Signal mixture estimation for degenerate heavy Higgses using a deep neural network

If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scen...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Vol. 78; no. 12; pp. 1 - 11
Main Authors: Kvellestad, Anders, Maeland, Steffen, Strümke, Inga
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1434-6044, 1434-6052
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼ 20 % improvement in the estimate uncertainty.
AbstractList If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a \[\sim 20\%\] improvement in the estimate uncertainty.
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a [Formula omitted] improvement in the estimate uncertainty.
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼ 20 % improvement in the estimate uncertainty.
Abstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a $$\sim 20\%$$ ∼20% improvement in the estimate uncertainty.
ArticleNumber 1010
Audience Academic
Author Kvellestad, Anders
Strümke, Inga
Maeland, Steffen
Author_xml – sequence: 1
  givenname: Anders
  orcidid: 0000-0002-5267-7705
  surname: Kvellestad
  fullname: Kvellestad, Anders
  organization: Department of Physics, University of Oslo, Blackett Laboratory, Department of Physics, Imperial College London
– sequence: 2
  givenname: Steffen
  orcidid: 0000-0002-4652-4753
  surname: Maeland
  fullname: Maeland, Steffen
  email: steffen.maeland@uib.no
  organization: Department of Physics and Technology, University of Bergen
– sequence: 3
  givenname: Inga
  orcidid: 0000-0003-1820-6544
  surname: Strümke
  fullname: Strümke, Inga
  email: inga.strumke@uib.no
  organization: Department of Physics and Technology, University of Bergen
BookMark eNqFkU9v1DAQxSNUJNqFr4AiceKQ1k78J5G4VBXQlSohtXC2HHscvOzai-1A20_PbIOKyqXywdbovTfj-Z1URyEGqKq3lJxSysgZ7DfmLFNCeNsQ2jeCcd7cv6iOKetYI7B89Phm7FV1kvOGENIy0h9X1zd-Cnpb7_xtmRPUkIvf6eJjqF1MtYUJAiRdoP4O-tddfemnKUOu5-zDVGsUwL4OMCfMCFB-x_TjdfXS6W2GN3_vVfXt08evF5fN1ZfP64vzq8Zw2pfGUul4T0ZhRdsOVAs7EDL2OJjgVAjNiXZuYE5SDiMdO7CkGxihzkoz9qbrVtV6ybVRb9Q-4dzpTkXt1UMhpknpVLzZgnKjlo5wx4WxzMi2Z1IOUltHnZaUUcx6t2TtU_w54xLUJs4JF5NVSzkbBB2GFlWni2rSGOqDiyVpg8fCzhuk4jzWz7nADpLgylfV-ycG1BS4LZOec1brm-unWrFoTYo5J3CPX6JEHUCrA2i1gFYIWh1Aq3s0fvjPaHx5QIjT-e3zdrnYM_YLE6R_X3_G-QeNksPN
CitedBy_id crossref_primary_10_1007_s00521_020_05316_5
crossref_primary_10_1140_epjc_s10052_023_11532_9
Cites_doi 10.1007/JHEP09(2018)007
10.1103/PhysRevD.68.013001
10.1038/ncomms5308
10.1016/0370-2693(85)91028-7
10.1007/JHEP11(2015)147 10.1007/JHEP12(2014)024
10.1007/BF01557231
10.1016/0550-3213(91)90356-3
10.1103/PhysRevD.92.075004
10.1214/aos/1016218223
10.1016/j.cpc.2011.07.015
10.1103/PhysRevD.94.093001
10.1016/j.cpc.2009.09.011
10.1016/0550-3213(92)90284-I
10.1007/JHEP01(2018)055
10.1088/1126-6708/2006/05/026
10.1103/PhysRevLett.121.191802
10.1103/PhysRevD.96.073002
10.1016/S0370-2693(02)02445-0
10.1016/j.cpc.2009.09.003
10.1103/PhysRevD.45.2685
10.1142/9789812839657_0001 10.1142/9789814307505_0001
10.1016/S0010-4655(00)00243-5
10.1016/S0010-4655(00)00155-7
10.1103/PhysRevLett.114.111801
10.1016/j.cpc.2016.10.015
10.1016/j.physletb.2008.10.018
10.1016/j.cpc.2008.01.036
10.1016/0550-3213(89)90211-3
10.1140/epjc/s10052-015-3650-z
10.1103/PhysRevLett.88.201801
10.1140/epjc/s10052-013-2693-2
10.1088/1674-1137/40/10/100001
10.1103/PhysRevD.92.096012
10.1088/1126-6708/2005/12/015
10.1214/aoms/1177732360
10.1016/j.cpc.2013.02.006
10.1088/1742-6596/762/1/012034
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Springer
The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Springer
– notice: The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-018-6455-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 11
ExternalDocumentID oai_doaj_org_article_fba7f05f56cd4c72847797adf1fa7141
A567287014
10_1140_epjc_s10052_018_6455_z
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PQGLB
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c518t-d17f580b6d62291a6d900b800265166a50aff94f715eb1b3ed039401fd7cb8c33
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-6044
IngestDate Fri Oct 03 12:50:46 EDT 2025
Sat Oct 18 23:48:48 EDT 2025
Mon Oct 20 16:30:25 EDT 2025
Thu Oct 16 15:04:41 EDT 2025
Sat Nov 29 02:58:04 EST 2025
Tue Nov 18 21:10:20 EST 2025
Fri Feb 21 02:39:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-d17f580b6d62291a6d900b800265166a50aff94f715eb1b3ed039401fd7cb8c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4652-4753
0000-0002-5267-7705
0000-0003-1820-6544
OpenAccessLink https://link.springer.com/10.1140/epjc/s10052-018-6455-z
PQID 2154961992
PQPubID 2034659
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fba7f05f56cd4c72847797adf1fa7141
proquest_journals_2154961992
gale_infotracacademiconefile_A567287014
gale_incontextgauss_ISR_A567287014
crossref_primary_10_1140_epjc_s10052_018_6455_z
crossref_citationtrail_10_1140_epjc_s10052_018_6455_z
springer_journals_10_1140_epjc_s10052_018_6455_z
PublicationCentury 2000
PublicationDate 20181200
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References BechtlePBreinOHeinemeyerSWeigleinGWilliamsKEComput. Phys. Commun.20101811382010CoPhC.181..138B10.1016/j.cpc.2009.09.003
SirunyanAMJHEP2018090072018JHEP...09..007S10.1007/JHEP09(2018)007
BaldiPSadowskiPWhitesonDPhys. Rev. Lett.2015114111118012015PhRvL.114k1801B10.1103/PhysRevLett.114.111801
SrivastavaNHintonGEKrizhevskyASutskeverISalakhutdinovRJ. Mach. Learn. Res.201415119293231592
BaldiPSadowskiPWhitesonDNat. Commun.2014543082014NatCo...5E4308B10.1038/ncomms5308
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from http://tensorflow.org
A. Haarr, A. Kvellestad, T.C. Petersen (2016) preprint. arXiv:1611.05757
Dell’AquilaJRNelsonCANucl. Phys. B19893201611989NuPhB.320...61D10.1016/0550-3213(89)90211-3
HarlanderRKantPJHEP2005120152005JHEP...12..015H10.1088/1126-6708/2005/12/015
ErikssonDRathsmanJStalOComput. Phys. Commun.20101811892010CoPhC.181..189E10.1016/j.cpc.2009.09.011
CranmerKPavezJLouppeGBrooksWKJ. Phys. Conf. Ser.2016762101203410.1088/1742-6596/762/1/012034
BechtlePBreinOHeinemeyerSWeigleinGWilliamsKEComput. Phys. Commun.201118226052011CoPhC.182.2605B10.1016/j.cpc.2011.07.015
P.S. Bhupal Dev, A. Pilaftsis, JHEP 12, 024 (2014). https://doi.org/10.1007/JHEP11(2015)147. https://doi.org/10.1007/JHEP12(2014)024. [Erratum: JHEP 11, 147 (2015)]
PatrignaniCChin. Phys. C201640101000012016ChPhC..40j0001P10.1088/1674-1137/40/10/100001
AaboudMJHEP2018010552018JHEP...01..055A10.1007/JHEP01(2018)055
BergeSBernreutherWKirchnerSPhys. Rev. D2015920960122015PhRvD..92i6012B10.1103/PhysRevD.92.096012
JózefowiczRRichter-WasEWasZPhys. Rev. D20169490930012016PhRvD..94i3001J10.1103/PhysRevD.94.093001
F. Chollet, et al. Keras. https://github.com/fchollet/keras (2015)
ActisSPassarinoGSturmCUcciratiSPhys. Lett. B2008670122008PhLB..670...12A10.1016/j.physletb.2008.10.018
D.P. Kingma, J. Ba, CoRR arXiv:1412.6980 (2014)
K. He, X. Zhang, S. Ren, J. Sun, CoRR arXiv:1502.01852 (2015)
BernonJGunionJFHaberHEJiangYKramlSPhys. Rev. D20159270750042015PhRvD..92g5004B10.1103/PhysRevD.92.075004
BowerGRPierzchalaTWasZWorekMPhys. Lett. B20025432272002PhLB..543..227B10.1016/S0370-2693(02)02445-0
HarlanderRVKilgoreWBPhys. Rev. D2003680130012003PhRvD..68a3001H10.1103/PhysRevD.68.013001
TurokNZadroznyJNucl. Phys. B19923697291992NuPhB.369..729T10.1016/0550-3213(92)90284-I
KuzminVARubakovVAShaposhnikovMEPhys. Lett. B1985155361985PhLB..155...36K10.1016/0370-2693(85)91028-7
HarlanderRVLieblerSMantlerHComput. Phys. Commun.20172122392017CoPhC.212..239H10.1016/j.cpc.2016.10.015
SjostrandTMrennaSSkandsPZComput. Phys. Commun.20081788522008CoPhC.178..852S10.1016/j.cpc.2008.01.036
HarlanderRVKilgoreWBPhys. Rev. Lett.2002882018012002PhRvL..88t1801H10.1103/PhysRevLett.88.201801
BechtlePHeinemeyerSStalOStefaniakTWeigleinGEur. Phys. J. C20157594212015EPJC...75..421B10.1140/epjc/s10052-015-3650-z
A. Farbin, PoS ICHEP2016, 180 (2016)
BarberioELeBRichter-WasEWasZZanziDZarembaJPhys. Rev. D20179670730022017PhRvD..96g3002B10.1103/PhysRevD.96.073002
HarlanderRVLieblerSMantlerHComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006
AndersonGWHallLJPhys. Rev. D19924526851992PhRvD..45.2685A10.1103/PhysRevD.45.2685
TurokNZadroznyJNucl. Phys. B19913584711991NuPhB.358..471T10.1016/0550-3213(91)90356-3
S.P. Martin (1997). https://doi.org/10.1142/9789812839657_0001. https://doi.org/10.1142/9789814307505_0001. [Adv. Ser. Direct. High Energy Phys. 18, 1 (1998)]
FriedmanJHastieTTibshiraniRAnn. Stat.200028233710.1214/aos/1016218223
AndersenJOGordaTHelsetANiemiLTenkanenTVITranbergAVuorinenAWeirDJPhys. Rev. Lett.2018121191918022018PhRvL.121s1802A10.1103/PhysRevLett.121.191802
SjostrandTMrennaSSkandsPZJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026
CranmerKSComput. Phys. Commun.20011361982001CoPhC.136..198C10.1016/S0010-4655(00)00243-5
BechtlePBreinOHeinemeyerSStalOStefaniakTWeigleinGWilliamsKPoS2012CHARGED2012024
KramerMKuhnJHStongMLZerwasPMZ. Phys. C199464211994ZPhyC..64...21K10.1007/BF01557231
A.L. Maas, A.Y. Hannun, A.Y. Ng, in International conference on machine learning, vol. 30, p. 3 (2013)
BechtlePBreinOHeinemeyerSStalOStefaniakTWeigleinGWilliamsKEEur. Phys. J. C201474326932014EPJC...74.2693B10.1140/epjc/s10052-013-2693-2
ChetyrkinKGKuhnJHSteinhauserMComput. Phys. Commun.2000133432000CoPhC.133...43C10.1016/S0010-4655(00)00155-7
K. Cranmer, J. Pavez, G. Louppe (2015) preprint. arXiv:1506.02169
S. Ioffe, C. Szegedy, CoRR arXiv:1502.03167 (2015)
WilksSSAnn. Math. Stat.1938916010.1214/aoms/1177732360
N Turok (6455_CR7) 1992; 369
N Srivastava (6455_CR33) 2014; 15
M Kramer (6455_CR16) 1994; 64
KS Cranmer (6455_CR41) 2001; 136
P Bechtle (6455_CR45) 2011; 182
GR Bower (6455_CR17) 2002; 543
D Eriksson (6455_CR28) 2010; 181
P Baldi (6455_CR1) 2014; 5
M Aaboud (6455_CR9) 2018; 01
T Sjostrand (6455_CR29) 2006; 05
T Sjostrand (6455_CR30) 2008; 178
6455_CR3
VA Kuzmin (6455_CR4) 1985; 155
P Bechtle (6455_CR46) 2012; CHARGED2012
6455_CR40
JR Dell’Aquila (6455_CR15) 1989; 320
RV Harlander (6455_CR23) 2002; 88
J Friedman (6455_CR39) 2000; 28
AM Sirunyan (6455_CR10) 2018; 09
E Barberio (6455_CR20) 2017; 96
R Harlander (6455_CR26) 2005; 12
N Turok (6455_CR6) 1991; 358
SS Wilks (6455_CR42) 1938; 9
KG Chetyrkin (6455_CR27) 2000; 133
RV Harlander (6455_CR22) 2017; 212
GW Anderson (6455_CR5) 1992; 45
RV Harlander (6455_CR21) 2013; 184
S Actis (6455_CR25) 2008; 670
J Bernon (6455_CR11) 2015; 92
RV Harlander (6455_CR24) 2003; 68
P Bechtle (6455_CR44) 2010; 181
C Patrignani (6455_CR31) 2016; 40
6455_CR32
6455_CR13
6455_CR35
P Baldi (6455_CR2) 2015; 114
6455_CR14
6455_CR36
R Józefowicz (6455_CR19) 2016; 94
6455_CR12
6455_CR34
P Bechtle (6455_CR48) 2015; 75
K Cranmer (6455_CR43) 2016; 762
6455_CR37
S Berge (6455_CR18) 2015; 92
6455_CR38
JO Andersen (6455_CR8) 2018; 121
P Bechtle (6455_CR47) 2014; 74
References_xml – reference: KramerMKuhnJHStongMLZerwasPMZ. Phys. C199464211994ZPhyC..64...21K10.1007/BF01557231
– reference: AndersenJOGordaTHelsetANiemiLTenkanenTVITranbergAVuorinenAWeirDJPhys. Rev. Lett.2018121191918022018PhRvL.121s1802A10.1103/PhysRevLett.121.191802
– reference: TurokNZadroznyJNucl. Phys. B19923697291992NuPhB.369..729T10.1016/0550-3213(92)90284-I
– reference: HarlanderRVKilgoreWBPhys. Rev. D2003680130012003PhRvD..68a3001H10.1103/PhysRevD.68.013001
– reference: SirunyanAMJHEP2018090072018JHEP...09..007S10.1007/JHEP09(2018)007
– reference: A. Haarr, A. Kvellestad, T.C. Petersen (2016) preprint. arXiv:1611.05757
– reference: SjostrandTMrennaSSkandsPZJHEP2006050262006JHEP...05..026S10.1088/1126-6708/2006/05/026
– reference: BaldiPSadowskiPWhitesonDNat. Commun.2014543082014NatCo...5E4308B10.1038/ncomms5308
– reference: ErikssonDRathsmanJStalOComput. Phys. Commun.20101811892010CoPhC.181..189E10.1016/j.cpc.2009.09.011
– reference: Dell’AquilaJRNelsonCANucl. Phys. B19893201611989NuPhB.320...61D10.1016/0550-3213(89)90211-3
– reference: ChetyrkinKGKuhnJHSteinhauserMComput. Phys. Commun.2000133432000CoPhC.133...43C10.1016/S0010-4655(00)00155-7
– reference: F. Chollet, et al. Keras. https://github.com/fchollet/keras (2015)
– reference: ActisSPassarinoGSturmCUcciratiSPhys. Lett. B2008670122008PhLB..670...12A10.1016/j.physletb.2008.10.018
– reference: CranmerKSComput. Phys. Commun.20011361982001CoPhC.136..198C10.1016/S0010-4655(00)00243-5
– reference: SrivastavaNHintonGEKrizhevskyASutskeverISalakhutdinovRJ. Mach. Learn. Res.201415119293231592
– reference: BernonJGunionJFHaberHEJiangYKramlSPhys. Rev. D20159270750042015PhRvD..92g5004B10.1103/PhysRevD.92.075004
– reference: KuzminVARubakovVAShaposhnikovMEPhys. Lett. B1985155361985PhLB..155...36K10.1016/0370-2693(85)91028-7
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from http://tensorflow.org/
– reference: S.P. Martin (1997). https://doi.org/10.1142/9789812839657_0001. https://doi.org/10.1142/9789814307505_0001. [Adv. Ser. Direct. High Energy Phys. 18, 1 (1998)]
– reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, in International conference on machine learning, vol. 30, p. 3 (2013)
– reference: AaboudMJHEP2018010552018JHEP...01..055A10.1007/JHEP01(2018)055
– reference: BechtlePHeinemeyerSStalOStefaniakTWeigleinGEur. Phys. J. C20157594212015EPJC...75..421B10.1140/epjc/s10052-015-3650-z
– reference: BechtlePBreinOHeinemeyerSWeigleinGWilliamsKEComput. Phys. Commun.20101811382010CoPhC.181..138B10.1016/j.cpc.2009.09.003
– reference: HarlanderRVKilgoreWBPhys. Rev. Lett.2002882018012002PhRvL..88t1801H10.1103/PhysRevLett.88.201801
– reference: SjostrandTMrennaSSkandsPZComput. Phys. Commun.20081788522008CoPhC.178..852S10.1016/j.cpc.2008.01.036
– reference: HarlanderRVLieblerSMantlerHComput. Phys. Commun.20172122392017CoPhC.212..239H10.1016/j.cpc.2016.10.015
– reference: FriedmanJHastieTTibshiraniRAnn. Stat.200028233710.1214/aos/1016218223
– reference: HarlanderRVLieblerSMantlerHComput. Phys. Commun.201318416052013CoPhC.184.1605H10.1016/j.cpc.2013.02.006
– reference: D.P. Kingma, J. Ba, CoRR arXiv:1412.6980 (2014)
– reference: TurokNZadroznyJNucl. Phys. B19913584711991NuPhB.358..471T10.1016/0550-3213(91)90356-3
– reference: BechtlePBreinOHeinemeyerSStalOStefaniakTWeigleinGWilliamsKEEur. Phys. J. C201474326932014EPJC...74.2693B10.1140/epjc/s10052-013-2693-2
– reference: K. He, X. Zhang, S. Ren, J. Sun, CoRR arXiv:1502.01852 (2015)
– reference: CranmerKPavezJLouppeGBrooksWKJ. Phys. Conf. Ser.2016762101203410.1088/1742-6596/762/1/012034
– reference: JózefowiczRRichter-WasEWasZPhys. Rev. D20169490930012016PhRvD..94i3001J10.1103/PhysRevD.94.093001
– reference: BarberioELeBRichter-WasEWasZZanziDZarembaJPhys. Rev. D20179670730022017PhRvD..96g3002B10.1103/PhysRevD.96.073002
– reference: K. Cranmer, J. Pavez, G. Louppe (2015) preprint. arXiv:1506.02169
– reference: BaldiPSadowskiPWhitesonDPhys. Rev. Lett.2015114111118012015PhRvL.114k1801B10.1103/PhysRevLett.114.111801
– reference: HarlanderRKantPJHEP2005120152005JHEP...12..015H10.1088/1126-6708/2005/12/015
– reference: AndersonGWHallLJPhys. Rev. D19924526851992PhRvD..45.2685A10.1103/PhysRevD.45.2685
– reference: BergeSBernreutherWKirchnerSPhys. Rev. D2015920960122015PhRvD..92i6012B10.1103/PhysRevD.92.096012
– reference: WilksSSAnn. Math. Stat.1938916010.1214/aoms/1177732360
– reference: A. Farbin, PoS ICHEP2016, 180 (2016)
– reference: P.S. Bhupal Dev, A. Pilaftsis, JHEP 12, 024 (2014). https://doi.org/10.1007/JHEP11(2015)147. https://doi.org/10.1007/JHEP12(2014)024. [Erratum: JHEP 11, 147 (2015)]
– reference: S. Ioffe, C. Szegedy, CoRR arXiv:1502.03167 (2015)
– reference: BechtlePBreinOHeinemeyerSStalOStefaniakTWeigleinGWilliamsKPoS2012CHARGED2012024
– reference: BowerGRPierzchalaTWasZWorekMPhys. Lett. B20025432272002PhLB..543..227B10.1016/S0370-2693(02)02445-0
– reference: PatrignaniCChin. Phys. C201640101000012016ChPhC..40j0001P10.1088/1674-1137/40/10/100001
– reference: BechtlePBreinOHeinemeyerSWeigleinGWilliamsKEComput. Phys. Commun.201118226052011CoPhC.182.2605B10.1016/j.cpc.2011.07.015
– volume: 09
  start-page: 007
  year: 2018
  ident: 6455_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)007
– volume: 68
  start-page: 013001
  year: 2003
  ident: 6455_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.68.013001
– volume: 5
  start-page: 4308
  year: 2014
  ident: 6455_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5308
– volume: 155
  start-page: 36
  year: 1985
  ident: 6455_CR4
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)91028-7
– ident: 6455_CR14
  doi: 10.1007/JHEP11(2015)147 10.1007/JHEP12(2014)024
– volume: 64
  start-page: 21
  year: 1994
  ident: 6455_CR16
  publication-title: Z. Phys. C
  doi: 10.1007/BF01557231
– volume: 358
  start-page: 471
  year: 1991
  ident: 6455_CR6
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90356-3
– volume: 92
  start-page: 075004
  issue: 7
  year: 2015
  ident: 6455_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.075004
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 6455_CR39
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– ident: 6455_CR40
– volume: 182
  start-page: 2605
  year: 2011
  ident: 6455_CR45
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.07.015
– volume: 94
  start-page: 093001
  issue: 9
  year: 2016
  ident: 6455_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.093001
– volume: 181
  start-page: 189
  year: 2010
  ident: 6455_CR28
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.011
– volume: 369
  start-page: 729
  year: 1992
  ident: 6455_CR7
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(92)90284-I
– volume: 01
  start-page: 055
  year: 2018
  ident: 6455_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)055
– volume: 05
  start-page: 026
  year: 2006
  ident: 6455_CR29
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/05/026
– ident: 6455_CR35
– volume: 121
  start-page: 191802
  issue: 19
  year: 2018
  ident: 6455_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.191802
– volume: 96
  start-page: 073002
  issue: 7
  year: 2017
  ident: 6455_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.073002
– ident: 6455_CR3
– volume: 543
  start-page: 227
  year: 2002
  ident: 6455_CR17
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02445-0
– ident: 6455_CR37
– volume: 181
  start-page: 138
  year: 2010
  ident: 6455_CR44
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.003
– volume: 45
  start-page: 2685
  year: 1992
  ident: 6455_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.45.2685
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 6455_CR33
  publication-title: J. Mach. Learn. Res.
– ident: 6455_CR12
– volume: CHARGED2012
  start-page: 024
  year: 2012
  ident: 6455_CR46
  publication-title: PoS
– ident: 6455_CR13
  doi: 10.1142/9789812839657_0001 10.1142/9789814307505_0001
– volume: 136
  start-page: 198
  year: 2001
  ident: 6455_CR41
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00243-5
– volume: 133
  start-page: 43
  year: 2000
  ident: 6455_CR27
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00155-7
– volume: 114
  start-page: 111801
  issue: 11
  year: 2015
  ident: 6455_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.111801
– volume: 212
  start-page: 239
  year: 2017
  ident: 6455_CR22
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.10.015
– volume: 670
  start-page: 12
  year: 2008
  ident: 6455_CR25
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.10.018
– volume: 178
  start-page: 852
  year: 2008
  ident: 6455_CR30
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.01.036
– volume: 320
  start-page: 61
  issue: 1
  year: 1989
  ident: 6455_CR15
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90211-3
– volume: 75
  start-page: 421
  issue: 9
  year: 2015
  ident: 6455_CR48
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3650-z
– volume: 88
  start-page: 201801
  year: 2002
  ident: 6455_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.201801
– ident: 6455_CR32
– ident: 6455_CR34
– volume: 74
  start-page: 2693
  issue: 3
  year: 2014
  ident: 6455_CR47
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2693-2
– volume: 40
  start-page: 100001
  issue: 10
  year: 2016
  ident: 6455_CR31
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/40/10/100001
– ident: 6455_CR36
– volume: 92
  start-page: 096012
  year: 2015
  ident: 6455_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.096012
– volume: 12
  start-page: 015
  year: 2005
  ident: 6455_CR26
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/12/015
– volume: 9
  start-page: 60
  issue: 1
  year: 1938
  ident: 6455_CR42
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177732360
– ident: 6455_CR38
– volume: 184
  start-page: 1605
  year: 2013
  ident: 6455_CR21
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.02.006
– volume: 762
  start-page: 012034
  issue: 1
  year: 2016
  ident: 6455_CR43
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/762/1/012034
SSID ssj0002408
Score 2.2802706
Snippet If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to...
Abstract If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Astronomy
Astrophysics and Cosmology
Bosons
Elementary Particles
Hadrons
Heavy Ions
Higgs bosons
Machine learning
Measurement Science and Instrumentation
Neural networks
Nuclear Energy
Nuclear Physics
Parameter estimation
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Experimental Physics
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSx0xEA5FLPSlaC90vZRQCn0KJ9ncdh9VlBaKFLXFt5DN5XBKXQ_uUdRfbyaboxWhvvR1d7JsJpPJTGbmG4Q-d7yN6dwJJIQAYUbKiRVakQxW5Tnv2gw8_-u7PjxsTk_bH3-1-oKcsBEeeGTcJHZWRyqjVM4Lp0Gb6lZbH1m0muWS9TpZPUtnquhgAO7KdUVcEEWFKLXByZuYhPlvB5VzVEJOQkOUkJLcPjqWMnr_Ux39JFiaz6CDNfS6GI94Z_zpdfQi9G_Qy5zE6Ya36Oh4NoX3Z7NriAtgANAYKxNxMk2xD9OMMb0IOGngqxsM181DGDDkvk-xTQRhjgHgMn2jH9PD36GfB_sne19J6ZlAnGTNgnimo2xop7yq65ZZ5VtKO7AKlWRKWUltjK2ImsmkpTsePIXe6Cx67brGcf4erfTnffiAsHJOCx9tW1uenDjWqZi8CwE3VyImzlZILllmXAEUh74Wf8xY7EwNsNqMrDaJ1QZYbW4rNLkfNx8hNZ4dsQsrck8NkNj5QRIUUwTFPCcoFfoE62kA9KKHrJqpvRwG8-34yOxIpSHgy0SFvhSieJ7m4mwpUkgcAZysR5RbS7kwZdsPpgbAOwUZvRWiS1l5eP3vWW78j1luolc1SHVOuNlCK4uLy7CNVt3VYjZcfMyb5A6eNxFe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA96VfDFb3G1ShDBp3DJbj52n6SVFgU5ylWlbyGbj-NE966311L715vJ5q6UQn3wdTMJZGcyk8zHbxB631ZNiHbHE-89hBlpRQxXkiSwKldVbZOA5398VZNJfXLSHGWHW5_TKjc6MSlqt7DgIx-XgCUmIVny4_KUQNcoiK7mFhp30Q4glfER2tk_mBxNt7oYALxSfVHFiaSc5xrh-KoY--VPCxV0VEBuQk0kF4JcXjNPCcX_pq6-ETRNtujw0f_u4jF6mG-heG8Qmyfoju-eovspG9T2z9D0eD6D8d_zCwgwYEDiGEoccbzjYudnCax67XFU5ed_MPite99jSKKfYRMJ_BIDUmZcoxvyzJ-j74cH3z59Jrn5ArGC1WvimAqipq10siwbZqRrKG3heikFk9IIakJoeFBMRHXfVt5RaLLOglO2rW1VvUCjbtH5lwhLaxV3wTSlqeJrkLUyxGcKBxcYD5E1BRKbf65tRiaHBhm_9FA1TTXwSg-80pFXGnilLws03s5bDtgc_5yxDyzdUgO2dvqwWM10Pqo6tEYFKoKQ1nGrwH6rRhkXWDCKcVagdyAQGtAzOkjPmZmzvtdfjqd6T0gFkWPGC_QhE4VF3Is1udoh_hEA3LpGubsRFZ31R6-v5KRAdCNsV8O37_LV7Su-Rg9KEPiUk7OLRuvVmX-D7tnz9bxfvc0n6C_10SBK
  priority: 102
  providerName: ProQuest
Title Signal mixture estimation for degenerate heavy Higgses using a deep neural network
URI https://link.springer.com/article/10.1140/epjc/s10052-018-6455-z
https://www.proquest.com/docview/2154961992
https://doaj.org/article/fba7f05f56cd4c72847797adf1fa7141
Volume 78
WOSCitedRecordID wos000453066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C24
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: RSV
  dateStart: 19980103
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ARIX3hWBsooQEqeoduJHcmyrVlSC1WoXqsLFchw7WgTZ1WZbQX89HidZVFWA4JJDbEfxeDxje775DPC6zArn_Y5NrLUYZiRZopkUSSCrqrKsLALx_Pk7OR7nFxfFZAvyIRcmoN2HkGSw1B2fLTmwyy8GM94IRyxBngjGeXK9Dbve5eU4Jaez840NRuKukFeUsUQQxvrc4N9_54ZbCuz9t230rWBp8EGnD_7_7x_C_X7dGR92ivIItmzzGO4G_Kdpn8B0Nq-x_Nv8O4YUYuTe6JIaY7-qjStbB3rqtY298b76EeNJdWvbGGHzdax9BbuMkRvTf6PpkOVP4ePpyYfjt0l_3UJiOM3XSUWl4zkpRSXStKBaVAUhJS4oBadCaE60cwVzknJv4MvMVgSvVaeukqbMTZbtwU6zaOwziIUxklVOF6nO_P6PlsL5jQnDQy_m_KBEwAdpK9NzkeOVGF9VlydNFMpLdfJSXl4K5aWuIzjYtFt2bBx_bXGEg7mpjWza4cViVat-cipXaukId1yYihmJHlsWUleOOi0poxG8QlVQyJfRICCn1pdtq85mU3XIhcRYMWURvOkruYXvi9F9foOXCFJs3ai5P6iU6i1Gq1LkyhMIBo6ADCr0q_jPvXz-701ewL0UFTEgc_ZhZ726tC_hjrlaz9vVCHaPTsaT6Qi2j1M2CgcV_jnhn33J5Oz95NMozLefZ7Yg0Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoILb8RCAQuBOEVrJ34kB4TKo-qqy6pqC6q4GMePaKuyu2y2hfZH8RvxOMlWVaVy6oFr_JAcfzNje2a-QehVmRU-2B2XOOfAzUiyRDMpkkhWZbOsLCLx_NehHI3y_f1iewX96XJhIKyy04lRUdupgTfyfgpcYgKCJd_NfiZQNQq8q10JjQYWW-7kV7iy1W8HH8P-vk7TjU97HzaTtqpAYjjNF4ml0vOclMKKNC2oFrYgpIRzk-BUCM2J9r5gXlIe9FiZOUugejj1VpoyN_AAGlT-NcbCYoL8bPNvS80PdGExmyljiSCMtRnJ4Q7Td7MDA_l6hEMkRJ4Ixnlyes4YxpoBFy3DBRdttHwbd_63f3YX3W7P2Hi9EYp7aMVN7qMbMdbV1A_Qzu64gvYf49_gPsHAM9IkcOJwgsfWVZGKe-FwMFTHJxhe5WtXY0gRqLAOHdwMAw9omGPSRNE_RF-uZEGP0OpkOnGPERbGSGa9LlKdhbsuLYUPlzAGD3zMByj0EO_2WJmWdx3KfxyqJiecKMCGarChAjYUYEOd9lB_OW7WMI_8c8R7gNCyNzCHxw_TeaVaRaR8qaUn3HNhLDMSTieykNp66rWkjPbQSwCgAm6QCQQfVfqortVgd0etcyHBL05ZD71pO_lpWIvRbS5H-CNAJ3au51oHTdVqx1qd4bKHSAfus-bLV_nk8hlfoJube5-HajgYbT1Ft1IQthh9tIZWF_Mj9wxdN8eLcT1_HmUXo-9XDfy_ptB6Xw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaq8hAX3ohAAQuBOEVrJ34kB4RayopVq9WqBVRxMY4fq0Wwu2y2hfan8evqcZKtqkrl1APX-CE5_jzj8cx8g9CrKi990Dsudc6Bm5HkqWZSpJGsyuZ5VUbi-S-7cjgsDg7K0Rr62-XCQFhlJxOjoLYzA2_kvQy4xAQES_Z8GxYx2u6_m_9KoYIUeFq7choNRHbc8e9gvtVvB9thr19nWf_Dp_cf07bCQGo4LZappdLzglTCiiwrqRa2JKSCO5TgVAjNifa-ZF5SHmRalTtLoJI49VaaqjDwGBrE_zUZbEw4XSP-daUFgDosZjblLBWEsTY7OdgzPTf_biB3j3CIiihSwThPT84pxlg_4KKWuOCujVqwf-d__n930e327o03m8NyD6256X10I8bAmvoB2tufjKH95-QPuFUw8I80iZ043OyxdeNI0b10OCiwo2MMr_W1qzGkDoyxDh3cHAM_aJhj2kTXP0Sfr2RBj9D6dDZ1jxEWxkhmvS4znQcbmFbCB-OMwcMf8wEWCeLdfivT8rFDWZAfqskVJwpwohqcqIATBThRJwnqrcbNG0aSf47YAjitegOjePwwW4xVK6CUr7T0hHsujGVGwq1FllJbT72WlNEEvQQwKuAMmQJ6xvqwrtVgf09tciHBX05Zgt60nfwsrMXoNscj_BGgGTvXc6ODqWqlZq3OMJog0gH9rPnyVT65fMYX6GbAu9odDHeeolsZnLsYlLSB1peLQ_cMXTdHy0m9eB6PMUbfrhr3p4UDgzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal+mixture+estimation+for+degenerate+heavy+Higgses+using+a+deep+neural+network&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Kvellestad%2C+Anders&rft.au=Maeland%2C+Steffen&rft.au=Str%C3%BCmke%2C+Inga&rft.date=2018-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=78&rft.issue=12&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-018-6455-z&rft.externalDocID=10_1140_epjc_s10052_018_6455_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon