018; 46
Ding (10.1016/j.jlr.2023.100455_bib19) 2019; 10
Mariani (10.1016/j.jlr.2023.100455_bib37) 2013; 29
Saadatagah (10.1016/j.jlr.2023.100455_bib1) 2021; 6
Montanucci (10.1016/j.jlr.2023.100455_bib58) 2019; 35
Grimm (10.1016/j.jlr.2023.100455_bib13) 2015; 36
Ng (10.1016/j.jlr.2023.100455_bib34) 2001; 11
Kumar (10.1016/j.jlr.2023.100455_bib15) 2009; 4
Tunyasuvunakool (10.1016/j.jlr.2023.100455_bib50) 2021; 596
Boehr (10.1016/j.jlr.2023.100455_bib61) 2009; 5
Schymkowitz (10.1016/j.jlr.2023.100455_bib54) 2005; 33
Chakravarty (10.1016/j.jlr.2023.100455_bib62) 2022; 31
Riesselman (10.1016/j.jlr.2023.100455_bib18) 2018; 15
Fisher (10.1016/j.jlr.2023.100455_bib48) 2006; 22
Balakrishnan (10.1016/j.jlr.2023.100455_bib16) 2011; 79
Pak (10.1016/j.jlr.2023.100455_bib31) 2023; 18
Rehm (10.1016/j.jlr.2023.100455_bib9) 2013; 14
Henikoff (10.1016/j.jlr.2023.100455_bib44) 1992; 89
Hopf (10.1016/j.jlr.2023.100455_bib17) 2017; 35
Adzhubei (10.1016/j.jlr.2023.100455_bib11) 2010; 7
McCaw (10.1016/j.jlr.2023.100455_bib55) 2020; 76
Jeon (10.1016/j.jlr.2023.100455_bib47) 2005; 74
Hsu (10.1016/j.jlr.2023.100455_bib64) 2022; 40
Thormaehlen (10.1016/j.jlr.2023.100455_bib8) 2015; 11
Chen (10.1016/j.jlr.2023.100455_bib60) 2023; 120
Cingolani (10.1016/j.jlr.2023.100455_bib43) 2012; 6
Ferrer-Costa (10.1016/j.jlr.2023.100455_bib14) 2002; 315
Akdel (10.1016/j.jlr.2023.100455_bib32) 2022; 29
McInnes (10.1016/j.jlr.2023.100455_bib46) 2018
Iacocca (10.1016/j.jlr.2023.100455_bib12) 2018; 39
Sundaram (10.1016/j.jlr.2023.100455_bib35) 2018; 50
Nivon (10.1016/j.jlr.2023.100455_bib39) 2013; 8
Delgado (10.1016/j.jlr.2023.100455_bib41) 2019; 35
Robin (10.1016/j.jlr.2023.100455_bib45) 2011; 12
Larrea-Sebal (10.1016/j.jlr.2023.100455_bib29) 2023; 24
Miller (10.1016/j.jlr.2023.100455_bib4) 2021; 23
Barbosa (10.1016/j.jlr.2023.100455_bib28) 2023; 853
Jumper (10.1016/j.jlr.2023.100455_bib26) 2021; 596
References_xml – volume: 118
  year: 2021
  ident: bib21
  article-title: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences
  publication-title: Proc Natl Acad Sci U S A
– volume: 19
  year: 2023
  ident: bib24
  article-title: Updated benchmarking of variant effect predictors using deep mutational scanning
  publication-title: Mol Syst Biol
– volume: 120
  year: 2023
  ident: bib61
  article-title: Opinion: Protein folds vs. protein folding: Differing questions, different challenges
  publication-title: Proc Natl Acad Sci U S A
– reference: Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.
– volume: 34
  start-page: 29287
  year: 2021
  end-page: 29303
  ident: bib22
  article-title: Language models enable zero-shot prediction of the effects of mutations on protein function
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 5644
  year: 2019
  ident: bib19
  article-title: Deciphering protein evolution and fitness landscapes with latent space models
  publication-title: Nat Commun
– volume: 19
  year: 2018
  ident: bib7
  article-title: Validation of LDLr Activity as a Tool to Improve Genetic Diagnosis of Familial Hypercholesterolemia: A Retrospective on Functional Characterization of LDLr Variants
  publication-title: Int J Mol Sci
– volume: 76
  start-page: 1262
  year: 2020
  end-page: 1272
  ident: bib56
  article-title: Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies
  publication-title: Biometrics
– volume: 99
  start-page: 877
  year: 2016
  end-page: 885
  ident: bib10
  article-title: REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
  publication-title: Am J Hum Genet
– volume: 596
  start-page: 590
  year: 2021
  end-page: 596
  ident: bib51
  article-title: Highly accurate protein structure prediction for the human proteome
  publication-title: Nature
– volume: 11
  start-page: 863
  year: 2001
  end-page: 874
  ident: bib35
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res
– volume: 101
  start-page: 315
  year: 2017
  end-page: 325
  ident: bib6
  article-title: Variant Interpretation: Functional Assays to the Rescue
  publication-title: Am J Hum Genet
– volume: 13
  start-page: 1914
  year: 2022
  ident: bib57
  article-title: Learning meaningful representations of protein sequences
  publication-title: Nat Commun
– volume: 23
  start-page: 1391
  year: 2021
  end-page: 1398
  ident: bib4
  article-title: Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG)
  publication-title: Genet Med
– volume: 29
  start-page: 1056
  year: 2022
  end-page: 1067
  ident: bib33
  article-title: A structural biology community assessment of AlphaFold2 applications
  publication-title: Nat Struct Mol Biol
– volume: 14
  start-page: 295
  year: 2013
  end-page: 300
  ident: bib9
  article-title: Disease-targeted sequencing: a cornerstone in the clinic
  publication-title: Nat Rev Genet
– volume: 10
  year: 2020
  ident: bib25
  article-title: Identification of pathogenic missense mutations using protein stability predictors
  publication-title: Sci Rep
– volume: 31
  start-page: e4353
  year: 2022
  ident: bib63
  article-title: AlphaFold2 fails to predict protein fold switching
  publication-title: Protein Sci
– volume: 35
  start-page: 128
  year: 2017
  end-page: 135
  ident: bib17
  article-title: Mutation effects predicted from sequence co-variation
  publication-title: Nat Biotechnol
– volume: 39
  start-page: 1631
  year: 2018
  end-page: 1640
  ident: bib12
  article-title: ClinVar database of global familial hypercholesterolemia-associated DNA variants
  publication-title: Hum Mutat
– year: 2023
  ident: bib23
  article-title: Genome-wide prediction of disease variant effects with a deep protein language model
  publication-title: Nat Genet
– volume: 315
  start-page: 771
  year: 2002
  end-page: 786
  ident: bib14
  article-title: Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties
  publication-title: J Mol Biol
– volume: 89
  start-page: 10915
  year: 1992
  end-page: 10919
  ident: bib45
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc Natl Acad Sci U S A
– volume: 46
  start-page: D1062
  year: 2018
  end-page: D1067
  ident: bib43
  article-title: ClinVar: improving access to variant interpretations and supporting evidence
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: 28
  year: 2021
  ident: bib1
  article-title: Genetic basis of hypercholesterolemia in adults
  publication-title: NPJ Genom Med
– volume: 24
  year: 2023
  ident: bib30
  article-title: Functional Characterization of p.(Arg160Gln) PCSK9 Variant Accidentally Found in a Hypercholesterolemic Subject
  publication-title: Int J Mol Sci
– volume: 2
  year: 2022
  ident: bib64
  article-title: Multiparametric platform for profiling lipid trafficking in human leukocytes
  publication-title: Cell Rep Methods
– volume: 24
  start-page: 293
  year: 2022
  end-page: 306
  ident: bib3
  article-title: The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification
  publication-title: Genet Med
– volume: 16
  start-page: 281
  year: 2004
  end-page: 292
  ident: bib50
  article-title: Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor
  publication-title: Mol Cell
– volume: 15
  start-page: 816
  year: 2018
  end-page: 822
  ident: bib18
  article-title: Deep generative models of genetic variation capture the effects of mutations
  publication-title: Nat Methods
– reference: DeepMind. Frequently asked questions.
– volume: 4
  start-page: 1073
  year: 2009
  end-page: 1081
  ident: bib15
  article-title: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
  publication-title: Nat Protoc
– volume: 51
  start-page: 297
  year: 2010
  end-page: 308
  ident: bib52
  article-title: Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor
  publication-title: J Lipid Res
– volume: 5
  start-page: 789
  year: 2009
  end-page: 796
  ident: bib62
  article-title: The role of dynamic conformational ensembles in biomolecular recognition
  publication-title: Nat Chem Biol
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bib26
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 29
  start-page: 1
  year: 2022
  end-page: 2
  ident: bib31
  article-title: Can AlphaFold2 predict the impact of missense mutations on structure?
  publication-title: Nat Struct Mol Biol
– volume: 29
  start-page: 2722
  year: 2013
  end-page: 2728
  ident: bib38
  article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests
  publication-title: Bioinformatics
– volume: 12
  start-page: 77
  year: 2011
  ident: bib46
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 33
  start-page: W382
  year: 2005
  end-page: W388
  ident: bib55
  article-title: The FoldX web server: an online force field
  publication-title: Nucleic Acids Res
– volume: 354
  year: 2016
  ident: bib2
  article-title: Genetic identification of familial hypercholesterolemia within a single U.S. health care system
  publication-title: Science
– volume: 35
  start-page: 4168
  year: 2019
  end-page: 4169
  ident: bib42
  article-title: FoldX 5.0: working with RNA, small molecules and a new graphical interface
  publication-title: Bioinformatics
– volume: 599
  start-page: 91
  year: 2021
  end-page: 95
  ident: bib20
  article-title: Disease variant prediction with deep generative models of evolutionary data
  publication-title: Nature
– volume: 6
  start-page: 80
  year: 2012
  end-page: 92
  ident: bib44
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin)
– volume: 36
  start-page: 513
  year: 2015
  end-page: 523
  ident: bib13
  article-title: The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity
  publication-title: Hum Mutat
– volume: 18
  year: 2023
  ident: bib32
  article-title: Using AlphaFold to predict the impact of single mutations on protein stability and function
  publication-title: PLoS One
– volume: 40
  start-page: 1114
  year: 2022
  end-page: 1122
  ident: bib65
  article-title: Learning protein fitness models from evolutionary and assay-labeled data
  publication-title: Nat Biotechnol
– volume: 25
  start-page: 410
  year: 2017
  end-page: 415
  ident: bib5
  article-title: Variability in assigning pathogenicity to incidental findings: insights from LDLR sequence linked to the electronic health record in 1013 individuals
  publication-title: Eur J Hum Genet
– volume: 23
  year: 2022
  ident: bib41
  article-title: MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles
  publication-title: Brief Bioinform
– volume: 18
  year: 2022
  ident: bib28
  article-title: The structural coverage of the human proteome before and after AlphaFold
  publication-title: PLoS Comput Biol
– volume: 12
  start-page: 1300
  year: 2011
  end-page: 1305
  ident: bib53
  article-title: Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH
  publication-title: EMBO Rep
– volume: 11
  year: 2015
  ident: bib8
  article-title: Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction
  publication-title: PLoS Genet
– volume: 298
  start-page: 2353
  year: 2002
  end-page: 2358
  ident: bib54
  article-title: Structure of the LDL receptor extracellular domain at endosomal pH
  publication-title: Science
– volume: 141
  start-page: 1629
  year: 2022
  end-page: 1647
  ident: bib34
  article-title: Embeddings from protein language models predict conservation and variant effects
  publication-title: Hum Genet
– volume: 47
  start-page: D506
  year: 2019
  end-page: D515
  ident: bib37
  article-title: UniProt: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 277
  year: 2006
  end-page: 283
  ident: bib49
  article-title: Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors
  publication-title: Mol Cell
– reference: McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:180203426. 2018.
– volume: 22
  start-page: 553
  year: 2009
  end-page: 560
  ident: bib58
  article-title: Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details
  publication-title: Protein Eng Des Sel
– volume: 7
  start-page: 248
  year: 2010
  end-page: 249
  ident: bib11
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat Methods
– volume: 35
  start-page: 1513
  year: 2019
  end-page: 1517
  ident: bib59
  article-title: A natural upper bound to the accuracy of predicting protein stability changes upon mutations
  publication-title: Bioinformatics
– volume: 79
  start-page: 1061
  year: 2011
  end-page: 1078
  ident: bib16
  article-title: Learning generative models for protein fold families
  publication-title: Proteins
– volume: 50
  start-page: 1161
  year: 2018
  end-page: 1170
  ident: bib36
  article-title: Predicting the clinical impact of human mutation with deep neural networks
  publication-title: Nat Genet
– volume: 74
  start-page: 535
  year: 2005
  end-page: 562
  ident: bib48
  article-title: Structure and physiologic function of the low-density lipoprotein receptor
  publication-title: Annu Rev Biochem
– volume: 8
  year: 2013
  ident: bib40
  article-title: A Pareto-optimal refinement method for protein design scaffolds
  publication-title: PLoS One
– volume: 10
  start-page: S8
  year: 2009
  ident: bib60
  article-title: Correlating protein function and stability through the analysis of single amino acid substitutions
  publication-title: BMC Bioinformatics
– volume: 853
  year: 2023
  ident: bib29
  article-title: LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of Familial hypercholesterolemia patients
  publication-title: Gene
– year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib46
  article-title: Umap: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 10
  start-page: 5644
  year: 2019
  ident: 10.1016/j.jlr.2023.100455_bib19
  article-title: Deciphering protein evolution and fitness landscapes with latent space models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13633-0
– volume: 5
  start-page: 789
  year: 2009
  ident: 10.1016/j.jlr.2023.100455_bib61
  article-title: The role of dynamic conformational ensembles in biomolecular recognition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.232
– volume: 89
  start-page: 10915
  year: 1992
  ident: 10.1016/j.jlr.2023.100455_bib44
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.22.10915
– volume: 7
  start-page: 248
  year: 2010
  ident: 10.1016/j.jlr.2023.100455_bib11
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0410-248
– volume: 118
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib21
  article-title: Biological stsructure and function emerge from scaling unsupervised learning to 250 million protein sequences
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2016239118
– volume: 853
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib28
  article-title: LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of familial hypercholesterolemia patients
  publication-title: Gene
  doi: 10.1016/j.gene.2022.147084
– volume: 2
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib63
  article-title: Multiparametric platform for profiling lipid trafficking in human leukocytes
  publication-title: Cell Rep. Methods
– volume: 50
  start-page: 1161
  year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib35
  article-title: Predicting the clinical impact of human mutation with deep neural networks
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0167-z
– volume: 23
  start-page: 1391
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib4
  article-title: Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG)
  publication-title: Genet. Med.
  doi: 10.1038/s41436-021-01171-4
– volume: 79
  start-page: 1061
  year: 2011
  ident: 10.1016/j.jlr.2023.100455_bib16
  article-title: Learning generative models for protein fold families
  publication-title: Proteins
  doi: 10.1002/prot.22934
– volume: 18
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib31
  article-title: Using AlphaFold to predict the impact of single mutations on protein stability and function
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0282689
– volume: 99
  start-page: 877
  year: 2016
  ident: 10.1016/j.jlr.2023.100455_bib10
  article-title: REVEL: an ensemble method for predicting the pathogenicity of rare missense variants
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.08.016
– volume: 31
  start-page: e4353
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib62
  article-title: AlphaFold2 fails to predict protein fold switching
  publication-title: Protein Sci.
  doi: 10.1002/pro.4353
– volume: 40
  start-page: 1114
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib64
  article-title: Learning protein fitness models from evolutionary and assay-labeled data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01146-5
– volume: 10
  year: 2020
  ident: 10.1016/j.jlr.2023.100455_bib25
  article-title: Identification of pathogenic missense mutations using protein stability predictors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72404-w
– volume: 354
  year: 2016
  ident: 10.1016/j.jlr.2023.100455_bib2
  article-title: Genetic identification of familial hypercholesterolemia within a single U.S. health care system
  publication-title: Science
  doi: 10.1126/science.aaf7000
– volume: 141
  start-page: 1629
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib33
  article-title: Embeddings from protein language models predict conservation and variant effects
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-021-02411-y
– volume: 12
  start-page: 1300
  year: 2011
  ident: 10.1016/j.jlr.2023.100455_bib52
  article-title: Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.205
– volume: 8
  year: 2013
  ident: 10.1016/j.jlr.2023.100455_bib39
  article-title: A Pareto-optimal refinement method for protein design scaffolds
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059004
– volume: 76
  start-page: 1262
  year: 2020
  ident: 10.1016/j.jlr.2023.100455_bib55
  article-title: Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies
  publication-title: Biometrics
  doi: 10.1111/biom.13214
– volume: 11
  start-page: 863
  year: 2001
  ident: 10.1016/j.jlr.2023.100455_bib34
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res.
  doi: 10.1101/gr.176601
– volume: 16
  start-page: 281
  year: 2004
  ident: 10.1016/j.jlr.2023.100455_bib49
  article-title: Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.09.038
– volume: 40
  start-page: 82
  year: 2002
  ident: 10.1016/j.jlr.2023.100455_bib38
  article-title: Pymol: An open-source molecular graphics tool
  publication-title: CCP4 Newsl Protein Crystallogr
– volume: 298
  start-page: 2353
  year: 2002
  ident: 10.1016/j.jlr.2023.100455_bib53
  article-title: Structure of the LDL receptor extracellular domain at endosomal pH
  publication-title: Science
  doi: 10.1126/science.1078124
– volume: 6
  start-page: 28
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib1
  article-title: Genetic basis of hypercholesterolemia in adults
  publication-title: NPJ Genom. Med.
  doi: 10.1038/s41525-021-00190-z
– volume: 55
  start-page: 1512
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib23
  article-title: Genome-wide prediction of disease variant effects with a deep protein language model
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01465-0
– volume: 47
  start-page: D506
  year: 2019
  ident: 10.1016/j.jlr.2023.100455_bib36
  article-title: UniProt: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1049
– volume: 51
  start-page: 297
  year: 2010
  ident: 10.1016/j.jlr.2023.100455_bib51
  article-title: Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M000422
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib26
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 22
  start-page: 553
  year: 2009
  ident: 10.1016/j.jlr.2023.100455_bib57
  article-title: Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzp030
– volume: 23
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib40
  article-title: MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac074
– volume: 13
  start-page: 1914
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib56
  article-title: Learning meaningful representations of protein sequences
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29443-w
– volume: 596
  start-page: 590
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib50
  article-title: Highly accurate protein structure prediction for the human proteome
  publication-title: Nature
  doi: 10.1038/s41586-021-03828-1
– volume: 35
  start-page: 4168
  year: 2019
  ident: 10.1016/j.jlr.2023.100455_bib41
  article-title: FoldX 5.0: working with RNA, small molecules and a new graphical interface
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz184
– volume: 33
  start-page: W382
  year: 2005
  ident: 10.1016/j.jlr.2023.100455_bib54
  article-title: The FoldX web server: an online force field
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki387
– volume: 25
  start-page: 410
  year: 2017
  ident: 10.1016/j.jlr.2023.100455_bib5
  article-title: Variability in assigning pathogenicity to incidental findings: insights from LDLR sequence linked to the electronic health record in 1013 individuals
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2016.193
– volume: 29
  start-page: 1
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib30
  article-title: Can AlphaFold2 predict the impact of missense mutations on structure?
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00714-2
– volume: 12
  start-page: 77
  year: 2011
  ident: 10.1016/j.jlr.2023.100455_bib45
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 11
  year: 2015
  ident: 10.1016/j.jlr.2023.100455_bib8
  article-title: Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction
  publication-title: PLOS Genet.
  doi: 10.1371/journal.pgen.1004855
– volume: 4
  start-page: 1073
  year: 2009
  ident: 10.1016/j.jlr.2023.100455_bib15
  article-title: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.86
– volume: 46
  start-page: D1062
  year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib42
  article-title: ClinVar: improving access to variant interpretations and supporting evidence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1153
– volume: 315
  start-page: 771
  year: 2002
  ident: 10.1016/j.jlr.2023.100455_bib14
  article-title: Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.5255
– volume: 10 Suppl 8
  start-page: S8
  issue: Suppl 8
  year: 2009
  ident: 10.1016/j.jlr.2023.100455_bib59
  article-title: Correlating protein function and stability through the analysis of single amino acid substitutions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S8-S8
– volume: 19
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib24
  article-title: Updated benchmarking of variant effect predictors using deep mutational scanning
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.202211474
– volume: 74
  start-page: 535
  year: 2005
  ident: 10.1016/j.jlr.2023.100455_bib47
  article-title: Structure and physiologic function of the low-density lipoprotein receptor
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133354
– volume: 6
  start-page: 80
  year: 2012
  ident: 10.1016/j.jlr.2023.100455_bib43
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin)
  doi: 10.4161/fly.19695
– volume: 35
  start-page: 128
  year: 2017
  ident: 10.1016/j.jlr.2023.100455_bib17
  article-title: Mutation effects predicted from sequence co-variation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3769
– volume: 14
  start-page: 295
  year: 2013
  ident: 10.1016/j.jlr.2023.100455_bib9
  article-title: Disease-targeted sequencing: a cornerstone in the clinic
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3463
– volume: 18
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib27
  article-title: The structural coverage of the human proteome before and after AlphaFold
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009818
– volume: 24
  start-page: 3330
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib29
  article-title: Functional Characterization of p.(Arg160Gln) PCSK9 variant accidently found in a hypercholesterolemic subject
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24043330
– volume: 120
  year: 2023
  ident: 10.1016/j.jlr.2023.100455_bib60
  article-title: Opinion: protein folds vs. protein folding: Differing questions, different challenges
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 1676
  year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib7
  article-title: Validation of LDLr activity as a tool to improve genetic diagnosis of familial hypercholesterolemia: a retrospective on functional characterization of LDLr variants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19061676
– volume: 39
  start-page: 1631
  year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib12
  article-title: ClinVar database of global familial hypercholesterolemia-associated DNA variants
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23634
– volume: 34
  start-page: 29287
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib22
  article-title: Language models enable zero-shot prediction of the effects of mutations on protein function
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 101
  start-page: 315
  year: 2017
  ident: 10.1016/j.jlr.2023.100455_bib6
  article-title: Variant interpretation: functional assays to the rescue
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.07.014
– volume: 15
  start-page: 816
  year: 2018
  ident: 10.1016/j.jlr.2023.100455_bib18
  article-title: Deep generative models of genetic variation capture the effects of mutations
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0138-4
– volume: 599
  start-page: 91
  year: 2021
  ident: 10.1016/j.jlr.2023.100455_bib20
  article-title: Disease variant prediction with deep generative models of evolutionary data
  publication-title: Nature
  doi: 10.1038/s41586-021-04043-8
– volume: 22
  start-page: 277
  year: 2006
  ident: 10.1016/j.jlr.2023.100455_bib48
  article-title: Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.02.021
– volume: 29
  start-page: 2722
  year: 2013
  ident: 10.1016/j.jlr.2023.100455_bib37
  article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt473
– volume: 24
  start-page: 293
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib3
  article-title: The clinical genome resource (ClinGen) familial hypercholesterolemia variant curation expert Panel consensus guidelines for LDLR variant classification
  publication-title: Genet. Med.
  doi: 10.1016/j.gim.2021.09.012
– volume: 36
  start-page: 513
  year: 2015
  ident: 10.1016/j.jlr.2023.100455_bib13
  article-title: The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22768
– volume: 29
  start-page: 1056
  year: 2022
  ident: 10.1016/j.jlr.2023.100455_bib32
  article-title: A structural biology community assessment of AlphaFold2 applications
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-022-00849-w
– volume: 35
  start-page: 1513
  year: 2019
  ident: 10.1016/j.jlr.2023.100455_bib58
  article-title: A natural upper bound to the accuracy of predicting protein stability changes upon mutations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty880
SSID ssj0014461
Score 2.4459994
Snippet The complex structure and function of low-density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep...
The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100455
SubjectTerms Atherosclerosis
Cardiovascular Diseases - physiopathology
Dyslipidemias
Genetic Variation
Genomics
Humans
Lipoproteins/Receptors
Models, Molecular
Phenotype
Physical Biochemistry
Protein Structure, Tertiary
Proteomics
Receptors, LDL - chemistry
Receptors, LDL - genetics
Virulence - genetics
Title Deep Generative Models of LDLR Protein Structure to Predict Variant Pathogenicity
URI https://dx.doi.org/10.1016/j.jlr.2023.100455
https://www.ncbi.nlm.nih.gov/pubmed/37821076
https://www.proquest.com/docview/2876636381
https://pubmed.ncbi.nlm.nih.gov/PMC10696256
https://doaj.org/article/18809565e67d4db19a86416e9be59070
Volume 64
WOSCitedRecordID wos001122300300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1539-7262
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014461
  issn: 0022-2275
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BhQQXBC3Q5aNypaoHpIjYsWPnWFoqDquqoBbtzYo_QlO1SdXdVuLfM7aT1S5I5cI1m3jXfpP4vczsG4A9IQq8DwxHbSLzjOMemClLRcZs0-TeOlXGRPuPqTw5UbNZdbrS6ivUhCV74LRwn4JfGHJ44UvpuDO0qlWJJMJXxgsUdlGtI-sZxdSQP0CRQ0efcMakGPOZsbLr8ioYgbIiVAjw8B-_lR0pGvevbUx_E88_6ydXNqTjF_B8YJLkIM3gJTzy3SZsHXSooq9_kX0SazvjS_NNeHo49nXbgm9H3t-Qn9FuOjzrSGyGMyd9Q6ZH0-8kOje0HUnOsne3nix6PBgSOgtyj9IasSChkXGPY7QWWfwrOD_-cnb4NRsaK2RWULXIfF4yVEaFY6bmddEgkLWjljpT15axypjKOM9lWVFm8oYrJ2WtCisUYudpU7yGja7v_DYQoYwtJMoiJz3PrTXCKZpbYahTprTlBPJxcbUdXMdD84srPZaXXWrEQwc8dMJjAh-Xl9wky42HTv4cEFueGNyy4wGMIT3EkP5XDE2Aj3jrgXgkQoFDtQ999-4YGxoxDJmWuvP93VyjDEUmh482OoE3KVaWvxBXC2W2xJVRa1G0NoX1T7r2Ihp_o3yvUK-Wb__HpN_BszCXVJrzHjYwqPwHeGLvF-38dgcey5naiTfVb_63Iuc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+generative+models+of+LDLR+protein+structure+to+predict+variant+pathogenicity&rft.jtitle=Journal+of+lipid+research&rft.au=James%2C+Jose+K.&rft.au=Norland%2C+Kristjan&rft.au=Johar%2C+Angad+S.&rft.au=Kullo%2C+Iftikhar+J.&rft.date=2023-12-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0022-2275&rft.eissn=1539-7262&rft.volume=64&rft.issue=12&rft_id=info:doi/10.1016%2Fj.jlr.2023.100455&rft_id=info%3Apmid%2F37821076&rft.externalDocID=PMC10696256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon