Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study

Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance imaging Ročník 76; s. 108 - 115
Hlavní autori: Ribaldi, Federica, Altomare, Daniele, Jovicich, Jorge, Ferrari, Clarissa, Picco, Agnese, Pizzini, Francesca Benedetta, Soricelli, Andrea, Mega, Anna, Ferretti, Antonio, Drevelegas, Antonios, Bosch, Beatriz, Müller, Bernhard W., Marra, Camillo, Cavaliere, Carlo, Bartrés-Faz, David, Nobili, Flavio, Alessandrini, Franco, Barkhof, Frederik, Gros-Dagnac, Helene, Ranjeva, Jean-Philippe, Wiltfang, Jens, Kuijer, Joost, Sein, Julien, Hoffmann, Karl-Titus, Roccatagliata, Luca, Parnetti, Lucilla, Tsolaki, Magda, Constantinidis, Manos, Aiello, Marco, Salvatore, Marco, Montalti, Martina, Caulo, Massimo, Didic, Mira, Bargallo, Núria, Blin, Olivier, Rossini, Paolo M, Schonknecht, Peter, Floridi, Piero, Payoux, Pierre, Visser, Pieter Jelle, Bordet, Régis, Lopes, Renaud, Tarducci, Roberto, Bombois, Stephanie, Hensch, Tilman, Fiedler, Ute, Richardson, Jill C., Frisoni, Giovanni B., Marizzoni, Moira
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Inc 01.02.2021
Elsevier
Predmet:
ISSN:0730-725X, 1873-5894, 1873-5894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was −0.22[IQR = 0.50] for LGA-SPM8, −0.12[0.57] for LGA-SPM12, −0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies. [Display omitted] •A reliable quantification of white matter hyperintensities using lesion prediction algorithm (SPM12 LST) is possible.•The longitudinal pipeline of lesion segmentation toolbox can accurately assess white matter changes over time.•Lesion prediction algorithm output is not affected by site or scanner effects.
AbstractList Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was −0.22[IQR = 0.50] for LGA-SPM8, −0.12[0.57] for LGA-SPM12, −0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies. [Display omitted] •A reliable quantification of white matter hyperintensities using lesion prediction algorithm (SPM12 LST) is possible.•The longitudinal pipeline of lesion segmentation toolbox can accurately assess white matter changes over time.•Lesion prediction algorithm output is not affected by site or scanner effects.
Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.
Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.
Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.
Author Marizzoni, Moira
Müller, Bernhard W.
Cavaliere, Carlo
Floridi, Piero
Nobili, Flavio
Ranjeva, Jean-Philippe
Jovicich, Jorge
Barkhof, Frederik
Didic, Mira
Tarducci, Roberto
Frisoni, Giovanni B.
Constantinidis, Manos
Mega, Anna
Ferretti, Antonio
Soricelli, Andrea
Visser, Pieter Jelle
Aiello, Marco
Fiedler, Ute
Parnetti, Lucilla
Ribaldi, Federica
Bartrés-Faz, David
Lopes, Renaud
Wiltfang, Jens
Richardson, Jill C.
Picco, Agnese
Alessandrini, Franco
Bosch, Beatriz
Drevelegas, Antonios
Bargallo, Núria
Schonknecht, Peter
Marra, Camillo
Payoux, Pierre
Rossini, Paolo M
Hensch, Tilman
Tsolaki, Magda
Blin, Olivier
Bordet, Régis
Sein, Julien
Altomare, Daniele
Caulo, Massimo
Salvatore, Marco
Montalti, Martina
Gros-Dagnac, Helene
Roccatagliata, Luca
Hoffmann, Karl-Titus
Pizzini, Francesca Benedetta
Bombois, Stephanie
Kuijer, Joost
Ferrari, Clarissa
Author_xml – sequence: 1
  givenname: Federica
  surname: Ribaldi
  fullname: Ribaldi, Federica
  email: fribaldi@fatebenefratelli.eu
  organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 2
  givenname: Daniele
  surname: Altomare
  fullname: Altomare, Daniele
  organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
– sequence: 3
  givenname: Jorge
  surname: Jovicich
  fullname: Jovicich, Jorge
  organization: Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
– sequence: 4
  givenname: Clarissa
  surname: Ferrari
  fullname: Ferrari, Clarissa
  organization: Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 5
  givenname: Agnese
  surname: Picco
  fullname: Picco, Agnese
  organization: Department of Neuroscience, Ophthalmology, Genetics and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
– sequence: 6
  givenname: Francesca Benedetta
  surname: Pizzini
  fullname: Pizzini, Francesca Benedetta
  organization: Radiology, Dept. of Diagnostic and Public Health, Verona University, Verona, Italy
– sequence: 7
  givenname: Andrea
  surname: Soricelli
  fullname: Soricelli, Andrea
  organization: IRCCS SDN, Naples, Italy
– sequence: 8
  givenname: Anna
  surname: Mega
  fullname: Mega, Anna
  organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 9
  givenname: Antonio
  surname: Ferretti
  fullname: Ferretti, Antonio
  organization: Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy
– sequence: 10
  givenname: Antonios
  surname: Drevelegas
  fullname: Drevelegas, Antonios
  organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece
– sequence: 11
  givenname: Beatriz
  surname: Bosch
  fullname: Bosch, Beatriz
  organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain
– sequence: 12
  givenname: Bernhard W.
  surname: Müller
  fullname: Müller, Bernhard W.
  organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 13
  givenname: Camillo
  surname: Marra
  fullname: Marra, Camillo
  organization: Center for Neuropsychological Research, Catholic University, Rome, Italy
– sequence: 14
  givenname: Carlo
  surname: Cavaliere
  fullname: Cavaliere, Carlo
  organization: IRCCS SDN, Naples, Italy
– sequence: 15
  givenname: David
  surname: Bartrés-Faz
  fullname: Bartrés-Faz, David
  organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain
– sequence: 16
  givenname: Flavio
  surname: Nobili
  fullname: Nobili, Flavio
  organization: Dept. of Neuroscience (DINOGMI), University of Genoa, Italy
– sequence: 17
  givenname: Franco
  surname: Alessandrini
  fullname: Alessandrini, Franco
  organization: Radiology, Dept. of Diagnostic and Public Health, Verona University, Verona, Italy
– sequence: 18
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 19
  givenname: Helene
  surname: Gros-Dagnac
  fullname: Gros-Dagnac, Helene
  organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
– sequence: 20
  givenname: Jean-Philippe
  surname: Ranjeva
  fullname: Ranjeva, Jean-Philippe
  organization: Institut de Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS, UMR 7289, 13005 Marseille, France
– sequence: 21
  givenname: Jens
  surname: Wiltfang
  fullname: Wiltfang, Jens
  organization: Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University, Göttingen, Germany
– sequence: 22
  givenname: Joost
  surname: Kuijer
  fullname: Kuijer, Joost
  organization: Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
– sequence: 23
  givenname: Julien
  surname: Sein
  fullname: Sein, Julien
  organization: Institut de Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS, UMR 7289, 13005 Marseille, France
– sequence: 24
  givenname: Karl-Titus
  surname: Hoffmann
  fullname: Hoffmann, Karl-Titus
  organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
– sequence: 25
  givenname: Luca
  surname: Roccatagliata
  fullname: Roccatagliata, Luca
  organization: IRCCS Ospedale Policlinico San Martino Genova, Italy
– sequence: 26
  givenname: Lucilla
  surname: Parnetti
  fullname: Parnetti, Lucilla
  organization: Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
– sequence: 27
  givenname: Magda
  surname: Tsolaki
  fullname: Tsolaki, Magda
  organization: 1st Department of Neurology, Aristotle University of Thessaloniki, Makedonia, Greece
– sequence: 28
  givenname: Manos
  surname: Constantinidis
  fullname: Constantinidis, Manos
  organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece
– sequence: 29
  givenname: Marco
  surname: Aiello
  fullname: Aiello, Marco
  organization: IRCCS SDN, Naples, Italy
– sequence: 30
  givenname: Marco
  surname: Salvatore
  fullname: Salvatore, Marco
  organization: IRCCS SDN, Naples, Italy
– sequence: 31
  givenname: Martina
  surname: Montalti
  fullname: Montalti, Martina
  organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
– sequence: 32
  givenname: Massimo
  surname: Caulo
  fullname: Caulo, Massimo
  organization: Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy
– sequence: 33
  givenname: Mira
  surname: Didic
  fullname: Didic, Mira
  organization: APHM, Timone, Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France
– sequence: 34
  givenname: Núria
  surname: Bargallo
  fullname: Bargallo, Núria
  organization: Department of Neuroradiology and Magnetic Resonance Image Core Facility, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
– sequence: 35
  givenname: Olivier
  surname: Blin
  fullname: Blin, Olivier
  organization: Aix Marseille University, UMR-INSERM 1106, Service de Pharmacologie Clinique, AP-HM, Marseille, France
– sequence: 36
  givenname: Paolo M
  surname: Rossini
  fullname: Rossini, Paolo M
  organization: Dept. Neuroscience & Neurorehabilitation, IRCCS-San Raffaele-Pisana, Rome, Italy
– sequence: 37
  givenname: Peter
  surname: Schonknecht
  fullname: Schonknecht, Peter
  organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
– sequence: 38
  givenname: Piero
  surname: Floridi
  fullname: Floridi, Piero
  organization: Neuroradiology Unit, Perugia General Hospital, Perugia, Italy
– sequence: 39
  givenname: Pierre
  surname: Payoux
  fullname: Payoux, Pierre
  organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
– sequence: 40
  givenname: Pieter Jelle
  surname: Visser
  fullname: Visser, Pieter Jelle
  organization: Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
– sequence: 41
  givenname: Régis
  surname: Bordet
  fullname: Bordet, Régis
  organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France
– sequence: 42
  givenname: Renaud
  surname: Lopes
  fullname: Lopes, Renaud
  organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France
– sequence: 43
  givenname: Roberto
  surname: Tarducci
  fullname: Tarducci, Roberto
  organization: Medical Physics Unit, Perugia General Hospital, Perugia, Italy
– sequence: 44
  givenname: Stephanie
  surname: Bombois
  fullname: Bombois, Stephanie
  organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France
– sequence: 45
  givenname: Tilman
  surname: Hensch
  fullname: Hensch, Tilman
  organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
– sequence: 46
  givenname: Ute
  surname: Fiedler
  fullname: Fiedler, Ute
  organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
– sequence: 47
  givenname: Jill C.
  surname: Richardson
  fullname: Richardson, Jill C.
  organization: Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
– sequence: 48
  givenname: Giovanni B.
  surname: Frisoni
  fullname: Frisoni, Giovanni B.
  organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
– sequence: 49
  givenname: Moira
  surname: Marizzoni
  fullname: Marizzoni, Moira
  organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33220450$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-03500597$$DView record in HAL
http://kipublications.ki.se/Default.aspx?queryparsed=id:145511010$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqFks9u1DAQhy1URLeFB-CCfIRDFv9J4iycVlWhSCtxKRI3y7EnrLdOvNhOV3kNnhivslRqD-Xk8fj75jD-XaCzwQ-A0FtKlpTQ-uNu2Qe7ZITlO10S0rxAC9oIXlTNqjxDCyI4KQSrfp6jixh3hJCK8eoVOuecMVJWZIH-rLUeg9ITVoPBAfbBm1Hb1jqbJuw7rMbke5XA4MPWJsC5ThDwdtpDsEOCIdpkIeIIv3oYkkrWD_hg0xY7iMf60UPy3n3Ca3w9Br8HNeB-dMkW8TiZ3-KYRjO9Ri875SK8OZ2X6MeX69urm2Lz_eu3q_Wm0BVtUiFU2zWcGloqXZOVVlXLSrHqdCWY7hTXuWM6YURT1qxtBGkrrUxJBNWGNaTjl6iY58YD7MdW7oPtVZikV1aeWne5AlnWdcnqzH-Y-a1yj-Cb9UYee4RXecMrcU8z-35m8z5_jxCT7G3U4JwawI9RsrLmlDRNyTP67oSObQ_mYfK_P8oAnQEdfIwBugeEEnnMgdzJnAN5zIGkVOYcZEc8cbSdvyAFZd2z5ufZhLz6ewtBRm1h0GBsAJ2k8fZZe_XE1s4OVit3B9N_3L-FL-Ob
CitedBy_id crossref_primary_10_1093_brain_awae383
crossref_primary_10_1038_s41598_022_21930_w
crossref_primary_10_1016_j_cmpb_2022_106957
crossref_primary_10_1186_s13195_025_01832_5
crossref_primary_10_3390_diagnostics12040959
crossref_primary_10_1038_s41598_022_07843_8
crossref_primary_10_1186_s13195_024_01633_2
crossref_primary_10_1007_s00234_021_02820_w
crossref_primary_10_1371_journal_pone_0274562
crossref_primary_10_1038_s41598_023_43706_6
crossref_primary_10_1093_cercor_bhad400
crossref_primary_10_1038_s41598_023_50581_8
crossref_primary_10_3389_fnins_2024_1401329
crossref_primary_10_1002_alz_12779
crossref_primary_10_1109_ACCESS_2024_3487784
crossref_primary_10_1136_svn_2023_002976
crossref_primary_10_3389_fnhum_2021_654750
crossref_primary_10_1007_s10278_023_00958_y
crossref_primary_10_1016_j_ejrad_2024_111638
crossref_primary_10_3389_fneur_2025_1537465
crossref_primary_10_1038_s41380_023_02387_3
crossref_primary_10_1007_s11357_022_00538_y
crossref_primary_10_1016_j_neurobiolaging_2023_07_021
crossref_primary_10_3389_fnagi_2021_672535
crossref_primary_10_1002_hbm_25899
crossref_primary_10_1002_hbm_26548
crossref_primary_10_3233_JAD_210531
crossref_primary_10_1093_neuonc_noac148
crossref_primary_10_1016_j_cccb_2025_100396
Cites_doi 10.1016/j.nicl.2019.101849
10.1038/nrneurol.2015.10
10.1161/STROKEAHA.108.533133
10.1016/j.biopsych.2008.03.024
10.1212/WNL.44.7.1246
10.1109/42.363096
10.1111/j.1552-6569.2006.00047.x
10.1002/hbm.22859
10.3174/ajnr.A3590
10.1016/j.neuroimage.2015.07.010
10.1016/j.neuroimage.2011.11.032
10.1016/j.neuroimage.2017.09.011
10.1016/j.neuroimage.2016.07.018
10.1002/hbm.23157
10.1016/j.neuroimage.2003.10.012
10.1016/j.neuroimage.2005.06.061
10.1016/j.neuroimage.2013.05.007
10.1016/S1474-4422(14)70090-0
10.1016/j.neuroimage.2012.02.034
10.1016/j.jns.2012.07.064
10.1016/j.neuroimage.2009.09.005
10.1001/jamaneurol.2014.667
10.1016/j.neuroimage.2003.12.027
10.1111/joim.12482
10.1159/000089233
10.1002/jmri.10258
10.1016/0730-725X(96)00018-5
10.1159/000067109
10.1161/01.STR.32.6.1318
10.1016/S0140-6736(95)90013-6
10.1161/STROKEAHA.109.570044
10.1016/j.mri.2012.01.007
10.1016/j.nicl.2016.11.020
10.3109/09540261.2013.838151
10.1136/jnnp.2005.073213
10.1016/S0140-6736(00)02604-0
10.1016/j.nicl.2013.10.003
10.1001/archneurol.2010.284
10.1136/bmj.b3016
10.1016/j.neuroimage.2014.06.075
10.1136/jnnp.70.1.9
10.3109/07853890.2011.595733
10.1001/archneur.61.10.1531
10.1007/s12021-015-9260-y
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ADTPV
AOWAS
DOI 10.1016/j.mri.2020.11.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 115
ExternalDocumentID oai_swepub_ki_se_466426
oai:HAL:hal-03500597v1
33220450
10_1016_j_mri_2020_11_008
S0730725X20306433
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ADTPV
AOWAS
ID FETCH-LOGICAL-c518t-7abf831d14ac609ca5b2479fc572cfa3cca5df7d78462b870b5cad4071cd280f3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603405000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0730-725X
1873-5894
IngestDate Tue Nov 04 15:28:33 EST 2025
Fri Nov 21 06:31:24 EST 2025
Sat Sep 27 20:02:09 EDT 2025
Thu Apr 03 06:54:04 EDT 2025
Tue Nov 18 20:33:49 EST 2025
Sat Nov 29 07:12:02 EST 2025
Fri Feb 23 02:48:24 EST 2024
Tue Oct 14 19:31:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords White matter hyperintensities
Accuracy
Automated segmentation algorithms
Lesion segmentation toolbox
Reproducibility
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-7abf831d14ac609ca5b2479fc572cfa3cca5df7d78462b870b5cad4071cd280f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9811-0897
0000-0001-9504-7503
0000-0003-3543-3706
0000-0002-4181-0427
0000-0002-1374-1620
0000-0001-8008-9727
0000-0001-8073-102X
0000-0003-3117-1833
0000-0003-3916-6422
0000-0003-0142-0931
0000-0003-1492-5330
0000-0003-3749-2988
0000-0001-7075-7082
0000-0001-7067-536X
0000-0003-2696-6017
0000-0003-1767-5330
0000-0003-3539-7856
OpenAccessLink https://amu.hal.science/hal-03500597
PMID 33220450
PQID 2463108843
PQPubID 23479
PageCount 8
ParticipantIDs swepub_primary_oai_swepub_ki_se_466426
hal_primary_oai_HAL_hal_03500597v1
proquest_miscellaneous_2463108843
pubmed_primary_33220450
crossref_primary_10_1016_j_mri_2020_11_008
crossref_citationtrail_10_1016_j_mri_2020_11_008
elsevier_sciencedirect_doi_10_1016_j_mri_2020_11_008
elsevier_clinicalkey_doi_10_1016_j_mri_2020_11_008
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kuller, Lopez, Newman, Beauchamp, Burke, Dulberg (bb0080) 2003
Launer, Berger, Breteler, Dufouil, Fuhrer, Giampaoli (bb0060) 2006; 26
Tosto, Zimmerman, Carmichael, Brickman (bb0095) 2014
Marchitelli, Minati, Marizzoni, Bosch, Bartr??s-Faz D, M??ller BW, et al. (bb0175) 2016; 37
Admiraal-Behloul, Van Den Heuvel, Olofsen, Van Osch, Van Der Grond, Van Buchem (bb0230) 2005; 28
Carmichael, Schwarz, Drucker (bb0100) 2010; 67(11)
Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow (bb0090) 2014; 13
Rosenberg (bb0005) 2009
Anbeek, Vincken, Van Osch, Bisschops, Van Der Grond (bb0235) 2004
de Sitter, Steenwijk, Ruet, Versteeg, Liu, van Schijndel (bb0200) 2017; 163
Jovicich, Marizzoni, Bosch, Bartr??s-Faz D, Arnold J, Benninghoff J, et al. (bb0165) 2014; 101
Steenwijk, Pouwels, Daams, Van Dalen, Caan, Richard (bb0220) 2013; 3
Fazekas, Chawluk, Alavi (bb0115) 1987; 8
Marizzoni, Antelmi, Bosch, Bartr??s-Faz D, M??ller BW, Wiltfang J, et al. (bb0160) 2015; 36
Debette, Beiser, Decarli, Au, Himali, Kelly-Hayes (bb0075) 2010
Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartr??s-Faz D, Arnold J, et al. (bb0155) 2013; 83
Kim, MacFall, Payne (bb0070) 2008; 64
Ashton, Takahashi, Berg, Goodman, Totterman, Ekholm (bb0125) 2003
Schmidt, Gaser, Arsic, Buck, Förschler, Berthele (bb0140) 2012; 59
Mortamais, Artero, Ritchie (bb0010) 2013
Galluzzi, Marizzoni, Babiloni, Albani, Antelmi, Bagnoli (bb0150) 2016; 279
Schmidt, Gaser, Arsic, Buck, Förschler, Berthele (bb0180) 2012
Wahlund, Barkhof, Fazekas, Bronge, Augustin, Sjogren (bb0110) 2001; 32
Prins, Scheltens (bb0020) 2015
Damangir, Westman, Simmons, Vrenken, Wahlund, Spulber (bb0210) 2016
Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bb0215) 2010
Trip, Miller (bb0015) 2005
Griffanti, Zamboni, Khan, Li, Bonifacio, Sundaresan (bb0240) 2016; 141
Zijdenbos, Dawant, Margolin, Palmer (bb0190) 1994
Schmidt (bb0185) 2017
Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartr??s-Faz D, et al. (bb0170) 2016; 124
Gunde, Blagdon, Hajek (bb0025) 2011
Schmidt, Pongratz, Küster, Meier, Wuerfel, Lukas (bb0135) 2019
Damangir, Manzouri, Oppedal, Carlsson, Firbank, Sonnesyn (bb0205) 2012
Garde, Mortensen, Krabbe, Rostrup, Larsson (bb0035) 2000
Caligiuri, Perrotta, Augimeri, Rocca, Quattrone, Cherubini (bb0130) 2015; 13
Ong, Ramachandram, Mandava, Shuaib (bb0245) 2012
Hopkins, Beck, Burnett, Weaver, Victoroff, Bigler (bb0045) 2006; 16
Dice (bb0195) 2006
de Leeuw, de Groot, Achten, Oudkerk, Ramos, Heijboer (bb0055) 2001; 70
Grimaud, Lai, Thorpe, Adeleine, Wang, Barker (bb0120) 1996; 14
Manjón, Coupé, Raniga, Xia, Fripp, Salvado (bb0250) 2016
Prins, Van Dijk, Den Heijer, Vermeer, Koudstaal, Oudkerk (bb0085) 2004
Morris, Whiteley, Longstreth, Weber, Lee, Tsushima (bb0040) 2009
Wang, Catindig, Hilal, Soon, Ting, Wong (bb0255) 2012
Wen, Sachdev (bb0065) 2004; 22
Schmid, Roob, Kapeller, Schmidt, Berghold, Lechner (bb0105) 2000; 59
Egger, Opfer, Wang, Kepp, Sormani, Spies (bb0225) 2017; 13
Geissler, Andus, Roth, Kullmann, Caesar, Held (bb0030) 1995; 345
Breteler, van Swieten, Bots, Grobbee, Claus, van den Hout (bb0050) 1994; 44
Maldjian, Whitlow, Saha, Kota, Vandergriff, Davenport (bb0145) 2013
Wen (10.1016/j.mri.2020.11.008_bb0065) 2004; 22
Schmidt (10.1016/j.mri.2020.11.008_bb0180) 2012
Schmid (10.1016/j.mri.2020.11.008_bb0105) 2000; 59
de Sitter (10.1016/j.mri.2020.11.008_bb0200) 2017; 163
Grimaud (10.1016/j.mri.2020.11.008_bb0120) 1996; 14
Hopkins (10.1016/j.mri.2020.11.008_bb0045) 2006; 16
Caligiuri (10.1016/j.mri.2020.11.008_bb0130) 2015; 13
Jovicich (10.1016/j.mri.2020.11.008_bb0170) 2016; 124
Dice (10.1016/j.mri.2020.11.008_bb0195) 2006
Kim (10.1016/j.mri.2020.11.008_bb0070) 2008; 64
Trip (10.1016/j.mri.2020.11.008_bb0015) 2005
Breteler (10.1016/j.mri.2020.11.008_bb0050) 1994; 44
Carmichael (10.1016/j.mri.2020.11.008_bb0100) 2010; 67(11)
Maldjian (10.1016/j.mri.2020.11.008_bb0145) 2013
Jovicich (10.1016/j.mri.2020.11.008_bb0155) 2013; 83
Zijdenbos (10.1016/j.mri.2020.11.008_bb0190) 1994
Wahlund (10.1016/j.mri.2020.11.008_bb0110) 2001; 32
Prins (10.1016/j.mri.2020.11.008_bb0020) 2015
Steenwijk (10.1016/j.mri.2020.11.008_bb0220) 2013; 3
Gunde (10.1016/j.mri.2020.11.008_bb0025) 2011
de Leeuw (10.1016/j.mri.2020.11.008_bb0055) 2001; 70
Marizzoni (10.1016/j.mri.2020.11.008_bb0160) 2015; 36
Marchitelli (10.1016/j.mri.2020.11.008_bb0175) 2016; 37
Jovicich (10.1016/j.mri.2020.11.008_bb0165) 2014; 101
Galluzzi (10.1016/j.mri.2020.11.008_bb0150) 2016; 279
Garde (10.1016/j.mri.2020.11.008_bb0035) 2000
Shiee (10.1016/j.mri.2020.11.008_bb0215) 2010
Wang (10.1016/j.mri.2020.11.008_bb0255) 2012
Debette (10.1016/j.mri.2020.11.008_bb0075) 2010
Manjón (10.1016/j.mri.2020.11.008_bb0250) 2016
Dubois (10.1016/j.mri.2020.11.008_bb0090) 2014; 13
Ong (10.1016/j.mri.2020.11.008_bb0245) 2012
Griffanti (10.1016/j.mri.2020.11.008_bb0240) 2016; 141
Prins (10.1016/j.mri.2020.11.008_bb0085) 2004
Admiraal-Behloul (10.1016/j.mri.2020.11.008_bb0230) 2005; 28
Schmidt (10.1016/j.mri.2020.11.008_bb0135) 2019
Schmidt (10.1016/j.mri.2020.11.008_bb0185) 2017
Egger (10.1016/j.mri.2020.11.008_bb0225) 2017; 13
Kuller (10.1016/j.mri.2020.11.008_bb0080) 2003
Launer (10.1016/j.mri.2020.11.008_bb0060) 2006; 26
Fazekas (10.1016/j.mri.2020.11.008_bb0115) 1987; 8
Geissler (10.1016/j.mri.2020.11.008_bb0030) 1995; 345
Tosto (10.1016/j.mri.2020.11.008_bb0095) 2014
Mortamais (10.1016/j.mri.2020.11.008_bb0010) 2013
Damangir (10.1016/j.mri.2020.11.008_bb0205) 2012
Schmidt (10.1016/j.mri.2020.11.008_bb0140) 2012; 59
Anbeek (10.1016/j.mri.2020.11.008_bb0235) 2004
Morris (10.1016/j.mri.2020.11.008_bb0040) 2009
Damangir (10.1016/j.mri.2020.11.008_bb0210) 2016
Rosenberg (10.1016/j.mri.2020.11.008_bb0005) 2009
Ashton (10.1016/j.mri.2020.11.008_bb0125) 2003
References_xml – year: 2010
  ident: bb0075
  article-title: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham offspring study
  publication-title: Stroke
– year: 2004
  ident: bb0235
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: Neuroimage
– start-page: 92
  year: 2016
  end-page: 99
  ident: bb0250
  article-title: HIST: HyperIntensity Segmentation Tool
– year: 2013
  ident: bb0010
  article-title: Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia
  publication-title: Int Rev Psychiatry
– volume: 3
  start-page: 462
  year: 2013
  end-page: 469
  ident: bb0220
  article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)
  publication-title: NeuroImage Clin
– year: 2009
  ident: bb0040
  article-title: Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis
  publication-title: BMJ
– year: 2017
  ident: bb0185
  article-title: Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging
– volume: 28
  start-page: 607
  year: 2005
  end-page: 617
  ident: bb0230
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
– year: 2016
  ident: bb0210
  article-title: Reproducible segmentation of white matter hyperintensities using a new statistical definition
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 67(11)
  start-page: 1370
  year: 2010
  end-page: 1378
  ident: bb0100
  article-title: Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer Disease
  publication-title: Arch Neurol
– volume: 101
  start-page: 390
  year: 2014
  end-page: 403
  ident: bb0165
  article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
  publication-title: Neuroimage
– volume: 32
  start-page: 1318
  year: 2001
  end-page: 1322
  ident: bb0110
  article-title: A new rating scale for age-related white matter changes applicable to MRI and CT
  publication-title: Stroke
– volume: 16
  start-page: 243
  year: 2006
  end-page: 251
  ident: bb0045
  article-title: Prevalence of white matter hyperintensities in a young healthy population
  publication-title: J Neuroimaging
– year: 2010
  ident: bb0215
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: Neuroimage
– volume: 13
  start-page: 264
  year: 2017
  end-page: 270
  ident: bb0225
  article-title: MRI FLAIR lesion segmentation in multiple sclerosis: does automated segmentation hold up with manual annotation?
  publication-title: NeuroImage Clin
– volume: 37
  start-page: 2114
  year: 2016
  end-page: 2132
  ident: bb0175
  article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques
  publication-title: Hum Brain Mapp
– year: 2012
  ident: bb0180
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
– year: 2012
  ident: bb0245
  article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 273
  year: 2008
  end-page: 280
  ident: bb0070
  article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons
  publication-title: Biol Psychiatry
– year: 2011
  ident: bb0025
  article-title: White matter hyperintensities from medical comorbidities to bipolar disorders and back
  publication-title: Ann Med
– year: 2000
  ident: bb0035
  article-title: Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study
  publication-title: Lancet
– year: 2006
  ident: bb0195
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– year: 2012
  ident: bb0205
  article-title: Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines
  publication-title: J Neurol Sci
– volume: 8
  start-page: 421
  year: 1987
  end-page: 426
  ident: bb0115
  article-title: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging
  publication-title: Am J Neuroradiol
– volume: 13
  start-page: 261
  year: 2015
  end-page: 276
  ident: bb0130
  article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review
  publication-title: Neuroinformatics
– volume: 59
  start-page: 9
  year: 2000
  end-page: 14
  ident: bb0105
  article-title: Longitudinal change of white matter abnormalities
  publication-title: J Neural Transm Suppl
– year: 2003
  ident: bb0080
  article-title: Risk factors for dementia in the cardiovascular health cognition study
  publication-title: Neuroepidemiology
– year: 1994
  ident: bb0190
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans Med Imaging
– volume: 14
  start-page: 495
  year: 1996
  end-page: 505
  ident: bb0120
  article-title: Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques
  publication-title: Magn Reson Imaging
– volume: 141
  start-page: 191
  year: 2016
  end-page: 205
  ident: bb0240
  article-title: BIANCA (brain intensity AbNormality classification algorithm): a new tool for automated segmentation of white matter hyperintensities
  publication-title: Neuroimage
– volume: 26
  start-page: 23
  year: 2006
  end-page: 29
  ident: bb0060
  article-title: Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE)
  publication-title: Neuroepidemiology
– year: 2019
  ident: bb0135
  article-title: Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging
  publication-title: NeuroImage Clin
– volume: 345
  start-page: 897
  year: 1995
  end-page: 898
  ident: bb0030
  article-title: Focal white-matter lesions in brain of patients with inflammatory bowel disease
  publication-title: Lancet (London, England)
– year: 2003
  ident: bb0125
  article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI
  publication-title: J Magn Reson Imaging
– volume: 83
  start-page: 472
  year: 2013
  end-page: 484
  ident: bb0155
  article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
– year: 2005
  ident: bb0015
  article-title: Imaging in multiple sclerosis
  publication-title: J Neurol Neurosurg & amp Amp Psychiatry
– volume: 36
  start-page: 3516
  year: 2015
  end-page: 3527
  ident: bb0160
  article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3T study on healthy elderly
  publication-title: Hum Brain Mapp
– volume: 44
  start-page: 1246
  year: 1994
  end-page: 1252
  ident: bb0050
  article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study
  publication-title: Neurology
– volume: 59
  start-page: 3774
  year: 2012
  end-page: 3783
  ident: bb0140
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
– volume: 70
  start-page: 9
  year: 2001
  end-page: 14
  ident: bb0055
  article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study
  publication-title: J Neurol Neurosurg Psychiatry
– year: 2004
  ident: bb0085
  article-title: Cerebral white matter lesions and the risk of dementia
  publication-title: Arch Neurol
– volume: 13
  start-page: 614
  year: 2014
  end-page: 629
  ident: bb0090
  article-title: Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria
  publication-title: Lancet Neurol
– year: 2012
  ident: bb0255
  article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
  publication-title: Neuroimage
– volume: 279
  start-page: 576
  year: 2016
  end-page: 591
  ident: bb0150
  article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the innovative medicines initiative PharmaCog project: a “European ADNI study.”
  publication-title: J Intern Med
– year: 2014
  ident: bb0095
  article-title: Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities
  publication-title: JAMA Neurol
– year: 2013
  ident: bb0145
  article-title: Automated white matter total lesion volume segmentation in diabetes
  publication-title: Am J Neuroradiol
– volume: 22
  start-page: 144
  year: 2004
  end-page: 154
  ident: bb0065
  article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals
  publication-title: Neuroimage
– volume: 163
  start-page: 106
  year: 2017
  end-page: 114
  ident: bb0200
  article-title: Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study
  publication-title: Neuroimage
– year: 2009
  ident: bb0005
  article-title: Inflammation and white matter damage in vascular cognitive impairment
  publication-title: Stroke
– volume: 124
  start-page: 442
  year: 2016
  end-page: 454
  ident: bb0170
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
– year: 2015
  ident: bb0020
  article-title: White matter hyperintensities, cognitive impairment and dementia: an update
  publication-title: Nat Rev Neurol
– year: 2019
  ident: 10.1016/j.mri.2020.11.008_bb0135
  article-title: Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2019.101849
– year: 2015
  ident: 10.1016/j.mri.2020.11.008_bb0020
  article-title: White matter hyperintensities, cognitive impairment and dementia: an update
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2015.10
– year: 2009
  ident: 10.1016/j.mri.2020.11.008_bb0005
  article-title: Inflammation and white matter damage in vascular cognitive impairment
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.533133
– volume: 59
  start-page: 9
  year: 2000
  ident: 10.1016/j.mri.2020.11.008_bb0105
  article-title: Longitudinal change of white matter abnormalities
  publication-title: J Neural Transm Suppl
– volume: 64
  start-page: 273
  year: 2008
  ident: 10.1016/j.mri.2020.11.008_bb0070
  article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.03.024
– volume: 44
  start-page: 1246
  year: 1994
  ident: 10.1016/j.mri.2020.11.008_bb0050
  article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study
  publication-title: Neurology
  doi: 10.1212/WNL.44.7.1246
– year: 1994
  ident: 10.1016/j.mri.2020.11.008_bb0190
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.363096
– volume: 16
  start-page: 243
  year: 2006
  ident: 10.1016/j.mri.2020.11.008_bb0045
  article-title: Prevalence of white matter hyperintensities in a young healthy population
  publication-title: J Neuroimaging
  doi: 10.1111/j.1552-6569.2006.00047.x
– volume: 36
  start-page: 3516
  year: 2015
  ident: 10.1016/j.mri.2020.11.008_bb0160
  article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3T study on healthy elderly
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22859
– year: 2013
  ident: 10.1016/j.mri.2020.11.008_bb0145
  article-title: Automated white matter total lesion volume segmentation in diabetes
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3590
– volume: 124
  start-page: 442
  year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0170
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.010
– year: 2012
  ident: 10.1016/j.mri.2020.11.008_bb0180
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.032
– volume: 163
  start-page: 106
  year: 2017
  ident: 10.1016/j.mri.2020.11.008_bb0200
  article-title: Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.011
– volume: 141
  start-page: 191
  year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0240
  article-title: BIANCA (brain intensity AbNormality classification algorithm): a new tool for automated segmentation of white matter hyperintensities
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.018
– volume: 37
  start-page: 2114
  year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0175
  article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23157
– year: 2004
  ident: 10.1016/j.mri.2020.11.008_bb0235
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.10.012
– volume: 8
  start-page: 421
  year: 1987
  ident: 10.1016/j.mri.2020.11.008_bb0115
  article-title: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging
  publication-title: Am J Neuroradiol
– volume: 28
  start-page: 607
  year: 2005
  ident: 10.1016/j.mri.2020.11.008_bb0230
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.061
– volume: 83
  start-page: 472
  year: 2013
  ident: 10.1016/j.mri.2020.11.008_bb0155
  article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.007
– volume: 13
  start-page: 614
  year: 2014
  ident: 10.1016/j.mri.2020.11.008_bb0090
  article-title: Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70090-0
– year: 2006
  ident: 10.1016/j.mri.2020.11.008_bb0195
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– start-page: 92
  year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0250
– year: 2012
  ident: 10.1016/j.mri.2020.11.008_bb0255
  article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.034
– year: 2012
  ident: 10.1016/j.mri.2020.11.008_bb0205
  article-title: Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2012.07.064
– year: 2010
  ident: 10.1016/j.mri.2020.11.008_bb0215
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.005
– year: 2014
  ident: 10.1016/j.mri.2020.11.008_bb0095
  article-title: Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2014.667
– volume: 22
  start-page: 144
  year: 2004
  ident: 10.1016/j.mri.2020.11.008_bb0065
  article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.027
– volume: 279
  start-page: 576
  year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0150
  article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the innovative medicines initiative PharmaCog project: a “European ADNI study.”
  publication-title: J Intern Med
  doi: 10.1111/joim.12482
– volume: 26
  start-page: 23
  year: 2006
  ident: 10.1016/j.mri.2020.11.008_bb0060
  article-title: Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE)
  publication-title: Neuroepidemiology
  doi: 10.1159/000089233
– volume: 59
  start-page: 3774
  year: 2012
  ident: 10.1016/j.mri.2020.11.008_bb0140
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.032
– year: 2017
  ident: 10.1016/j.mri.2020.11.008_bb0185
– year: 2003
  ident: 10.1016/j.mri.2020.11.008_bb0125
  article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.10258
– volume: 14
  start-page: 495
  year: 1996
  ident: 10.1016/j.mri.2020.11.008_bb0120
  article-title: Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(96)00018-5
– year: 2003
  ident: 10.1016/j.mri.2020.11.008_bb0080
  article-title: Risk factors for dementia in the cardiovascular health cognition study
  publication-title: Neuroepidemiology
  doi: 10.1159/000067109
– volume: 32
  start-page: 1318
  year: 2001
  ident: 10.1016/j.mri.2020.11.008_bb0110
  article-title: A new rating scale for age-related white matter changes applicable to MRI and CT
  publication-title: Stroke
  doi: 10.1161/01.STR.32.6.1318
– volume: 345
  start-page: 897
  year: 1995
  ident: 10.1016/j.mri.2020.11.008_bb0030
  article-title: Focal white-matter lesions in brain of patients with inflammatory bowel disease
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(95)90013-6
– year: 2010
  ident: 10.1016/j.mri.2020.11.008_bb0075
  article-title: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham offspring study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.570044
– year: 2012
  ident: 10.1016/j.mri.2020.11.008_bb0245
  article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.01.007
– volume: 13
  start-page: 264
  year: 2017
  ident: 10.1016/j.mri.2020.11.008_bb0225
  article-title: MRI FLAIR lesion segmentation in multiple sclerosis: does automated segmentation hold up with manual annotation?
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2016.11.020
– year: 2013
  ident: 10.1016/j.mri.2020.11.008_bb0010
  article-title: Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia
  publication-title: Int Rev Psychiatry
  doi: 10.3109/09540261.2013.838151
– year: 2005
  ident: 10.1016/j.mri.2020.11.008_bb0015
  article-title: Imaging in multiple sclerosis
  publication-title: J Neurol Neurosurg & amp Amp Psychiatry
  doi: 10.1136/jnnp.2005.073213
– year: 2000
  ident: 10.1016/j.mri.2020.11.008_bb0035
  article-title: Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02604-0
– volume: 3
  start-page: 462
  year: 2013
  ident: 10.1016/j.mri.2020.11.008_bb0220
  article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.10.003
– volume: 67(11)
  start-page: 1370
  year: 2010
  ident: 10.1016/j.mri.2020.11.008_bb0100
  article-title: Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer Disease
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2010.284
– year: 2009
  ident: 10.1016/j.mri.2020.11.008_bb0040
  article-title: Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis
  publication-title: BMJ
  doi: 10.1136/bmj.b3016
– volume: 101
  start-page: 390
  year: 2014
  ident: 10.1016/j.mri.2020.11.008_bb0165
  article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.075
– year: 2016
  ident: 10.1016/j.mri.2020.11.008_bb0210
  article-title: Reproducible segmentation of white matter hyperintensities using a new statistical definition
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 70
  start-page: 9
  year: 2001
  ident: 10.1016/j.mri.2020.11.008_bb0055
  article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.70.1.9
– year: 2011
  ident: 10.1016/j.mri.2020.11.008_bb0025
  article-title: White matter hyperintensities from medical comorbidities to bipolar disorders and back
  publication-title: Ann Med
  doi: 10.3109/07853890.2011.595733
– year: 2004
  ident: 10.1016/j.mri.2020.11.008_bb0085
  article-title: Cerebral white matter lesions and the risk of dementia
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.10.1531
– volume: 13
  start-page: 261
  year: 2015
  ident: 10.1016/j.mri.2020.11.008_bb0130
  article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9260-y
SSID ssj0005235
Score 2.458793
Snippet Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to...
SourceID swepub
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Accuracy
Adult
Aging
Algorithms
Automated segmentation algorithms
Automation
Bioengineering
Cross-Sectional Studies
Female
Humans
Image Processing, Computer-Assisted - methods
Imaging
Lesion segmentation toolbox
Life Sciences
Magnetic Resonance Imaging
Male
Reproducibility
Reproducibility of Results
White Matter - diagnostic imaging
White Matter - pathology
White matter hyperintensities
Title Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X20306433
https://dx.doi.org/10.1016/j.mri.2020.11.008
https://www.ncbi.nlm.nih.gov/pubmed/33220450
https://www.proquest.com/docview/2463108843
https://amu.hal.science/hal-03500597
http://kipublications.ki.se/Default.aspx?queryparsed=id:145511010
Volume 76
WOSCitedRecordID wos000603405000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEHfKZTII8UCVKYmd2uGtQpvGBBMSRepb5CTO1tGmVW8af4MfxG_jHDtO006Mi8RLFDl1nPR88fE5_s45hLzyFaj9bso8HeeRx3MVeFIr4fFUdbUKtEz91BSbEKencjCIP7VaP1wszGokylJeXsbT_ypqaANhY-jsX4i7vik0wDkIHY4gdjj-keB7WbacYRF3wxzXU5PS1XJgzW66Wi4msExF2jluIXTGJsNm5_wb5jy2hHZMstqZ67NxFZhkQ707I42utc0LCyzRZaLba7--4Sh6uCvdYf1G_lpXN0qdldpmjkYzACeW4djUSqo3f4apGuWGZnCEuS4adKLeCB_e-s2r6Pg1BwgmvaGtbHWCjv6Gqxw9AsYlPMKai3PV9HWEgaNHOwecC8LZ4IjiJOWJMBo0J3XRnJUDXzYUfGDjR6_oDuvGuDgYz4YHMDhqE0x-u1aUNX3xMw6JI4ZocXHGdsheKKIYFMNe7_3h4KRBMrIlXt0jun11wzDcGuhXK6Odc6ToXrV_tpLbmgVR_w65XVkytGcReJe0dHmP3PxYcTXuk-8OiBSASLeASCcFrYFIDRCpBSLdBiJt4o0iEKkF4uYFBOJb2qMOhnQNQ8r61MDwAflydNh_d-xVFUC8LArkwhMqLSQL8oCrrOvHmYrSkIu4yCIRZoViMP1EeSFyAavoMAXVk0aZytFHkeWh9Av2kOyWk1I_JpQxTHykpeIs45ylMmdgy3AlJeOpTHWb-O7fT7IqPT5WaRkljgd5kYDAEhQYmM0JCKxN3tRdpjY3zHU_Dp1IExf0DGo6AfRd14nXnaoVsV3p_q7bS8BM_UyYQf649yHBNiQSgEUlVkGbvHCQSkCl4D6hKvVkOU9C3gWjT0rO2uSRxVp9LwYLALAC_TZ5bcG3MUrV9BXOdIKFK8Luk39576fk1vrzf0Z2F7Olfk5uZKvFcD7bJztiIPerT-0nCcgRag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+and+reproducibility+of+automated+white+matter+hyperintensities+segmentation+with+lesion+segmentation+tool%3A+A+European+multi-site+3T+study&rft.jtitle=Magnetic+resonance+imaging&rft.au=Ribaldi%2C+Federica&rft.au=Altomare%2C+Daniele&rft.au=Jovicich%2C+Jorge&rft.au=Ferrari%2C+Clarissa&rft.date=2021-02-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=76&rft.spage=108&rft.epage=115&rft_id=info:doi/10.1016%2Fj.mri.2020.11.008&rft.externalDocID=S0730725X20306433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon