Mechanism of Brønsted acid-catalyzed conversion of carbohydrates

Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the rea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of catalysis Ročník 295; s. 122 - 132
Hlavní autori: Yang, Gang, Pidko, Evgeny A., Hensen, Emiel J.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 01.11.2012
Elsevier
Elsevier BV
Predmet:
ISSN:0021-9517, 1090-2694
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [Display omitted] ► Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. ► Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. ► Favorable protonation of glucose leads to reversion products and humin precursors. ► Novel direct mechanism of glucose transformation to levulinic acid is reported. A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step.
AbstractList A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step.
Graphical abstract Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. Display Omitted Highlights Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. Favorable protonation of glucose leads to reversion products and humin precursors. Novel direct mechanism of glucose transformation to levulinic acid is reported. A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [PUBLICATION ABSTRACT]
Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms for sugar transformations initiated by protonation of different OH groups are identified. It is demonstrated that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step. [Display omitted] ► Regioselectivity of the initial protonation of sugars determines selectivity of their conversion. ► Favorable protonation of fructose opens path to levulinic acid via HMF intermediate. ► Favorable protonation of glucose leads to reversion products and humin precursors. ► Novel direct mechanism of glucose transformation to levulinic acid is reported. A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Characteristic for fructose dehydration by Brønsted acids is the preferred protonation of the O2H group at the anomeric carbon atom, which initiates a sequence of facile reactions toward HMF. Further rehydration to LA is more difficult and competes with condensation reactions leading to humins. A very different result is obtained when glucose is the reactant. The preferred protonation site is the O1H hydroxyl group. The associated reaction paths do not lead to the formation of HMF or LA but result in humin precursors and reversion products. Protonation of other sites occurs at a much lower rate. Nevertheless, when glucose is activated at these less reactive sites, it can lead to LA via a reaction mechanism that does not involve the intermediate formation of fructose and HMF. This direct mechanism is argued to be preferred over the conventional sequential conversion scheme. It is concluded that the differences in the reactivity of glucose and fructose in acidic aqueous solutions are dominated by the regioselectivity of the initial protonation step.
Author Hensen, Emiel J.M.
Yang, Gang
Pidko, Evgeny A.
Author_xml – sequence: 1
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
– sequence: 2
  givenname: Evgeny A.
  surname: Pidko
  fullname: Pidko, Evgeny A.
  email: e.a.pidko@tue.nl
– sequence: 3
  givenname: Emiel J.M.
  surname: Hensen
  fullname: Hensen, Emiel J.M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26564768$$DView record in Pascal Francis
BookMark eNp9kc1u1DAUhS1UJKYDL8CGkRASm4RrT-I4EptS8ScVsYCurRv7hjrK2MX2VBqejH1frA5TNl3UG8vWd46Pzz1lJz54Yuwlh5oDl--mejKYawFc1KBqAPGErTj0UAnZNydsVW541be8e8ZOU5oAOG9btWJn38hcoXdptwnj5kO8_etTJrtB42xVLHE-_ClHE_wNxeSCXzCDcQhXBxsxU3rOno44J3pxv6_Z5aePP8-_VBffP389P7uoTMtVrvpOwghGClS2sZzAtn3XNLyzW5LYD4MZOouyHUi1UlFDTS9hGDsEBcS3Yrtmb4--1zH83lPKeueSoXlGT2GftIBl8V50BX39AJ3CPvqSTnNevOSWS1WoN_cUJoPzGNEbl_R1dDuMBy1kK5vuH6eOnIkhpUijNi5jLl3kiG7WHPQyAz3pZQZ6mYEGpUvjRSoeSP-7Pyp6dRSNGDT-iiXT5Y8CyOV7LS_p1-z9kaDS942jqJNx5A1ZF8lkbYN77IE7exOqYQ
CODEN JCTLA5
CitedBy_id crossref_primary_10_1016_j_algal_2025_104151
crossref_primary_10_1007_s13399_023_04530_0
crossref_primary_10_3389_fchem_2020_00569
crossref_primary_10_1002_open_201900173
crossref_primary_10_1016_j_carres_2015_05_013
crossref_primary_10_1039_D4RE00018H
crossref_primary_10_1007_s12010_022_03806_x
crossref_primary_10_1016_j_catcom_2014_02_021
crossref_primary_10_1016_j_cej_2022_140415
crossref_primary_10_1016_j_apsusc_2020_148890
crossref_primary_10_1016_j_ces_2019_115444
crossref_primary_10_1016_j_rser_2018_06_016
crossref_primary_10_1002_bbb_2542
crossref_primary_10_1016_j_ijms_2019_116237
crossref_primary_10_1016_j_mcat_2025_115497
crossref_primary_10_1016_j_apcatb_2025_125656
crossref_primary_10_1016_j_cattod_2023_114127
crossref_primary_10_1039_D5DT01450F
crossref_primary_10_1016_j_cej_2021_129573
crossref_primary_10_1016_j_jiec_2018_10_002
crossref_primary_10_1002_cssc_201301076
crossref_primary_10_1016_j_chemphys_2019_110575
crossref_primary_10_1515_pac_2020_1108
crossref_primary_10_1007_s11705_015_1535_1
crossref_primary_10_1016_j_biortech_2023_130010
crossref_primary_10_1002_cssc_201702354
crossref_primary_10_3390_pr9050745
crossref_primary_10_1016_j_cej_2024_152190
crossref_primary_10_1016_j_isci_2023_107933
crossref_primary_10_1016_j_cej_2024_154095
crossref_primary_10_1002_cssc_201700051
crossref_primary_10_1016_j_fuel_2022_127236
crossref_primary_10_1002_cssc_201300432
crossref_primary_10_1016_j_cattod_2022_01_017
crossref_primary_10_1007_s10562_020_03520_5
crossref_primary_10_1007_s10562_017_2064_y
crossref_primary_10_1016_j_apcatb_2017_01_065
crossref_primary_10_1515_revce_2017_0038
crossref_primary_10_1002_chem_201402437
crossref_primary_10_1002_kin_21719
crossref_primary_10_1016_j_fuproc_2015_04_024
crossref_primary_10_1016_j_cej_2017_06_108
crossref_primary_10_1016_j_biortech_2020_124500
crossref_primary_10_1007_s13399_020_01070_9
crossref_primary_10_1016_j_apcata_2021_118130
crossref_primary_10_1186_s13068_015_0398_5
crossref_primary_10_1016_j_apcata_2021_118011
crossref_primary_10_1016_j_rser_2021_110706
crossref_primary_10_1016_j_jenvman_2016_03_050
crossref_primary_10_1016_j_cej_2022_137827
crossref_primary_10_1002_slct_201601562
crossref_primary_10_1002_qua_70044
crossref_primary_10_1007_s00894_016_2972_6
crossref_primary_10_1007_s10570_018_1717_3
crossref_primary_10_1002_anie_201911387
crossref_primary_10_1002_open_201900225
crossref_primary_10_1038_srep29711
crossref_primary_10_3390_ma11081408
crossref_primary_10_1016_j_apcata_2014_07_035
crossref_primary_10_1016_j_fuel_2024_133414
crossref_primary_10_1016_j_carres_2014_01_009
crossref_primary_10_1002_cssc_201403264
crossref_primary_10_1016_j_fuproc_2019_106162
crossref_primary_10_1016_j_biombioe_2021_105965
crossref_primary_10_1002_poc_4094
crossref_primary_10_1002_adsc_202401086
crossref_primary_10_1007_s42452_018_0055_2
crossref_primary_10_1016_j_jclepro_2022_131359
crossref_primary_10_1089_ind_2015_0026
crossref_primary_10_1002_jms_3525
crossref_primary_10_1002_cssc_202401105
crossref_primary_10_1039_D0RA03892J
crossref_primary_10_1039_D4GC06244B
crossref_primary_10_1016_j_cej_2014_07_036
crossref_primary_10_1016_j_gee_2022_09_012
crossref_primary_10_1002_ange_201911387
crossref_primary_10_1016_j_jiec_2021_08_013
crossref_primary_10_1016_j_jcat_2017_06_031
crossref_primary_10_1016_j_comptc_2020_113009
crossref_primary_10_1002_cssc_202101348
crossref_primary_10_1007_s10562_014_1390_6
crossref_primary_10_1016_j_apcatb_2016_09_058
crossref_primary_10_1016_j_apcata_2015_08_007
crossref_primary_10_1002_cssc_202001341
crossref_primary_10_1016_j_rser_2020_110317
crossref_primary_10_1002_cssc_201300342
crossref_primary_10_1016_j_cej_2019_122284
crossref_primary_10_1016_j_fuel_2023_130835
crossref_primary_10_1002_cssc_201300345
crossref_primary_10_1016_j_micromeso_2014_04_003
crossref_primary_10_1016_j_aca_2021_338712
crossref_primary_10_3390_catal13071094
crossref_primary_10_1016_j_biortech_2013_09_016
crossref_primary_10_1002_chem_201301366
crossref_primary_10_1002_bbb_1932
crossref_primary_10_3390_polym16182633
crossref_primary_10_1002_slct_202201237
crossref_primary_10_1016_j_indcrop_2018_08_045
crossref_primary_10_1016_j_fuel_2025_135314
crossref_primary_10_3390_en16031396
crossref_primary_10_1016_j_mcat_2022_112720
crossref_primary_10_1021_acssuschemeng_5c00738
crossref_primary_10_1016_j_chemosphere_2023_140126
crossref_primary_10_1016_j_renene_2024_121145
crossref_primary_10_1021_acs_jpclett_5c00874
crossref_primary_10_1002_cnma_202000634
crossref_primary_10_1039_C8RE00300A
crossref_primary_10_1016_j_apcata_2024_119694
crossref_primary_10_3390_catal5042287
crossref_primary_10_1007_s42452_019_1827_z
crossref_primary_10_1016_j_carbon_2018_04_087
crossref_primary_10_1016_j_biombioe_2022_106661
crossref_primary_10_1016_j_seppur_2024_127766
crossref_primary_10_1002_syst_201900043
crossref_primary_10_1016_j_cej_2025_160472
crossref_primary_10_1016_j_fuel_2025_134465
crossref_primary_10_1007_s12649_021_01525_8
crossref_primary_10_1007_s10562_021_03693_7
crossref_primary_10_1016_j_fuel_2021_122628
crossref_primary_10_1039_D3RE00672G
crossref_primary_10_1016_j_biombioe_2025_107687
crossref_primary_10_1016_j_micromeso_2024_113051
crossref_primary_10_1016_j_fuel_2023_128133
crossref_primary_10_1016_j_rser_2020_110338
crossref_primary_10_1016_j_cej_2013_02_043
crossref_primary_10_1016_j_apcata_2025_120587
crossref_primary_10_1002_jcc_24214
crossref_primary_10_1016_j_apcatb_2018_05_012
crossref_primary_10_3390_catal10091006
crossref_primary_10_3389_fpls_2021_630807
crossref_primary_10_1016_j_cattod_2016_12_019
crossref_primary_10_1002_cctc_202100457
crossref_primary_10_1002_ceat_202100517
crossref_primary_10_1016_j_colsurfa_2020_125685
crossref_primary_10_1038_s41467_025_55935_6
crossref_primary_10_1002_cssc_201902309
crossref_primary_10_1051_matecconf_202133305005
crossref_primary_10_1007_s11244_017_0794_0
crossref_primary_10_1016_j_indcrop_2022_115410
crossref_primary_10_1016_j_apcatb_2013_10_032
crossref_primary_10_1038_nchem_2262
crossref_primary_10_1039_C3CP52359D
crossref_primary_10_1016_j_carbpol_2023_120692
crossref_primary_10_1016_j_fuel_2020_119969
crossref_primary_10_1016_j_pecs_2016_04_004
crossref_primary_10_1016_j_molcata_2013_11_015
crossref_primary_10_1002_cssc_201600649
crossref_primary_10_1016_j_cej_2024_149779
crossref_primary_10_1016_j_carres_2020_107941
crossref_primary_10_1002_bbb_2493
crossref_primary_10_1002_cjce_24812
crossref_primary_10_1016_j_comptc_2025_115461
crossref_primary_10_1016_j_renene_2024_120509
crossref_primary_10_1007_s10562_018_2483_4
crossref_primary_10_1016_j_carres_2013_08_029
crossref_primary_10_1016_j_apcata_2018_01_029
Cites_doi 10.1039/c2cc31689g
10.1021/cs2001237
10.1016/j.carres.2011.01.029
10.1063/1.445869
10.1205/cherd05038
10.1002/(SICI)1096-987X(19980730)19:10<1111::AID-JCC1>3.0.CO;2-P
10.1016/S0065-2318(08)60383-2
10.1016/0008-6215(90)84096-D
10.1021/ie061186z
10.1021/jp1078407
10.1021/ja00066a046
10.1021/ie061673e
10.1021/jp1104278
10.1021/ct800457g
10.1021/jp2113895
10.1002/chem.201003645
10.1002/cssc.201100249
10.1016/j.carres.2010.07.008
10.1021/ie051088y
10.1016/S0166-1280(98)00475-8
10.1021/jf903598w
10.1021/jp2041982
10.1021/ja00512a033
10.1016/S0921-3449(99)00047-6
10.1002/star.19900420808
10.1016/S0008-6215(00)80500-5
10.1038/nature05923
10.1016/S0040-4039(00)94793-2
10.1039/B611568C
10.1002/anie.201000250
10.1002/anie.200802879
10.1039/C0CC02421J
10.1002/aic.690480220
10.1021/cs300192z
10.1103/PhysRevA.38.3098
10.1039/b904693c
10.1002/star.19860380308
10.1021/cr2000042
10.1021/cr100171a
10.1021/ef2010157
10.1021/cr068360d
10.1126/science.1184362
10.1021/ja960427z
10.1021/ct8004479
10.1021/jp9846126
10.1021/ic101402r
10.1021/jp9716997
10.1126/science.1126337
10.1016/j.carres.2005.07.021
10.1021/jp107560u
10.1002/cssc.201000153
10.1007/s11244-010-9560-2
10.1021/jp101418f
10.1021/cr9904009
10.1021/ja003198w
10.1002/anie.201000655
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.jcat.2012.08.002
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 132
ExternalDocumentID 2792773891
26564768
10_1016_j_jcat_2012_08_002
US201600015126
S0021951712002503
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7S9
L.6
ID FETCH-LOGICAL-c518t-9760f0c62a8d4d1e0d5974417d3e6a9bbcb7da65be8568e4e4960bf7a080e1323
ISICitedReferencesCount 233
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310940300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9517
IngestDate Thu Oct 02 15:34:26 EDT 2025
Sun Nov 09 08:31:06 EST 2025
Mon Jul 21 09:14:36 EDT 2025
Sat Nov 29 07:28:11 EST 2025
Tue Nov 18 21:22:40 EST 2025
Wed Dec 27 19:05:55 EST 2023
Fri Feb 23 02:27:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hexose
Levulinic acid
5-Hydroxymethylfurfural
Reaction mechanism
Biomass
Acid catalysis
DFT calculations
Water
Glucose
Potential
Dehydration
Precursor
Acidic solution
Brönsted acid
Sequential
Hydroxyl group
Carbohydrate
Chemical reactivity
Catalytic reaction
Condensation reaction
Regioselectivity
Reaction path
Carbon
Conversion
Fructose
Density functional method
Rehydration
Protonation
Aqueous solution
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-9760f0c62a8d4d1e0d5974417d3e6a9bbcb7da65be8568e4e4960bf7a080e1323
Notes http://dx.doi.org/10.1016/j.jcat.2012.08.002
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1113263168
PQPubID 32080
PageCount 11
ParticipantIDs proquest_miscellaneous_2000001927
proquest_journals_1113263168
pascalfrancis_primary_26564768
crossref_citationtrail_10_1016_j_jcat_2012_08_002
crossref_primary_10_1016_j_jcat_2012_08_002
fao_agris_US201600015126
elsevier_sciencedirect_doi_10_1016_j_jcat_2012_08_002
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier BV
References Dapprich, Komaromi, Byun, Morokuma, Frisch, Lundberg, Kawatsu, Vreven, Frisch, Morokuma (b0215) 1999; 461–462
van Dam, Kieboom, van Bekkum (b0070) 1986; 38
Roma´n-Leshkov, Chheda, Dumesic, Roma´n-Leshkov, Barrett, Liu, Dumesic, Chheda, Roma´n-Leshkov, Dumesic (b0040) 2006; 312
Hoffmann, Rychlewski (b0190) 2001; 123
(b0010) 2007
Barrows, Storer, Cramer, French, Truhlar (b0180) 1998; 19
Reichert, Montoya, Liang, Bichhorn, Haynes (b0200) 2010; 114
Becke (b0150) 1988; 38
Jorgensen, Chandrasekhar, Madura, Impey, Klein (b0220) 1983; 79
Girisuta, Janssen, Heeres (b0110) 2007; 46
Lange, Price, Ayoub, Louis, Petrus, Clarke, Gosselink, Angew (b0060) 2010; 49
Qian, Nimlos, Davis, Johnson, Himmel (b0115) 2005; 340
Forsyth, Olah (b0235) 1979; 101
Cramer, Truhlar (b0165) 1993; 115
Anet, Feather, Harris (b0135) 1964; 19
Jadhav, Pedersen, Sølling, Bols (b0145) 2011; 4
Pilath, Nimlos, Mittal, Himmel, Johnson (b0245) 2010; 58
Antal, Mok, Richards (b0080) 1990; 199
Asghari, Yoshida, Asghari, Yoshida (b0255) 2006; 45
Jebber, Zhang, Cassady, Chung-Phillips (b0175) 1996; 118
Assary, Redfern, Hammond, Greeley, Curtiss, Assary, Redfern, Greeley, Curtiss (b0090) 2010; 114
Pagán-Torres, Wang, Gallo, Shanks, Dumesic (b0230) 2012; 2
Crisci, Tucker, Dumesic, Scott, Crisci, Tucker, Lee, Yang, Dumesic, Scott (b0045) 2010; 53
Bozell, Moens, Elliott, Wang, Neuenscwander, Fitzpatrick, Bilski, Jarnefeld (b0025) 2000; 28
Horvat, Klaić, Metelko, Šunjić (b0100) 1985; 26
Zakrzewska, Bogel-Łukasik, Bogel-Łukasik (b0050) 2011; 111
Pidko, Degirmenci, van Santen, Hensen, Pidko, Degirmenci, van Santen, Hensen, Zhang, Pidko, Hensen, Pidko, Degirmenci, Hensen (b0140) 2010; 49
Curtiss, Redfern, Raghavachari (b0160) 2007; 127
Chung-Phillips, Chen (b0185) 1999; 103
Kuster (b0035) 1990; 42
Mäki-Arvela, Salmi, Holmbom, Willfär, Murzin (b0015) 2011; 111
Akien, Qi, Horváth (b0225) 2012; 48
Qian, Johnson, Himmel, Nimlos (b0120) 2010; 345
Caratzoulas, Vlachos (b0085) 2011; 346
Rinaldi, Palkovits, Schüth, Rinaldi, Engel, Büchs, Spiess, Schüth, Rinaldi (b0020) 2008; 47
Tomasi, Mennucci, Cammi (b0205) 2005; 105
Girisuta, Janssen, Heeres (b0105) 2006; 84
Eckert, Klamt, Barone, Cossi (b0210) 2002; 48
Hayes, Fitzpatrick, Hayes, Ross (b0030) 2010
Choudhary, Burnett, Vlachos, Sandler (b0095) 2012; 116
Liu, Nimlos, Johnson, Himmel, Qian (b0130) 2010; 114
Qian (b0125) 2011; 115
Patil, Lund (b0240) 2011; 25
Heeres, Handana, Chunai, Rasrendra, Girisuta, Heeres (b0250) 2009; 11
Huber, Iborra, Corma (b0005) 2006; 106
Caonka, French, Johnson, Stortz (b0195) 2009; 5
Bond, Alonso, Wang, West, Dumesic (b0055) 2010; 327
Shaw, Tatum, Berry (b0065) 1967; 5
Brown, Wladkowski (b0170) 1996; 118
Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
Shaw (10.1016/j.jcat.2012.08.002_b0065) 1967; 5
Qian (10.1016/j.jcat.2012.08.002_b0115) 2005; 340
Asghari (10.1016/j.jcat.2012.08.002_b0255_1) 2006; 45
Pidko (10.1016/j.jcat.2012.08.002_b0140_4) 2012
Chung-Phillips (10.1016/j.jcat.2012.08.002_b0185) 1999; 103
Chheda (10.1016/j.jcat.2012.08.002_b0040_3) 2007; 9
Tomasi (10.1016/j.jcat.2012.08.002_b0205) 2005; 105
Feather (10.1016/j.jcat.2012.08.002_b0135_2) 1973; 28
Cramer (10.1016/j.jcat.2012.08.002_b0165) 1993; 115
Hoffmann (10.1016/j.jcat.2012.08.002_b0190) 2001; 123
Pagán-Torres (10.1016/j.jcat.2012.08.002_b0230) 2012; 2
Barone (10.1016/j.jcat.2012.08.002_b0210_2) 1998; 102
Mäki-Arvela (10.1016/j.jcat.2012.08.002_b0015) 2011; 111
Forsyth (10.1016/j.jcat.2012.08.002_b0235) 1979; 101
Pilath (10.1016/j.jcat.2012.08.002_b0245) 2010; 58
van Dam (10.1016/j.jcat.2012.08.002_b0070) 1986; 38
Rinaldi (10.1016/j.jcat.2012.08.002_b0020_3) 2011; 47
Crisci (10.1016/j.jcat.2012.08.002_b0045_2) 2011; 1
Dapprich (10.1016/j.jcat.2012.08.002_b0215_1) 1999; 461–462
Pidko (10.1016/j.jcat.2012.08.002_b0140_2) 2010; 49
Jebber (10.1016/j.jcat.2012.08.002_b0175) 1996; 118
Reichert (10.1016/j.jcat.2012.08.002_b0200) 2010; 114
Roma´n-Leshkov (10.1016/j.jcat.2012.08.002_b0040_1) 2006; 312
Becke (10.1016/j.jcat.2012.08.002_b0150) 1988; 38
Bozell (10.1016/j.jcat.2012.08.002_b0025) 2000; 28
Roma´n-Leshkov (10.1016/j.jcat.2012.08.002_b0040_2) 2007; 447
Zhang (10.1016/j.jcat.2012.08.002_b0140_3) 2011; 17
Jadhav (10.1016/j.jcat.2012.08.002_b0145) 2011; 4
Huber (10.1016/j.jcat.2012.08.002_b0005) 2006; 106
Antal (10.1016/j.jcat.2012.08.002_b0080) 1990; 199
Curtiss (10.1016/j.jcat.2012.08.002_b0160) 2007; 127
Asghari (10.1016/j.jcat.2012.08.002_b0255_2) 2007; 46
(10.1016/j.jcat.2012.08.002_b0010) 2007
Qian (10.1016/j.jcat.2012.08.002_b0125) 2011; 115
Caonka (10.1016/j.jcat.2012.08.002_b0195) 2009; 5
Patil (10.1016/j.jcat.2012.08.002_b0240) 2011; 25
Lange (10.1016/j.jcat.2012.08.002_b0060) 2010; 49
Girisuta (10.1016/j.jcat.2012.08.002_b0105) 2006; 84
Hayes (10.1016/j.jcat.2012.08.002_b0030) 2010
Liu (10.1016/j.jcat.2012.08.002_b0130) 2010; 114
Brown (10.1016/j.jcat.2012.08.002_b0170) 1996; 118
Jorgensen (10.1016/j.jcat.2012.08.002_b0220) 1983; 79
Assary (10.1016/j.jcat.2012.08.002_b0090_2) 2011; 115
Anet (10.1016/j.jcat.2012.08.002_b0135_1) 1964; 19
Zakrzewska (10.1016/j.jcat.2012.08.002_b0050) 2011; 111
Crisci (10.1016/j.jcat.2012.08.002_b0045_1) 2010; 53
Lundberg (10.1016/j.jcat.2012.08.002_b0215_2) 2009; 5
Barrows (10.1016/j.jcat.2012.08.002_b0180) 1998; 19
Choudhary (10.1016/j.jcat.2012.08.002_b0095) 2012; 116
Heeres (10.1016/j.jcat.2012.08.002_b0250) 2009; 11
Rinaldi (10.1016/j.jcat.2012.08.002_b0020_2) 2010; 3
Bond (10.1016/j.jcat.2012.08.002_b0055) 2010; 327
10.1016/j.jcat.2012.08.002_b0155
Rinaldi (10.1016/j.jcat.2012.08.002_b0020_1) 2008; 47
Akien (10.1016/j.jcat.2012.08.002_b0225) 2012; 48
Horvat (10.1016/j.jcat.2012.08.002_b0100) 1985; 26
Kuster (10.1016/j.jcat.2012.08.002_b0035) 1990; 42
Caratzoulas (10.1016/j.jcat.2012.08.002_b0085) 2011; 346
Eckert (10.1016/j.jcat.2012.08.002_b0210_1) 2002; 48
Assary (10.1016/j.jcat.2012.08.002_b0090_1) 2010; 114
Qian (10.1016/j.jcat.2012.08.002_b0120) 2010; 345
Girisuta (10.1016/j.jcat.2012.08.002_b0110) 2007; 46
Pidko (10.1016/j.jcat.2012.08.002_b0140_1) 2010; 49
References_xml – volume: 49
  start-page: 4479
  year: 2010
  ident: b0060
  publication-title: Chem. Int. Ed.
– volume: 127
  start-page: 124105
  year: 2007
  ident: b0160
  publication-title: Chem. Phys.
– volume: 28
  start-page: 227
  year: 2000
  ident: b0025
  publication-title: Resour. Conserv. Recycl.
– volume: 345
  start-page: 1945
  year: 2010
  ident: b0120
  publication-title: Carbohydr. Res.
– volume: 48
  start-page: 369
  year: 2002
  ident: b0210
  publication-title: AIChE J.
– volume: 461–462
  start-page: 1
  year: 1999
  ident: b0215
  publication-title: J. Mol. Struct. Theochem.
– volume: 5
  start-page: 679
  year: 2009
  ident: b0195
  publication-title: J. Chem. Theory Comput.
– volume: 2
  start-page: 930
  year: 2012
  ident: b0230
  publication-title: ACS Catal.
– volume: 79
  start-page: 926
  year: 1983
  ident: b0220
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 2999
  year: 2005
  ident: b0205
  publication-title: Chem. Rev.
– volume: 101
  start-page: 5309
  year: 1979
  ident: b0235
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 5850
  year: 2012
  ident: b0225
  publication-title: Chem. Commun.
– volume: 53
  start-page: 1185
  year: 2010
  ident: b0045
  publication-title: Top. Catal.
– volume: 114
  start-page: 9002
  year: 2010
  ident: b0090
  publication-title: J. Phys. Chem. B
– volume: 115
  start-page: 11740
  year: 2011
  ident: b0125
  publication-title: J. Phys. Chem. A
– volume: 38
  start-page: 3098
  year: 1988
  ident: b0150
  publication-title: Phys. Rev. A
– volume: 106
  start-page: 4044
  year: 2006
  ident: b0005
  publication-title: Chem. Rev.
– volume: 5
  start-page: 266
  year: 1967
  ident: b0065
  publication-title: Carbohydr. Res.
– volume: 103
  start-page: 953
  year: 1999
  ident: b0185
  publication-title: J. Phys. Chem. A
– volume: 4
  start-page: 1049
  year: 2011
  ident: b0145
  publication-title: ChemSusChem
– volume: 116
  start-page: 5116
  year: 2012
  ident: b0095
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 12323
  year: 2010
  ident: b0200
  publication-title: J. Phys. Chem. A
– volume: 312
  start-page: 1933I
  year: 2006
  ident: b0040
  publication-title: Science
– year: 2010
  ident: b0030
  publication-title: Biorefineries – Industrial Processes and Products, Status Quo and Future Directions
– volume: 111
  start-page: 5638
  year: 2011
  ident: b0015
  publication-title: Chem. Rev.
– volume: 25
  start-page: 4745
  year: 2011
  ident: b0240
  publication-title: Energy Fuels
– volume: 38
  start-page: 95
  year: 1986
  ident: b0070
  publication-title: Starch
– volume: 115
  start-page: 5745
  year: 1993
  ident: b0165
  publication-title: J. Am. Chem. Soc.
– year: 2007
  ident: b0010
  publication-title: Catalysis for Renewables: From Feedstock to Energy Production
– reference: Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
– volume: 84
  start-page: 339
  year: 2006
  ident: b0105
  publication-title: Chem. Eng. Res. Des.
– volume: 19
  start-page: 1111
  year: 1998
  ident: b0180
  publication-title: J. Comput. Chem.
– volume: 19
  start-page: 203
  year: 1964
  ident: b0135
  publication-title: Adv. Carbohydr. Chem.
– volume: 346
  start-page: 664
  year: 2011
  ident: b0085
  publication-title: Carbohydr. Res.
– volume: 327
  start-page: 1110
  year: 2010
  ident: b0055
  publication-title: Science
– volume: 58
  start-page: 6131
  year: 2010
  ident: b0245
  publication-title: J. Agric. Food Chem.
– volume: 47
  start-page: 8047
  year: 2008
  ident: b0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 190
  year: 1996
  ident: b0170
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 314
  year: 1990
  ident: b0035
  publication-title: Starch
– volume: 118
  start-page: 10515
  year: 1996
  ident: b0175
  publication-title: J. Am. Chem. Soc.
– volume: 199
  start-page: 91
  year: 1990
  ident: b0080
  publication-title: Carbohydr. Res.
– volume: 46
  start-page: 1696
  year: 2007
  ident: b0110
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 2530
  year: 2010
  ident: b0140
  publication-title: Angew. Chem. Int. Ed.
– volume: 111
  start-page: 397
  year: 2011
  ident: b0050
  publication-title: Chem. Rev.
– volume: 123
  start-page: 2308
  year: 2001
  ident: b0190
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 12936
  year: 2010
  ident: b0130
  publication-title: J. Phys. Chem. A
– volume: 45
  start-page: 2163
  year: 2006
  ident: b0255
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 1247
  year: 2009
  ident: b0250
  publication-title: Green Chem.
– volume: 26
  start-page: 2111
  year: 1985
  ident: b0100
  publication-title: Tetrahedron Lett.
– volume: 340
  start-page: 2319
  year: 2005
  ident: b0115
  publication-title: Carbohydr. Res.
– volume: 48
  start-page: 5850
  year: 2012
  ident: 10.1016/j.jcat.2012.08.002_b0225
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31689g
– volume: 1
  start-page: 719
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0045_2
  publication-title: ACS Catal.
  doi: 10.1021/cs2001237
– volume: 346
  start-page: 664
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0085
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2011.01.029
– volume: 79
  start-page: 926
  year: 1983
  ident: 10.1016/j.jcat.2012.08.002_b0220
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 84
  start-page: 339
  year: 2006
  ident: 10.1016/j.jcat.2012.08.002_b0105
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd05038
– volume: 19
  start-page: 1111
  year: 1998
  ident: 10.1016/j.jcat.2012.08.002_b0180
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19980730)19:10<1111::AID-JCC1>3.0.CO;2-P
– volume: 28
  start-page: 161
  year: 1973
  ident: 10.1016/j.jcat.2012.08.002_b0135_2
  publication-title: Adv. Carbohydr. Chem. Biochem.
  doi: 10.1016/S0065-2318(08)60383-2
– ident: 10.1016/j.jcat.2012.08.002_b0155
– volume: 199
  start-page: 91
  year: 1990
  ident: 10.1016/j.jcat.2012.08.002_b0080
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(90)84096-D
– volume: 46
  start-page: 1696
  year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0110
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061186z
– volume: 114
  start-page: 12936
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0130
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1078407
– volume: 115
  start-page: 5745
  year: 1993
  ident: 10.1016/j.jcat.2012.08.002_b0165
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00066a046
– volume: 46
  start-page: 7703
  year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0255_2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061673e
– volume: 115
  start-page: 4341
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0090_2
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1104278
– volume: 5
  start-page: 222
  year: 2009
  ident: 10.1016/j.jcat.2012.08.002_b0215_2
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800457g
– volume: 116
  start-page: 5116
  year: 2012
  ident: 10.1016/j.jcat.2012.08.002_b0095
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2113895
– volume: 17
  start-page: 5281
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0140_3
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201003645
– volume: 4
  start-page: 1049
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0145
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100249
– volume: 345
  start-page: 1945
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0120
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2010.07.008
– volume: 45
  start-page: 2163
  year: 2006
  ident: 10.1016/j.jcat.2012.08.002_b0255_1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie051088y
– year: 2012
  ident: 10.1016/j.jcat.2012.08.002_b0140_4
  publication-title: ChemCatChem
– volume: 461–462
  start-page: 1
  year: 1999
  ident: 10.1016/j.jcat.2012.08.002_b0215_1
  publication-title: J. Mol. Struct. Theochem.
  doi: 10.1016/S0166-1280(98)00475-8
– volume: 58
  start-page: 6131
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0245
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf903598w
– volume: 115
  start-page: 11740
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0125
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2041982
– volume: 118
  start-page: 190
  year: 1996
  ident: 10.1016/j.jcat.2012.08.002_b0170
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 5309
  year: 1979
  ident: 10.1016/j.jcat.2012.08.002_b0235
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00512a033
– volume: 28
  start-page: 227
  year: 2000
  ident: 10.1016/j.jcat.2012.08.002_b0025
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/S0921-3449(99)00047-6
– volume: 42
  start-page: 314
  year: 1990
  ident: 10.1016/j.jcat.2012.08.002_b0035
  publication-title: Starch
  doi: 10.1002/star.19900420808
– volume: 5
  start-page: 266
  year: 1967
  ident: 10.1016/j.jcat.2012.08.002_b0065
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)80500-5
– volume: 447
  start-page: 982
  year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0040_2
  publication-title: Nature
  doi: 10.1038/nature05923
– volume: 26
  start-page: 2111
  year: 1985
  ident: 10.1016/j.jcat.2012.08.002_b0100
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)94793-2
– volume: 9
  start-page: 342
  year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0040_3
  publication-title: Green Chem.
  doi: 10.1039/B611568C
– volume: 49
  start-page: 2530
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0140_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000250
– volume: 47
  start-page: 8047
  year: 2008
  ident: 10.1016/j.jcat.2012.08.002_b0020_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200802879
– volume: 47
  start-page: 511
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0020_3
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC02421J
– volume: 48
  start-page: 369
  year: 2002
  ident: 10.1016/j.jcat.2012.08.002_b0210_1
  publication-title: AIChE J.
  doi: 10.1002/aic.690480220
– volume: 2
  start-page: 930
  year: 2012
  ident: 10.1016/j.jcat.2012.08.002_b0230
  publication-title: ACS Catal.
  doi: 10.1021/cs300192z
– volume: 38
  start-page: 3098
  year: 1988
  ident: 10.1016/j.jcat.2012.08.002_b0150
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 11
  start-page: 1247
  year: 2009
  ident: 10.1016/j.jcat.2012.08.002_b0250
  publication-title: Green Chem.
  doi: 10.1039/b904693c
– volume: 38
  start-page: 95
  year: 1986
  ident: 10.1016/j.jcat.2012.08.002_b0070
  publication-title: Starch
  doi: 10.1002/star.19860380308
– volume: 111
  start-page: 5638
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0015
  publication-title: Chem. Rev.
  doi: 10.1021/cr2000042
– volume: 19
  start-page: 203
  year: 1964
  ident: 10.1016/j.jcat.2012.08.002_b0135_1
  publication-title: Adv. Carbohydr. Chem.
– volume: 111
  start-page: 397
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0050
  publication-title: Chem. Rev.
  doi: 10.1021/cr100171a
– volume: 25
  start-page: 4745
  year: 2011
  ident: 10.1016/j.jcat.2012.08.002_b0240
  publication-title: Energy Fuels
  doi: 10.1021/ef2010157
– volume: 106
  start-page: 4044
  year: 2006
  ident: 10.1016/j.jcat.2012.08.002_b0005
  publication-title: Chem. Rev.
  doi: 10.1021/cr068360d
– volume: 327
  start-page: 1110
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0055
  publication-title: Science
  doi: 10.1126/science.1184362
– volume: 118
  start-page: 10515
  year: 1996
  ident: 10.1016/j.jcat.2012.08.002_b0175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960427z
– year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0030
– volume: 127
  start-page: 124105
  year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0160
  publication-title: Chem. Phys.
– volume: 5
  start-page: 679
  year: 2009
  ident: 10.1016/j.jcat.2012.08.002_b0195
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct8004479
– volume: 103
  start-page: 953
  year: 1999
  ident: 10.1016/j.jcat.2012.08.002_b0185
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9846126
– volume: 49
  start-page: 10081
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0140_2
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101402r
– volume: 102
  start-page: 1995
  year: 1998
  ident: 10.1016/j.jcat.2012.08.002_b0210_2
  publication-title: Phys. Chem. A
  doi: 10.1021/jp9716997
– volume: 312
  start-page: 1933I
  year: 2006
  ident: 10.1016/j.jcat.2012.08.002_b0040_1
  publication-title: Science
  doi: 10.1126/science.1126337
– volume: 340
  start-page: 2319
  year: 2005
  ident: 10.1016/j.jcat.2012.08.002_b0115
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2005.07.021
– volume: 114
  start-page: 12323
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0200
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp107560u
– volume: 3
  start-page: 1151
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0020_2
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000153
– volume: 53
  start-page: 1185
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0045_1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-010-9560-2
– volume: 114
  start-page: 9002
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0090_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101418f
– volume: 105
  start-page: 2999
  year: 2005
  ident: 10.1016/j.jcat.2012.08.002_b0205
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 123
  start-page: 2308
  year: 2001
  ident: 10.1016/j.jcat.2012.08.002_b0190
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003198w
– volume: 49
  start-page: 4479
  year: 2010
  ident: 10.1016/j.jcat.2012.08.002_b0060
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.201000655
– year: 2007
  ident: 10.1016/j.jcat.2012.08.002_b0010
SSID ssj0011558
Score 2.517512
Snippet Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most favorable mechanisms...
A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim...
Graphical abstract Potential Brønsted acid-catalyzed glucose and fructose conversion routes to levulinic acid have been studied by DFT calculations. The most...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122
SubjectTerms 5-Hydroxymethylfurfural
Acid catalysis
Acids
active sites
aqueous solutions
Biomass
biorefining
Carbohydrates
carbon
Catalysis
Catalysts
Chemical reactions
Chemistry
condensation
DFT calculations
Exact sciences and technology
fructose
General and physical chemistry
glucose
Hexose
humin
hydroxymethylfurfural
Levulinic acid
Reaction mechanism
rehydration
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Mechanism of Brønsted acid-catalyzed conversion of carbohydrates
URI https://dx.doi.org/10.1016/j.jcat.2012.08.002
https://www.proquest.com/docview/1113263168
https://www.proquest.com/docview/2000001927
Volume 295
WOSCitedRecordID wos000310940300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011558
  issn: 0021-9517
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYhgQ8IBigFcYUJN6qRLFzcx7bqVwmNiGxofIUObYDKSOdmm5a-WW888c4J3bSlmkTIPESVWnSuP5OzuXzOT6EvKQFp0WYJK4vmXJDHXE3p0y6hU7AIuiY5w3f8fFdcnTEx-P0va0uqZt2AklV8cvL9Oy_Qg3nAGwsnf0LuLsfhRPwGUCHI8AOxz8C_lBjMS_2vgA_cNishA95haxmX8hSuQ1hs_iulck4b-iyJrlczPLpl4XCvSPqa3xWc29ddo74J0s3vxbWAqKWLdXXhoAdXcAgF_2BtyRcq5bw-Vbq0_6Bd-it0g6U2fq7jgtr62HW0jVNwkdkqjE9bVSqn_ou1suu6lyWRitak5rSZGuAqSE8r-h2QzNMvAlSsjgkz-TBLi1Zl1-IS9AUx0FZ4-QFG2SLJVEKam9r8HY0PugWmsCdMsbaDtzWVZkUwN-fdJ3vslGIKSbVihreq8I0RLli2xuH5fgBuW9RcwZGQh6SW7raJnf22wZ_2-Teyl6Uj8igkxtnWjjD2c8fjcw46zLjLGUGL1uTmcfk5NXoeP-Na_truDKifO6CJ-oXvoyZ4CpUVPsKo8uQJirQsUjzXOaJEnGUax7FXIc6hHA3LxIBUYYGlIInZLOaVnqHOOB1qhT8IQnhQRiyXHBstBHoKA6CVOayR2g7c5m0m89jD5TTrM0ynGQ42xnOdoaNUX3WI_3unjOz9cqNV0ctIJl1Ho1TmIH83HjfDqCXic9gU7OTDwx3XMRAgrK4R_bWIO1GwfBfQpzeI7stxpnVADWG1BASYT-4HnnRfQ3Q4kqcqPT0vMberya4Sp7-47CfkbvLt3KXbM5n5_o5uS0v5mU927NS_gsahrec
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Br%C3%B8nsted+acid-catalyzed+conversion+of+carbohydrates&rft.jtitle=Journal+of+catalysis&rft.au=Yang%2C+Gang&rft.au=Pidko%2C+Evgeny+A.&rft.au=Hensen%2C+Emiel+J.M.&rft.date=2012-11-01&rft.pub=Elsevier+Inc&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=295&rft.spage=122&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jcat.2012.08.002&rft.externalDocID=S0021951712002503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon