A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where ap...
Uloženo v:
| Vydáno v: | NPJ digital medicine Ročník 6; číslo 1; s. 196 - 9 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
19.10.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2398-6352, 2398-6352 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. |
|---|---|
| AbstractList | Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. Abstract Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. |
| ArticleNumber | 196 |
| Author | Beadnall, Heidi Dugal, Tej Krieger, Stephen Zivadinov, Robert Masters, Lynette Butzkueven, Helmut Brown, J. William L. Guilfoyle, Daniel Wang, Dongang Tang, Zihao Ward, Kayla Ly, Linda Das, Tilak Cabezas, Mariano Brunacci, David Klistorner, Alexander Shieh, Andy Barnett, Michael Wang, Chenyu Barnett, Yael Kyle, Kain Wiendl, Heinz Zhan, Geng Bischof, Antje van der Walt, Anneke |
| Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0002-2156-8864 surname: Barnett fullname: Barnett, Michael organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney, Department of Neurology, Royal Prince Alfred Hospital – sequence: 2 givenname: Dongang surname: Wang fullname: Wang, Dongang organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney – sequence: 3 givenname: Heidi surname: Beadnall fullname: Beadnall, Heidi organization: Brain and Mind Centre, University of Sydney, Department of Neurology, Royal Prince Alfred Hospital – sequence: 4 givenname: Antje orcidid: 0000-0003-3862-5738 surname: Bischof fullname: Bischof, Antje organization: Department of Neurology, University Hospital of Muenster – sequence: 5 givenname: David surname: Brunacci fullname: Brunacci, David organization: Department of Radiology, Royal Prince Alfred Hospital – sequence: 6 givenname: Helmut surname: Butzkueven fullname: Butzkueven, Helmut organization: Department of Neurology, The Alfred Hospital, Department of Neuroscience, Central Clinical School, Monash University – sequence: 7 givenname: J. William L. orcidid: 0000-0002-7737-5834 surname: Brown fullname: Brown, J. William L. organization: Department of Clinical Neurosciences, University of Cambridge – sequence: 8 givenname: Mariano surname: Cabezas fullname: Cabezas, Mariano organization: Brain and Mind Centre, University of Sydney – sequence: 9 givenname: Tilak surname: Das fullname: Das, Tilak organization: Department of Radiology, University of Cambridge – sequence: 10 givenname: Tej surname: Dugal fullname: Dugal, Tej organization: Sydney Neuroimaging Analysis Centre, Synergy Radiology – sequence: 11 givenname: Daniel surname: Guilfoyle fullname: Guilfoyle, Daniel organization: Department of Neurology, Royal Prince Alfred Hospital – sequence: 12 givenname: Alexander surname: Klistorner fullname: Klistorner, Alexander organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney, Save Sight Institute, University of Sydney – sequence: 13 givenname: Stephen surname: Krieger fullname: Krieger, Stephen organization: Department of Neurology, Icahn School of Medicine at Mount Sinai – sequence: 14 givenname: Kain surname: Kyle fullname: Kyle, Kain organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney – sequence: 15 givenname: Linda surname: Ly fullname: Ly, Linda organization: Sydney Neuroimaging Analysis Centre – sequence: 16 givenname: Lynette surname: Masters fullname: Masters, Lynette organization: I-MED Radiology – sequence: 17 givenname: Andy surname: Shieh fullname: Shieh, Andy organization: Sydney Neuroimaging Analysis Centre – sequence: 18 givenname: Zihao orcidid: 0000-0002-0787-4363 surname: Tang fullname: Tang, Zihao organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney – sequence: 19 givenname: Anneke surname: van der Walt fullname: van der Walt, Anneke organization: Department of Radiology, Royal Prince Alfred Hospital, Department of Neurology, The Alfred Hospital – sequence: 20 givenname: Kayla orcidid: 0000-0002-1926-0529 surname: Ward fullname: Ward, Kayla organization: Department of Neurology, Royal Prince Alfred Hospital – sequence: 21 givenname: Heinz surname: Wiendl fullname: Wiendl, Heinz organization: Department of Neurology, University Hospital of Muenster – sequence: 22 givenname: Geng surname: Zhan fullname: Zhan, Geng organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney – sequence: 23 givenname: Robert surname: Zivadinov fullname: Zivadinov, Robert organization: Buffalo Neuroimaging Analysis Centre – sequence: 24 givenname: Yael surname: Barnett fullname: Barnett, Yael organization: Sydney Neuroimaging Analysis Centre, Department of Radiology, St Vincent’s Hospital – sequence: 25 givenname: Chenyu orcidid: 0000-0001-7135-7662 surname: Wang fullname: Wang, Chenyu email: tim@snac.com.au organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney |
| BookMark | eNp9UstqFTEYDlKxtfYFXAXcuInmNpnMSg7Fy4GKULoPuc0xh0xyTGZafHvTM0VtF10lJN-N__9eg5OUkwfgLcEfCGbyY-Wk5wJhyhDGA8dIvABnlA0SCdbRk__up-Ci1j3GmGIuBy5egVPWy66XhJ2B6w0sXkd0l0t00MaQgtUR3uoYnJ5DTnDMBW62yOjqHfx-vYVTTmHOJaQdDAlOS5zDIXpYbfQl11DfgJejjtVfPJzn4ObL55vLb-jqx9ft5eYK2Y7IGRlHx5FR403nDJfecU4ckYKNzDBirHOmM7wb9DgIw42wg-aec02YFt5wdg62q6zLeq8OJUy6_FZZB3V8yGWndJlDS6Uw7kbmqcRYON48tWh-XgjMGWdE6qb1adU6LGbyzvo0Fx0fiT7-SeGn2uVbRXAneyJlU3j_oFDyr8XXWU2hWh-jTj4vVVHZ3AeBJW3Qd0-g-7yU1EbVUL0caCfF0FB0Rdk21Fr8-DcNweq-AWptgGoNUMcGKNFI8gnJhvm4xpY6xOepbKXWw_1qffmX6hnWH8fExZs |
| CitedBy_id | crossref_primary_10_3390_healthcare12100978 crossref_primary_10_1007_s00415_024_12220_8 crossref_primary_10_3389_frai_2025_1478068 crossref_primary_10_1016_j_aanat_2024_152355 crossref_primary_10_1080_14737175_2024_2398484 crossref_primary_10_1016_j_neurobiolaging_2025_07_012 crossref_primary_10_3390_bioengineering11040392 crossref_primary_10_36290_neu_2024_065 crossref_primary_10_1016_j_bbih_2024_100924 crossref_primary_10_1016_j_compbiomed_2025_110078 crossref_primary_10_1016_j_compbiomed_2024_109289 crossref_primary_10_1093_braincomms_fcaf280 crossref_primary_10_1038_s41467_025_58274_8 crossref_primary_10_3390_s24061981 crossref_primary_10_47102_annals_acadmedsg_2024317 crossref_primary_10_1016_j_ejrad_2024_111638 crossref_primary_10_1016_j_media_2025_103697 crossref_primary_10_1212_NXI_0000000000200377 crossref_primary_10_1007_s00330_025_11544_x crossref_primary_10_1002_ana_27251 crossref_primary_10_1016_j_nic_2024_03_007 crossref_primary_10_1016_j_procs_2025_03_229 crossref_primary_10_1088_3049_477X_adeb8d crossref_primary_10_1097_WCO_0000000000001365 crossref_primary_10_1177_23821205241284719 crossref_primary_10_3389_fimmu_2025_1525462 crossref_primary_10_1080_14737175_2024_2304116 |
| Cites_doi | 10.1177/13524585211061339 10.1016/S1474-4422(21)00095-8 10.1136/jnnp-2012-304094 10.1016/j.ncl.2017.08.013 10.1007/s00234-022-03074-w 10.1002/ana.25463 10.1111/jon.12650 10.1016/j.neuroimage.2011.02.046 10.1212/WNL.0b013e3181e24136 10.1016/j.msard.2017.12.016 10.1109/JBHI.2022.3151741 10.1056/NEJM199801293380502 10.1007/s00415-006-0503-6 10.1177/1352458520970841 10.1006/nimg.2002.1040 10.1016/j.neurad.2020.01.083 10.1038/s41582-023-00800-7 10.1177/1756286418823462 10.1177/13524585231162586 10.1177/1352458520974357 10.1212/WNL.0000000000004354 10.1177/1352458506070775 10.1176/appi.neuropsych.11120377 10.1001/jamaneurol.2020.1568 10.1007/s40263-017-0415-2 10.1016/j.media.2021.102312 10.1212/WNL.0b013e31827b910b 10.1016/j.nicl.2013.10.015 10.1001/jamaneurol.2022.1025 10.1097/WCO.0000000000001067 10.1176/appi.neuropsych.13040088 10.1016/j.msard.2023.104899 10.1002/ana.1255 10.3389/fnins.2023.1196087 10.1136/jnnp-2016-314597.33 10.1007/978-3-030-87234-2_62 10.1007/978-3-319-46723-8_49 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.1038/s41746-023-00940-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2398-6352 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_005f3e28006d4f32a648ee660434318a PMC10587188 10_1038_s41746_023_00940_6 |
| GrantInformation_xml | – fundername: Cooperative Research Centres, Australian Government Department of Industry (CRCs) grantid: CRCPFIVE000141; CRCPFIVE000141 funderid: https://doi.org/10.13039/501100003327 – fundername: Multiple Sclerosis Research Australia (MSRA) grantid: 18-0461 funderid: https://doi.org/10.13039/501100000924 – fundername: ; grantid: CRCPFIVE000141; CRCPFIVE000141 – fundername: ; grantid: 18-0461 |
| GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c518t-bd2ff32beb5db48ed441d1863f3b31bcddb5b459af96b4b6c9a4e44a13a6eb43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085999300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2398-6352 |
| IngestDate | Mon Nov 10 04:33:33 EST 2025 Tue Nov 04 02:06:29 EST 2025 Sun Nov 09 13:43:31 EST 2025 Tue Oct 07 07:18:22 EDT 2025 Tue Nov 18 21:24:02 EST 2025 Sat Nov 29 02:05:40 EST 2025 Fri Feb 21 02:39:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-bd2ff32beb5db48ed441d1863f3b31bcddb5b459af96b4b6c9a4e44a13a6eb43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2156-8864 0000-0003-3862-5738 0000-0002-0787-4363 0000-0001-7135-7662 0000-0002-7737-5834 0000-0002-1926-0529 |
| OpenAccessLink | https://www.proquest.com/docview/2878925869?pq-origsite=%requestingapplication% |
| PMID | 37857813 |
| PQID | 2878925869 |
| PQPubID | 5061815 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_005f3e28006d4f32a648ee660434318a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10587188 proquest_miscellaneous_2880096082 proquest_journals_2878925869 crossref_primary_10_1038_s41746_023_00940_6 crossref_citationtrail_10_1038_s41746_023_00940_6 springer_journals_10_1038_s41746_023_00940_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-19 |
| PublicationDateYYYYMMDD | 2023-10-19 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | NPJ digital medicine |
| PublicationTitleAbbrev | npj Digit. Med |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Calabrese (CR29) 2007; 254 Coles (CR35) 2017; 89 Mendelsohn (CR15) 2023; 65 CR18 Smith (CR33) 2002; 17 Dwyer (CR11) 2019; 29 CR17 CR16 Ma (CR13) 2022; 26 Zhan (CR19) 2023; 17 Popescu (CR31) 2013; 84 De Stefano (CR7) 2010; 74 De Stefano (CR22) 2016; 87 Kramer, Bar-Or, Turner, Wiendl (CR26) 2023; 19 Barnett, Barnett, Reddel (CR5) 2022; 35 Kamraoui (CR12) 2022; 76 Rovira (CR14) 2022; 28 Klistorner (CR25) 2021; 27 Prineas (CR24) 2001; 50 Brisset (CR27) 2020; 47 Cagol (CR6) 2022; 79 Patenaude, Smith, Kennedy, Jenkinson (CR38) 2011; 56 Cree (CR2) 2019; 85 Trapp (CR23) 1998; 338 Butzkueven (CR37) 2006; 12 Nakamura (CR20) 2014; 4 Ross, Ochs, Seabaugh, Shrader (CR10) 2013; 25 Beadnall (CR32) 2019; 12 Wattjes (CR28) 2021; 20 Sharrad, Chugh, Slee, Bacchi (CR4) 2023; 78 De Stefano, Silva, Barnett (CR34) 2017; 31 Walton (CR1) 2020; 26 Kappos (CR3) 2020; 77 Giorgio, De Stefano (CR30) 2018; 36 Minagar (CR21) 2013; 80 Ross, Ochs, DeSmit, Seabaugh, Havranek (CR9) 2015; 27 Kolind (CR36) 2023; 29 Lu (CR8) 2018; 20 B Patenaude (940_CR38) 2011; 56 RA Kamraoui (940_CR12) 2022; 76 A Minagar (940_CR21) 2013; 80 HN Beadnall (940_CR32) 2019; 12 S Kolind (940_CR36) 2023; 29 SM Smith (940_CR33) 2002; 17 940_CR18 A Rovira (940_CR14) 2022; 28 AJ Coles (940_CR35) 2017; 89 K Nakamura (940_CR20) 2014; 4 N De Stefano (940_CR34) 2017; 31 BAC Cree (940_CR2) 2019; 85 C Walton (940_CR1) 2020; 26 Y Ma (940_CR13) 2022; 26 A Giorgio (940_CR30) 2018; 36 S Klistorner (940_CR25) 2021; 27 L Kappos (940_CR3) 2020; 77 D Sharrad (940_CR4) 2023; 78 JW Prineas (940_CR24) 2001; 50 G Lu (940_CR8) 2018; 20 A Cagol (940_CR6) 2022; 79 MG Dwyer (940_CR11) 2019; 29 V Popescu (940_CR31) 2013; 84 J Kramer (940_CR26) 2023; 19 DE Ross (940_CR10) 2013; 25 N De Stefano (940_CR22) 2016; 87 DE Ross (940_CR9) 2015; 27 Z Mendelsohn (940_CR15) 2023; 65 M Barnett (940_CR5) 2022; 35 940_CR16 940_CR17 MP Wattjes (940_CR28) 2021; 20 M Calabrese (940_CR29) 2007; 254 G Zhan (940_CR19) 2023; 17 JC Brisset (940_CR27) 2020; 47 BD Trapp (940_CR23) 1998; 338 N De Stefano (940_CR7) 2010; 74 H Butzkueven (940_CR37) 2006; 12 |
| References_xml | – ident: CR18 – volume: 28 start-page: 1209 year: 2022 end-page: 1218 ident: CR14 article-title: Assessment of automatic decision-support systems for detecting active T2 lesions in multiple sclerosis patients publication-title: Mult. Scler. doi: 10.1177/13524585211061339 – volume: 20 start-page: 653 year: 2021 end-page: 670 ident: CR28 article-title: 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(21)00095-8 – volume: 84 start-page: 1082 year: 2013 end-page: 1091 ident: CR31 article-title: Brain atrophy and lesion load predict long term disability in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2012-304094 – volume: 36 start-page: 27 year: 2018 end-page: 34 ident: CR30 article-title: Effective utilization of MRI in the diagnosis and management of multiple sclerosis publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2017.08.013 – ident: CR16 – volume: 65 start-page: 5 year: 2023 end-page: 24 ident: CR15 article-title: Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence publication-title: Neuroradiology doi: 10.1007/s00234-022-03074-w – volume: 85 start-page: 653 year: 2019 end-page: 666 ident: CR2 article-title: Silent progression in disease activity-free relapsing multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.25463 – volume: 29 start-page: 615 year: 2019 end-page: 623 ident: CR11 article-title: Salient central lesion volume: a standardized novel fully automated proxy for brain FLAIR lesion volume in multiple sclerosis publication-title: J. Neuroimaging doi: 10.1111/jon.12650 – volume: 56 start-page: 907 year: 2011 end-page: 922 ident: CR38 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 74 start-page: 1868 year: 2010 end-page: 1876 ident: CR7 article-title: Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes publication-title: Neurology doi: 10.1212/WNL.0b013e3181e24136 – volume: 20 start-page: 231 year: 2018 end-page: 238 ident: CR8 article-title: The evolution of “No Evidence of Disease Activity” in multiple sclerosis publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2017.12.016 – volume: 26 start-page: 2680 year: 2022 end-page: 2692 ident: CR13 article-title: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3151741 – volume: 338 start-page: 278 year: 1998 end-page: 285 ident: CR23 article-title: Axonal transection in the lesions of multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199801293380502 – volume: 254 start-page: 1212 year: 2007 end-page: 1220 ident: CR29 article-title: Cortical atrophy is relevant in multiple sclerosis at clinical onset publication-title: J. Neurol. doi: 10.1007/s00415-006-0503-6 – volume: 26 start-page: 1816 year: 2020 end-page: 1821 ident: CR1 article-title: Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition publication-title: Mult. Scler. doi: 10.1177/1352458520970841 – volume: 17 start-page: 479 year: 2002 end-page: 489 ident: CR33 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1040 – volume: 47 start-page: 250 year: 2020 end-page: 258 ident: CR27 article-title: New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2020.01.083 – volume: 19 start-page: 289 year: 2023 end-page: 304 ident: CR26 article-title: Bruton tyrosine kinase inhibitors for multiple sclerosis publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-023-00800-7 – volume: 12 start-page: 1756286418823462 year: 2019 ident: CR32 article-title: Comparing longitudinal brain atrophy measurement techniques in a real-world multiple sclerosis clinical practice cohort: towards clinical integration? publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756286418823462 – volume: 29 start-page: 741 year: 2023 end-page: 747 ident: CR36 article-title: Ocrelizumab-treated patients with relapsing multiple sclerosis show volume loss rates similar to healthy aging publication-title: Mult. Scler. doi: 10.1177/13524585231162586 – volume: 27 start-page: 1533 year: 2021 end-page: 1542 ident: CR25 article-title: Expansion of chronic lesions is linked to disease progression in relapsing-remitting multiple sclerosis patients publication-title: Mult. Scler. doi: 10.1177/1352458520974357 – volume: 89 start-page: 1117 year: 2017 end-page: 1126 ident: CR35 article-title: Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings publication-title: Neurology doi: 10.1212/WNL.0000000000004354 – volume: 12 start-page: 769 year: 2006 end-page: 774 ident: CR37 article-title: MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis publication-title: Mult. Scler. doi: 10.1177/1352458506070775 – ident: CR17 – volume: 25 start-page: 32 year: 2013 end-page: 39 ident: CR10 article-title: Man versus machine: comparison of radiologists’ interpretations and NeuroQuant(R) volumetric analyses of brain MRIs in patients with traumatic brain injury publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/appi.neuropsych.11120377 – volume: 77 start-page: 1132 year: 2020 end-page: 1140 ident: CR3 article-title: Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2020.1568 – volume: 31 start-page: 289 year: 2017 end-page: 305 ident: CR34 article-title: Effect of Fingolimod on brain volume loss in patients with multiple sclerosis publication-title: CNS Drugs doi: 10.1007/s40263-017-0415-2 – volume: 76 start-page: 102312 year: 2022 ident: CR12 article-title: DeepLesionBrain: towards a broader deep-learning generalization for multiple sclerosis lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102312 – volume: 80 start-page: 210 year: 2013 end-page: 219 ident: CR21 article-title: The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects publication-title: Neurology doi: 10.1212/WNL.0b013e31827b910b – volume: 87 start-page: 93 year: 2016 end-page: 99 ident: CR22 article-title: Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 4 start-page: 10 year: 2014 end-page: 17 ident: CR20 article-title: Jacobian integration method increases the statistical power to measure grey matter atrophy in multiple sclerosis publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.10.015 – volume: 79 start-page: 682 year: 2022 end-page: 692 ident: CR6 article-title: Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2022.1025 – volume: 35 start-page: 278 year: 2022 end-page: 285 ident: CR5 article-title: MRI and laboratory monitoring of disease-modifying therapy efficacy and risks publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000001067 – volume: 27 start-page: 147 year: 2015 end-page: 152 ident: CR9 article-title: Man versus machine Part 2: comparison of radiologists’ interpretations and NeuroQuant measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/appi.neuropsych.13040088 – volume: 78 start-page: 104899 year: 2023 ident: CR4 article-title: Defining progression independent of relapse activity (PIRA) in adult patients with relapsing multiple sclerosis: a systematic review publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2023.104899 – volume: 50 start-page: 646 year: 2001 end-page: 657 ident: CR24 article-title: Immunopathology of secondary-progressive multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.1255 – volume: 17 start-page: 1196087 year: 2023 ident: CR19 article-title: Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1196087 – volume: 20 start-page: 653 year: 2021 ident: 940_CR28 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(21)00095-8 – volume: 29 start-page: 615 year: 2019 ident: 940_CR11 publication-title: J. Neuroimaging doi: 10.1111/jon.12650 – volume: 254 start-page: 1212 year: 2007 ident: 940_CR29 publication-title: J. Neurol. doi: 10.1007/s00415-006-0503-6 – volume: 338 start-page: 278 year: 1998 ident: 940_CR23 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199801293380502 – volume: 28 start-page: 1209 year: 2022 ident: 940_CR14 publication-title: Mult. Scler. doi: 10.1177/13524585211061339 – volume: 87 start-page: 93 year: 2016 ident: 940_CR22 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2016-314597.33 – volume: 29 start-page: 741 year: 2023 ident: 940_CR36 publication-title: Mult. Scler. doi: 10.1177/13524585231162586 – volume: 25 start-page: 32 year: 2013 ident: 940_CR10 publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/appi.neuropsych.11120377 – volume: 31 start-page: 289 year: 2017 ident: 940_CR34 publication-title: CNS Drugs doi: 10.1007/s40263-017-0415-2 – volume: 80 start-page: 210 year: 2013 ident: 940_CR21 publication-title: Neurology doi: 10.1212/WNL.0b013e31827b910b – volume: 89 start-page: 1117 year: 2017 ident: 940_CR35 publication-title: Neurology doi: 10.1212/WNL.0000000000004354 – ident: 940_CR18 doi: 10.1007/978-3-030-87234-2_62 – volume: 26 start-page: 2680 year: 2022 ident: 940_CR13 publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3151741 – volume: 65 start-page: 5 year: 2023 ident: 940_CR15 publication-title: Neuroradiology doi: 10.1007/s00234-022-03074-w – volume: 20 start-page: 231 year: 2018 ident: 940_CR8 publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2017.12.016 – volume: 74 start-page: 1868 year: 2010 ident: 940_CR7 publication-title: Neurology doi: 10.1212/WNL.0b013e3181e24136 – volume: 79 start-page: 682 year: 2022 ident: 940_CR6 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2022.1025 – volume: 26 start-page: 1816 year: 2020 ident: 940_CR1 publication-title: Mult. Scler. doi: 10.1177/1352458520970841 – volume: 17 start-page: 479 year: 2002 ident: 940_CR33 publication-title: Neuroimage doi: 10.1006/nimg.2002.1040 – volume: 84 start-page: 1082 year: 2013 ident: 940_CR31 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2012-304094 – volume: 47 start-page: 250 year: 2020 ident: 940_CR27 publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2020.01.083 – volume: 77 start-page: 1132 year: 2020 ident: 940_CR3 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2020.1568 – volume: 35 start-page: 278 year: 2022 ident: 940_CR5 publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000001067 – volume: 27 start-page: 147 year: 2015 ident: 940_CR9 publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/appi.neuropsych.13040088 – volume: 76 start-page: 102312 year: 2022 ident: 940_CR12 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102312 – ident: 940_CR17 – volume: 27 start-page: 1533 year: 2021 ident: 940_CR25 publication-title: Mult. Scler. doi: 10.1177/1352458520974357 – ident: 940_CR16 doi: 10.1007/978-3-319-46723-8_49 – volume: 56 start-page: 907 year: 2011 ident: 940_CR38 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 19 start-page: 289 year: 2023 ident: 940_CR26 publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-023-00800-7 – volume: 36 start-page: 27 year: 2018 ident: 940_CR30 publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2017.08.013 – volume: 78 start-page: 104899 year: 2023 ident: 940_CR4 publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2023.104899 – volume: 50 start-page: 646 year: 2001 ident: 940_CR24 publication-title: Ann. Neurol. doi: 10.1002/ana.1255 – volume: 12 start-page: 175628641882346 year: 2019 ident: 940_CR32 publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756286418823462 – volume: 17 start-page: 1196087 year: 2023 ident: 940_CR19 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1196087 – volume: 4 start-page: 10 year: 2014 ident: 940_CR20 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.10.015 – volume: 12 start-page: 769 year: 2006 ident: 940_CR37 publication-title: Mult. Scler. doi: 10.1177/1352458506070775 – volume: 85 start-page: 653 year: 2019 ident: 940_CR2 publication-title: Ann. Neurol. doi: 10.1002/ana.25463 |
| SSID | ssj0002048946 |
| Score | 2.3973472 |
| Snippet | Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no... Abstract Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 196 |
| SubjectTerms | 692/308/575 692/617/375/1666 Algorithms Artificial intelligence Atrophy Biomedicine Biotechnology Hospitals Magnetic resonance imaging Medical imaging Medicine Medicine & Public Health Multiple sclerosis Neurodegeneration Neuroimaging Neurology Patients |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kiHiR-oVrq0TwpqHdJJs3OT7FYg8tUnroLWy-cKVupfvq3-8ku_vsFtSL1002H5MZ8htm8huAt6u6Fc5rzVNNno4iTMKdXyWOIjbOiahXIZRiE6vTU7y4MF9ulfrKOWEjPfAouAPSkiSjIFyjg0pStFphjFof5ieRNRZoRDPccqa-lfCaQqP09ErmUOLBoAh753xbyXM2HflMi5uoEPYvUObdHMk7gdJy_xztwqMJOLL1uODHcC_2T-DByRQafwpna0b475IXClQ2P3hkpEjdWDaJETxl62Oe763ATs6O2fdiz3k61vVsTi1kA41PK-6GZ3B-9On842c-FUzgvqlxw10QiUTkomuCIzEFwjqhRi2TdLJ2PgTXONWYNhntlNPetCoq1day1dEp-Rx2-qs-vgBmoja-ydzrKSpsnKExtSJvMNYBfZIV1LPsrJ_IxHNNi0tbgtoS7ShvS_K2Rd5WV_Bu-8-PkUrjr70_5CPZ9sw02OUDKYedlMP-Szkq2J8P1E62OVjyEdGIBrWp4M22mawqh0raPl7d5D5YnDsUFeBCERYLWrb03dfCz02QldxQxArezzrze_Y_7_jl_9jxHjwUWcdzzo3Zh53N9U18Bff9z003XL8uRvIL-voS9A priority: 102 providerName: Directory of Open Access Journals |
| Title | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
| URI | https://link.springer.com/article/10.1038/s41746-023-00940-6 https://www.proquest.com/docview/2878925869 https://www.proquest.com/docview/2880096082 https://pubmed.ncbi.nlm.nih.gov/PMC10587188 https://doaj.org/article/005f3e28006d4f32a648ee660434318a |
| Volume | 6 |
| WOSCitedRecordID | wos001085999300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7X7 dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7RV dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDiFe-EYERmUk3sDaEjuO_YQ6tIk-tKqqCZWnKP7IiDTS0XT8_Zxdp1MmsRdeIrVxE1_vbP_Od_4dwMcirTJthKB1ip4OR0xCtSlqKjOXa505UVgbik0U87lcrdQibrh1Ma2ynxPDRG3Xxu-RHyOylyrLpVBfrn9TXzXKR1djCY0DOPRMZXwEh6dn88Vyv8viaWkVF_G0zAmTxx1HDO7zbhn1WXXoOw1WpEDcP0Cbd3Ml7wRMwzp0_vR_JXgGTyICJZOdyTyHB659AY9mMcb-EpYTgkDyigYuVdKfnCRokc2u_hJBnEsmU-oXQEtmyyn5FSYG31_StKTPUSQdPh9FbrpXcHF-dvH1G42VF6jJU7ml2mZ1zTLtdG41l84iaLKpFKxmmqXaWKtzzXNV1UporoVRFXecVymrhNOcvYZRu27dGyDKCWVyT-JeOy5zrfCZgqNb6VIrTc0SSPs_vzSRldwXx7gqQ3ScyXKnsBIVVgaFlSKBT_vfXO84Oe5tfep1um_p-bTDF-vNZRmHJ7bNa-YyRM_CcpS8Eii1E-LEH7xNZZXAUa_TMg7yrrxVaAIf9rdxePqYS9W69Y1vI4OXKLME5MCSBh0a3mmbn4HoG7Ev-rNSJvC5N7rbt_9b4rf3d_YdPM68-fu0HHUEo-3mxr2Hh-bPtuk2Yzgolt_9dVWEqxzHMTUO2xX4aTGdLX78BVlDKZI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3ohAASPBCaI2tuPYB4SWR9VVuyu0WqHerDh2IFKbLZstiB_Ff2TsJFulEr31wDV2nNj-PP7GM54BeJUlOTWFEHGZoKbDkZPEpsjKWFKXGkOdyKwNySay6VQeHakvG_Cnvwvj3Sp7mRgEtV0U_ox8B5m9VDSVQr0__RH7rFHeutqn0GhhceB-_0KVrXk3_oTz-5rSvc_zj_txl1UgLtJErmJjaVkyapxJreHSWSQENpGClcywxBTWmtTwVOWlEoYbUaicO87zhOXCGc6w2WtwHcV44j3IstnX9ZGOj4GruOiu5uwyudNwJPzeyZfF3oUPFbXB9heyBAyo7UXHzAvW2bDp7d35z4brLtzu2DUZtcvhHmy4-j7cnHT-Aw9gNiJIko_jECeW9LdCCa62qs0tRZDDk9E49pu7JZPZmJwEoeeHh1Q16f0vSYPt4whXzUOYX0WHHsFmvajdYyDKCVWkPkB96bhMjcI2BUeV2SVWFiWLIOnnWhddxHWf-ONYB8s_k7rFh0Z86IAPLSJ4s37ntI03cmntDx5C65o-Vnh4sFh-053owbppyRxFzUBYjj3PBfbaCbHrLxUnMo9gu4eQ7gRYo8_xE8HLdTGKHm9Pymu3OPN1ZNCAJY1ADoA7-KFhSV19D0HMkdejri5lBG97jJ9__d89fnL5z76Arf355FAfjqcHT-EW9SvPux-pbdhcLc_cM7hR_FxVzfJ5WLoE9BVj_y_iB4Kv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-world+clinical+validation+for+AI-based+MRI+monitoring+in+multiple+sclerosis&rft.jtitle=NPJ+digital+medicine&rft.au=Barnett%2C+Michael&rft.au=Wang%2C+Dongang&rft.au=Beadnall%2C+Heidi&rft.au=Bischof%2C+Antje&rft.date=2023-10-19&rft.issn=2398-6352&rft.eissn=2398-6352&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-023-00940-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41746_023_00940_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |