Metagenomic sequencing of post-mortem tissue samples for the identification of pathogens associated with neonatal deaths
Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodic...
Uložené v:
| Vydané v: | Nature communications Ročník 14; číslo 1; s. 5373 - 9 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
04.09.2023
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including
Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli
, and
Serratia marcescens
, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples.
Rapid identification of pathogens in neonatal infection, and corresponding antimicrobial susceptibility profiles, would improve patient outcomes and assist in antibiotic stewardship. In this work, the authors utilize metagenomic next-generation sequencing of post-mortem tissue samples to identify pathogens associated with neonatal deaths. |
|---|---|
| AbstractList | Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Serratia marcescens, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples. Rapid identification of pathogens in neonatal infection, and corresponding antimicrobial susceptibility profiles, would improve patient outcomes and assist in antibiotic stewardship. In this work, the authors utilize metagenomic next-generation sequencing of post-mortem tissue samples to identify pathogens associated with neonatal deaths. Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Serratia marcescens, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples.Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Serratia marcescens, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples. Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Serratia marcescens, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples.Rapid identification of pathogens in neonatal infection, and corresponding antimicrobial susceptibility profiles, would improve patient outcomes and assist in antibiotic stewardship. In this work, the authors utilize metagenomic next-generation sequencing of post-mortem tissue samples to identify pathogens associated with neonatal deaths. Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli , and Serratia marcescens , in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples. Rapid identification of pathogens in neonatal infection, and corresponding antimicrobial susceptibility profiles, would improve patient outcomes and assist in antibiotic stewardship. In this work, the authors utilize metagenomic next-generation sequencing of post-mortem tissue samples to identify pathogens associated with neonatal deaths. Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli , and Serratia marcescens , in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples. Abstract Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the cause of neonatal deaths. However, conventional tests including traditional culture methods and nucleic acid amplification tests have periodically proven to be insufficient to detect the causative agent in the infectious deaths. In this study, metagenomic next generation sequencing was used to explore for putative pathogens associated with neonatal deaths in post-mortem blood and lung tissue samples, in Soweto, South Africa. Here we show that the metagenomic sequencing results corroborate the findings using conventional methods of culture and nucleic acid amplifications tests on post-mortem samples in detecting the pathogens attributed in the causal pathway of death in 90% (18/20) of the decedents. Furthermore, metagenomic sequencing detected a putative pathogen, including Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Serratia marcescens, in a further nine of 11 (81%) cases where no causative pathogen was identified. The antimicrobial susceptibility profile was also determined by the metagenomic sequencing for all pathogens with numerous multi drug resistant organism identified. In conclusion, metagenomic sequencing is able to successfully identify pathogens contributing to infection associated deaths on postmortem blood and tissue samples. |
| ArticleNumber | 5373 |
| Author | Ahyong, Vida Madhi, Shabir A. Baillie, Vicky L. Olwagen, Courtney P. |
| Author_xml | – sequence: 1 givenname: Vicky L. orcidid: 0000-0003-1327-9090 surname: Baillie fullname: Baillie, Vicky L. email: Vicky.Baillie@wits-VIDA.org organization: South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Faculty of Health Science – sequence: 2 givenname: Shabir A. orcidid: 0000-0002-7629-0636 surname: Madhi fullname: Madhi, Shabir A. organization: South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Faculty of Health Science – sequence: 3 givenname: Vida surname: Ahyong fullname: Ahyong, Vida organization: Chan Zuckerberg Biohub, 499 Illinois St – sequence: 4 givenname: Courtney P. surname: Olwagen fullname: Olwagen, Courtney P. organization: South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Faculty of Health Science |
| BookMark | eNp9UsFuFSEUnZgaW2t_wBWJGzejMMDArIxpbG1S40bXhIHLPF5m4Ak8q38v702NtouygVzOOZd7OC-bkxADNM1rgt8RTOX7zAjrRYs72jI8cNnKZ81ZhxlpiejoyX_n0-Yi5y2uiw5EMvaiOaWi73tJ6Vnz6wsUPUGIizcow489BOPDhKJDu5hLu8RUYEHF57wHlPWymyEjFxMqG0DeQijeeaOLj-FI0mUTq15GOudovC5g0Z0vGxQgBl30jCxUTH7VPHd6znBxv583368-fbv83N5-vb65_HjbGk5kaQ0zXOjByJFiN468FnvrKJChswOMI3Pc2UH0bHCaYcox5kzKUWLowXYg6Xlzs-raqLdql_yi028VtVfHQkyT0ql4M4NytOeCW9pbPDIjRskHC52hwwC1heNV68OqtduPC1hTh096fiD68Cb4jZriT0UwE6ITuCq8vVdIsXqdi1p8NjDPutqzz6qTPaG4q2NU6JtH0G3cp1C9OqAw45wJWlFyRZkUc07glPHl-Bv1AX6undUhLmqNi6pxUce4qIMz3SPq30GeJNGVlCs4TJD-veoJ1h_detWD |
| CitedBy_id | crossref_primary_10_3389_fcimb_2025_1642072 crossref_primary_10_1016_j_ebiom_2024_105536 crossref_primary_10_1002_advs_202506613 crossref_primary_10_1016_j_envc_2025_101099 |
| Cites_doi | 10.1093/cid/ciz571 10.1093/gigascience/giaa111 10.1016/j.molmed.2014.08.001 10.1093/cid/ciy693 10.1016/j.jbi.2008.08.010 10.1371/journal.pone.0206194 10.1093/cid/ciz574 10.1186/s12915-014-0087-z 10.4102/sajid.v36i1.205 10.1007/s00228-007-0376-3 10.1186/s13059-016-0904-5 10.3390/ijerph16040610 10.5858/arpa.2016-0539-RA 10.1128/mBio.01888-15 10.1016/S0140-6736(15)00519-X 10.1093/cid/cix881 10.1186/s13073-022-01072-4 10.1128/CMR.00181-19 10.3389/fmed.2021.635831 10.1186/s40168-019-0678-6 10.1016/S2214-109X(22)00246-7 10.1186/s12879-016-1772-z 10.1371/journal.pone.0245089 10.1146/annurev-pathmechdis-012418-012751 10.1016/S0140-6736(16)31593-8 10.1093/tropej/fmu079 10.3389/fmicb.2017.01069 10.1016/j.jbi.2019.103208 10.1056/NEJMoa1803396 10.1136/thx.2004.030411 10.1371/journal.pone.0271355 10.1101/gr.238170.118 10.1128/JCM.00500-18 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-40958-8 |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_f36575d36d0b4c7b859de2c399ed97f5 PMC10477270 10_1038_s41467_023_40958_8 |
| GrantInformation_xml | – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: OPP1211813; OPP1211813; OPP1211813 funderid: https://doi.org/10.13039/100000865 – fundername: ; – fundername: ; grantid: OPP1211813; OPP1211813; OPP1211813 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c518t-c4c57a9c8b30fbb55186df3e192d9ebb4f5fd97649fa4035005488b80e6ed2e83 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:34:13 EDT 2025 Tue Nov 04 02:06:33 EST 2025 Fri Sep 05 10:14:58 EDT 2025 Tue Oct 07 07:55:51 EDT 2025 Sat Nov 29 03:29:23 EST 2025 Tue Nov 18 22:25:17 EST 2025 Fri Feb 21 02:39:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-c4c57a9c8b30fbb55186df3e192d9ebb4f5fd97649fa4035005488b80e6ed2e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1327-9090 0000-0002-7629-0636 |
| OpenAccessLink | https://www.proquest.com/docview/2860455473?pq-origsite=%requestingapplication% |
| PMID | 37666833 |
| PQID | 2860455473 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f36575d36d0b4c7b859de2c399ed97f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10477270 proquest_miscellaneous_2861302500 proquest_journals_2860455473 crossref_citationtrail_10_1038_s41467_023_40958_8 crossref_primary_10_1038_s41467_023_40958_8 springer_journals_10_1038_s41467_023_40958_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-04 |
| PublicationDateYYYYMMDD | 2023-09-04 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | ReddyKBekkerAWhitelawACEsterhuizenTMDramowskiAA retrospective analysis of pathogen profile, antimicrobial resistance and mortality in neonatal hospital-acquired bloodstream infections from 2009–2018 at Tygerberg Hospital, South AfricaPLoS One202116e02450891:CAS:528:DC%2BB3MXitVeit7c%3D10.1371/journal.pone.0245089334443347808607 Koperska, M. Pediatric Blood Volume Calculator, <https://www.omnicalculator.com/health/pediatric-blood-volume#how-is-the-blood-volume-estimated-in-pediatrics> (2023). RossignoliAClavennaABonatiMAntibiotic prescription and prevalence rate in the outpatient paediatric population: analysis of surveys published during 2000–2005Eur. J. Clin. Pharmacol.2007631099110610.1007/s00228-007-0376-317891535 Majavie, L., Johnston, D. & Messina, A. A retrospective review of colistin utilisation at a tertiary care academic hospital in South Africa. South. Afr. J. Infect. Dis.36, a205 (2021). MillerSLaboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluidGenome Res.2019298318421:CAS:528:DC%2BC1MXhtVKiu7vK10.1101/gr.238170.118309923046499319 DiazMHDevelopment and implementation of multiplex TaqMan array cards for specimen testing at Child Health and Mortality Prevention Surveillance site laboratoriesClin. Infect. Dis.201969S311S3211:CAS:528:DC%2BB3cXnsFGjtbw%3D10.1093/cid/ciz57131598666 PrincipiNEspositoSAntimicrobial stewardship in paediatricsBMC Infect. Dis.2016161810.1186/s12879-016-1772-z Zea-VeraAOchoaTJChallenges in the diagnosis and management of neonatal sepsisJ. Trop. Pediatr.20156111310.1093/tropej/fmu079256044894375388 SalterSJReagent and laboratory contamination can critically impact sequence-based microbiome analysesBMC Biol.20141210.1186/s12915-014-0087-z253874604228153 ZaasAKThe current epidemiology and clinical decisions surrounding acute respiratory infectionsTrends Mol. Med.20142057958810.1016/j.molmed.2014.08.00125201713 SimnerPJMillerSCarrollKCUnderstanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseasesClin. Infect. Dis.2018667787881:CAS:528:DC%2BC1MXjvFelu7s%3D10.1093/cid/cix88129040428 MaydayMYKhanLMChowEDZinterMSDeRisiJLMiniaturization and optimization of 384-well compatible RNA sequencing library preparationPloS One201914e02061941:CAS:528:DC%2BC1MXmtFartb4%3D10.1371/journal.pone.0206194306296046328170 World Health Organization. Children: improving survival and well-being Geneva: World health organisation, <https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality#:~:text=Substantial%20global%20progress%20has%20been,1990%20to%2038%20in%202019.> (2020). ForbesJDKnoxNCRonholmJPagottoFReimerAMetagenomics: the next culture-independent game changerFront. Microbiol.20178106910.3389/fmicb.2017.01069287252175495826 HarrisPAResearch electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics supportJ. Biomed. Inform.20094237738110.1016/j.jbi.2008.08.01018929686 BanerjeeRHumphriesRRapid antimicrobial susceptibility testing methods for blood cultures and their clinical impactFront. Med.2021863583110.3389/fmed.2021.635831 SchlabergRValidation of metagenomic next-generation sequencing tests for universal pathogen detectionArch. Pathol. Lab. Med.20171417767861:CAS:528:DC%2BC1MXmt1aqt7w%3D10.5858/arpa.2016-0539-RA28169558 De OliveiraDMAntimicrobial resistance in ESKAPE pathogensClin. Microbiol. Rev.202033e001810011910.1128/CMR.00181-19324044357227449 LiuLGlobal, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goalsLancet20163883027303510.1016/S0140-6736(16)31593-8278398555161777 GuWDepletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applicationsGenome Biol.20161711310.1186/s13059-016-0904-5 VictoraCGCountdown to 2015: a decade of tracking progress for maternal, newborn, and child survivalLancet20163872049205910.1016/S0140-6736(15)00519-X26477328 MadhiSAUnraveling specific causes of neonatal mortality using minimally invasive tissue sampling: an observational studyClin. Infect. Dis.201969S351S36010.1093/cid/ciz574315986606785687 SerpaPHMetagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infectionsGenome Med.202214112450882110.1186/s13073-022-01072-4 United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), ‘Levels & Trends in Child Mortality: Report 2017, Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation’, United Nations Children’s Fund, New York, (2017) WilsonMRClinical Metagenomic Sequencing for Diagnosis of Meningitis and EncephalitisN. Engl. J. Med.2019380232723401:CAS:528:DC%2BC1MXhtF2ru77I10.1056/NEJMoa1803396311890366764751 TabakYPBlood culture turnaround time in US acute care hospitals and implications for laboratory process optimizationJ. Clin. Microbiol.201856e00500e005181:CAS:528:DC%2BC1MXhtVOht7rI10.1128/JCM.00500-18301352306258864 ZinterMMaydayMRyckmanKJelliffe-PawlowskiLDeRisiJTowards precision quantification of contamination in metagenomic sequencing experimentsMicrobiome201971510.1186/s40168-019-0678-6 World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed, <https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed> (2017). Kalantar, K. L. et al. IDseq—An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience9https://doi.org/10.1093/gigascience/giaa111 (2020). PerovicOAcinetobacter baumannii complex, national laboratory-based surveillance in South Africa, 2017 to 2019Plos One202217e02713551:CAS:528:DC%2BB38XitFGmtrbK10.1371/journal.pone.0271355359260579352035 MashauRCCulture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014–19: a cross-sectional studyLancet Glob. Health202210e1170e11781:CAS:528:DC%2BB3sXislSmtb0%3D10.1016/S2214-109X(22)00246-7358398159296659 MiaoQMicrobiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practiceClin. Infect. Dis.201867S231S2401:CAS:528:DC%2BC1MXhtlCmtb3K10.1093/cid/ciy69330423048 Van der EerdenMComparison between pathogen directed antibiotic treatment and empirical broad spectrum antibiotic treatment in patients with community acquired pneumonia: a prospective randomised studyThorax20056067267810.1136/thx.2004.030411160617091747487 CristinaMLSartiniMSpagnoloAMSerratia marcescens infections in neonatal intensive care units (NICUs)Int. J. Environ. Res. Public Health2019166101:CAS:528:DC%2BC1MXhtlWgs7vP10.3390/ijerph16040610307915096406414 GoldbergBSichtigHGeyerCLedeboerNWeinstockGMMaking the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnosticsMBio20156e01888018151:CAS:528:DC%2BC2sXltVOjtQ%3D%3D10.1128/mBio.01888-15266460144669390 GuWMillerSChiuCYClinical metagenomic next-generation sequencing for pathogen detectionAnnu. Rev. Pathol.2019143191:CAS:528:DC%2BC1cXhvF2ltLnM10.1146/annurev-pathmechdis-012418-01275130355154 HarrisPAThe REDCap consortium: building an international community of software platform partnersJ. Biomed. Inform.20199510320810.1016/j.jbi.2019.103208310786607254481 YP Tabak (40958_CR16) 2018; 56 S Miller (40958_CR34) 2019; 29 40958_CR26 L Liu (40958_CR3) 2016; 388 40958_CR24 SA Madhi (40958_CR4) 2019; 69 PJ Simner (40958_CR27) 2018; 66 MR Wilson (40958_CR5) 2019; 380 M Van der Eerden (40958_CR9) 2005; 60 RC Mashau (40958_CR25) 2022; 10 M Zinter (40958_CR30) 2019; 7 JD Forbes (40958_CR6) 2017; 8 40958_CR2 PH Serpa (40958_CR8) 2022; 14 CG Victora (40958_CR15) 2016; 387 A Zea-Vera (40958_CR20) 2015; 61 PA Harris (40958_CR37) 2009; 42 40958_CR1 DM De Oliveira (40958_CR11) 2020; 33 W Gu (40958_CR28) 2016; 17 SJ Salter (40958_CR29) 2014; 12 N Principi (40958_CR18) 2016; 16 40958_CR19 R Banerjee (40958_CR17) 2021; 8 W Gu (40958_CR13) 2019; 14 PA Harris (40958_CR36) 2019; 95 AK Zaas (40958_CR10) 2014; 20 ML Cristina (40958_CR12) 2019; 16 Q Miao (40958_CR21) 2018; 67 K Reddy (40958_CR22) 2021; 16 MY Mayday (40958_CR32) 2019; 14 B Goldberg (40958_CR7) 2015; 6 R Schlaberg (40958_CR35) 2017; 141 40958_CR33 A Rossignoli (40958_CR14) 2007; 63 O Perovic (40958_CR23) 2022; 17 MH Diaz (40958_CR31) 2019; 69 |
| References_xml | – reference: Koperska, M. Pediatric Blood Volume Calculator, <https://www.omnicalculator.com/health/pediatric-blood-volume#how-is-the-blood-volume-estimated-in-pediatrics> (2023). – reference: PrincipiNEspositoSAntimicrobial stewardship in paediatricsBMC Infect. Dis.2016161810.1186/s12879-016-1772-z – reference: MaydayMYKhanLMChowEDZinterMSDeRisiJLMiniaturization and optimization of 384-well compatible RNA sequencing library preparationPloS One201914e02061941:CAS:528:DC%2BC1MXmtFartb4%3D10.1371/journal.pone.0206194306296046328170 – reference: SerpaPHMetagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infectionsGenome Med.202214112450882110.1186/s13073-022-01072-4 – reference: SalterSJReagent and laboratory contamination can critically impact sequence-based microbiome analysesBMC Biol.20141210.1186/s12915-014-0087-z253874604228153 – reference: ForbesJDKnoxNCRonholmJPagottoFReimerAMetagenomics: the next culture-independent game changerFront. Microbiol.20178106910.3389/fmicb.2017.01069287252175495826 – reference: CristinaMLSartiniMSpagnoloAMSerratia marcescens infections in neonatal intensive care units (NICUs)Int. J. Environ. Res. Public Health2019166101:CAS:528:DC%2BC1MXhtlWgs7vP10.3390/ijerph16040610307915096406414 – reference: World Health Organization. Children: improving survival and well-being Geneva: World health organisation, <https://www.who.int/news-room/fact-sheets/detail/children-reducing-mortality#:~:text=Substantial%20global%20progress%20has%20been,1990%20to%2038%20in%202019.> (2020). – reference: MiaoQMicrobiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practiceClin. Infect. Dis.201867S231S2401:CAS:528:DC%2BC1MXhtlCmtb3K10.1093/cid/ciy69330423048 – reference: VictoraCGCountdown to 2015: a decade of tracking progress for maternal, newborn, and child survivalLancet20163872049205910.1016/S0140-6736(15)00519-X26477328 – reference: SimnerPJMillerSCarrollKCUnderstanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseasesClin. Infect. Dis.2018667787881:CAS:528:DC%2BC1MXjvFelu7s%3D10.1093/cid/cix88129040428 – reference: ZinterMMaydayMRyckmanKJelliffe-PawlowskiLDeRisiJTowards precision quantification of contamination in metagenomic sequencing experimentsMicrobiome201971510.1186/s40168-019-0678-6 – reference: ZaasAKThe current epidemiology and clinical decisions surrounding acute respiratory infectionsTrends Mol. Med.20142057958810.1016/j.molmed.2014.08.00125201713 – reference: BanerjeeRHumphriesRRapid antimicrobial susceptibility testing methods for blood cultures and their clinical impactFront. Med.2021863583110.3389/fmed.2021.635831 – reference: GuWMillerSChiuCYClinical metagenomic next-generation sequencing for pathogen detectionAnnu. Rev. Pathol.2019143191:CAS:528:DC%2BC1cXhvF2ltLnM10.1146/annurev-pathmechdis-012418-01275130355154 – reference: TabakYPBlood culture turnaround time in US acute care hospitals and implications for laboratory process optimizationJ. Clin. Microbiol.201856e00500e005181:CAS:528:DC%2BC1MXhtVOht7rI10.1128/JCM.00500-18301352306258864 – reference: Zea-VeraAOchoaTJChallenges in the diagnosis and management of neonatal sepsisJ. Trop. Pediatr.20156111310.1093/tropej/fmu079256044894375388 – reference: Kalantar, K. L. et al. IDseq—An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience9https://doi.org/10.1093/gigascience/giaa111 (2020). – reference: ReddyKBekkerAWhitelawACEsterhuizenTMDramowskiAA retrospective analysis of pathogen profile, antimicrobial resistance and mortality in neonatal hospital-acquired bloodstream infections from 2009–2018 at Tygerberg Hospital, South AfricaPLoS One202116e02450891:CAS:528:DC%2BB3MXitVeit7c%3D10.1371/journal.pone.0245089334443347808607 – reference: HarrisPAResearch electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics supportJ. Biomed. Inform.20094237738110.1016/j.jbi.2008.08.01018929686 – reference: LiuLGlobal, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goalsLancet20163883027303510.1016/S0140-6736(16)31593-8278398555161777 – reference: MashauRCCulture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014–19: a cross-sectional studyLancet Glob. Health202210e1170e11781:CAS:528:DC%2BB3sXislSmtb0%3D10.1016/S2214-109X(22)00246-7358398159296659 – reference: Van der EerdenMComparison between pathogen directed antibiotic treatment and empirical broad spectrum antibiotic treatment in patients with community acquired pneumonia: a prospective randomised studyThorax20056067267810.1136/thx.2004.030411160617091747487 – reference: World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed, <https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed> (2017). – reference: WilsonMRClinical Metagenomic Sequencing for Diagnosis of Meningitis and EncephalitisN. Engl. J. Med.2019380232723401:CAS:528:DC%2BC1MXhtF2ru77I10.1056/NEJMoa1803396311890366764751 – reference: DiazMHDevelopment and implementation of multiplex TaqMan array cards for specimen testing at Child Health and Mortality Prevention Surveillance site laboratoriesClin. Infect. Dis.201969S311S3211:CAS:528:DC%2BB3cXnsFGjtbw%3D10.1093/cid/ciz57131598666 – reference: United Nations Inter-agency Group for Child Mortality Estimation (UN IGME), ‘Levels & Trends in Child Mortality: Report 2017, Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation’, United Nations Children’s Fund, New York, (2017) – reference: PerovicOAcinetobacter baumannii complex, national laboratory-based surveillance in South Africa, 2017 to 2019Plos One202217e02713551:CAS:528:DC%2BB38XitFGmtrbK10.1371/journal.pone.0271355359260579352035 – reference: RossignoliAClavennaABonatiMAntibiotic prescription and prevalence rate in the outpatient paediatric population: analysis of surveys published during 2000–2005Eur. J. Clin. Pharmacol.2007631099110610.1007/s00228-007-0376-317891535 – reference: Majavie, L., Johnston, D. & Messina, A. A retrospective review of colistin utilisation at a tertiary care academic hospital in South Africa. South. Afr. J. Infect. Dis.36, a205 (2021). – reference: SchlabergRValidation of metagenomic next-generation sequencing tests for universal pathogen detectionArch. Pathol. Lab. Med.20171417767861:CAS:528:DC%2BC1MXmt1aqt7w%3D10.5858/arpa.2016-0539-RA28169558 – reference: HarrisPAThe REDCap consortium: building an international community of software platform partnersJ. Biomed. Inform.20199510320810.1016/j.jbi.2019.103208310786607254481 – reference: MadhiSAUnraveling specific causes of neonatal mortality using minimally invasive tissue sampling: an observational studyClin. Infect. Dis.201969S351S36010.1093/cid/ciz574315986606785687 – reference: De OliveiraDMAntimicrobial resistance in ESKAPE pathogensClin. Microbiol. Rev.202033e001810011910.1128/CMR.00181-19324044357227449 – reference: MillerSLaboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluidGenome Res.2019298318421:CAS:528:DC%2BC1MXhtVKiu7vK10.1101/gr.238170.118309923046499319 – reference: GuWDepletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applicationsGenome Biol.20161711310.1186/s13059-016-0904-5 – reference: GoldbergBSichtigHGeyerCLedeboerNWeinstockGMMaking the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnosticsMBio20156e01888018151:CAS:528:DC%2BC2sXltVOjtQ%3D%3D10.1128/mBio.01888-15266460144669390 – volume: 69 start-page: S311 year: 2019 ident: 40958_CR31 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciz571 – ident: 40958_CR33 doi: 10.1093/gigascience/giaa111 – ident: 40958_CR26 – volume: 20 start-page: 579 year: 2014 ident: 40958_CR10 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2014.08.001 – volume: 67 start-page: S231 year: 2018 ident: 40958_CR21 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciy693 – volume: 42 start-page: 377 year: 2009 ident: 40958_CR37 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2008.08.010 – volume: 14 start-page: e0206194 year: 2019 ident: 40958_CR32 publication-title: PloS One doi: 10.1371/journal.pone.0206194 – volume: 69 start-page: S351 year: 2019 ident: 40958_CR4 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciz574 – volume: 12 year: 2014 ident: 40958_CR29 publication-title: BMC Biol. doi: 10.1186/s12915-014-0087-z – ident: 40958_CR2 – ident: 40958_CR24 doi: 10.4102/sajid.v36i1.205 – volume: 63 start-page: 1099 year: 2007 ident: 40958_CR14 publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/s00228-007-0376-3 – volume: 17 start-page: 1 year: 2016 ident: 40958_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-016-0904-5 – volume: 16 start-page: 610 year: 2019 ident: 40958_CR12 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16040610 – volume: 141 start-page: 776 year: 2017 ident: 40958_CR35 publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2016-0539-RA – volume: 6 start-page: e01888 year: 2015 ident: 40958_CR7 publication-title: MBio doi: 10.1128/mBio.01888-15 – volume: 387 start-page: 2049 year: 2016 ident: 40958_CR15 publication-title: Lancet doi: 10.1016/S0140-6736(15)00519-X – volume: 66 start-page: 778 year: 2018 ident: 40958_CR27 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/cix881 – volume: 14 start-page: 1 year: 2022 ident: 40958_CR8 publication-title: Genome Med. doi: 10.1186/s13073-022-01072-4 – volume: 33 start-page: e00181 year: 2020 ident: 40958_CR11 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00181-19 – volume: 8 start-page: 635831 year: 2021 ident: 40958_CR17 publication-title: Front. Med. doi: 10.3389/fmed.2021.635831 – volume: 7 start-page: 1 year: 2019 ident: 40958_CR30 publication-title: Microbiome doi: 10.1186/s40168-019-0678-6 – volume: 10 start-page: e1170 year: 2022 ident: 40958_CR25 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(22)00246-7 – volume: 16 start-page: 1 year: 2016 ident: 40958_CR18 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-016-1772-z – volume: 16 start-page: e0245089 year: 2021 ident: 40958_CR22 publication-title: PLoS One doi: 10.1371/journal.pone.0245089 – volume: 14 start-page: 319 year: 2019 ident: 40958_CR13 publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathmechdis-012418-012751 – volume: 388 start-page: 3027 year: 2016 ident: 40958_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(16)31593-8 – volume: 61 start-page: 1 year: 2015 ident: 40958_CR20 publication-title: J. Trop. Pediatr. doi: 10.1093/tropej/fmu079 – ident: 40958_CR1 – volume: 8 start-page: 1069 year: 2017 ident: 40958_CR6 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01069 – volume: 95 start-page: 103208 year: 2019 ident: 40958_CR36 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103208 – volume: 380 start-page: 2327 year: 2019 ident: 40958_CR5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1803396 – volume: 60 start-page: 672 year: 2005 ident: 40958_CR9 publication-title: Thorax doi: 10.1136/thx.2004.030411 – volume: 17 start-page: e0271355 year: 2022 ident: 40958_CR23 publication-title: Plos One doi: 10.1371/journal.pone.0271355 – volume: 29 start-page: 831 year: 2019 ident: 40958_CR34 publication-title: Genome Res. doi: 10.1101/gr.238170.118 – ident: 40958_CR19 – volume: 56 start-page: e00500 year: 2018 ident: 40958_CR16 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00500-18 |
| SSID | ssj0000391844 |
| Score | 2.4571605 |
| Snippet | Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in determining the... Abstract Postmortem minimally invasive tissue sampling together with the detailed review of clinical records has been shown to be highly successful in... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5373 |
| SubjectTerms | 38/22 38/23 38/77 38/88 38/91 631/208/514/2254 692/308/174 692/308/3187 692/700/139/1420 Amplification Antibiotics Bacteria Blood Drug resistance E coli Fatalities Humanities and Social Sciences Infant mortality Klebsiella Metagenomics multidisciplinary Neonates Next-generation sequencing Nucleic acids Pathogens Science Science (multidisciplinary) Tissues |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hCiQuiE-RUpCRuEHU7NpJxkdAVByg4gCoN8ufYiXIVs0W0X_fGce7NJWAC9fETpx54_g5M3kD8MKphEFz1N_HvlZeytoqa2vv2yaSV6PPCnxfP_THx3hyoj9dKfXFOWGTPPBkuMMkOTQQZBcap3zvsNUhLj2tqzHoPmX1UmI9VzZT-R0sNW1dVPlLppF4OKr8TqAlirZMusUaZytRFuyfsczrOZLXAqV5_Tm6C3cKcRSvpwHfgxtxuA-3plKSFw_g18e4sSy4-mPlRcmPpuuIdRKn65E2tzmpVmyyncVoWRR4FMRYBTFAsQolaSjjlDsRM1zT9UZhC4AxCP5oK4bIH9xpKIHZ4_gQvhy9-_z2fV2qKtS-XeCm9sq3vdUenWySc6zI1oUkI1G9oKMj8NpElu2UTlZx3JFIHaLDJnYxLCPKR7A3rIf4GAQHPeloK4MLKjltceG7gAS_1330soLF1sLGF8lxrnzx3eTQt0QzoWIIFZNRMVjBy12f00lw46-t3zBwu5Yslp0PkAuZ4kLmXy5UwcEWdlNm8GiW2BHb5crMFTzfnaa5xwEVS6Y-z23YBGSiCnDmLrMBzc8Mq29ZxZs1Mog8UtdXW8_6ffc_P_H-_3jiJ3B7yTMhB8YOYG9zdh6fwk3_k7zw7FmeSpfl7yTX priority: 102 providerName: Directory of Open Access Journals |
| Title | Metagenomic sequencing of post-mortem tissue samples for the identification of pathogens associated with neonatal deaths |
| URI | https://link.springer.com/article/10.1038/s41467-023-40958-8 https://www.proquest.com/docview/2860455473 https://www.proquest.com/docview/2861302500 https://pubmed.ncbi.nlm.nih.gov/PMC10477270 https://doaj.org/article/f36575d36d0b4c7b859de2c399ed97f5 |
| Volume | 14 |
| WOSCitedRecordID | wos001072382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBtJe-EYLjMpIvEG0tHaSyxNiaBNIrIoQoMKL5a-MSpCUpkPw33Pnup0yib3wkofYbi--s_3L3eV3jD03sgFXUdTf-jKVVohUS61Ta_PMo1WDDQx8n9-X0ynMZlUdHW59TKvc7Ilho3adJR_50QQKRB9UKffV4mdKVaMouhpLaOywPWJJECF1r976WIj9HKSM38pkAo56GXYGPKjwxanKIYXBeRRo-wdY82qm5JVwaTiFTu_8r_x32e2IP_nrtcHcYzd8e5_dWlek_POA_T7zK028rT_mlsc0axSEdw1fdD2-I4fcXL4K6uK9Jm7hniPw5Qgk-dzF3KOg7jAIAWaHv9dzHe3AO06-X9568tujKI5AaP-QfTo9-fjmbRqLM6Q2H8MqtdLmpa4sGJE1xhCxW-Ea4RExusobtIG8cYh1ZNVoSeFLxIYABjJfeDfxIB6x3bZr_QHjFDvFu7lwxsnGVBrGtnCAVmSr0luRsPFGRcpG5nIqoPFdhQi6ALVWq0K1qqBWBQl7sR2zWPN2XNv7mDS_7Umc2-FGtzxXcQmrRlCQyonCZUba0kBeOT-xiPA8PmiTJ-xwo3kVN4JeXao9Yc-2zbiEKS6jcaovQh-aApyihMHA3gYCDVva-bdABk5UG4hBcejLjWle_vu_n_jx9cI-YfsTWiQhcnbIdlfLC_-U3bS_0L6WI7ZTzspwhRHbOz6Z1h9GwZkxCusPr3X-FVvqd2f1l78tzjmy |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAoIL34iFAkaCE0TdjZ3N5IAQX1Wrblc9FNSbcWwHVqKbZZMC_VP8RmacZKtUorceuCZ21va-Gb94Jm8AnueqQJdx1N_6NFJWysgoYyJrk6EnVKMNCnyfJ-l0ioeH2f4a_Om-heG0ys4nBkftSstn5Jsxjol9cKXcN4sfEVeN4uhqV0KjgcWuP_lFr2zV650P9P--iOOtjwfvt6O2qkBkkxHWkVU2SU1mMZfDIs9ZkWzsCumJ6rjM5zT4pHC0SausMIrjbkRqEHMc-rF3sUdJz70El4lGxBhSBfdXZzqsto5Ktd_mDCVuVip4ItoY6UUtSzDC3v4XygT0uO3ZzMwz4dmw623d_N_W6xbcaPm1eNsYxG1Y8_M7cLWpuHlyF37v-dqwLu3RzIo2jZwmLspCLMqqjo5C7rGoAxxFZVg7uRJE7AURZTFzbW5VgHPoRAS6pOdVwrQ4907w2baYe45L0FAck-zqHny6kGnfh_V5OfcPQHBsmK4m0uVOFXlmcGTHDslKbJZ6Kwcw6iChbavMzgVCvuuQISBRNzDSBCMdYKRxAC9XfRaNLsm5rd8x0lYtWVM8XCiXX3XronQhOQjn5NgNc2XTHJPM-dgSg_U00SIZwEaHNN06ukqfwmwAz1a3yUVx3MnQUh-HNrwEtEQDwB6-ewPq35nPvgWxc5YSIY5NXV91pnD66_-e8cPzB_sUrm0f7E30ZGe6-wiux2ygIUq4Aev18tg_hiv2J2Ft-SRYuIAvF20ifwFfXpAd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAhUXvhGBAkaCE0SbjZ3EOSAElBVVy2oPgHoziT_oSjRZNinQv8avY8ZJttpK9NYD18TO2t434xfP5A3As1I4aXKK-mubhUJzHhaiKEKtk8giqqX2Cnxf9rPpVB4c5LMN-DN8C0NplYNP9I7a1JrOyEexTJF9UKXckevTImY7k9eLHyFVkKJI61BOo4PInj35ha9vzavdHfyvn8fx5P2ndx_CvsJAqJOxbEMtdJIVuZYlj1xZkjpZahy3SHtMbkucSOIMbtgid4WgGBwSHClLGdnUmthKjs-9BJczEi33aYOz1fkOKa9LIfrvdCIuR43wXgk3SXxpyxMZyrW90JcMWOO5Z7M0z4Rq_Q44ufE_r91NuN7zbvamM5RbsGGr23C1q8R5cgd-f7RtQXq1R3PN-vRyXARWO7aomzY88jnJrPUwZU1BmsoNQ8LPkECzuelzrjzMfSck1jU-r2FFj39rGJ15s8pSvAKHYoh8N3fh84VM-x5sVnVl7wOjmDFeTbgpjXBlXsixTo1E69F5ZjUPYDzAQ-lesZ0Kh3xXPnOAS9VBSiGklIeUkgG8WPVZdHol57Z-S6hbtSStcX-hXn5TvetSjlNwzvDURKXQWSmT3NhYI7O1OFGXBLA9oE71DrBRp5AL4OnqNrouikcVuNTHvg0tAS5RAHIN62sDWr9TzQ-9CDpJjCD3xq4vB7M4_fV_z_jB-YN9AltoGWp_d7r3EK7FZKs-eLgNm-3y2D6CK_onQm352Bs7g68XbSF_AVuMmNo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomic+sequencing+of+post-mortem+tissue+samples+for+the+identification+of+pathogens+associated+with+neonatal+deaths&rft.jtitle=Nature+communications&rft.au=Baillie%2C+Vicky+L.&rft.au=Madhi%2C+Shabir+A.&rft.au=Ahyong%2C+Vida&rft.au=Olwagen%2C+Courtney+P.&rft.date=2023-09-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft_id=info:doi/10.1038%2Fs41467-023-40958-8&rft_id=info%3Apmid%2F37666833&rft.externalDocID=PMC10477270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |