Mechanism of Brønsted acid-catalyzed conversion of carbohydrates
Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the rea...
Uložené v:
| Vydané v: | Journal of catalysis Ročník 295; s. 122 - 132 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
01.11.2012
Elsevier Elsevier BV |
| Predmet: | |
| ISSN: | 0021-9517, 1090-2694 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [Display omitted]
► Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. ► Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. ► Favorable protonation of glucose leads to reversion products and humin precursors. ► Novel direct mechanism of glucose transformation to levulinic acid is reported.
A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. |
|---|---|
| AbstractList | A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. Graphical abstract Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. Display Omitted Highlights Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. Favorable protonation of glucose leads to reversion products and humin precursors. Novel direct mechanism of glucose transformation to levulinic acid is reported. A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [PUBLICATION ABSTRACT] Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [Display omitted] ► Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. ► Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. ► Favorable protonation of glucose leads to reversion products and humin precursors. ► Novel direct mechanism of glucose transformation to levulinic acid is reported. A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. |
| Author | Hensen, Emiel J.M. Yang, Gang Pidko, Evgeny A. |
| Author_xml | – sequence: 1 givenname: Gang surname: Yang fullname: Yang, Gang – sequence: 2 givenname: Evgeny A. surname: Pidko fullname: Pidko, Evgeny A. email: e.a.pidko@tue.nl – sequence: 3 givenname: Emiel J.M. surname: Hensen fullname: Hensen, Emiel J.M. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26564768$$DView record in Pascal Francis |
| BookMark | eNp9kc1u1DAUhS1UJKYDL8CGkRASm4RrT-I4EptS8ScVsYCurRv7hjrK2MX2VBqejH1frA5TNl3UG8vWd46Pzz1lJz54Yuwlh5oDl--mejKYawFc1KBqAPGErTj0UAnZNydsVW541be8e8ZOU5oAOG9btWJn38hcoXdptwnj5kO8_etTJrtB42xVLHE-_ClHE_wNxeSCXzCDcQhXBxsxU3rOno44J3pxv6_Z5aePP8-_VBffP389P7uoTMtVrvpOwghGClS2sZzAtn3XNLyzW5LYD4MZOouyHUi1UlFDTS9hGDsEBcS3Yrtmb4--1zH83lPKeueSoXlGT2GftIBl8V50BX39AJ3CPvqSTnNevOSWS1WoN_cUJoPzGNEbl_R1dDuMBy1kK5vuH6eOnIkhpUijNi5jLl3kiG7WHPQyAz3pZQZ6mYEGpUvjRSoeSP-7Pyp6dRSNGDT-iiXT5Y8CyOV7LS_p1-z9kaDS942jqJNx5A1ZF8lkbYN77IE7exOqYQ |
| CODEN | JCTLA5 |
| CitedBy_id | crossref_primary_10_1016_j_algal_2025_104151 crossref_primary_10_1007_s13399_023_04530_0 crossref_primary_10_3389_fchem_2020_00569 crossref_primary_10_1002_open_201900173 crossref_primary_10_1016_j_carres_2015_05_013 crossref_primary_10_1039_D4RE00018H crossref_primary_10_1007_s12010_022_03806_x crossref_primary_10_1016_j_catcom_2014_02_021 crossref_primary_10_1016_j_cej_2022_140415 crossref_primary_10_1016_j_apsusc_2020_148890 crossref_primary_10_1016_j_ces_2019_115444 crossref_primary_10_1016_j_rser_2018_06_016 crossref_primary_10_1002_bbb_2542 crossref_primary_10_1016_j_ijms_2019_116237 crossref_primary_10_1016_j_mcat_2025_115497 crossref_primary_10_1016_j_apcatb_2025_125656 crossref_primary_10_1016_j_cattod_2023_114127 crossref_primary_10_1039_D5DT01450F crossref_primary_10_1016_j_cej_2021_129573 crossref_primary_10_1016_j_jiec_2018_10_002 crossref_primary_10_1002_cssc_201301076 crossref_primary_10_1016_j_chemphys_2019_110575 crossref_primary_10_1515_pac_2020_1108 crossref_primary_10_1007_s11705_015_1535_1 crossref_primary_10_1016_j_biortech_2023_130010 crossref_primary_10_1002_cssc_201702354 crossref_primary_10_3390_pr9050745 crossref_primary_10_1016_j_cej_2024_152190 crossref_primary_10_1016_j_isci_2023_107933 crossref_primary_10_1016_j_cej_2024_154095 crossref_primary_10_1002_cssc_201700051 crossref_primary_10_1016_j_fuel_2022_127236 crossref_primary_10_1002_cssc_201300432 crossref_primary_10_1016_j_cattod_2022_01_017 crossref_primary_10_1007_s10562_020_03520_5 crossref_primary_10_1007_s10562_017_2064_y crossref_primary_10_1016_j_apcatb_2017_01_065 crossref_primary_10_1515_revce_2017_0038 crossref_primary_10_1002_chem_201402437 crossref_primary_10_1002_kin_21719 crossref_primary_10_1016_j_fuproc_2015_04_024 crossref_primary_10_1016_j_cej_2017_06_108 crossref_primary_10_1016_j_biortech_2020_124500 crossref_primary_10_1007_s13399_020_01070_9 crossref_primary_10_1016_j_apcata_2021_118130 crossref_primary_10_1186_s13068_015_0398_5 crossref_primary_10_1016_j_apcata_2021_118011 crossref_primary_10_1016_j_rser_2021_110706 crossref_primary_10_1016_j_jenvman_2016_03_050 crossref_primary_10_1016_j_cej_2022_137827 crossref_primary_10_1002_slct_201601562 crossref_primary_10_1002_qua_70044 crossref_primary_10_1007_s00894_016_2972_6 crossref_primary_10_1007_s10570_018_1717_3 crossref_primary_10_1002_anie_201911387 crossref_primary_10_1002_open_201900225 crossref_primary_10_1038_srep29711 crossref_primary_10_3390_ma11081408 crossref_primary_10_1016_j_apcata_2014_07_035 crossref_primary_10_1016_j_fuel_2024_133414 crossref_primary_10_1016_j_carres_2014_01_009 crossref_primary_10_1002_cssc_201403264 crossref_primary_10_1016_j_fuproc_2019_106162 crossref_primary_10_1016_j_biombioe_2021_105965 crossref_primary_10_1002_poc_4094 crossref_primary_10_1002_adsc_202401086 crossref_primary_10_1007_s42452_018_0055_2 crossref_primary_10_1016_j_jclepro_2022_131359 crossref_primary_10_1089_ind_2015_0026 crossref_primary_10_1002_jms_3525 crossref_primary_10_1002_cssc_202401105 crossref_primary_10_1039_D0RA03892J crossref_primary_10_1039_D4GC06244B crossref_primary_10_1016_j_cej_2014_07_036 crossref_primary_10_1016_j_gee_2022_09_012 crossref_primary_10_1002_ange_201911387 crossref_primary_10_1016_j_jiec_2021_08_013 crossref_primary_10_1016_j_jcat_2017_06_031 crossref_primary_10_1016_j_comptc_2020_113009 crossref_primary_10_1002_cssc_202101348 crossref_primary_10_1007_s10562_014_1390_6 crossref_primary_10_1016_j_apcatb_2016_09_058 crossref_primary_10_1016_j_apcata_2015_08_007 crossref_primary_10_1002_cssc_202001341 crossref_primary_10_1016_j_rser_2020_110317 crossref_primary_10_1002_cssc_201300342 crossref_primary_10_1016_j_cej_2019_122284 crossref_primary_10_1016_j_fuel_2023_130835 crossref_primary_10_1002_cssc_201300345 crossref_primary_10_1016_j_micromeso_2014_04_003 crossref_primary_10_1016_j_aca_2021_338712 crossref_primary_10_3390_catal13071094 crossref_primary_10_1016_j_biortech_2013_09_016 crossref_primary_10_1002_chem_201301366 crossref_primary_10_1002_bbb_1932 crossref_primary_10_3390_polym16182633 crossref_primary_10_1002_slct_202201237 crossref_primary_10_1016_j_indcrop_2018_08_045 crossref_primary_10_1016_j_fuel_2025_135314 crossref_primary_10_3390_en16031396 crossref_primary_10_1016_j_mcat_2022_112720 crossref_primary_10_1021_acssuschemeng_5c00738 crossref_primary_10_1016_j_chemosphere_2023_140126 crossref_primary_10_1016_j_renene_2024_121145 crossref_primary_10_1021_acs_jpclett_5c00874 crossref_primary_10_1002_cnma_202000634 crossref_primary_10_1039_C8RE00300A crossref_primary_10_1016_j_apcata_2024_119694 crossref_primary_10_3390_catal5042287 crossref_primary_10_1007_s42452_019_1827_z crossref_primary_10_1016_j_carbon_2018_04_087 crossref_primary_10_1016_j_biombioe_2022_106661 crossref_primary_10_1016_j_seppur_2024_127766 crossref_primary_10_1002_syst_201900043 crossref_primary_10_1016_j_cej_2025_160472 crossref_primary_10_1016_j_fuel_2025_134465 crossref_primary_10_1007_s12649_021_01525_8 crossref_primary_10_1007_s10562_021_03693_7 crossref_primary_10_1016_j_fuel_2021_122628 crossref_primary_10_1039_D3RE00672G crossref_primary_10_1016_j_biombioe_2025_107687 crossref_primary_10_1016_j_micromeso_2024_113051 crossref_primary_10_1016_j_fuel_2023_128133 crossref_primary_10_1016_j_rser_2020_110338 crossref_primary_10_1016_j_cej_2013_02_043 crossref_primary_10_1016_j_apcata_2025_120587 crossref_primary_10_1002_jcc_24214 crossref_primary_10_1016_j_apcatb_2018_05_012 crossref_primary_10_3390_catal10091006 crossref_primary_10_3389_fpls_2021_630807 crossref_primary_10_1016_j_cattod_2016_12_019 crossref_primary_10_1002_cctc_202100457 crossref_primary_10_1002_ceat_202100517 crossref_primary_10_1016_j_colsurfa_2020_125685 crossref_primary_10_1038_s41467_025_55935_6 crossref_primary_10_1002_cssc_201902309 crossref_primary_10_1051_matecconf_202133305005 crossref_primary_10_1007_s11244_017_0794_0 crossref_primary_10_1016_j_indcrop_2022_115410 crossref_primary_10_1016_j_apcatb_2013_10_032 crossref_primary_10_1038_nchem_2262 crossref_primary_10_1039_C3CP52359D crossref_primary_10_1016_j_carbpol_2023_120692 crossref_primary_10_1016_j_fuel_2020_119969 crossref_primary_10_1016_j_pecs_2016_04_004 crossref_primary_10_1016_j_molcata_2013_11_015 crossref_primary_10_1002_cssc_201600649 crossref_primary_10_1016_j_cej_2024_149779 crossref_primary_10_1016_j_carres_2020_107941 crossref_primary_10_1002_bbb_2493 crossref_primary_10_1002_cjce_24812 crossref_primary_10_1016_j_comptc_2025_115461 crossref_primary_10_1016_j_renene_2024_120509 crossref_primary_10_1007_s10562_018_2483_4 crossref_primary_10_1016_j_carres_2013_08_029 crossref_primary_10_1016_j_apcata_2018_01_029 |
| Cites_doi | 10.1039/c2cc31689g 10.1021/cs2001237 10.1016/j.carres.2011.01.029 10.1063/1.445869 10.1205/cherd05038 10.1002/(SICI)1096-987X(19980730)19:10<1111::AID-JCC1>3.0.CO;2-P 10.1016/S0065-2318(08)60383-2 10.1016/0008-6215(90)84096-D 10.1021/ie061186z 10.1021/jp1078407 10.1021/ja00066a046 10.1021/ie061673e 10.1021/jp1104278 10.1021/ct800457g 10.1021/jp2113895 10.1002/chem.201003645 10.1002/cssc.201100249 10.1016/j.carres.2010.07.008 10.1021/ie051088y 10.1016/S0166-1280(98)00475-8 10.1021/jf903598w 10.1021/jp2041982 10.1021/ja00512a033 10.1016/S0921-3449(99)00047-6 10.1002/star.19900420808 10.1016/S0008-6215(00)80500-5 10.1038/nature05923 10.1016/S0040-4039(00)94793-2 10.1039/B611568C 10.1002/anie.201000250 10.1002/anie.200802879 10.1039/C0CC02421J 10.1002/aic.690480220 10.1021/cs300192z 10.1103/PhysRevA.38.3098 10.1039/b904693c 10.1002/star.19860380308 10.1021/cr2000042 10.1021/cr100171a 10.1021/ef2010157 10.1021/cr068360d 10.1126/science.1184362 10.1021/ja960427z 10.1021/ct8004479 10.1021/jp9846126 10.1021/ic101402r 10.1021/jp9716997 10.1126/science.1126337 10.1016/j.carres.2005.07.021 10.1021/jp107560u 10.1002/cssc.201000153 10.1007/s11244-010-9560-2 10.1021/jp101418f 10.1021/cr9904009 10.1021/ja003198w 10.1002/anie.201000655 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. 2015 INIST-CNRS Copyright © 2012 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.jcat.2012.08.002 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1090-2694 |
| EndPage | 132 |
| ExternalDocumentID | 2792773891 26564768 10_1016_j_jcat_2012_08_002 US201600015126 S0021951712002503 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7S9 L.6 |
| ID | FETCH-LOGICAL-c518t-9760f0c62a8d4d1e0d5974417d3e6a9bbcb7da65be8568e4e4960bf7a080e1323 |
| ISICitedReferencesCount | 233 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310940300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9517 |
| IngestDate | Thu Oct 02 15:34:26 EDT 2025 Sun Nov 09 08:31:06 EST 2025 Mon Jul 21 09:14:36 EDT 2025 Sat Nov 29 07:28:11 EST 2025 Tue Nov 18 21:22:40 EST 2025 Wed Dec 27 19:05:55 EST 2023 Fri Feb 23 02:27:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hexose Levulinic acid 5-Hydroxymethylfurfural Reaction mechanism Biomass Acid catalysis DFT calculations Water Glucose Potential Dehydration Precursor Acidic solution Brönsted acid Sequential Hydroxyl group Carbohydrate Chemical reactivity Catalytic reaction Condensation reaction Regioselectivity Reaction path Carbon Conversion Fructose Density functional method Rehydration Protonation Aqueous solution |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c518t-9760f0c62a8d4d1e0d5974417d3e6a9bbcb7da65be8568e4e4960bf7a080e1323 |
| Notes | http://dx.doi.org/10.1016/j.jcat.2012.08.002 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1113263168 |
| PQPubID | 32080 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000001927 proquest_journals_1113263168 pascalfrancis_primary_26564768 crossref_citationtrail_10_1016_j_jcat_2012_08_002 crossref_primary_10_1016_j_jcat_2012_08_002 fao_agris_US201600015126 elsevier_sciencedirect_doi_10_1016_j_jcat_2012_08_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-01 |
| PublicationDateYYYYMMDD | 2012-11-01 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: San Diego |
| PublicationTitle | Journal of catalysis |
| PublicationYear | 2012 |
| Publisher | Elsevier Inc Elsevier Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
| References | Dapprich, Komaromi, Byun, Morokuma, Frisch, Lundberg, Kawatsu, Vreven, Frisch, Morokuma (b0215) 1999; 461–462 van Dam, Kieboom, van Bekkum (b0070) 1986; 38 Roma´n-Leshkov, Chheda, Dumesic, Roma´n-Leshkov, Barrett, Liu, Dumesic, Chheda, Roma´n-Leshkov, Dumesic (b0040) 2006; 312 Hoffmann, Rychlewski (b0190) 2001; 123 (b0010) 2007 Barrows, Storer, Cramer, French, Truhlar (b0180) 1998; 19 Reichert, Montoya, Liang, Bichhorn, Haynes (b0200) 2010; 114 Becke (b0150) 1988; 38 Jorgensen, Chandrasekhar, Madura, Impey, Klein (b0220) 1983; 79 Girisuta, Janssen, Heeres (b0110) 2007; 46 Lange, Price, Ayoub, Louis, Petrus, Clarke, Gosselink, Angew (b0060) 2010; 49 Qian, Nimlos, Davis, Johnson, Himmel (b0115) 2005; 340 Forsyth, Olah (b0235) 1979; 101 Cramer, Truhlar (b0165) 1993; 115 Anet, Feather, Harris (b0135) 1964; 19 Jadhav, Pedersen, Sølling, Bols (b0145) 2011; 4 Pilath, Nimlos, Mittal, Himmel, Johnson (b0245) 2010; 58 Antal, Mok, Richards (b0080) 1990; 199 Asghari, Yoshida, Asghari, Yoshida (b0255) 2006; 45 Jebber, Zhang, Cassady, Chung-Phillips (b0175) 1996; 118 Assary, Redfern, Hammond, Greeley, Curtiss, Assary, Redfern, Greeley, Curtiss (b0090) 2010; 114 Pagán-Torres, Wang, Gallo, Shanks, Dumesic (b0230) 2012; 2 Crisci, Tucker, Dumesic, Scott, Crisci, Tucker, Lee, Yang, Dumesic, Scott (b0045) 2010; 53 Bozell, Moens, Elliott, Wang, Neuenscwander, Fitzpatrick, Bilski, Jarnefeld (b0025) 2000; 28 Horvat, Klaić, Metelko, Šunjić (b0100) 1985; 26 Zakrzewska, Bogel-Łukasik, Bogel-Łukasik (b0050) 2011; 111 Pidko, Degirmenci, van Santen, Hensen, Pidko, Degirmenci, van Santen, Hensen, Zhang, Pidko, Hensen, Pidko, Degirmenci, Hensen (b0140) 2010; 49 Curtiss, Redfern, Raghavachari (b0160) 2007; 127 Chung-Phillips, Chen (b0185) 1999; 103 Kuster (b0035) 1990; 42 Mäki-Arvela, Salmi, Holmbom, Willfär, Murzin (b0015) 2011; 111 Akien, Qi, Horváth (b0225) 2012; 48 Qian, Johnson, Himmel, Nimlos (b0120) 2010; 345 Caratzoulas, Vlachos (b0085) 2011; 346 Rinaldi, Palkovits, Schüth, Rinaldi, Engel, Büchs, Spiess, Schüth, Rinaldi (b0020) 2008; 47 Tomasi, Mennucci, Cammi (b0205) 2005; 105 Girisuta, Janssen, Heeres (b0105) 2006; 84 Eckert, Klamt, Barone, Cossi (b0210) 2002; 48 Hayes, Fitzpatrick, Hayes, Ross (b0030) 2010 Choudhary, Burnett, Vlachos, Sandler (b0095) 2012; 116 Liu, Nimlos, Johnson, Himmel, Qian (b0130) 2010; 114 Qian (b0125) 2011; 115 Patil, Lund (b0240) 2011; 25 Heeres, Handana, Chunai, Rasrendra, Girisuta, Heeres (b0250) 2009; 11 Huber, Iborra, Corma (b0005) 2006; 106 Caonka, French, Johnson, Stortz (b0195) 2009; 5 Bond, Alonso, Wang, West, Dumesic (b0055) 2010; 327 Shaw, Tatum, Berry (b0065) 1967; 5 Brown, Wladkowski (b0170) 1996; 118 Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009. Shaw (10.1016/j.jcat.2012.08.002_b0065) 1967; 5 Qian (10.1016/j.jcat.2012.08.002_b0115) 2005; 340 Asghari (10.1016/j.jcat.2012.08.002_b0255_1) 2006; 45 Pidko (10.1016/j.jcat.2012.08.002_b0140_4) 2012 Chung-Phillips (10.1016/j.jcat.2012.08.002_b0185) 1999; 103 Chheda (10.1016/j.jcat.2012.08.002_b0040_3) 2007; 9 Tomasi (10.1016/j.jcat.2012.08.002_b0205) 2005; 105 Feather (10.1016/j.jcat.2012.08.002_b0135_2) 1973; 28 Cramer (10.1016/j.jcat.2012.08.002_b0165) 1993; 115 Hoffmann (10.1016/j.jcat.2012.08.002_b0190) 2001; 123 Pagán-Torres (10.1016/j.jcat.2012.08.002_b0230) 2012; 2 Barone (10.1016/j.jcat.2012.08.002_b0210_2) 1998; 102 Mäki-Arvela (10.1016/j.jcat.2012.08.002_b0015) 2011; 111 Forsyth (10.1016/j.jcat.2012.08.002_b0235) 1979; 101 Pilath (10.1016/j.jcat.2012.08.002_b0245) 2010; 58 van Dam (10.1016/j.jcat.2012.08.002_b0070) 1986; 38 Rinaldi (10.1016/j.jcat.2012.08.002_b0020_3) 2011; 47 Crisci (10.1016/j.jcat.2012.08.002_b0045_2) 2011; 1 Dapprich (10.1016/j.jcat.2012.08.002_b0215_1) 1999; 461–462 Pidko (10.1016/j.jcat.2012.08.002_b0140_2) 2010; 49 Jebber (10.1016/j.jcat.2012.08.002_b0175) 1996; 118 Reichert (10.1016/j.jcat.2012.08.002_b0200) 2010; 114 Roma´n-Leshkov (10.1016/j.jcat.2012.08.002_b0040_1) 2006; 312 Becke (10.1016/j.jcat.2012.08.002_b0150) 1988; 38 Bozell (10.1016/j.jcat.2012.08.002_b0025) 2000; 28 Roma´n-Leshkov (10.1016/j.jcat.2012.08.002_b0040_2) 2007; 447 Zhang (10.1016/j.jcat.2012.08.002_b0140_3) 2011; 17 Jadhav (10.1016/j.jcat.2012.08.002_b0145) 2011; 4 Huber (10.1016/j.jcat.2012.08.002_b0005) 2006; 106 Antal (10.1016/j.jcat.2012.08.002_b0080) 1990; 199 Curtiss (10.1016/j.jcat.2012.08.002_b0160) 2007; 127 Asghari (10.1016/j.jcat.2012.08.002_b0255_2) 2007; 46 (10.1016/j.jcat.2012.08.002_b0010) 2007 Qian (10.1016/j.jcat.2012.08.002_b0125) 2011; 115 Caonka (10.1016/j.jcat.2012.08.002_b0195) 2009; 5 Patil (10.1016/j.jcat.2012.08.002_b0240) 2011; 25 Lange (10.1016/j.jcat.2012.08.002_b0060) 2010; 49 Girisuta (10.1016/j.jcat.2012.08.002_b0105) 2006; 84 Hayes (10.1016/j.jcat.2012.08.002_b0030) 2010 Liu (10.1016/j.jcat.2012.08.002_b0130) 2010; 114 Brown (10.1016/j.jcat.2012.08.002_b0170) 1996; 118 Jorgensen (10.1016/j.jcat.2012.08.002_b0220) 1983; 79 Assary (10.1016/j.jcat.2012.08.002_b0090_2) 2011; 115 Anet (10.1016/j.jcat.2012.08.002_b0135_1) 1964; 19 Zakrzewska (10.1016/j.jcat.2012.08.002_b0050) 2011; 111 Crisci (10.1016/j.jcat.2012.08.002_b0045_1) 2010; 53 Lundberg (10.1016/j.jcat.2012.08.002_b0215_2) 2009; 5 Barrows (10.1016/j.jcat.2012.08.002_b0180) 1998; 19 Choudhary (10.1016/j.jcat.2012.08.002_b0095) 2012; 116 Heeres (10.1016/j.jcat.2012.08.002_b0250) 2009; 11 Rinaldi (10.1016/j.jcat.2012.08.002_b0020_2) 2010; 3 Bond (10.1016/j.jcat.2012.08.002_b0055) 2010; 327 10.1016/j.jcat.2012.08.002_b0155 Rinaldi (10.1016/j.jcat.2012.08.002_b0020_1) 2008; 47 Akien (10.1016/j.jcat.2012.08.002_b0225) 2012; 48 Horvat (10.1016/j.jcat.2012.08.002_b0100) 1985; 26 Kuster (10.1016/j.jcat.2012.08.002_b0035) 1990; 42 Caratzoulas (10.1016/j.jcat.2012.08.002_b0085) 2011; 346 Eckert (10.1016/j.jcat.2012.08.002_b0210_1) 2002; 48 Assary (10.1016/j.jcat.2012.08.002_b0090_1) 2010; 114 Qian (10.1016/j.jcat.2012.08.002_b0120) 2010; 345 Girisuta (10.1016/j.jcat.2012.08.002_b0110) 2007; 46 Pidko (10.1016/j.jcat.2012.08.002_b0140_1) 2010; 49 |
| References_xml | – volume: 49 start-page: 4479 year: 2010 ident: b0060 publication-title: Chem. Int. Ed. – volume: 127 start-page: 124105 year: 2007 ident: b0160 publication-title: Chem. Phys. – volume: 28 start-page: 227 year: 2000 ident: b0025 publication-title: Resour. Conserv. Recycl. – volume: 345 start-page: 1945 year: 2010 ident: b0120 publication-title: Carbohydr. Res. – volume: 48 start-page: 369 year: 2002 ident: b0210 publication-title: AIChE J. – volume: 461–462 start-page: 1 year: 1999 ident: b0215 publication-title: J. Mol. Struct. Theochem. – volume: 5 start-page: 679 year: 2009 ident: b0195 publication-title: J. Chem. Theory Comput. – volume: 2 start-page: 930 year: 2012 ident: b0230 publication-title: ACS Catal. – volume: 79 start-page: 926 year: 1983 ident: b0220 publication-title: J. Chem. Phys. – volume: 105 start-page: 2999 year: 2005 ident: b0205 publication-title: Chem. Rev. – volume: 101 start-page: 5309 year: 1979 ident: b0235 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 5850 year: 2012 ident: b0225 publication-title: Chem. Commun. – volume: 53 start-page: 1185 year: 2010 ident: b0045 publication-title: Top. Catal. – volume: 114 start-page: 9002 year: 2010 ident: b0090 publication-title: J. Phys. Chem. B – volume: 115 start-page: 11740 year: 2011 ident: b0125 publication-title: J. Phys. Chem. A – volume: 38 start-page: 3098 year: 1988 ident: b0150 publication-title: Phys. Rev. A – volume: 106 start-page: 4044 year: 2006 ident: b0005 publication-title: Chem. Rev. – volume: 5 start-page: 266 year: 1967 ident: b0065 publication-title: Carbohydr. Res. – volume: 103 start-page: 953 year: 1999 ident: b0185 publication-title: J. Phys. Chem. A – volume: 4 start-page: 1049 year: 2011 ident: b0145 publication-title: ChemSusChem – volume: 116 start-page: 5116 year: 2012 ident: b0095 publication-title: J. Phys. Chem. C – volume: 114 start-page: 12323 year: 2010 ident: b0200 publication-title: J. Phys. Chem. A – volume: 312 start-page: 1933I year: 2006 ident: b0040 publication-title: Science – year: 2010 ident: b0030 publication-title: Biorefineries – Industrial Processes and Products, Status Quo and Future Directions – volume: 111 start-page: 5638 year: 2011 ident: b0015 publication-title: Chem. Rev. – volume: 25 start-page: 4745 year: 2011 ident: b0240 publication-title: Energy Fuels – volume: 38 start-page: 95 year: 1986 ident: b0070 publication-title: Starch – volume: 115 start-page: 5745 year: 1993 ident: b0165 publication-title: J. Am. Chem. Soc. – year: 2007 ident: b0010 publication-title: Catalysis for Renewables: From Feedstock to Energy Production – reference: Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009. – volume: 84 start-page: 339 year: 2006 ident: b0105 publication-title: Chem. Eng. Res. Des. – volume: 19 start-page: 1111 year: 1998 ident: b0180 publication-title: J. Comput. Chem. – volume: 19 start-page: 203 year: 1964 ident: b0135 publication-title: Adv. Carbohydr. Chem. – volume: 346 start-page: 664 year: 2011 ident: b0085 publication-title: Carbohydr. Res. – volume: 327 start-page: 1110 year: 2010 ident: b0055 publication-title: Science – volume: 58 start-page: 6131 year: 2010 ident: b0245 publication-title: J. Agric. Food Chem. – volume: 47 start-page: 8047 year: 2008 ident: b0020 publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 190 year: 1996 ident: b0170 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 314 year: 1990 ident: b0035 publication-title: Starch – volume: 118 start-page: 10515 year: 1996 ident: b0175 publication-title: J. Am. Chem. Soc. – volume: 199 start-page: 91 year: 1990 ident: b0080 publication-title: Carbohydr. Res. – volume: 46 start-page: 1696 year: 2007 ident: b0110 publication-title: Ind. Eng. Chem. Res. – volume: 49 start-page: 2530 year: 2010 ident: b0140 publication-title: Angew. Chem. Int. Ed. – volume: 111 start-page: 397 year: 2011 ident: b0050 publication-title: Chem. Rev. – volume: 123 start-page: 2308 year: 2001 ident: b0190 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 12936 year: 2010 ident: b0130 publication-title: J. Phys. Chem. A – volume: 45 start-page: 2163 year: 2006 ident: b0255 publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 1247 year: 2009 ident: b0250 publication-title: Green Chem. – volume: 26 start-page: 2111 year: 1985 ident: b0100 publication-title: Tetrahedron Lett. – volume: 340 start-page: 2319 year: 2005 ident: b0115 publication-title: Carbohydr. Res. – volume: 48 start-page: 5850 year: 2012 ident: 10.1016/j.jcat.2012.08.002_b0225 publication-title: Chem. Commun. doi: 10.1039/c2cc31689g – volume: 1 start-page: 719 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0045_2 publication-title: ACS Catal. doi: 10.1021/cs2001237 – volume: 346 start-page: 664 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0085 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2011.01.029 – volume: 79 start-page: 926 year: 1983 ident: 10.1016/j.jcat.2012.08.002_b0220 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 84 start-page: 339 year: 2006 ident: 10.1016/j.jcat.2012.08.002_b0105 publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd05038 – volume: 19 start-page: 1111 year: 1998 ident: 10.1016/j.jcat.2012.08.002_b0180 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19980730)19:10<1111::AID-JCC1>3.0.CO;2-P – volume: 28 start-page: 161 year: 1973 ident: 10.1016/j.jcat.2012.08.002_b0135_2 publication-title: Adv. Carbohydr. Chem. Biochem. doi: 10.1016/S0065-2318(08)60383-2 – ident: 10.1016/j.jcat.2012.08.002_b0155 – volume: 199 start-page: 91 year: 1990 ident: 10.1016/j.jcat.2012.08.002_b0080 publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(90)84096-D – volume: 46 start-page: 1696 year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0110 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061186z – volume: 114 start-page: 12936 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0130 publication-title: J. Phys. Chem. A doi: 10.1021/jp1078407 – volume: 115 start-page: 5745 year: 1993 ident: 10.1016/j.jcat.2012.08.002_b0165 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00066a046 – volume: 46 start-page: 7703 year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0255_2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061673e – volume: 115 start-page: 4341 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0090_2 publication-title: J. Phys. Chem. B doi: 10.1021/jp1104278 – volume: 5 start-page: 222 year: 2009 ident: 10.1016/j.jcat.2012.08.002_b0215_2 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800457g – volume: 116 start-page: 5116 year: 2012 ident: 10.1016/j.jcat.2012.08.002_b0095 publication-title: J. Phys. Chem. C doi: 10.1021/jp2113895 – volume: 17 start-page: 5281 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0140_3 publication-title: Chem. Eur. J. doi: 10.1002/chem.201003645 – volume: 4 start-page: 1049 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0145 publication-title: ChemSusChem doi: 10.1002/cssc.201100249 – volume: 345 start-page: 1945 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0120 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2010.07.008 – volume: 45 start-page: 2163 year: 2006 ident: 10.1016/j.jcat.2012.08.002_b0255_1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051088y – year: 2012 ident: 10.1016/j.jcat.2012.08.002_b0140_4 publication-title: ChemCatChem – volume: 461–462 start-page: 1 year: 1999 ident: 10.1016/j.jcat.2012.08.002_b0215_1 publication-title: J. Mol. Struct. Theochem. doi: 10.1016/S0166-1280(98)00475-8 – volume: 58 start-page: 6131 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0245 publication-title: J. Agric. Food Chem. doi: 10.1021/jf903598w – volume: 115 start-page: 11740 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0125 publication-title: J. Phys. Chem. A doi: 10.1021/jp2041982 – volume: 118 start-page: 190 year: 1996 ident: 10.1016/j.jcat.2012.08.002_b0170 publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 5309 year: 1979 ident: 10.1016/j.jcat.2012.08.002_b0235 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00512a033 – volume: 28 start-page: 227 year: 2000 ident: 10.1016/j.jcat.2012.08.002_b0025 publication-title: Resour. Conserv. Recycl. doi: 10.1016/S0921-3449(99)00047-6 – volume: 42 start-page: 314 year: 1990 ident: 10.1016/j.jcat.2012.08.002_b0035 publication-title: Starch doi: 10.1002/star.19900420808 – volume: 5 start-page: 266 year: 1967 ident: 10.1016/j.jcat.2012.08.002_b0065 publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)80500-5 – volume: 447 start-page: 982 year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0040_2 publication-title: Nature doi: 10.1038/nature05923 – volume: 26 start-page: 2111 year: 1985 ident: 10.1016/j.jcat.2012.08.002_b0100 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)94793-2 – volume: 9 start-page: 342 year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0040_3 publication-title: Green Chem. doi: 10.1039/B611568C – volume: 49 start-page: 2530 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0140_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000250 – volume: 47 start-page: 8047 year: 2008 ident: 10.1016/j.jcat.2012.08.002_b0020_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802879 – volume: 47 start-page: 511 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0020_3 publication-title: Chem. Commun. doi: 10.1039/C0CC02421J – volume: 48 start-page: 369 year: 2002 ident: 10.1016/j.jcat.2012.08.002_b0210_1 publication-title: AIChE J. doi: 10.1002/aic.690480220 – volume: 2 start-page: 930 year: 2012 ident: 10.1016/j.jcat.2012.08.002_b0230 publication-title: ACS Catal. doi: 10.1021/cs300192z – volume: 38 start-page: 3098 year: 1988 ident: 10.1016/j.jcat.2012.08.002_b0150 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 11 start-page: 1247 year: 2009 ident: 10.1016/j.jcat.2012.08.002_b0250 publication-title: Green Chem. doi: 10.1039/b904693c – volume: 38 start-page: 95 year: 1986 ident: 10.1016/j.jcat.2012.08.002_b0070 publication-title: Starch doi: 10.1002/star.19860380308 – volume: 111 start-page: 5638 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0015 publication-title: Chem. Rev. doi: 10.1021/cr2000042 – volume: 19 start-page: 203 year: 1964 ident: 10.1016/j.jcat.2012.08.002_b0135_1 publication-title: Adv. Carbohydr. Chem. – volume: 111 start-page: 397 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0050 publication-title: Chem. Rev. doi: 10.1021/cr100171a – volume: 25 start-page: 4745 year: 2011 ident: 10.1016/j.jcat.2012.08.002_b0240 publication-title: Energy Fuels doi: 10.1021/ef2010157 – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.jcat.2012.08.002_b0005 publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 327 start-page: 1110 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0055 publication-title: Science doi: 10.1126/science.1184362 – volume: 118 start-page: 10515 year: 1996 ident: 10.1016/j.jcat.2012.08.002_b0175 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960427z – year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0030 – volume: 127 start-page: 124105 year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0160 publication-title: Chem. Phys. – volume: 5 start-page: 679 year: 2009 ident: 10.1016/j.jcat.2012.08.002_b0195 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct8004479 – volume: 103 start-page: 953 year: 1999 ident: 10.1016/j.jcat.2012.08.002_b0185 publication-title: J. Phys. Chem. A doi: 10.1021/jp9846126 – volume: 49 start-page: 10081 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0140_2 publication-title: Inorg. Chem. doi: 10.1021/ic101402r – volume: 102 start-page: 1995 year: 1998 ident: 10.1016/j.jcat.2012.08.002_b0210_2 publication-title: Phys. Chem. A doi: 10.1021/jp9716997 – volume: 312 start-page: 1933I year: 2006 ident: 10.1016/j.jcat.2012.08.002_b0040_1 publication-title: Science doi: 10.1126/science.1126337 – volume: 340 start-page: 2319 year: 2005 ident: 10.1016/j.jcat.2012.08.002_b0115 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2005.07.021 – volume: 114 start-page: 12323 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0200 publication-title: J. Phys. Chem. A doi: 10.1021/jp107560u – volume: 3 start-page: 1151 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0020_2 publication-title: ChemSusChem doi: 10.1002/cssc.201000153 – volume: 53 start-page: 1185 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0045_1 publication-title: Top. Catal. doi: 10.1007/s11244-010-9560-2 – volume: 114 start-page: 9002 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0090_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp101418f – volume: 105 start-page: 2999 year: 2005 ident: 10.1016/j.jcat.2012.08.002_b0205 publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 123 start-page: 2308 year: 2001 ident: 10.1016/j.jcat.2012.08.002_b0190 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003198w – volume: 49 start-page: 4479 year: 2010 ident: 10.1016/j.jcat.2012.08.002_b0060 publication-title: Chem. Int. Ed. doi: 10.1002/anie.201000655 – year: 2007 ident: 10.1016/j.jcat.2012.08.002_b0010 |
| SSID | ssj0011558 |
| Score | 2.517512 |
| Snippet | Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms... A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim... Graphical abstract Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 122 |
| SubjectTerms | 5-Hydroxymethylfurfural Acid catalysis Acids active sites aqueous solutions Biomass biorefining Carbohydrates carbon Catalysis Catalysts Chemical reactions Chemistry condensation DFT calculations Exact sciences and technology fructose General and physical chemistry glucose Hexose humin hydroxymethylfurfural Levulinic acid Reaction mechanism rehydration Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
| Title | Mechanism of Brønsted acid-catalyzed conversion of carbohydrates |
| URI | https://dx.doi.org/10.1016/j.jcat.2012.08.002 https://www.proquest.com/docview/1113263168 https://www.proquest.com/docview/2000001927 |
| Volume | 295 |
| WOSCitedRecordID | wos000310940300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2694 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011558 issn: 0021-9517 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYhgQ8IBigFcYUJN6qRLFzcx7bqVwmNiGxofIUObYDKSOdmm5a-WW888c4J3bSlmkTIPESVWnSuP5OzuXzOT6EvKQFp0WYJK4vmXJDHXE3p0y6hU7AIuiY5w3f8fFdcnTEx-P0va0uqZt2AklV8cvL9Oy_Qg3nAGwsnf0LuLsfhRPwGUCHI8AOxz8C_lBjMS_2vgA_cNishA95haxmX8hSuQ1hs_iulck4b-iyJrlczPLpl4XCvSPqa3xWc29ddo74J0s3vxbWAqKWLdXXhoAdXcAgF_2BtyRcq5bw-Vbq0_6Bd-it0g6U2fq7jgtr62HW0jVNwkdkqjE9bVSqn_ou1suu6lyWRitak5rSZGuAqSE8r-h2QzNMvAlSsjgkz-TBLi1Zl1-IS9AUx0FZ4-QFG2SLJVEKam9r8HY0PugWmsCdMsbaDtzWVZkUwN-fdJ3vslGIKSbVihreq8I0RLli2xuH5fgBuW9RcwZGQh6SW7raJnf22wZ_2-Teyl6Uj8igkxtnWjjD2c8fjcw46zLjLGUGL1uTmcfk5NXoeP-Na_truDKifO6CJ-oXvoyZ4CpUVPsKo8uQJirQsUjzXOaJEnGUax7FXIc6hHA3LxIBUYYGlIInZLOaVnqHOOB1qhT8IQnhQRiyXHBstBHoKA6CVOayR2g7c5m0m89jD5TTrM0ynGQ42xnOdoaNUX3WI_3unjOz9cqNV0ctIJl1Ho1TmIH83HjfDqCXic9gU7OTDwx3XMRAgrK4R_bWIO1GwfBfQpzeI7stxpnVADWG1BASYT-4HnnRfQ3Q4kqcqPT0vMberya4Sp7-47CfkbvLt3KXbM5n5_o5uS0v5mU927NS_gsahrec |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Br%C3%B8nsted+acid-catalyzed+conversion+of+carbohydrates&rft.jtitle=Journal+of+catalysis&rft.au=Yang%2C+Gang&rft.au=Pidko%2C+Evgeny+A.&rft.au=Hensen%2C+Emiel+J.M.&rft.date=2012-11-01&rft.pub=Elsevier+Inc&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=295&rft.spage=122&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jcat.2012.08.002&rft.externalDocID=S0021951712002503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |