A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis

Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NPJ digital medicine Ročník 6; číslo 1; s. 196 - 9
Hlavní autoři: Barnett, Michael, Wang, Dongang, Beadnall, Heidi, Bischof, Antje, Brunacci, David, Butzkueven, Helmut, Brown, J. William L., Cabezas, Mariano, Das, Tilak, Dugal, Tej, Guilfoyle, Daniel, Klistorner, Alexander, Krieger, Stephen, Kyle, Kain, Ly, Linda, Masters, Lynette, Shieh, Andy, Tang, Zihao, van der Walt, Anneke, Ward, Kayla, Wiendl, Heinz, Zhan, Geng, Zivadinov, Robert, Barnett, Yael, Wang, Chenyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 19.10.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2398-6352, 2398-6352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.
AbstractList Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.
Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC -0.32% vs -0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.
Abstract Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.
ArticleNumber 196
Author Beadnall, Heidi
Dugal, Tej
Krieger, Stephen
Zivadinov, Robert
Masters, Lynette
Butzkueven, Helmut
Brown, J. William L.
Guilfoyle, Daniel
Wang, Dongang
Tang, Zihao
Ward, Kayla
Ly, Linda
Das, Tilak
Cabezas, Mariano
Brunacci, David
Klistorner, Alexander
Shieh, Andy
Barnett, Michael
Wang, Chenyu
Barnett, Yael
Kyle, Kain
Wiendl, Heinz
Zhan, Geng
Bischof, Antje
van der Walt, Anneke
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-2156-8864
  surname: Barnett
  fullname: Barnett, Michael
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney, Department of Neurology, Royal Prince Alfred Hospital
– sequence: 2
  givenname: Dongang
  surname: Wang
  fullname: Wang, Dongang
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney
– sequence: 3
  givenname: Heidi
  surname: Beadnall
  fullname: Beadnall, Heidi
  organization: Brain and Mind Centre, University of Sydney, Department of Neurology, Royal Prince Alfred Hospital
– sequence: 4
  givenname: Antje
  orcidid: 0000-0003-3862-5738
  surname: Bischof
  fullname: Bischof, Antje
  organization: Department of Neurology, University Hospital of Muenster
– sequence: 5
  givenname: David
  surname: Brunacci
  fullname: Brunacci, David
  organization: Department of Radiology, Royal Prince Alfred Hospital
– sequence: 6
  givenname: Helmut
  surname: Butzkueven
  fullname: Butzkueven, Helmut
  organization: Department of Neurology, The Alfred Hospital, Department of Neuroscience, Central Clinical School, Monash University
– sequence: 7
  givenname: J. William L.
  orcidid: 0000-0002-7737-5834
  surname: Brown
  fullname: Brown, J. William L.
  organization: Department of Clinical Neurosciences, University of Cambridge
– sequence: 8
  givenname: Mariano
  surname: Cabezas
  fullname: Cabezas, Mariano
  organization: Brain and Mind Centre, University of Sydney
– sequence: 9
  givenname: Tilak
  surname: Das
  fullname: Das, Tilak
  organization: Department of Radiology, University of Cambridge
– sequence: 10
  givenname: Tej
  surname: Dugal
  fullname: Dugal, Tej
  organization: Sydney Neuroimaging Analysis Centre, Synergy Radiology
– sequence: 11
  givenname: Daniel
  surname: Guilfoyle
  fullname: Guilfoyle, Daniel
  organization: Department of Neurology, Royal Prince Alfred Hospital
– sequence: 12
  givenname: Alexander
  surname: Klistorner
  fullname: Klistorner, Alexander
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney, Save Sight Institute, University of Sydney
– sequence: 13
  givenname: Stephen
  surname: Krieger
  fullname: Krieger, Stephen
  organization: Department of Neurology, Icahn School of Medicine at Mount Sinai
– sequence: 14
  givenname: Kain
  surname: Kyle
  fullname: Kyle, Kain
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney
– sequence: 15
  givenname: Linda
  surname: Ly
  fullname: Ly, Linda
  organization: Sydney Neuroimaging Analysis Centre
– sequence: 16
  givenname: Lynette
  surname: Masters
  fullname: Masters, Lynette
  organization: I-MED Radiology
– sequence: 17
  givenname: Andy
  surname: Shieh
  fullname: Shieh, Andy
  organization: Sydney Neuroimaging Analysis Centre
– sequence: 18
  givenname: Zihao
  orcidid: 0000-0002-0787-4363
  surname: Tang
  fullname: Tang, Zihao
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney
– sequence: 19
  givenname: Anneke
  surname: van der Walt
  fullname: van der Walt, Anneke
  organization: Department of Radiology, Royal Prince Alfred Hospital, Department of Neurology, The Alfred Hospital
– sequence: 20
  givenname: Kayla
  orcidid: 0000-0002-1926-0529
  surname: Ward
  fullname: Ward, Kayla
  organization: Department of Neurology, Royal Prince Alfred Hospital
– sequence: 21
  givenname: Heinz
  surname: Wiendl
  fullname: Wiendl, Heinz
  organization: Department of Neurology, University Hospital of Muenster
– sequence: 22
  givenname: Geng
  surname: Zhan
  fullname: Zhan, Geng
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney
– sequence: 23
  givenname: Robert
  surname: Zivadinov
  fullname: Zivadinov, Robert
  organization: Buffalo Neuroimaging Analysis Centre
– sequence: 24
  givenname: Yael
  surname: Barnett
  fullname: Barnett, Yael
  organization: Sydney Neuroimaging Analysis Centre, Department of Radiology, St Vincent’s Hospital
– sequence: 25
  givenname: Chenyu
  orcidid: 0000-0001-7135-7662
  surname: Wang
  fullname: Wang, Chenyu
  email: tim@snac.com.au
  organization: Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney
BookMark eNp9UstqFTEYDlKxtfYFXAXcuInmNpnMSg7Fy4GKULoPuc0xh0xyTGZafHvTM0VtF10lJN-N__9eg5OUkwfgLcEfCGbyY-Wk5wJhyhDGA8dIvABnlA0SCdbRk__up-Ci1j3GmGIuBy5egVPWy66XhJ2B6w0sXkd0l0t00MaQgtUR3uoYnJ5DTnDMBW62yOjqHfx-vYVTTmHOJaQdDAlOS5zDIXpYbfQl11DfgJejjtVfPJzn4ObL55vLb-jqx9ft5eYK2Y7IGRlHx5FR403nDJfecU4ckYKNzDBirHOmM7wb9DgIw42wg-aec02YFt5wdg62q6zLeq8OJUy6_FZZB3V8yGWndJlDS6Uw7kbmqcRYON48tWh-XgjMGWdE6qb1adU6LGbyzvo0Fx0fiT7-SeGn2uVbRXAneyJlU3j_oFDyr8XXWU2hWh-jTj4vVVHZ3AeBJW3Qd0-g-7yU1EbVUL0caCfF0FB0Rdk21Fr8-DcNweq-AWptgGoNUMcGKNFI8gnJhvm4xpY6xOepbKXWw_1qffmX6hnWH8fExZs
CitedBy_id crossref_primary_10_3390_healthcare12100978
crossref_primary_10_1007_s00415_024_12220_8
crossref_primary_10_3389_frai_2025_1478068
crossref_primary_10_1016_j_aanat_2024_152355
crossref_primary_10_1080_14737175_2024_2398484
crossref_primary_10_1016_j_neurobiolaging_2025_07_012
crossref_primary_10_3390_bioengineering11040392
crossref_primary_10_36290_neu_2024_065
crossref_primary_10_1016_j_bbih_2024_100924
crossref_primary_10_1016_j_compbiomed_2025_110078
crossref_primary_10_1016_j_compbiomed_2024_109289
crossref_primary_10_1093_braincomms_fcaf280
crossref_primary_10_1038_s41467_025_58274_8
crossref_primary_10_3390_s24061981
crossref_primary_10_47102_annals_acadmedsg_2024317
crossref_primary_10_1016_j_ejrad_2024_111638
crossref_primary_10_1016_j_media_2025_103697
crossref_primary_10_1212_NXI_0000000000200377
crossref_primary_10_1007_s00330_025_11544_x
crossref_primary_10_1002_ana_27251
crossref_primary_10_1016_j_nic_2024_03_007
crossref_primary_10_1016_j_procs_2025_03_229
crossref_primary_10_1088_3049_477X_adeb8d
crossref_primary_10_1097_WCO_0000000000001365
crossref_primary_10_1177_23821205241284719
crossref_primary_10_3389_fimmu_2025_1525462
crossref_primary_10_1080_14737175_2024_2304116
Cites_doi 10.1177/13524585211061339
10.1016/S1474-4422(21)00095-8
10.1136/jnnp-2012-304094
10.1016/j.ncl.2017.08.013
10.1007/s00234-022-03074-w
10.1002/ana.25463
10.1111/jon.12650
10.1016/j.neuroimage.2011.02.046
10.1212/WNL.0b013e3181e24136
10.1016/j.msard.2017.12.016
10.1109/JBHI.2022.3151741
10.1056/NEJM199801293380502
10.1007/s00415-006-0503-6
10.1177/1352458520970841
10.1006/nimg.2002.1040
10.1016/j.neurad.2020.01.083
10.1038/s41582-023-00800-7
10.1177/1756286418823462
10.1177/13524585231162586
10.1177/1352458520974357
10.1212/WNL.0000000000004354
10.1177/1352458506070775
10.1176/appi.neuropsych.11120377
10.1001/jamaneurol.2020.1568
10.1007/s40263-017-0415-2
10.1016/j.media.2021.102312
10.1212/WNL.0b013e31827b910b
10.1016/j.nicl.2013.10.015
10.1001/jamaneurol.2022.1025
10.1097/WCO.0000000000001067
10.1176/appi.neuropsych.13040088
10.1016/j.msard.2023.104899
10.1002/ana.1255
10.3389/fnins.2023.1196087
10.1136/jnnp-2016-314597.33
10.1007/978-3-030-87234-2_62
10.1007/978-3-319-46723-8_49
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1038/s41746-023-00940-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 9
ExternalDocumentID oai_doaj_org_article_005f3e28006d4f32a648ee660434318a
PMC10587188
10_1038_s41746_023_00940_6
GrantInformation_xml – fundername: Cooperative Research Centres, Australian Government Department of Industry (CRCs)
  grantid: CRCPFIVE000141; CRCPFIVE000141
  funderid: https://doi.org/10.13039/501100003327
– fundername: Multiple Sclerosis Research Australia (MSRA)
  grantid: 18-0461
  funderid: https://doi.org/10.13039/501100000924
– fundername: ;
  grantid: CRCPFIVE000141; CRCPFIVE000141
– fundername: ;
  grantid: 18-0461
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c518t-bd2ff32beb5db48ed441d1863f3b31bcddb5b459af96b4b6c9a4e44a13a6eb43
IEDL.DBID BENPR
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085999300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2398-6352
IngestDate Mon Nov 10 04:33:33 EST 2025
Tue Nov 04 02:06:29 EST 2025
Sun Nov 09 13:43:31 EST 2025
Tue Oct 07 07:18:22 EDT 2025
Tue Nov 18 21:24:02 EST 2025
Sat Nov 29 02:05:40 EST 2025
Fri Feb 21 02:39:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-bd2ff32beb5db48ed441d1863f3b31bcddb5b459af96b4b6c9a4e44a13a6eb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2156-8864
0000-0003-3862-5738
0000-0002-0787-4363
0000-0001-7135-7662
0000-0002-7737-5834
0000-0002-1926-0529
OpenAccessLink https://www.proquest.com/docview/2878925869?pq-origsite=%requestingapplication%
PMID 37857813
PQID 2878925869
PQPubID 5061815
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_005f3e28006d4f32a648ee660434318a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10587188
proquest_miscellaneous_2880096082
proquest_journals_2878925869
crossref_primary_10_1038_s41746_023_00940_6
crossref_citationtrail_10_1038_s41746_023_00940_6
springer_journals_10_1038_s41746_023_00940_6
PublicationCentury 2000
PublicationDate 2023-10-19
PublicationDateYYYYMMDD 2023-10-19
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Calabrese (CR29) 2007; 254
Coles (CR35) 2017; 89
Mendelsohn (CR15) 2023; 65
CR18
Smith (CR33) 2002; 17
Dwyer (CR11) 2019; 29
CR17
CR16
Ma (CR13) 2022; 26
Zhan (CR19) 2023; 17
Popescu (CR31) 2013; 84
De Stefano (CR7) 2010; 74
De Stefano (CR22) 2016; 87
Kramer, Bar-Or, Turner, Wiendl (CR26) 2023; 19
Barnett, Barnett, Reddel (CR5) 2022; 35
Kamraoui (CR12) 2022; 76
Rovira (CR14) 2022; 28
Klistorner (CR25) 2021; 27
Prineas (CR24) 2001; 50
Brisset (CR27) 2020; 47
Cagol (CR6) 2022; 79
Patenaude, Smith, Kennedy, Jenkinson (CR38) 2011; 56
Cree (CR2) 2019; 85
Trapp (CR23) 1998; 338
Butzkueven (CR37) 2006; 12
Nakamura (CR20) 2014; 4
Ross, Ochs, Seabaugh, Shrader (CR10) 2013; 25
Beadnall (CR32) 2019; 12
Wattjes (CR28) 2021; 20
Sharrad, Chugh, Slee, Bacchi (CR4) 2023; 78
De Stefano, Silva, Barnett (CR34) 2017; 31
Walton (CR1) 2020; 26
Kappos (CR3) 2020; 77
Giorgio, De Stefano (CR30) 2018; 36
Minagar (CR21) 2013; 80
Ross, Ochs, DeSmit, Seabaugh, Havranek (CR9) 2015; 27
Kolind (CR36) 2023; 29
Lu (CR8) 2018; 20
B Patenaude (940_CR38) 2011; 56
RA Kamraoui (940_CR12) 2022; 76
A Minagar (940_CR21) 2013; 80
HN Beadnall (940_CR32) 2019; 12
S Kolind (940_CR36) 2023; 29
SM Smith (940_CR33) 2002; 17
940_CR18
A Rovira (940_CR14) 2022; 28
AJ Coles (940_CR35) 2017; 89
K Nakamura (940_CR20) 2014; 4
N De Stefano (940_CR34) 2017; 31
BAC Cree (940_CR2) 2019; 85
C Walton (940_CR1) 2020; 26
Y Ma (940_CR13) 2022; 26
A Giorgio (940_CR30) 2018; 36
S Klistorner (940_CR25) 2021; 27
L Kappos (940_CR3) 2020; 77
D Sharrad (940_CR4) 2023; 78
JW Prineas (940_CR24) 2001; 50
G Lu (940_CR8) 2018; 20
A Cagol (940_CR6) 2022; 79
MG Dwyer (940_CR11) 2019; 29
V Popescu (940_CR31) 2013; 84
J Kramer (940_CR26) 2023; 19
DE Ross (940_CR10) 2013; 25
N De Stefano (940_CR22) 2016; 87
DE Ross (940_CR9) 2015; 27
Z Mendelsohn (940_CR15) 2023; 65
M Barnett (940_CR5) 2022; 35
940_CR16
940_CR17
MP Wattjes (940_CR28) 2021; 20
M Calabrese (940_CR29) 2007; 254
G Zhan (940_CR19) 2023; 17
JC Brisset (940_CR27) 2020; 47
BD Trapp (940_CR23) 1998; 338
N De Stefano (940_CR7) 2010; 74
H Butzkueven (940_CR37) 2006; 12
References_xml – ident: CR18
– volume: 28
  start-page: 1209
  year: 2022
  end-page: 1218
  ident: CR14
  article-title: Assessment of automatic decision-support systems for detecting active T2 lesions in multiple sclerosis patients
  publication-title: Mult. Scler.
  doi: 10.1177/13524585211061339
– volume: 20
  start-page: 653
  year: 2021
  end-page: 670
  ident: CR28
  article-title: 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00095-8
– volume: 84
  start-page: 1082
  year: 2013
  end-page: 1091
  ident: CR31
  article-title: Brain atrophy and lesion load predict long term disability in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2012-304094
– volume: 36
  start-page: 27
  year: 2018
  end-page: 34
  ident: CR30
  article-title: Effective utilization of MRI in the diagnosis and management of multiple sclerosis
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2017.08.013
– ident: CR16
– volume: 65
  start-page: 5
  year: 2023
  end-page: 24
  ident: CR15
  article-title: Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence
  publication-title: Neuroradiology
  doi: 10.1007/s00234-022-03074-w
– volume: 85
  start-page: 653
  year: 2019
  end-page: 666
  ident: CR2
  article-title: Silent progression in disease activity-free relapsing multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25463
– volume: 29
  start-page: 615
  year: 2019
  end-page: 623
  ident: CR11
  article-title: Salient central lesion volume: a standardized novel fully automated proxy for brain FLAIR lesion volume in multiple sclerosis
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12650
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: CR38
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 74
  start-page: 1868
  year: 2010
  end-page: 1876
  ident: CR7
  article-title: Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e24136
– volume: 20
  start-page: 231
  year: 2018
  end-page: 238
  ident: CR8
  article-title: The evolution of “No Evidence of Disease Activity” in multiple sclerosis
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2017.12.016
– volume: 26
  start-page: 2680
  year: 2022
  end-page: 2692
  ident: CR13
  article-title: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3151741
– volume: 338
  start-page: 278
  year: 1998
  end-page: 285
  ident: CR23
  article-title: Axonal transection in the lesions of multiple sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199801293380502
– volume: 254
  start-page: 1212
  year: 2007
  end-page: 1220
  ident: CR29
  article-title: Cortical atrophy is relevant in multiple sclerosis at clinical onset
  publication-title: J. Neurol.
  doi: 10.1007/s00415-006-0503-6
– volume: 26
  start-page: 1816
  year: 2020
  end-page: 1821
  ident: CR1
  article-title: Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition
  publication-title: Mult. Scler.
  doi: 10.1177/1352458520970841
– volume: 17
  start-page: 479
  year: 2002
  end-page: 489
  ident: CR33
  article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1040
– volume: 47
  start-page: 250
  year: 2020
  end-page: 258
  ident: CR27
  article-title: New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2020.01.083
– volume: 19
  start-page: 289
  year: 2023
  end-page: 304
  ident: CR26
  article-title: Bruton tyrosine kinase inhibitors for multiple sclerosis
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-023-00800-7
– volume: 12
  start-page: 1756286418823462
  year: 2019
  ident: CR32
  article-title: Comparing longitudinal brain atrophy measurement techniques in a real-world multiple sclerosis clinical practice cohort: towards clinical integration?
  publication-title: Ther. Adv. Neurol. Disord.
  doi: 10.1177/1756286418823462
– volume: 29
  start-page: 741
  year: 2023
  end-page: 747
  ident: CR36
  article-title: Ocrelizumab-treated patients with relapsing multiple sclerosis show volume loss rates similar to healthy aging
  publication-title: Mult. Scler.
  doi: 10.1177/13524585231162586
– volume: 27
  start-page: 1533
  year: 2021
  end-page: 1542
  ident: CR25
  article-title: Expansion of chronic lesions is linked to disease progression in relapsing-remitting multiple sclerosis patients
  publication-title: Mult. Scler.
  doi: 10.1177/1352458520974357
– volume: 89
  start-page: 1117
  year: 2017
  end-page: 1126
  ident: CR35
  article-title: Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004354
– volume: 12
  start-page: 769
  year: 2006
  end-page: 774
  ident: CR37
  article-title: MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1177/1352458506070775
– ident: CR17
– volume: 25
  start-page: 32
  year: 2013
  end-page: 39
  ident: CR10
  article-title: Man versus machine: comparison of radiologists’ interpretations and NeuroQuant(R) volumetric analyses of brain MRIs in patients with traumatic brain injury
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/appi.neuropsych.11120377
– volume: 77
  start-page: 1132
  year: 2020
  end-page: 1140
  ident: CR3
  article-title: Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2020.1568
– volume: 31
  start-page: 289
  year: 2017
  end-page: 305
  ident: CR34
  article-title: Effect of Fingolimod on brain volume loss in patients with multiple sclerosis
  publication-title: CNS Drugs
  doi: 10.1007/s40263-017-0415-2
– volume: 76
  start-page: 102312
  year: 2022
  ident: CR12
  article-title: DeepLesionBrain: towards a broader deep-learning generalization for multiple sclerosis lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102312
– volume: 80
  start-page: 210
  year: 2013
  end-page: 219
  ident: CR21
  article-title: The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827b910b
– volume: 87
  start-page: 93
  year: 2016
  end-page: 99
  ident: CR22
  article-title: Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 4
  start-page: 10
  year: 2014
  end-page: 17
  ident: CR20
  article-title: Jacobian integration method increases the statistical power to measure grey matter atrophy in multiple sclerosis
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.10.015
– volume: 79
  start-page: 682
  year: 2022
  end-page: 692
  ident: CR6
  article-title: Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2022.1025
– volume: 35
  start-page: 278
  year: 2022
  end-page: 285
  ident: CR5
  article-title: MRI and laboratory monitoring of disease-modifying therapy efficacy and risks
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000001067
– volume: 27
  start-page: 147
  year: 2015
  end-page: 152
  ident: CR9
  article-title: Man versus machine Part 2: comparison of radiologists’ interpretations and NeuroQuant measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/appi.neuropsych.13040088
– volume: 78
  start-page: 104899
  year: 2023
  ident: CR4
  article-title: Defining progression independent of relapse activity (PIRA) in adult patients with relapsing multiple sclerosis: a systematic review
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2023.104899
– volume: 50
  start-page: 646
  year: 2001
  end-page: 657
  ident: CR24
  article-title: Immunopathology of secondary-progressive multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1255
– volume: 17
  start-page: 1196087
  year: 2023
  ident: CR19
  article-title: Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1196087
– volume: 20
  start-page: 653
  year: 2021
  ident: 940_CR28
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00095-8
– volume: 29
  start-page: 615
  year: 2019
  ident: 940_CR11
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12650
– volume: 254
  start-page: 1212
  year: 2007
  ident: 940_CR29
  publication-title: J. Neurol.
  doi: 10.1007/s00415-006-0503-6
– volume: 338
  start-page: 278
  year: 1998
  ident: 940_CR23
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199801293380502
– volume: 28
  start-page: 1209
  year: 2022
  ident: 940_CR14
  publication-title: Mult. Scler.
  doi: 10.1177/13524585211061339
– volume: 87
  start-page: 93
  year: 2016
  ident: 940_CR22
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2016-314597.33
– volume: 29
  start-page: 741
  year: 2023
  ident: 940_CR36
  publication-title: Mult. Scler.
  doi: 10.1177/13524585231162586
– volume: 25
  start-page: 32
  year: 2013
  ident: 940_CR10
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/appi.neuropsych.11120377
– volume: 31
  start-page: 289
  year: 2017
  ident: 940_CR34
  publication-title: CNS Drugs
  doi: 10.1007/s40263-017-0415-2
– volume: 80
  start-page: 210
  year: 2013
  ident: 940_CR21
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827b910b
– volume: 89
  start-page: 1117
  year: 2017
  ident: 940_CR35
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004354
– ident: 940_CR18
  doi: 10.1007/978-3-030-87234-2_62
– volume: 26
  start-page: 2680
  year: 2022
  ident: 940_CR13
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3151741
– volume: 65
  start-page: 5
  year: 2023
  ident: 940_CR15
  publication-title: Neuroradiology
  doi: 10.1007/s00234-022-03074-w
– volume: 20
  start-page: 231
  year: 2018
  ident: 940_CR8
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2017.12.016
– volume: 74
  start-page: 1868
  year: 2010
  ident: 940_CR7
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e24136
– volume: 79
  start-page: 682
  year: 2022
  ident: 940_CR6
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2022.1025
– volume: 26
  start-page: 1816
  year: 2020
  ident: 940_CR1
  publication-title: Mult. Scler.
  doi: 10.1177/1352458520970841
– volume: 17
  start-page: 479
  year: 2002
  ident: 940_CR33
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1040
– volume: 84
  start-page: 1082
  year: 2013
  ident: 940_CR31
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2012-304094
– volume: 47
  start-page: 250
  year: 2020
  ident: 940_CR27
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2020.01.083
– volume: 77
  start-page: 1132
  year: 2020
  ident: 940_CR3
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2020.1568
– volume: 35
  start-page: 278
  year: 2022
  ident: 940_CR5
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000001067
– volume: 27
  start-page: 147
  year: 2015
  ident: 940_CR9
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/appi.neuropsych.13040088
– volume: 76
  start-page: 102312
  year: 2022
  ident: 940_CR12
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102312
– ident: 940_CR17
– volume: 27
  start-page: 1533
  year: 2021
  ident: 940_CR25
  publication-title: Mult. Scler.
  doi: 10.1177/1352458520974357
– ident: 940_CR16
  doi: 10.1007/978-3-319-46723-8_49
– volume: 56
  start-page: 907
  year: 2011
  ident: 940_CR38
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 19
  start-page: 289
  year: 2023
  ident: 940_CR26
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-023-00800-7
– volume: 36
  start-page: 27
  year: 2018
  ident: 940_CR30
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2017.08.013
– volume: 78
  start-page: 104899
  year: 2023
  ident: 940_CR4
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2023.104899
– volume: 50
  start-page: 646
  year: 2001
  ident: 940_CR24
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1255
– volume: 12
  start-page: 175628641882346
  year: 2019
  ident: 940_CR32
  publication-title: Ther. Adv. Neurol. Disord.
  doi: 10.1177/1756286418823462
– volume: 17
  start-page: 1196087
  year: 2023
  ident: 940_CR19
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1196087
– volume: 4
  start-page: 10
  year: 2014
  ident: 940_CR20
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.10.015
– volume: 12
  start-page: 769
  year: 2006
  ident: 940_CR37
  publication-title: Mult. Scler.
  doi: 10.1177/1352458506070775
– volume: 85
  start-page: 653
  year: 2019
  ident: 940_CR2
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25463
SSID ssj0002048946
Score 2.3973472
Snippet Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no...
Abstract Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms 692/308/575
692/617/375/1666
Algorithms
Artificial intelligence
Atrophy
Biomedicine
Biotechnology
Hospitals
Magnetic resonance imaging
Medical imaging
Medicine
Medicine & Public Health
Multiple sclerosis
Neurodegeneration
Neuroimaging
Neurology
Patients
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9cwED9kiPgiuilWp0TYm4a1zTVNHr8TxwZuyNjD3kLzo1iZ3Vi_8-_fJW2_rgP1xdcmbZPLHfkcd_c5gD06cquxlRxlozh6TSalveORbQ59XbeVS4XCX-vTU3Vxob_da_UVc8JGeuBRcPukJa0IJeEa6bEVZSNRhSBlHksiC5WgEaGee87UjxReQ6VRTlUyuVD7AxL2jvm2gsdsOvKZFjdRIuxfoMyHOZIPAqXp_jl8Ds8m4MhW44JfwKPQb8OTkyk0vgNnK0b475InClQ2FzwyUqRubJvECJ6y1TGP95ZnJ2fH7Gey5_g71vVsTi1kA32fVtwNL-H88Mv55yM-NUzgrirUmltftiQiG2zlLYnJE9bxhZKiFVYU1nlvK4uVblotLVrpdIMBsSlEI4NF8Qq2-qs-vAaWu7wpa53nLmisKqfQ1aUMElufS2fbDIpZdsZNZOKxp8WlSUFtocwob0PyNkneRmbwcfPO9Uil8dfZB_FINjMjDXZ6QMphJuUw_1KODHbnAzWTbQ6GfESly0pJncGHzTBZVQyVNH24uo1zVHLuVJmBWijCYkHLkb77nvi5CbKSG6pUBp9mnfn99z_v-M3_2PFbeFpGHY85N3oXttY3t-EdPHa_1t1w8z4ZyR1b_hJw
  priority: 102
  providerName: Directory of Open Access Journals
Title A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
URI https://link.springer.com/article/10.1038/s41746-023-00940-6
https://www.proquest.com/docview/2878925869
https://www.proquest.com/docview/2880096082
https://pubmed.ncbi.nlm.nih.gov/PMC10587188
https://doaj.org/article/005f3e28006d4f32a648ee660434318a
Volume 6
WOSCitedRecordID wos001085999300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7RV
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDiFe-EYERmUk3iBaEjuO_YQ6tIlKtKqqCZWnKP4IRBrp1nT7-zm7TqdMYi-8RErjtL7enf2z7_w7gI-ociVZzWPGKxEzI9GlpNGxY5tjpijqXPuDwt-L-VysVnIRNty6kFbZj4l-oDZr7fbIjxHZC5nlgssvl1exqxrloquhhMYBHDqmMjaCw5PT-WK532VxtLSS8XBaJqHiuGOIwV3eLY1dVh2unQYzkifuH6DNu7mSdwKmfh46e_q_EjyDJwGBksnOZJ7DA9u-gEezEGN_CcsJQSB5EXsuVdKfnCRokc2u_hJBnEsm09hNgIbMllPyxw8Mrr-kaUmfo0g6_H4UuelewfnZ6fnXb3GovBDrPBXbWJmsrmmmrMqNYsIaBE0mFZzWVNFUaWNUrlguq1pyxRTXsmKWsSqlFbeK0dcwatetfQMk0UmVFTJJtJUsz7Vgusi45aw2CdeqjiDt__xSB1ZyVxzjovTRcSrKncJKVFjpFVbyCD7t37nccXLc2_rE6XTf0vFp-w_Wm19lcE9sm9fUZoieuWEoecVRast54g7epqKK4KjXaRmcvCtvFRrBh_1jdE8Xc6lau752bYRfJYosAjGwpEGHhk_a5rcn-kbsi-tZISL43Bvd7a__W-K393f2HTzOnPm7tBx5BKPt5tq-h4f6Ztt0mzEcFMsf7roq_FWMg0-N_XYF3i2ms8XPv5_EKQ4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3ohAASPBCaLm4Tj2AaHlUXXV3RVarVBvVvwIRGqzZbMF8aP4j4ydZKtUorceuMaOk7G_Gc_Y8wB4hUuuBC1ZSFnBQ2oEspQwOnTZ5qjJ8zLTPlB4ks9m_OhIfNmCP30sjHOr7GWiF9Rmqd0Z-R5q9lwkGWfi_emP0FWNcrerfQmNFhaH9vcvNNmad-NPuL6vk2T_8-LjQdhVFQh1FvN1qExSlmmirMqMotwaVAhMzFlapiqNlTZGZYpmoigFU1QxLQpqKS3itGBW0RSHvQbXUYzHzoMsn3_dHOm4HLiCsi40J0r5XkNR4XdOvmnoXPjQUBtsf75KwEC1veiYeeF21m96-3f-s-m6C7c77ZqMWna4B1u2vg83p53_wAOYjwgqycehzxNL-qhQgtxWtbWlCOrwZDQO3eZuyHQ-Jide6LnpIVVNev9L0uD4OMNV8xAWV0HQI9iul7V9DCTSUZHkIoq0FTTLNKc6T5hltDQR06oMIO7XWuou47or_HEs_c1_ymWLD4n4kB4fkgXwZvPOaZtv5NLeHxyENj1drnD_YLn6JjvRg32zMrUJWgbMUKS8YEi1ZSxyQcUxLwLY7SEkOwHWyHP8BPBy04yix90nFbVdnrk-3FvAPAmAD4A7-KFhS11990nMUa9HW53zAN72GD__-r8pfnL5z76AnYPFdCIn49nhU7iVOM5z7kdiF7bXqzP7DG7on-uqWT33rEtAXjH2_wKraIIr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-world+clinical+validation+for+AI-based+MRI+monitoring+in+multiple+sclerosis&rft.jtitle=NPJ+digital+medicine&rft.au=Barnett%2C+Michael&rft.au=Wang%2C+Dongang&rft.au=Beadnall%2C+Heidi&rft.au=Bischof%2C+Antje&rft.date=2023-10-19&rft.pub=Nature+Publishing+Group&rft.eissn=2398-6352&rft.volume=6&rft.issue=1&rft.spage=196&rft_id=info:doi/10.1038%2Fs41746-023-00940-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon