Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study
Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present...
Uložené v:
| Vydané v: | Magnetic resonance imaging Ročník 76; s. 108 - 115 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier Inc
01.02.2021
Elsevier |
| Predmet: | |
| ISSN: | 0730-725X, 1873-5894, 1873-5894 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was −0.22[IQR = 0.50] for LGA-SPM8, −0.12[0.57] for LGA-SPM12, −0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.
[Display omitted]
•A reliable quantification of white matter hyperintensities using lesion prediction algorithm (SPM12 LST) is possible.•The longitudinal pipeline of lesion segmentation toolbox can accurately assess white matter changes over time.•Lesion prediction algorithm output is not affected by site or scanner effects. |
|---|---|
| AbstractList | Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was −0.22[IQR = 0.50] for LGA-SPM8, −0.12[0.57] for LGA-SPM12, −0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.
[Display omitted]
•A reliable quantification of white matter hyperintensities using lesion prediction algorithm (SPM12 LST) is possible.•The longitudinal pipeline of lesion segmentation toolbox can accurately assess white matter changes over time.•Lesion prediction algorithm output is not affected by site or scanner effects. Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies. Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies. Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies.Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was -0.22[IQR = 0.50] for LGA-SPM8, -0.12[0.57] for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies. |
| Author | Marizzoni, Moira Müller, Bernhard W. Cavaliere, Carlo Floridi, Piero Nobili, Flavio Ranjeva, Jean-Philippe Jovicich, Jorge Barkhof, Frederik Didic, Mira Tarducci, Roberto Frisoni, Giovanni B. Constantinidis, Manos Mega, Anna Ferretti, Antonio Soricelli, Andrea Visser, Pieter Jelle Aiello, Marco Fiedler, Ute Parnetti, Lucilla Ribaldi, Federica Bartrés-Faz, David Lopes, Renaud Wiltfang, Jens Richardson, Jill C. Picco, Agnese Alessandrini, Franco Bosch, Beatriz Drevelegas, Antonios Bargallo, Núria Schonknecht, Peter Marra, Camillo Payoux, Pierre Rossini, Paolo M Hensch, Tilman Tsolaki, Magda Blin, Olivier Bordet, Régis Sein, Julien Altomare, Daniele Caulo, Massimo Salvatore, Marco Montalti, Martina Gros-Dagnac, Helene Roccatagliata, Luca Hoffmann, Karl-Titus Pizzini, Francesca Benedetta Bombois, Stephanie Kuijer, Joost Ferrari, Clarissa |
| Author_xml | – sequence: 1 givenname: Federica surname: Ribaldi fullname: Ribaldi, Federica email: fribaldi@fatebenefratelli.eu organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 2 givenname: Daniele surname: Altomare fullname: Altomare, Daniele organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland – sequence: 3 givenname: Jorge surname: Jovicich fullname: Jovicich, Jorge organization: Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy – sequence: 4 givenname: Clarissa surname: Ferrari fullname: Ferrari, Clarissa organization: Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 5 givenname: Agnese surname: Picco fullname: Picco, Agnese organization: Department of Neuroscience, Ophthalmology, Genetics and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy – sequence: 6 givenname: Francesca Benedetta surname: Pizzini fullname: Pizzini, Francesca Benedetta organization: Radiology, Dept. of Diagnostic and Public Health, Verona University, Verona, Italy – sequence: 7 givenname: Andrea surname: Soricelli fullname: Soricelli, Andrea organization: IRCCS SDN, Naples, Italy – sequence: 8 givenname: Anna surname: Mega fullname: Mega, Anna organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 9 givenname: Antonio surname: Ferretti fullname: Ferretti, Antonio organization: Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy – sequence: 10 givenname: Antonios surname: Drevelegas fullname: Drevelegas, Antonios organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece – sequence: 11 givenname: Beatriz surname: Bosch fullname: Bosch, Beatriz organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain – sequence: 12 givenname: Bernhard W. surname: Müller fullname: Müller, Bernhard W. organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 13 givenname: Camillo surname: Marra fullname: Marra, Camillo organization: Center for Neuropsychological Research, Catholic University, Rome, Italy – sequence: 14 givenname: Carlo surname: Cavaliere fullname: Cavaliere, Carlo organization: IRCCS SDN, Naples, Italy – sequence: 15 givenname: David surname: Bartrés-Faz fullname: Bartrés-Faz, David organization: Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain – sequence: 16 givenname: Flavio surname: Nobili fullname: Nobili, Flavio organization: Dept. of Neuroscience (DINOGMI), University of Genoa, Italy – sequence: 17 givenname: Franco surname: Alessandrini fullname: Alessandrini, Franco organization: Radiology, Dept. of Diagnostic and Public Health, Verona University, Verona, Italy – sequence: 18 givenname: Frederik surname: Barkhof fullname: Barkhof, Frederik organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK – sequence: 19 givenname: Helene surname: Gros-Dagnac fullname: Gros-Dagnac, Helene organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France – sequence: 20 givenname: Jean-Philippe surname: Ranjeva fullname: Ranjeva, Jean-Philippe organization: Institut de Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS, UMR 7289, 13005 Marseille, France – sequence: 21 givenname: Jens surname: Wiltfang fullname: Wiltfang, Jens organization: Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University, Göttingen, Germany – sequence: 22 givenname: Joost surname: Kuijer fullname: Kuijer, Joost organization: Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands – sequence: 23 givenname: Julien surname: Sein fullname: Sein, Julien organization: Institut de Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS, UMR 7289, 13005 Marseille, France – sequence: 24 givenname: Karl-Titus surname: Hoffmann fullname: Hoffmann, Karl-Titus organization: Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany – sequence: 25 givenname: Luca surname: Roccatagliata fullname: Roccatagliata, Luca organization: IRCCS Ospedale Policlinico San Martino Genova, Italy – sequence: 26 givenname: Lucilla surname: Parnetti fullname: Parnetti, Lucilla organization: Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy – sequence: 27 givenname: Magda surname: Tsolaki fullname: Tsolaki, Magda organization: 1st Department of Neurology, Aristotle University of Thessaloniki, Makedonia, Greece – sequence: 28 givenname: Manos surname: Constantinidis fullname: Constantinidis, Manos organization: Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece – sequence: 29 givenname: Marco surname: Aiello fullname: Aiello, Marco organization: IRCCS SDN, Naples, Italy – sequence: 30 givenname: Marco surname: Salvatore fullname: Salvatore, Marco organization: IRCCS SDN, Naples, Italy – sequence: 31 givenname: Martina surname: Montalti fullname: Montalti, Martina organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy – sequence: 32 givenname: Massimo surname: Caulo fullname: Caulo, Massimo organization: Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy – sequence: 33 givenname: Mira surname: Didic fullname: Didic, Mira organization: APHM, Timone, Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France – sequence: 34 givenname: Núria surname: Bargallo fullname: Bargallo, Núria organization: Department of Neuroradiology and Magnetic Resonance Image Core Facility, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain – sequence: 35 givenname: Olivier surname: Blin fullname: Blin, Olivier organization: Aix Marseille University, UMR-INSERM 1106, Service de Pharmacologie Clinique, AP-HM, Marseille, France – sequence: 36 givenname: Paolo M surname: Rossini fullname: Rossini, Paolo M organization: Dept. Neuroscience & Neurorehabilitation, IRCCS-San Raffaele-Pisana, Rome, Italy – sequence: 37 givenname: Peter surname: Schonknecht fullname: Schonknecht, Peter organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany – sequence: 38 givenname: Piero surname: Floridi fullname: Floridi, Piero organization: Neuroradiology Unit, Perugia General Hospital, Perugia, Italy – sequence: 39 givenname: Pierre surname: Payoux fullname: Payoux, Pierre organization: ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France – sequence: 40 givenname: Pieter Jelle surname: Visser fullname: Visser, Pieter Jelle organization: Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands – sequence: 41 givenname: Régis surname: Bordet fullname: Bordet, Régis organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France – sequence: 42 givenname: Renaud surname: Lopes fullname: Lopes, Renaud organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France – sequence: 43 givenname: Roberto surname: Tarducci fullname: Tarducci, Roberto organization: Medical Physics Unit, Perugia General Hospital, Perugia, Italy – sequence: 44 givenname: Stephanie surname: Bombois fullname: Bombois, Stephanie organization: Univ. Lille, INSERM, CHU Lille, Lille Neuroscience & Cognition - Degenerative and Vascular Cognitive Disorders-U1172. F-59000 Lille, France – sequence: 45 givenname: Tilman surname: Hensch fullname: Hensch, Tilman organization: Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany – sequence: 46 givenname: Ute surname: Fiedler fullname: Fiedler, Ute organization: LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany – sequence: 47 givenname: Jill C. surname: Richardson fullname: Richardson, Jill C. organization: Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom – sequence: 48 givenname: Giovanni B. surname: Frisoni fullname: Frisoni, Giovanni B. organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland – sequence: 49 givenname: Moira surname: Marizzoni fullname: Marizzoni, Moira organization: Laboratory of Alzheimer's Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33220450$$D View this record in MEDLINE/PubMed https://amu.hal.science/hal-03500597$$DView record in HAL http://kipublications.ki.se/Default.aspx?queryparsed=id:145511010$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqFks9u1DAQhy1URLeFB-CCfIRDFv9J4iycVlWhSCtxKRI3y7EnrLdOvNhOV3kNnhivslRqD-Xk8fj75jD-XaCzwQ-A0FtKlpTQ-uNu2Qe7ZITlO10S0rxAC9oIXlTNqjxDCyI4KQSrfp6jixh3hJCK8eoVOuecMVJWZIH-rLUeg9ITVoPBAfbBm1Hb1jqbJuw7rMbke5XA4MPWJsC5ThDwdtpDsEOCIdpkIeIIv3oYkkrWD_hg0xY7iMf60UPy3n3Ca3w9Br8HNeB-dMkW8TiZ3-KYRjO9Ri875SK8OZ2X6MeX69urm2Lz_eu3q_Wm0BVtUiFU2zWcGloqXZOVVlXLSrHqdCWY7hTXuWM6YURT1qxtBGkrrUxJBNWGNaTjl6iY58YD7MdW7oPtVZikV1aeWne5AlnWdcnqzH-Y-a1yj-Cb9UYee4RXecMrcU8z-35m8z5_jxCT7G3U4JwawI9RsrLmlDRNyTP67oSObQ_mYfK_P8oAnQEdfIwBugeEEnnMgdzJnAN5zIGkVOYcZEc8cbSdvyAFZd2z5ufZhLz6ewtBRm1h0GBsAJ2k8fZZe_XE1s4OVit3B9N_3L-FL-Ob |
| CitedBy_id | crossref_primary_10_1093_brain_awae383 crossref_primary_10_1038_s41598_022_21930_w crossref_primary_10_1016_j_cmpb_2022_106957 crossref_primary_10_1186_s13195_025_01832_5 crossref_primary_10_3390_diagnostics12040959 crossref_primary_10_1038_s41598_022_07843_8 crossref_primary_10_1186_s13195_024_01633_2 crossref_primary_10_1007_s00234_021_02820_w crossref_primary_10_1371_journal_pone_0274562 crossref_primary_10_1038_s41598_023_43706_6 crossref_primary_10_1093_cercor_bhad400 crossref_primary_10_1038_s41598_023_50581_8 crossref_primary_10_3389_fnins_2024_1401329 crossref_primary_10_1002_alz_12779 crossref_primary_10_1109_ACCESS_2024_3487784 crossref_primary_10_1136_svn_2023_002976 crossref_primary_10_3389_fnhum_2021_654750 crossref_primary_10_1007_s10278_023_00958_y crossref_primary_10_1016_j_ejrad_2024_111638 crossref_primary_10_3389_fneur_2025_1537465 crossref_primary_10_1038_s41380_023_02387_3 crossref_primary_10_1007_s11357_022_00538_y crossref_primary_10_1016_j_neurobiolaging_2023_07_021 crossref_primary_10_3389_fnagi_2021_672535 crossref_primary_10_1002_hbm_25899 crossref_primary_10_1002_hbm_26548 crossref_primary_10_3233_JAD_210531 crossref_primary_10_1093_neuonc_noac148 crossref_primary_10_1016_j_cccb_2025_100396 |
| Cites_doi | 10.1016/j.nicl.2019.101849 10.1038/nrneurol.2015.10 10.1161/STROKEAHA.108.533133 10.1016/j.biopsych.2008.03.024 10.1212/WNL.44.7.1246 10.1109/42.363096 10.1111/j.1552-6569.2006.00047.x 10.1002/hbm.22859 10.3174/ajnr.A3590 10.1016/j.neuroimage.2015.07.010 10.1016/j.neuroimage.2011.11.032 10.1016/j.neuroimage.2017.09.011 10.1016/j.neuroimage.2016.07.018 10.1002/hbm.23157 10.1016/j.neuroimage.2003.10.012 10.1016/j.neuroimage.2005.06.061 10.1016/j.neuroimage.2013.05.007 10.1016/S1474-4422(14)70090-0 10.1016/j.neuroimage.2012.02.034 10.1016/j.jns.2012.07.064 10.1016/j.neuroimage.2009.09.005 10.1001/jamaneurol.2014.667 10.1016/j.neuroimage.2003.12.027 10.1111/joim.12482 10.1159/000089233 10.1002/jmri.10258 10.1016/0730-725X(96)00018-5 10.1159/000067109 10.1161/01.STR.32.6.1318 10.1016/S0140-6736(95)90013-6 10.1161/STROKEAHA.109.570044 10.1016/j.mri.2012.01.007 10.1016/j.nicl.2016.11.020 10.3109/09540261.2013.838151 10.1136/jnnp.2005.073213 10.1016/S0140-6736(00)02604-0 10.1016/j.nicl.2013.10.003 10.1001/archneurol.2010.284 10.1136/bmj.b3016 10.1016/j.neuroimage.2014.06.075 10.1136/jnnp.70.1.9 10.3109/07853890.2011.595733 10.1001/archneur.61.10.1531 10.1007/s12021-015-9260-y |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES ADTPV AOWAS |
| DOI | 10.1016/j.mri.2020.11.008 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5894 |
| EndPage | 115 |
| ExternalDocumentID | oai_swepub_ki_se_466426 oai:HAL:hal-03500597v1 33220450 10_1016_j_mri_2020_11_008 S0730725X20306433 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Department of Health |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS G8K LCYCR RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES ADTPV AOWAS |
| ID | FETCH-LOGICAL-c518t-7abf831d14ac609ca5b2479fc572cfa3cca5df7d78462b870b5cad4071cd280f3 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603405000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0730-725X 1873-5894 |
| IngestDate | Tue Nov 04 15:28:33 EST 2025 Fri Nov 21 06:31:24 EST 2025 Sat Sep 27 20:02:09 EDT 2025 Thu Apr 03 06:54:04 EDT 2025 Tue Nov 18 20:33:49 EST 2025 Sat Nov 29 07:12:02 EST 2025 Fri Feb 23 02:48:24 EST 2024 Tue Oct 14 19:31:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | White matter hyperintensities Accuracy Automated segmentation algorithms Lesion segmentation toolbox Reproducibility |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c518t-7abf831d14ac609ca5b2479fc572cfa3cca5df7d78462b870b5cad4071cd280f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9811-0897 0000-0001-9504-7503 0000-0003-3543-3706 0000-0002-4181-0427 0000-0002-1374-1620 0000-0001-8008-9727 0000-0001-8073-102X 0000-0003-3117-1833 0000-0003-3916-6422 0000-0003-0142-0931 0000-0003-1492-5330 0000-0003-3749-2988 0000-0001-7075-7082 0000-0001-7067-536X 0000-0003-2696-6017 0000-0003-1767-5330 0000-0003-3539-7856 |
| OpenAccessLink | https://amu.hal.science/hal-03500597 |
| PMID | 33220450 |
| PQID | 2463108843 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_466426 hal_primary_oai_HAL_hal_03500597v1 proquest_miscellaneous_2463108843 pubmed_primary_33220450 crossref_primary_10_1016_j_mri_2020_11_008 crossref_citationtrail_10_1016_j_mri_2020_11_008 elsevier_sciencedirect_doi_10_1016_j_mri_2020_11_008 elsevier_clinicalkey_doi_10_1016_j_mri_2020_11_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Magnetic resonance imaging |
| PublicationTitleAlternate | Magn Reson Imaging |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kuller, Lopez, Newman, Beauchamp, Burke, Dulberg (bb0080) 2003 Launer, Berger, Breteler, Dufouil, Fuhrer, Giampaoli (bb0060) 2006; 26 Tosto, Zimmerman, Carmichael, Brickman (bb0095) 2014 Marchitelli, Minati, Marizzoni, Bosch, Bartr??s-Faz D, M??ller BW, et al. (bb0175) 2016; 37 Admiraal-Behloul, Van Den Heuvel, Olofsen, Van Osch, Van Der Grond, Van Buchem (bb0230) 2005; 28 Carmichael, Schwarz, Drucker (bb0100) 2010; 67(11) Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow (bb0090) 2014; 13 Rosenberg (bb0005) 2009 Anbeek, Vincken, Van Osch, Bisschops, Van Der Grond (bb0235) 2004 de Sitter, Steenwijk, Ruet, Versteeg, Liu, van Schijndel (bb0200) 2017; 163 Jovicich, Marizzoni, Bosch, Bartr??s-Faz D, Arnold J, Benninghoff J, et al. (bb0165) 2014; 101 Steenwijk, Pouwels, Daams, Van Dalen, Caan, Richard (bb0220) 2013; 3 Fazekas, Chawluk, Alavi (bb0115) 1987; 8 Marizzoni, Antelmi, Bosch, Bartr??s-Faz D, M??ller BW, Wiltfang J, et al. (bb0160) 2015; 36 Debette, Beiser, Decarli, Au, Himali, Kelly-Hayes (bb0075) 2010 Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartr??s-Faz D, Arnold J, et al. (bb0155) 2013; 83 Kim, MacFall, Payne (bb0070) 2008; 64 Ashton, Takahashi, Berg, Goodman, Totterman, Ekholm (bb0125) 2003 Schmidt, Gaser, Arsic, Buck, Förschler, Berthele (bb0140) 2012; 59 Mortamais, Artero, Ritchie (bb0010) 2013 Galluzzi, Marizzoni, Babiloni, Albani, Antelmi, Bagnoli (bb0150) 2016; 279 Schmidt, Gaser, Arsic, Buck, Förschler, Berthele (bb0180) 2012 Wahlund, Barkhof, Fazekas, Bronge, Augustin, Sjogren (bb0110) 2001; 32 Prins, Scheltens (bb0020) 2015 Damangir, Westman, Simmons, Vrenken, Wahlund, Spulber (bb0210) 2016 Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bb0215) 2010 Trip, Miller (bb0015) 2005 Griffanti, Zamboni, Khan, Li, Bonifacio, Sundaresan (bb0240) 2016; 141 Zijdenbos, Dawant, Margolin, Palmer (bb0190) 1994 Schmidt (bb0185) 2017 Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartr??s-Faz D, et al. (bb0170) 2016; 124 Gunde, Blagdon, Hajek (bb0025) 2011 Schmidt, Pongratz, Küster, Meier, Wuerfel, Lukas (bb0135) 2019 Damangir, Manzouri, Oppedal, Carlsson, Firbank, Sonnesyn (bb0205) 2012 Garde, Mortensen, Krabbe, Rostrup, Larsson (bb0035) 2000 Caligiuri, Perrotta, Augimeri, Rocca, Quattrone, Cherubini (bb0130) 2015; 13 Ong, Ramachandram, Mandava, Shuaib (bb0245) 2012 Hopkins, Beck, Burnett, Weaver, Victoroff, Bigler (bb0045) 2006; 16 Dice (bb0195) 2006 de Leeuw, de Groot, Achten, Oudkerk, Ramos, Heijboer (bb0055) 2001; 70 Grimaud, Lai, Thorpe, Adeleine, Wang, Barker (bb0120) 1996; 14 Manjón, Coupé, Raniga, Xia, Fripp, Salvado (bb0250) 2016 Prins, Van Dijk, Den Heijer, Vermeer, Koudstaal, Oudkerk (bb0085) 2004 Morris, Whiteley, Longstreth, Weber, Lee, Tsushima (bb0040) 2009 Wang, Catindig, Hilal, Soon, Ting, Wong (bb0255) 2012 Wen, Sachdev (bb0065) 2004; 22 Schmid, Roob, Kapeller, Schmidt, Berghold, Lechner (bb0105) 2000; 59 Egger, Opfer, Wang, Kepp, Sormani, Spies (bb0225) 2017; 13 Geissler, Andus, Roth, Kullmann, Caesar, Held (bb0030) 1995; 345 Breteler, van Swieten, Bots, Grobbee, Claus, van den Hout (bb0050) 1994; 44 Maldjian, Whitlow, Saha, Kota, Vandergriff, Davenport (bb0145) 2013 Wen (10.1016/j.mri.2020.11.008_bb0065) 2004; 22 Schmidt (10.1016/j.mri.2020.11.008_bb0180) 2012 Schmid (10.1016/j.mri.2020.11.008_bb0105) 2000; 59 de Sitter (10.1016/j.mri.2020.11.008_bb0200) 2017; 163 Grimaud (10.1016/j.mri.2020.11.008_bb0120) 1996; 14 Hopkins (10.1016/j.mri.2020.11.008_bb0045) 2006; 16 Caligiuri (10.1016/j.mri.2020.11.008_bb0130) 2015; 13 Jovicich (10.1016/j.mri.2020.11.008_bb0170) 2016; 124 Dice (10.1016/j.mri.2020.11.008_bb0195) 2006 Kim (10.1016/j.mri.2020.11.008_bb0070) 2008; 64 Trip (10.1016/j.mri.2020.11.008_bb0015) 2005 Breteler (10.1016/j.mri.2020.11.008_bb0050) 1994; 44 Carmichael (10.1016/j.mri.2020.11.008_bb0100) 2010; 67(11) Maldjian (10.1016/j.mri.2020.11.008_bb0145) 2013 Jovicich (10.1016/j.mri.2020.11.008_bb0155) 2013; 83 Zijdenbos (10.1016/j.mri.2020.11.008_bb0190) 1994 Wahlund (10.1016/j.mri.2020.11.008_bb0110) 2001; 32 Prins (10.1016/j.mri.2020.11.008_bb0020) 2015 Steenwijk (10.1016/j.mri.2020.11.008_bb0220) 2013; 3 Gunde (10.1016/j.mri.2020.11.008_bb0025) 2011 de Leeuw (10.1016/j.mri.2020.11.008_bb0055) 2001; 70 Marizzoni (10.1016/j.mri.2020.11.008_bb0160) 2015; 36 Marchitelli (10.1016/j.mri.2020.11.008_bb0175) 2016; 37 Jovicich (10.1016/j.mri.2020.11.008_bb0165) 2014; 101 Galluzzi (10.1016/j.mri.2020.11.008_bb0150) 2016; 279 Garde (10.1016/j.mri.2020.11.008_bb0035) 2000 Shiee (10.1016/j.mri.2020.11.008_bb0215) 2010 Wang (10.1016/j.mri.2020.11.008_bb0255) 2012 Debette (10.1016/j.mri.2020.11.008_bb0075) 2010 Manjón (10.1016/j.mri.2020.11.008_bb0250) 2016 Dubois (10.1016/j.mri.2020.11.008_bb0090) 2014; 13 Ong (10.1016/j.mri.2020.11.008_bb0245) 2012 Griffanti (10.1016/j.mri.2020.11.008_bb0240) 2016; 141 Prins (10.1016/j.mri.2020.11.008_bb0085) 2004 Admiraal-Behloul (10.1016/j.mri.2020.11.008_bb0230) 2005; 28 Schmidt (10.1016/j.mri.2020.11.008_bb0135) 2019 Schmidt (10.1016/j.mri.2020.11.008_bb0185) 2017 Egger (10.1016/j.mri.2020.11.008_bb0225) 2017; 13 Kuller (10.1016/j.mri.2020.11.008_bb0080) 2003 Launer (10.1016/j.mri.2020.11.008_bb0060) 2006; 26 Fazekas (10.1016/j.mri.2020.11.008_bb0115) 1987; 8 Geissler (10.1016/j.mri.2020.11.008_bb0030) 1995; 345 Tosto (10.1016/j.mri.2020.11.008_bb0095) 2014 Mortamais (10.1016/j.mri.2020.11.008_bb0010) 2013 Damangir (10.1016/j.mri.2020.11.008_bb0205) 2012 Schmidt (10.1016/j.mri.2020.11.008_bb0140) 2012; 59 Anbeek (10.1016/j.mri.2020.11.008_bb0235) 2004 Morris (10.1016/j.mri.2020.11.008_bb0040) 2009 Damangir (10.1016/j.mri.2020.11.008_bb0210) 2016 Rosenberg (10.1016/j.mri.2020.11.008_bb0005) 2009 Ashton (10.1016/j.mri.2020.11.008_bb0125) 2003 |
| References_xml | – year: 2010 ident: bb0075 article-title: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham offspring study publication-title: Stroke – year: 2004 ident: bb0235 article-title: Probabilistic segmentation of white matter lesions in MR imaging publication-title: Neuroimage – start-page: 92 year: 2016 end-page: 99 ident: bb0250 article-title: HIST: HyperIntensity Segmentation Tool – year: 2013 ident: bb0010 article-title: Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia publication-title: Int Rev Psychiatry – volume: 3 start-page: 462 year: 2013 end-page: 469 ident: bb0220 article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs) publication-title: NeuroImage Clin – year: 2009 ident: bb0040 article-title: Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis publication-title: BMJ – year: 2017 ident: bb0185 article-title: Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging – volume: 28 start-page: 607 year: 2005 end-page: 617 ident: bb0230 article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly publication-title: Neuroimage – year: 2016 ident: bb0210 article-title: Reproducible segmentation of white matter hyperintensities using a new statistical definition publication-title: Magn Reson Mater Phys Biol Med – volume: 67(11) start-page: 1370 year: 2010 end-page: 1378 ident: bb0100 article-title: Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer Disease publication-title: Arch Neurol – volume: 101 start-page: 390 year: 2014 end-page: 403 ident: bb0165 article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects publication-title: Neuroimage – volume: 32 start-page: 1318 year: 2001 end-page: 1322 ident: bb0110 article-title: A new rating scale for age-related white matter changes applicable to MRI and CT publication-title: Stroke – volume: 16 start-page: 243 year: 2006 end-page: 251 ident: bb0045 article-title: Prevalence of white matter hyperintensities in a young healthy population publication-title: J Neuroimaging – year: 2010 ident: bb0215 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage – volume: 13 start-page: 264 year: 2017 end-page: 270 ident: bb0225 article-title: MRI FLAIR lesion segmentation in multiple sclerosis: does automated segmentation hold up with manual annotation? publication-title: NeuroImage Clin – volume: 37 start-page: 2114 year: 2016 end-page: 2132 ident: bb0175 article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques publication-title: Hum Brain Mapp – year: 2012 ident: bb0180 article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis publication-title: Neuroimage – year: 2012 ident: bb0245 article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method publication-title: Magn Reson Imaging – volume: 64 start-page: 273 year: 2008 end-page: 280 ident: bb0070 article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons publication-title: Biol Psychiatry – year: 2011 ident: bb0025 article-title: White matter hyperintensities from medical comorbidities to bipolar disorders and back publication-title: Ann Med – year: 2000 ident: bb0035 article-title: Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study publication-title: Lancet – year: 2006 ident: bb0195 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – year: 2012 ident: bb0205 article-title: Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines publication-title: J Neurol Sci – volume: 8 start-page: 421 year: 1987 end-page: 426 ident: bb0115 article-title: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging publication-title: Am J Neuroradiol – volume: 13 start-page: 261 year: 2015 end-page: 276 ident: bb0130 article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review publication-title: Neuroinformatics – volume: 59 start-page: 9 year: 2000 end-page: 14 ident: bb0105 article-title: Longitudinal change of white matter abnormalities publication-title: J Neural Transm Suppl – year: 2003 ident: bb0080 article-title: Risk factors for dementia in the cardiovascular health cognition study publication-title: Neuroepidemiology – year: 1994 ident: bb0190 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans Med Imaging – volume: 14 start-page: 495 year: 1996 end-page: 505 ident: bb0120 article-title: Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques publication-title: Magn Reson Imaging – volume: 141 start-page: 191 year: 2016 end-page: 205 ident: bb0240 article-title: BIANCA (brain intensity AbNormality classification algorithm): a new tool for automated segmentation of white matter hyperintensities publication-title: Neuroimage – volume: 26 start-page: 23 year: 2006 end-page: 29 ident: bb0060 article-title: Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE) publication-title: Neuroepidemiology – year: 2019 ident: bb0135 article-title: Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging publication-title: NeuroImage Clin – volume: 345 start-page: 897 year: 1995 end-page: 898 ident: bb0030 article-title: Focal white-matter lesions in brain of patients with inflammatory bowel disease publication-title: Lancet (London, England) – year: 2003 ident: bb0125 article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI publication-title: J Magn Reson Imaging – volume: 83 start-page: 472 year: 2013 end-page: 484 ident: bb0155 article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage – year: 2005 ident: bb0015 article-title: Imaging in multiple sclerosis publication-title: J Neurol Neurosurg & amp Amp Psychiatry – volume: 36 start-page: 3516 year: 2015 end-page: 3527 ident: bb0160 article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3T study on healthy elderly publication-title: Hum Brain Mapp – volume: 44 start-page: 1246 year: 1994 end-page: 1252 ident: bb0050 article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study publication-title: Neurology – volume: 59 start-page: 3774 year: 2012 end-page: 3783 ident: bb0140 article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis publication-title: Neuroimage – volume: 70 start-page: 9 year: 2001 end-page: 14 ident: bb0055 article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study publication-title: J Neurol Neurosurg Psychiatry – year: 2004 ident: bb0085 article-title: Cerebral white matter lesions and the risk of dementia publication-title: Arch Neurol – volume: 13 start-page: 614 year: 2014 end-page: 629 ident: bb0090 article-title: Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria publication-title: Lancet Neurol – year: 2012 ident: bb0255 article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts publication-title: Neuroimage – volume: 279 start-page: 576 year: 2016 end-page: 591 ident: bb0150 article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the innovative medicines initiative PharmaCog project: a “European ADNI study.” publication-title: J Intern Med – year: 2014 ident: bb0095 article-title: Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities publication-title: JAMA Neurol – year: 2013 ident: bb0145 article-title: Automated white matter total lesion volume segmentation in diabetes publication-title: Am J Neuroradiol – volume: 22 start-page: 144 year: 2004 end-page: 154 ident: bb0065 article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals publication-title: Neuroimage – volume: 163 start-page: 106 year: 2017 end-page: 114 ident: bb0200 article-title: Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study publication-title: Neuroimage – year: 2009 ident: bb0005 article-title: Inflammation and white matter damage in vascular cognitive impairment publication-title: Stroke – volume: 124 start-page: 442 year: 2016 end-page: 454 ident: bb0170 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage – year: 2015 ident: bb0020 article-title: White matter hyperintensities, cognitive impairment and dementia: an update publication-title: Nat Rev Neurol – year: 2019 ident: 10.1016/j.mri.2020.11.008_bb0135 article-title: Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2019.101849 – year: 2015 ident: 10.1016/j.mri.2020.11.008_bb0020 article-title: White matter hyperintensities, cognitive impairment and dementia: an update publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2015.10 – year: 2009 ident: 10.1016/j.mri.2020.11.008_bb0005 article-title: Inflammation and white matter damage in vascular cognitive impairment publication-title: Stroke doi: 10.1161/STROKEAHA.108.533133 – volume: 59 start-page: 9 year: 2000 ident: 10.1016/j.mri.2020.11.008_bb0105 article-title: Longitudinal change of white matter abnormalities publication-title: J Neural Transm Suppl – volume: 64 start-page: 273 year: 2008 ident: 10.1016/j.mri.2020.11.008_bb0070 article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.03.024 – volume: 44 start-page: 1246 year: 1994 ident: 10.1016/j.mri.2020.11.008_bb0050 article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study publication-title: Neurology doi: 10.1212/WNL.44.7.1246 – year: 1994 ident: 10.1016/j.mri.2020.11.008_bb0190 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans Med Imaging doi: 10.1109/42.363096 – volume: 16 start-page: 243 year: 2006 ident: 10.1016/j.mri.2020.11.008_bb0045 article-title: Prevalence of white matter hyperintensities in a young healthy population publication-title: J Neuroimaging doi: 10.1111/j.1552-6569.2006.00047.x – volume: 36 start-page: 3516 year: 2015 ident: 10.1016/j.mri.2020.11.008_bb0160 article-title: Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3T study on healthy elderly publication-title: Hum Brain Mapp doi: 10.1002/hbm.22859 – year: 2013 ident: 10.1016/j.mri.2020.11.008_bb0145 article-title: Automated white matter total lesion volume segmentation in diabetes publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3590 – volume: 124 start-page: 442 year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0170 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.010 – year: 2012 ident: 10.1016/j.mri.2020.11.008_bb0180 article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.032 – volume: 163 start-page: 106 year: 2017 ident: 10.1016/j.mri.2020.11.008_bb0200 article-title: Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.011 – volume: 141 start-page: 191 year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0240 article-title: BIANCA (brain intensity AbNormality classification algorithm): a new tool for automated segmentation of white matter hyperintensities publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.018 – volume: 37 start-page: 2114 year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0175 article-title: Test-retest reliability of the default mode network in a multi-centric fMRI study of healthy elderly: effects of data-driven physiological noise correction techniques publication-title: Hum Brain Mapp doi: 10.1002/hbm.23157 – year: 2004 ident: 10.1016/j.mri.2020.11.008_bb0235 article-title: Probabilistic segmentation of white matter lesions in MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.10.012 – volume: 8 start-page: 421 year: 1987 ident: 10.1016/j.mri.2020.11.008_bb0115 article-title: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging publication-title: Am J Neuroradiol – volume: 28 start-page: 607 year: 2005 ident: 10.1016/j.mri.2020.11.008_bb0230 article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.061 – volume: 83 start-page: 472 year: 2013 ident: 10.1016/j.mri.2020.11.008_bb0155 article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.007 – volume: 13 start-page: 614 year: 2014 ident: 10.1016/j.mri.2020.11.008_bb0090 article-title: Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70090-0 – year: 2006 ident: 10.1016/j.mri.2020.11.008_bb0195 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – start-page: 92 year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0250 – year: 2012 ident: 10.1016/j.mri.2020.11.008_bb0255 article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.034 – year: 2012 ident: 10.1016/j.mri.2020.11.008_bb0205 article-title: Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines publication-title: J Neurol Sci doi: 10.1016/j.jns.2012.07.064 – year: 2010 ident: 10.1016/j.mri.2020.11.008_bb0215 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.005 – year: 2014 ident: 10.1016/j.mri.2020.11.008_bb0095 article-title: Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2014.667 – volume: 22 start-page: 144 year: 2004 ident: 10.1016/j.mri.2020.11.008_bb0065 article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.027 – volume: 279 start-page: 576 year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0150 article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the innovative medicines initiative PharmaCog project: a “European ADNI study.” publication-title: J Intern Med doi: 10.1111/joim.12482 – volume: 26 start-page: 23 year: 2006 ident: 10.1016/j.mri.2020.11.008_bb0060 article-title: Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE) publication-title: Neuroepidemiology doi: 10.1159/000089233 – volume: 59 start-page: 3774 year: 2012 ident: 10.1016/j.mri.2020.11.008_bb0140 article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.032 – year: 2017 ident: 10.1016/j.mri.2020.11.008_bb0185 – year: 2003 ident: 10.1016/j.mri.2020.11.008_bb0125 article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.10258 – volume: 14 start-page: 495 year: 1996 ident: 10.1016/j.mri.2020.11.008_bb0120 article-title: Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(96)00018-5 – year: 2003 ident: 10.1016/j.mri.2020.11.008_bb0080 article-title: Risk factors for dementia in the cardiovascular health cognition study publication-title: Neuroepidemiology doi: 10.1159/000067109 – volume: 32 start-page: 1318 year: 2001 ident: 10.1016/j.mri.2020.11.008_bb0110 article-title: A new rating scale for age-related white matter changes applicable to MRI and CT publication-title: Stroke doi: 10.1161/01.STR.32.6.1318 – volume: 345 start-page: 897 year: 1995 ident: 10.1016/j.mri.2020.11.008_bb0030 article-title: Focal white-matter lesions in brain of patients with inflammatory bowel disease publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(95)90013-6 – year: 2010 ident: 10.1016/j.mri.2020.11.008_bb0075 article-title: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham offspring study publication-title: Stroke doi: 10.1161/STROKEAHA.109.570044 – year: 2012 ident: 10.1016/j.mri.2020.11.008_bb0245 article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.01.007 – volume: 13 start-page: 264 year: 2017 ident: 10.1016/j.mri.2020.11.008_bb0225 article-title: MRI FLAIR lesion segmentation in multiple sclerosis: does automated segmentation hold up with manual annotation? publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2016.11.020 – year: 2013 ident: 10.1016/j.mri.2020.11.008_bb0010 article-title: Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia publication-title: Int Rev Psychiatry doi: 10.3109/09540261.2013.838151 – year: 2005 ident: 10.1016/j.mri.2020.11.008_bb0015 article-title: Imaging in multiple sclerosis publication-title: J Neurol Neurosurg & amp Amp Psychiatry doi: 10.1136/jnnp.2005.073213 – year: 2000 ident: 10.1016/j.mri.2020.11.008_bb0035 article-title: Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study publication-title: Lancet doi: 10.1016/S0140-6736(00)02604-0 – volume: 3 start-page: 462 year: 2013 ident: 10.1016/j.mri.2020.11.008_bb0220 article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs) publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2013.10.003 – volume: 67(11) start-page: 1370 year: 2010 ident: 10.1016/j.mri.2020.11.008_bb0100 article-title: Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer Disease publication-title: Arch Neurol doi: 10.1001/archneurol.2010.284 – year: 2009 ident: 10.1016/j.mri.2020.11.008_bb0040 article-title: Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis publication-title: BMJ doi: 10.1136/bmj.b3016 – volume: 101 start-page: 390 year: 2014 ident: 10.1016/j.mri.2020.11.008_bb0165 article-title: Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.075 – year: 2016 ident: 10.1016/j.mri.2020.11.008_bb0210 article-title: Reproducible segmentation of white matter hyperintensities using a new statistical definition publication-title: Magn Reson Mater Phys Biol Med – volume: 70 start-page: 9 year: 2001 ident: 10.1016/j.mri.2020.11.008_bb0055 article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.70.1.9 – year: 2011 ident: 10.1016/j.mri.2020.11.008_bb0025 article-title: White matter hyperintensities from medical comorbidities to bipolar disorders and back publication-title: Ann Med doi: 10.3109/07853890.2011.595733 – year: 2004 ident: 10.1016/j.mri.2020.11.008_bb0085 article-title: Cerebral white matter lesions and the risk of dementia publication-title: Arch Neurol doi: 10.1001/archneur.61.10.1531 – volume: 13 start-page: 261 year: 2015 ident: 10.1016/j.mri.2020.11.008_bb0130 article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review publication-title: Neuroinformatics doi: 10.1007/s12021-015-9260-y |
| SSID | ssj0005235 |
| Score | 2.458793 |
| Snippet | Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to... |
| SourceID | swepub hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108 |
| SubjectTerms | Accuracy Adult Aging Algorithms Automated segmentation algorithms Automation Bioengineering Cross-Sectional Studies Female Humans Image Processing, Computer-Assisted - methods Imaging Lesion segmentation toolbox Life Sciences Magnetic Resonance Imaging Male Reproducibility Reproducibility of Results White Matter - diagnostic imaging White Matter - pathology White matter hyperintensities |
| Title | Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X20306433 https://dx.doi.org/10.1016/j.mri.2020.11.008 https://www.ncbi.nlm.nih.gov/pubmed/33220450 https://www.proquest.com/docview/2463108843 https://amu.hal.science/hal-03500597 http://kipublications.ki.se/Default.aspx?queryparsed=id:145511010 |
| Volume | 76 |
| WOSCitedRecordID | wos000603405000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEHfKZTII8UCVKYmd2uGtQpvGBBMSRepb5CTO1tGmVW8af4MfxG_jHDtO006Mi8RLFDl1nPR88fE5_s45hLzyFaj9bso8HeeRx3MVeFIr4fFUdbUKtEz91BSbEKencjCIP7VaP1wszGokylJeXsbT_ypqaANhY-jsX4i7vik0wDkIHY4gdjj-keB7WbacYRF3wxzXU5PS1XJgzW66Wi4msExF2jluIXTGJsNm5_wb5jy2hHZMstqZ67NxFZhkQ707I42utc0LCyzRZaLba7--4Sh6uCvdYf1G_lpXN0qdldpmjkYzACeW4djUSqo3f4apGuWGZnCEuS4adKLeCB_e-s2r6Pg1BwgmvaGtbHWCjv6Gqxw9AsYlPMKai3PV9HWEgaNHOwecC8LZ4IjiJOWJMBo0J3XRnJUDXzYUfGDjR6_oDuvGuDgYz4YHMDhqE0x-u1aUNX3xMw6JI4ZocXHGdsheKKIYFMNe7_3h4KRBMrIlXt0jun11wzDcGuhXK6Odc6ToXrV_tpLbmgVR_w65XVkytGcReJe0dHmP3PxYcTXuk-8OiBSASLeASCcFrYFIDRCpBSLdBiJt4o0iEKkF4uYFBOJb2qMOhnQNQ8r61MDwAflydNh_d-xVFUC8LArkwhMqLSQL8oCrrOvHmYrSkIu4yCIRZoViMP1EeSFyAavoMAXVk0aZytFHkeWh9Av2kOyWk1I_JpQxTHykpeIs45ylMmdgy3AlJeOpTHWb-O7fT7IqPT5WaRkljgd5kYDAEhQYmM0JCKxN3tRdpjY3zHU_Dp1IExf0DGo6AfRd14nXnaoVsV3p_q7bS8BM_UyYQf649yHBNiQSgEUlVkGbvHCQSkCl4D6hKvVkOU9C3gWjT0rO2uSRxVp9LwYLALAC_TZ5bcG3MUrV9BXOdIKFK8Luk39576fk1vrzf0Z2F7Olfk5uZKvFcD7bJztiIPerT-0nCcgRag |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+and+reproducibility+of+automated+white+matter+hyperintensities+segmentation+with+lesion+segmentation+tool%3A+A+European+multi-site+3T+study&rft.jtitle=Magnetic+resonance+imaging&rft.au=Ribaldi%2C+Federica&rft.au=Altomare%2C+Daniele&rft.au=Jovicich%2C+Jorge&rft.au=Ferrari%2C+Clarissa&rft.date=2021-02-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=76&rft.spage=108&rft.epage=115&rft_id=info:doi/10.1016%2Fj.mri.2020.11.008&rft.externalDocID=S0730725X20306433 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |