Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood

Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 15514 - 14
1. Verfasser: O’Connell, Grant C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.09.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.
AbstractList Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.
Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.
Abstract Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.
ArticleNumber 15514
Author O’Connell, Grant C.
Author_xml – sequence: 1
  givenname: Grant C.
  surname: O’Connell
  fullname: O’Connell, Grant C.
  email: grant.oconnell@case.edu
  organization: Molecular Biomarker Core, Case Western Reserve University, School of Nursing, Case Western Reserve University
BookMark eNp9Ustu1DAUjVARLUN_gJUlNmwC8SuJV6iqClSqQELA1nLsmxlPM_ZgO1Tlm_hI7swUQbuoF36ec3x9fJ5XRyEGqKqXtHlDG96_zYJK1dcN47WgQmD_pDphjZA144wd_Tc_rk5zXjfYJFOCqmfVMe861nLJT6rf303yZvCTL7fEB-JiiIlMMF9He1uA2DiHknEII84cKSsgcwYSR9zbbGIgXz6dkQw_ZgjWhyVxphiCGhsz-V-meETkkkyBpYe8uwEXIdvktyVuvCWDjxuTriEhbHY7zBbSiHxw5MaXFblZxQnIMMXoXlRPRzNlOL0bF9W39xdfzz_WV58_XJ6fXdVW0r7UrWHMKTFa1SopmBOOqlbC0I6SC96hD6YHPtDROsEaM-x8MbIduHFAO8H5oro86Lpo1nqbPFZ4q6Pxer8R01KbVLydQLNRuWFkjXVdL4C3CiTrrBioEqxrqUWtdwet7TzgmywENGC6J3r_JPiVXsafmjayUUwyVHh9p5Ai2pyL3vhsYZpMgDhnzfq27aRSGItF9eoBdB3nFNCrPYrJruslovoDyqaYc4JRW1_2X4UF-Alv1ruI6UPENEZM7yOmBVLZA-rfhzxK4gdSRnBYQvpX1SOsP1RW6HI
CitedBy_id crossref_primary_10_3390_computation12070137
crossref_primary_10_1186_s12863_024_01223_z
Cites_doi 10.1586/erc.12.159
10.1073/pnas.252784499
10.1056/NEJMoa0912965
10.1016/j.jbi.2018.07.016
10.1186/gb-2010-11-3-r25
10.1186/s12864-015-2353-z
10.1186/s12864-020-07304-4
10.1186/s12883-019-1245-2
10.1093/bioinformatics/btp616
10.1186/1471-2105-9-559
10.1038/npjgenmed.2016.38
10.1093/bib/bbs046
10.1038/s41598-020-67708-w
10.1038/s41587-019-0201-4
10.1038/nature09247
10.1093/bib/bbx008
10.1186/1471-2164-11-96
10.1093/labmed/lmx035
10.1371/journal.pone.0026905
10.1126/science.aax9198
10.1093/biostatistics/kxr031
10.1038/s41598-019-56218-z
10.1186/1471-2164-7-115
10.1111/ajt.15011
10.1186/s13104-016-2335-5
10.1186/s13059-022-02648-4
10.1155/2015/621690
10.1007/s12975-018-0623-1
10.1093/nar/gkz114
10.1016/j.molmed.2007.08.003
10.1177/14604086211034008
10.1038/ni1310
10.1073/pnas.0610204104
10.1186/s13059-014-0550-8
10.1515/tnsci-2018-0024
10.1056/NEJMoa040465
10.1186/s13054-020-03374-8
10.1016/j.ajem.2019.10.023
10.1186/1471-2105-11-27
10.1186/s12859-019-3247-x
10.1093/ajcp/53.5.647
10.1038/s41598-020-59516-z
10.4161/cib.25849
10.1038/npre.2010.4282.2
10.1080/10618600.1996.10474713
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-41443-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
ProQuest Biological Science
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_2f9dbf20cd784e369e527c4b1942761c
PMC10509252
10_1038_s41598_023_41443_4
GrantInformation_xml – fundername: National Institute of Nursing Research
  grantid: R21NR019337
  funderid: http://dx.doi.org/10.13039/100000056
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: R01NS129876
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: ;
  grantid: R01NS129876
– fundername: ;
  grantid: R21NR019337
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c518t-6a22d94fc969542d4d1965eb6f53437005a8e3b1fcd420ab0529a56b3ade17433
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089134700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:30:07 EDT 2025
Tue Nov 04 02:06:17 EST 2025
Sun Nov 09 11:23:48 EST 2025
Tue Oct 07 08:09:53 EDT 2025
Sat Nov 29 06:05:14 EST 2025
Tue Nov 18 22:12:47 EST 2025
Fri Feb 21 02:37:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-6a22d94fc969542d4d1965eb6f53437005a8e3b1fcd420ab0529a56b3ade17433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2f9dbf20cd784e369e527c4b1942761c
PMID 37726353
PQID 2866257785
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_2f9dbf20cd784e369e527c4b1942761c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10509252
proquest_miscellaneous_2866759910
proquest_journals_2866257785
crossref_citationtrail_10_1038_s41598_023_41443_4
crossref_primary_10_1038_s41598_023_41443_4
springer_journals_10_1038_s41598_023_41443_4
PublicationCentury 2000
PublicationDate 2023-09-19
PublicationDateYYYYMMDD 2023-09-19
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Langfelder, Horvath (CR44) 2008; 9
Arora, Pattwell, Holland, Bolouri (CR10) 2020; 10
Love, Huber, Anders (CR13) 2014; 15
Evans, Hardin, Stoebel (CR16) 2018; 19
Maza, Frasse, Senin, Bouzayen, Zouine (CR32) 2013; 6
Qiu, Fitzgerald, Mitra (CR25) 2022; 24
Hemond, Glanz, Bakshi, Chitnis, Healy (CR26) 2019; 19
Pham (CR6) 2010; 362
O’Connell (CR4) 2016; 1
O’Connell, Chang (CR45) 2018; 9
Li (CR20) 2020; 24
Kim, Paggi, Park, Bennett, Salzberg (CR42) 2019; 37
CR31
Bhat (CR23) 2013; 11
Mohr, Liew (CR1) 2007; 13
Jang (CR17) 2020; 21
Rha, Kim, Yoon, Cho (CR24) 2020; 10
Zyprych-Walczak (CR34) 2015; 2015
Jeffrey (CR41) 2006; 7
Ross, Robert, Ihaka, Gentleman (CR15) 1996; 5
Lin (CR33) 2016; 17
Scherzer (CR5) 2007; 104
Li, Witten, Johnstone, Tibshirani (CR8) 2012; 13
Abrams, Johnson, Huang, Payne, Coombes (CR9) 2019; 20
Robinson, McCarthy, Smyth (CR14) 2010; 26
Whitney (CR35) 2003; 100
Dillies (CR11) 2013; 14
Li, Ge, Peng, Li, Li (CR29) 2022; 23
Friedewald (CR7) 2019; 19
Repsilber (CR28) 2010; 11
Robinson, Oshlack (CR30) 2010; 11
CR46
Uhlen (CR40) 2019; 366
Valk (CR2) 2004; 350
O’Connell (CR38) 2017; 48
Min (CR36) 2010; 11
Xu (CR37) 2011; 6
O’Connell (CR39) 2018
Berry (CR3) 2010; 466
Liao, Smyth, Shi (CR43) 2019; 47
Howard, Kanetsky, Egan (CR21) 2019; 9
Palmer, Diehn, Alizadeh, Brown (CR27) 2006; 7
Han, Men (CR12) 2018; 85
Huang, Fu, Huang, Huang (CR22) 2020; 38
Orfanakis, Ostlund, Bishop, Athens (CR18) 1970; 53
Forget (CR19) 2017; 10
CC Hemond (41443_CR26) 2019; 19
Y Li (41443_CR29) 2022; 23
E Maza (41443_CR32) 2013; 6
GC O’Connell (41443_CR39) 2018
MI Love (41443_CR13) 2014; 15
JL Min (41443_CR36) 2010; 11
Q Xu (41443_CR37) 2011; 6
P Forget (41443_CR19) 2017; 10
Y Qiu (41443_CR25) 2022; 24
J Zyprych-Walczak (41443_CR34) 2015; 2015
MD Robinson (41443_CR14) 2010; 26
MD Robinson (41443_CR30) 2010; 11
GC O’Connell (41443_CR45) 2018; 9
S Arora (41443_CR10) 2020; 10
Y Lin (41443_CR33) 2016; 17
M Uhlen (41443_CR40) 2019; 366
CR Scherzer (41443_CR5) 2007; 104
X Li (41443_CR20) 2020; 24
Y Liao (41443_CR43) 2019; 47
MX Pham (41443_CR6) 2010; 362
H Han (41443_CR12) 2018; 85
NG Orfanakis (41443_CR18) 1970; 53
D Kim (41443_CR42) 2019; 37
41443_CR46
Z Huang (41443_CR22) 2020; 38
C Palmer (41443_CR27) 2006; 7
KL Jeffrey (41443_CR41) 2006; 7
JJ Friedewald (41443_CR7) 2019; 19
JS Jang (41443_CR17) 2020; 21
GC O’Connell (41443_CR38) 2017; 48
MPR Berry (41443_CR3) 2010; 466
I Ross (41443_CR15) 1996; 5
P Langfelder (41443_CR44) 2008; 9
C Evans (41443_CR16) 2018; 19
ZB Abrams (41443_CR9) 2019; 20
M-A Dillies (41443_CR11) 2013; 14
T Bhat (41443_CR23) 2013; 11
R Howard (41443_CR21) 2019; 9
AR Whitney (41443_CR35) 2003; 100
D Repsilber (41443_CR28) 2010; 11
41443_CR31
S Mohr (41443_CR1) 2007; 13
J Li (41443_CR8) 2012; 13
M-S Rha (41443_CR24) 2020; 10
PJM Valk (41443_CR2) 2004; 350
GC O’Connell (41443_CR4) 2016; 1
References_xml – volume: 11
  start-page: 55
  year: 2013
  end-page: 59
  ident: CR23
  article-title: Neutrophil to lymphocyte ratio and cardiovascular diseases: A review
  publication-title: Expert Rev. Cardiovasc. Ther.
  doi: 10.1586/erc.12.159
– volume: 100
  start-page: 1896
  year: 2003
  end-page: 1901
  ident: CR35
  article-title: Individuality and variation in gene expression patterns in human blood
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.252784499
– volume: 362
  start-page: 1890
  year: 2010
  end-page: 1900
  ident: CR6
  article-title: Gene-expression profiling for rejection surveillance after cardiac transplantation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0912965
– volume: 85
  start-page: 80
  year: 2018
  end-page: 92
  ident: CR12
  article-title: How does normalization impact RNA-seq disease diagnosis?
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.016
– volume: 11
  start-page: R25
  year: 2010
  ident: CR30
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
– volume: 17
  start-page: 28
  year: 2016
  ident: CR33
  article-title: Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2353-z
– volume: 21
  start-page: 890
  year: 2020
  ident: CR17
  article-title: Comparative evaluation for the globin gene depletion methods for mRNA sequencing using the whole blood-derived total RNAs
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-07304-4
– volume: 19
  start-page: 23
  year: 2019
  ident: CR26
  article-title: The neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios are independently associated with neurological disability and brain atrophy in multiple sclerosis
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-019-1245-2
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR14
  article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 5
  start-page: 299
  year: 1996
  end-page: 314
  ident: CR15
  article-title: R: A language for data analysis and graphics
  publication-title: J. Comput. Graph. Stat.
– volume: 9
  start-page: 559
  year: 2008
  ident: CR44
  article-title: WGCNA: An R package for weighted correlation network analysis
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-559
– volume: 1
  start-page: 16038
  year: 2016
  end-page: 16038
  ident: CR4
  article-title: Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke
  publication-title: npj Genom. Med.
  doi: 10.1038/npjgenmed.2016.38
– volume: 14
  start-page: 671
  year: 2013
  end-page: 683
  ident: CR11
  article-title: A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs046
– volume: 10
  start-page: 10862
  year: 2020
  ident: CR24
  article-title: Association between the neutrophil-to-lymphocyte ratio and obstructive sleep apnea: A meta-analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67708-w
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  ident: CR42
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 466
  start-page: 973
  year: 2010
  end-page: 977
  ident: CR3
  article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
  publication-title: Nature
  doi: 10.1038/nature09247
– volume: 19
  start-page: 776
  year: 2018
  end-page: 792
  ident: CR16
  article-title: Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx008
– volume: 11
  start-page: 96
  year: 2010
  ident: CR36
  article-title: Variability of gene expression profiles in human blood and lymphoblastoid cell lines
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-96
– volume: 48
  start-page: 346
  year: 2017
  end-page: 356
  ident: CR38
  article-title: Leukocyte dynamics influence reference gene stability in whole blood: Data-driven qRT-PCR normalization is a robust alternative for measurement of transcriptional biomarkers
  publication-title: Lab. Med.
  doi: 10.1093/labmed/lmx035
– volume: 6
  start-page: 1
  year: 2011
  end-page: 11
  ident: CR37
  article-title: Investigation of variation in gene expression profiling of human blood by extended principle component analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026905
– volume: 366
  start-page: eaax9198
  year: 2019
  ident: CR40
  article-title: A genome-wide transcriptomic analysis of protein-coding genes in human blood cells
  publication-title: Science
  doi: 10.1126/science.aax9198
– volume: 13
  start-page: 523
  year: 2012
  end-page: 538
  ident: CR8
  article-title: Normalization, testing, and false discovery rate estimation for RNA-sequencing data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr031
– volume: 9
  start-page: 19673
  year: 2019
  ident: CR21
  article-title: Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56218-z
– volume: 7
  start-page: 115
  year: 2006
  ident: CR27
  article-title: Cell-type specific gene expression profiles of leukocytes in human peripheral blood
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-115
– volume: 19
  start-page: 98
  year: 2019
  end-page: 109
  ident: CR7
  article-title: Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15011
– ident: CR46
– volume: 10
  start-page: 12
  year: 2017
  ident: CR19
  article-title: What is the normal value of the neutrophil-to-lymphocyte ratio?
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-016-2335-5
– volume: 23
  start-page: 79
  year: 2022
  ident: CR29
  article-title: Exaggerated false positives by popular differential expression methods when analyzing human population samples
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02648-4
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR34
  article-title: The impact of normalization methods on RNA-Seq data analysis
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/621690
– year: 2018
  ident: CR39
  article-title: Shifts in leukocyte counts drive the differential expression of transcriptional stroke biomarkers in whole blood
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-018-0623-1
– volume: 47
  start-page: e47
  year: 2019
  end-page: e47
  ident: CR43
  article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz114
– volume: 13
  start-page: 422
  year: 2007
  end-page: 432
  ident: CR1
  article-title: The peripheral-blood transcriptome: New insights into disease and risk assessment
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2007.08.003
– volume: 24
  start-page: 195
  year: 2022
  end-page: 203
  ident: CR25
  article-title: Association of the neutrophil–lymphocyte ratio to patient outcomes after trauma: A systematic review
  publication-title: Trauma
  doi: 10.1177/14604086211034008
– volume: 7
  start-page: 274
  year: 2006
  end-page: 283
  ident: CR41
  article-title: Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1310
– volume: 104
  start-page: 955
  year: 2007
  end-page: 960
  ident: CR5
  article-title: Molecular markers of early Parkinson’s disease based on gene expression in blood
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610204104
– volume: 15
  start-page: 550
  year: 2014
  ident: CR13
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– ident: CR31
– volume: 9
  start-page: 161
  year: 2018
  end-page: 166
  ident: CR45
  article-title: Analysis of early stroke-induced changes in circulating leukocyte counts using transcriptomic deconvolution
  publication-title: Transl. Neurosci.
  doi: 10.1515/tnsci-2018-0024
– volume: 350
  start-page: 1617
  year: 2004
  end-page: 1628
  ident: CR2
  article-title: Prognostically useful gene-expression profiles in acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa040465
– volume: 24
  start-page: 647
  year: 2020
  ident: CR20
  article-title: Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03374-8
– volume: 38
  start-page: 641
  year: 2020
  end-page: 647
  ident: CR22
  article-title: Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2019.10.023
– volume: 11
  start-page: 27
  year: 2010
  ident: CR28
  article-title: Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-27
– volume: 20
  start-page: 679
  year: 2019
  ident: CR9
  article-title: A protocol to evaluate RNA sequencing normalization methods
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3247-x
– volume: 53
  start-page: 647
  year: 1970
  end-page: 651
  ident: CR18
  article-title: Normal blood leukocyte concentration values
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/53.5.647
– volume: 10
  start-page: 2734
  year: 2020
  ident: CR10
  article-title: Variability in estimated gene expression among commonly used RNA-seq pipelines
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59516-z
– volume: 6
  start-page: e25849
  year: 2013
  ident: CR32
  article-title: Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.25849
– ident: 41443_CR46
– volume: 362
  start-page: 1890
  year: 2010
  ident: 41443_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0912965
– volume: 10
  start-page: 10862
  year: 2020
  ident: 41443_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67708-w
– volume: 17
  start-page: 28
  year: 2016
  ident: 41443_CR33
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2353-z
– volume: 14
  start-page: 671
  year: 2013
  ident: 41443_CR11
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs046
– volume: 21
  start-page: 890
  year: 2020
  ident: 41443_CR17
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-07304-4
– volume: 6
  start-page: e25849
  year: 2013
  ident: 41443_CR32
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.25849
– volume: 104
  start-page: 955
  year: 2007
  ident: 41443_CR5
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610204104
– volume: 53
  start-page: 647
  year: 1970
  ident: 41443_CR18
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/53.5.647
– volume: 24
  start-page: 647
  year: 2020
  ident: 41443_CR20
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03374-8
– year: 2018
  ident: 41443_CR39
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-018-0623-1
– volume: 466
  start-page: 973
  year: 2010
  ident: 41443_CR3
  publication-title: Nature
  doi: 10.1038/nature09247
– volume: 24
  start-page: 195
  year: 2022
  ident: 41443_CR25
  publication-title: Trauma
  doi: 10.1177/14604086211034008
– volume: 350
  start-page: 1617
  year: 2004
  ident: 41443_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa040465
– volume: 1
  start-page: 16038
  year: 2016
  ident: 41443_CR4
  publication-title: npj Genom. Med.
  doi: 10.1038/npjgenmed.2016.38
– volume: 15
  start-page: 550
  year: 2014
  ident: 41443_CR13
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 6
  start-page: 1
  year: 2011
  ident: 41443_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026905
– volume: 26
  start-page: 139
  year: 2010
  ident: 41443_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 7
  start-page: 115
  year: 2006
  ident: 41443_CR27
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-115
– volume: 13
  start-page: 523
  year: 2012
  ident: 41443_CR8
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr031
– volume: 23
  start-page: 79
  year: 2022
  ident: 41443_CR29
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02648-4
– volume: 11
  start-page: 27
  year: 2010
  ident: 41443_CR28
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-27
– volume: 2015
  start-page: 1
  year: 2015
  ident: 41443_CR34
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/621690
– volume: 11
  start-page: 96
  year: 2010
  ident: 41443_CR36
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-96
– volume: 19
  start-page: 776
  year: 2018
  ident: 41443_CR16
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx008
– ident: 41443_CR31
  doi: 10.1038/npre.2010.4282.2
– volume: 9
  start-page: 161
  year: 2018
  ident: 41443_CR45
  publication-title: Transl. Neurosci.
  doi: 10.1515/tnsci-2018-0024
– volume: 13
  start-page: 422
  year: 2007
  ident: 41443_CR1
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2007.08.003
– volume: 5
  start-page: 299
  year: 1996
  ident: 41443_CR15
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1996.10474713
– volume: 20
  start-page: 679
  year: 2019
  ident: 41443_CR9
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3247-x
– volume: 38
  start-page: 641
  year: 2020
  ident: 41443_CR22
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2019.10.023
– volume: 11
  start-page: 55
  year: 2013
  ident: 41443_CR23
  publication-title: Expert Rev. Cardiovasc. Ther.
  doi: 10.1586/erc.12.159
– volume: 366
  start-page: eaax9198
  year: 2019
  ident: 41443_CR40
  publication-title: Science
  doi: 10.1126/science.aax9198
– volume: 48
  start-page: 346
  year: 2017
  ident: 41443_CR38
  publication-title: Lab. Med.
  doi: 10.1093/labmed/lmx035
– volume: 9
  start-page: 559
  year: 2008
  ident: 41443_CR44
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-559
– volume: 47
  start-page: e47
  year: 2019
  ident: 41443_CR43
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz114
– volume: 100
  start-page: 1896
  year: 2003
  ident: 41443_CR35
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.252784499
– volume: 37
  start-page: 907
  year: 2019
  ident: 41443_CR42
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 11
  start-page: R25
  year: 2010
  ident: 41443_CR30
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
– volume: 19
  start-page: 98
  year: 2019
  ident: 41443_CR7
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15011
– volume: 19
  start-page: 23
  year: 2019
  ident: 41443_CR26
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-019-1245-2
– volume: 10
  start-page: 2734
  year: 2020
  ident: 41443_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59516-z
– volume: 9
  start-page: 19673
  year: 2019
  ident: 41443_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56218-z
– volume: 7
  start-page: 274
  year: 2006
  ident: 41443_CR41
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1310
– volume: 85
  start-page: 80
  year: 2018
  ident: 41443_CR12
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.016
– volume: 10
  start-page: 12
  year: 2017
  ident: 41443_CR19
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-016-2335-5
SSID ssj0000529419
Score 2.4172525
Snippet Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels...
Abstract Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15514
SubjectTerms 631/1647/2217/2018
631/1647/514/1949
631/61/514/1949
Biomarkers
Blood
Flow cytometry
Gene expression
Genomes
Humanities and Social Sciences
Leukocytes
multidisciplinary
Next-generation sequencing
Science
Science (multidisciplinary)
Transcriptomes
Transcriptomics
SummonAdditionalLinks – databaseName: ProQuest Biological Science
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA66KuyLd7G6SgTftGybW5MnWcXFp8MiKvtWmkv14KE99rJy_pM_0kyanqUL7osvLbQpScmXyUxm5huEXnNm84xSkbJaewPF1jrVcMxhiagqVuVePNhQbKJYreT5uTqLB259DKucZWIQ1LY1cEZ-TKTwqnpRSP5u-yuFqlHgXY0lNG6iW8CSQEPo3tn-jAW8WCxXMVcmo_K49_sV5JQRmjJvSvjrYj8KtP0LXfNqpOQVd2nYhU7v_e_476O7Uf_EJxNgHqAbrnmI7kwVKXeP0J9v3naeqLt3eN1g2zZthzdu_Nma3eBwKC3R-5vH5dhY7NVHPPYOt7V_Bn3gz6sTHOOz_R9giEDFDSjGm5jxifthpqeAHgbYLIPogvxoDHQAEDHU4X6KcMTbKbXBWQxnxvg3FPTFId7-Mfp6-vHLh09pLOiQGp7LIRUVIVax2iihOCPW40QJ7rSoOWW08PNVSUd1XhvLSFZpmL-KC00r68Byok_QQdM27inCDphSCdeV8fakJEaR3Ghua5MZ64ioE5TP01qayHYORTc2ZfC6U1lOUCg9FMoAhZIl6M3-m-3E9XFt6_eAln1L4OkOD9ruexmXfUlqZXVN_KAKyRwVynFSGKZzxUghcpOgoxktZRQefXkJlQS92r_2yx58OVXj2nFqU3Cv3GcJkguMLga0fNOsfwQC8RxIfwgnCXo7w_my93__8bPrB_scHRJYWFBfQx2hg6Eb3Qt021wM6757GVbmX0x2Rbk
  priority: 102
  providerName: ProQuest
Title Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood
URI https://link.springer.com/article/10.1038/s41598-023-41443-4
https://www.proquest.com/docview/2866257785
https://www.proquest.com/docview/2866759910
https://pubmed.ncbi.nlm.nih.gov/PMC10509252
https://doaj.org/article/2f9dbf20cd784e369e527c4b1942761c
Volume 13
WOSCitedRecordID wos001089134700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiKcILJWRuEG0jR-JfdxFu4LDVtUKUDlF8SOiokpWTQLqf-JHMmOnZbsScOEylRJXcTxje7545htCXkvhsinneSpqAwDF1SY1-JnDsbyqRJXB8uBCsYliNlOLhZ5fK_WFMWGRHjgO3DGrtTM1m1pXKOF5rr1khRUGwDcDCG5x9QWv5xqYiqzeTItMj1kyU66OO9ipMJuM8VQAiAC5txMFwv49L_NmjOSNg9Kw_5w_IPdHx5GexA4_JLd884jcjaUkN4_Jz88AeiPn9oYuG-rapl3TlR--tXbTexpqQnTwAwY1NI6C30eHztO2hmtoi_RydkLHwGroAMXQUdqgR7saUzVp1295JfAJPe5yYc3BxGaKefwY6rOmXQxNpFcxJ8E7ih976Q-sxEtDoPwT8un87OO79-lYiSG1MlN9mleMOS1qq3MtBXOgYJ1Lb_JacsELGO5KeW6y2jrBppXB4a9kbnjlPEIe_pQcNG3jnxHqkeKUSVNZAIKKWc0ya6SrLWjYs7xOSLbVSmlHmnKslrEqw3E5V2XUZAmaLIMmS5GQN7v_XEWSjr-2PkVl71oiwXa4AGZXjmZX_svsEnK0NZVynPVdyVQOcLIolEzIq91tmK94CFM1vh1im0KCVz5NiNozsb0O7d9pll8D83eGbD1MsoS83Vrj76f_-Y2f_483fkHuMZw9WD5DH5GDfj34l-SO_d4vu_WE3C4WRZBqQg5Pz2bzy0mYkiAv2BxlAfJw_uFi_uUXqQI-RA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvBGBAkaCE0RNHDuPA0LlUXXVdrVCBbWnkNgOrFglyyZLtf8J8RuZcZKtthK99cBlIyXOxnG-Gc_YM_MBvJBC-14QhK4ocnRQdJG7OS1zaB5mmch8VA_akk1Eo1F8fJyMN-BPnwtDYZW9TrSKWleK1si3eRyiqR5FsXw7--kSaxTtrvYUGi0s9s3yFF22-s3wA37fl5zvfjx6v-d2rAKukn7cuGHGuU5EoZIwkYJr7GwSSpOHhQxEECEqs9gEuV8oLbiX5bQVlskwDzJtyHwP8H-vwKZAsMcD2BwPD8cnq1Udaiz8pMvO8YJ4u8YZkrLYeOAKdF7wd20GtEQBa9bt-djMcxu0dt7bvfW_jdhtuNlZ2GynFYk7sGHKu3Ct5dxc3oPfXzKUORsSvGSTkumqrOZsahY_KrVsDLPkGTUeUPIWpWZoILNFbVhV4Dl6J_ZptMO6CHQcMUYxtqwk03_a5bSyuukLcNATGjIHrHKmDHBGBQ8oJmrO6jaGk83a5A2jGa2Ks1OiLGY2o-A-fL6UoXoAg7IqzUNghmrBcplnCj3mmKuE-yqXulCe0oaHhQN-D6NUdfXciVZkmtq4giBOW-ilCL3UQi8VDrxa3TNrq5lc2PodoXPVkiqR2xPV_FvaKbaUF4nOC46dimJhgjAxkkdK5H4ieBT6yoGtHp1ppx7r9AyaDjxfXUbFRrtVWWmqRdsmkui-eA7EazKx1qH1K-Xkuy2R7lNZIy65A6978Tl7-r_f-NHFnX0G1_eODg_Sg-Fo_zHc4CTUxCaSbMGgmS_ME7iqfjWTev600wsMvl62YP0FyMyinw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8hAX3ghDgUWCE1iJ92F7DwgVSkRVFEUIUG-u92EaNbJD7FDlP_EL-HXMrO1UqURvPXCJJXsdr9czszO738xHyEspbDTkPA5FoSFAsYUONS5zWBbnucgjMA_Wk00k43F6eKgmW-RPnwuDsMreJnpDbSuDa-QDlsbgqidJKgdFB4uY7I3ezX-GyCCFO609nUYrIgdudQrhW_12fw--9SvGRh-_fvgUdgwDoZFR2oRxzphVojAqVlIwCx1XsXQ6LiQXPAEJzVPHdVQYK9gw17gtlstY89w6dOU5_O8VcjXBouUeNjhZr-9gUxGpLk9nyNNBDXMl5rMxHgoIY-B3Yy70lAEbfu55lOa5rVo_A45u_89jd4fc6vxuutsqyl2y5cp75HrLxLm6T35_z0ETPVB4RacltVVZLejMLU8qs2oc9ZQaNRxAH5elpeA202XtaFXAOXwn-mW8SztcOoweReQtLTEgmHWZrrRu-rIc-IQGnQRvsjEvnGIZBERKLWjdIjvpvE3pcJbiWjk9RSJj6vMMHpBvlzJUD8l2WZXuEaEOK8QyqXMDcXTKjGKR0dIWZmisY3ERkKgXqcx0Vd6RbGSWebQBT7NWDDMQw8yLYSYC8np9z7ytcXJh6_coqeuWWJ_cn6gWP7LO3GWsUFYXDDqVpMLxWDnJEiN0pARL4sgEZKeX1KwzmnV2JqYBebG-DOYO97Dy0lXLtk0iIagZBiTd0I-NDm1eKafHvnB6hMWOmGQBedOr0tnT__3Gjy_u7HNyA7Qp-7w_PnhCbjLUb6QYUTtku1ks3VNyzfxqpvXimTcQlBxdtlb9BUHlqd4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+donor+leukocyte+counts+confound+the+use+of+common+RNA+sequencing+data+normalization+strategies+in+transcriptomic+biomarker+studies+performed+with+whole+blood&rft.jtitle=Scientific+reports&rft.au=O%E2%80%99Connell%2C+Grant+C.&rft.date=2023-09-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-41443-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_41443_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon