Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood
Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used...
Saved in:
| Published in: | Scientific reports Vol. 13; no. 1; pp. 15514 - 14 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
19.09.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition. |
|---|---|
| AbstractList | Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition. Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition. Abstract Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition. |
| ArticleNumber | 15514 |
| Author | O’Connell, Grant C. |
| Author_xml | – sequence: 1 givenname: Grant C. surname: O’Connell fullname: O’Connell, Grant C. email: grant.oconnell@case.edu organization: Molecular Biomarker Core, Case Western Reserve University, School of Nursing, Case Western Reserve University |
| BookMark | eNp9Ustu1DAUjVARLUN_gJUlNmwC8SuJV6iqClSqQELA1nLsmxlPM_ZgO1Tlm_hI7swUQbuoF36ec3x9fJ5XRyEGqKqXtHlDG96_zYJK1dcN47WgQmD_pDphjZA144wd_Tc_rk5zXjfYJFOCqmfVMe861nLJT6rf303yZvCTL7fEB-JiiIlMMF9He1uA2DiHknEII84cKSsgcwYSR9zbbGIgXz6dkQw_ZgjWhyVxphiCGhsz-V-meETkkkyBpYe8uwEXIdvktyVuvCWDjxuTriEhbHY7zBbSiHxw5MaXFblZxQnIMMXoXlRPRzNlOL0bF9W39xdfzz_WV58_XJ6fXdVW0r7UrWHMKTFa1SopmBOOqlbC0I6SC96hD6YHPtDROsEaM-x8MbIduHFAO8H5oro86Lpo1nqbPFZ4q6Pxer8R01KbVLydQLNRuWFkjXVdL4C3CiTrrBioEqxrqUWtdwet7TzgmywENGC6J3r_JPiVXsafmjayUUwyVHh9p5Ai2pyL3vhsYZpMgDhnzfq27aRSGItF9eoBdB3nFNCrPYrJruslovoDyqaYc4JRW1_2X4UF-Alv1ruI6UPENEZM7yOmBVLZA-rfhzxK4gdSRnBYQvpX1SOsP1RW6HI |
| CitedBy_id | crossref_primary_10_3390_computation12070137 crossref_primary_10_1186_s12863_024_01223_z |
| Cites_doi | 10.1586/erc.12.159 10.1073/pnas.252784499 10.1056/NEJMoa0912965 10.1016/j.jbi.2018.07.016 10.1186/gb-2010-11-3-r25 10.1186/s12864-015-2353-z 10.1186/s12864-020-07304-4 10.1186/s12883-019-1245-2 10.1093/bioinformatics/btp616 10.1186/1471-2105-9-559 10.1038/npjgenmed.2016.38 10.1093/bib/bbs046 10.1038/s41598-020-67708-w 10.1038/s41587-019-0201-4 10.1038/nature09247 10.1093/bib/bbx008 10.1186/1471-2164-11-96 10.1093/labmed/lmx035 10.1371/journal.pone.0026905 10.1126/science.aax9198 10.1093/biostatistics/kxr031 10.1038/s41598-019-56218-z 10.1186/1471-2164-7-115 10.1111/ajt.15011 10.1186/s13104-016-2335-5 10.1186/s13059-022-02648-4 10.1155/2015/621690 10.1007/s12975-018-0623-1 10.1093/nar/gkz114 10.1016/j.molmed.2007.08.003 10.1177/14604086211034008 10.1038/ni1310 10.1073/pnas.0610204104 10.1186/s13059-014-0550-8 10.1515/tnsci-2018-0024 10.1056/NEJMoa040465 10.1186/s13054-020-03374-8 10.1016/j.ajem.2019.10.023 10.1186/1471-2105-11-27 10.1186/s12859-019-3247-x 10.1093/ajcp/53.5.647 10.1038/s41598-020-59516-z 10.4161/cib.25849 10.1038/npre.2010.4282.2 10.1080/10618600.1996.10474713 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-41443-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_2f9dbf20cd784e369e527c4b1942761c PMC10509252 10_1038_s41598_023_41443_4 |
| GrantInformation_xml | – fundername: National Institute of Nursing Research grantid: R21NR019337 funderid: http://dx.doi.org/10.13039/100000056 – fundername: National Institute of Neurological Disorders and Stroke grantid: R01NS129876 funderid: http://dx.doi.org/10.13039/100000065 – fundername: ; grantid: R01NS129876 – fundername: ; grantid: R21NR019337 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c518t-6a22d94fc969542d4d1965eb6f53437005a8e3b1fcd420ab0529a56b3ade17433 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089134700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:30:07 EDT 2025 Tue Nov 04 02:06:17 EST 2025 Sun Nov 09 11:23:48 EST 2025 Tue Oct 07 08:09:53 EDT 2025 Sat Nov 29 06:05:14 EST 2025 Tue Nov 18 22:12:47 EST 2025 Fri Feb 21 02:37:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-6a22d94fc969542d4d1965eb6f53437005a8e3b1fcd420ab0529a56b3ade17433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2866257785?pq-origsite=%requestingapplication% |
| PMID | 37726353 |
| PQID | 2866257785 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f9dbf20cd784e369e527c4b1942761c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10509252 proquest_miscellaneous_2866759910 proquest_journals_2866257785 crossref_citationtrail_10_1038_s41598_023_41443_4 crossref_primary_10_1038_s41598_023_41443_4 springer_journals_10_1038_s41598_023_41443_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-19 |
| PublicationDateYYYYMMDD | 2023-09-19 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Langfelder, Horvath (CR44) 2008; 9 Arora, Pattwell, Holland, Bolouri (CR10) 2020; 10 Love, Huber, Anders (CR13) 2014; 15 Evans, Hardin, Stoebel (CR16) 2018; 19 Maza, Frasse, Senin, Bouzayen, Zouine (CR32) 2013; 6 Qiu, Fitzgerald, Mitra (CR25) 2022; 24 Hemond, Glanz, Bakshi, Chitnis, Healy (CR26) 2019; 19 Pham (CR6) 2010; 362 O’Connell (CR4) 2016; 1 O’Connell, Chang (CR45) 2018; 9 Li (CR20) 2020; 24 Kim, Paggi, Park, Bennett, Salzberg (CR42) 2019; 37 CR31 Bhat (CR23) 2013; 11 Mohr, Liew (CR1) 2007; 13 Jang (CR17) 2020; 21 Rha, Kim, Yoon, Cho (CR24) 2020; 10 Zyprych-Walczak (CR34) 2015; 2015 Jeffrey (CR41) 2006; 7 Ross, Robert, Ihaka, Gentleman (CR15) 1996; 5 Lin (CR33) 2016; 17 Scherzer (CR5) 2007; 104 Li, Witten, Johnstone, Tibshirani (CR8) 2012; 13 Abrams, Johnson, Huang, Payne, Coombes (CR9) 2019; 20 Robinson, McCarthy, Smyth (CR14) 2010; 26 Whitney (CR35) 2003; 100 Dillies (CR11) 2013; 14 Li, Ge, Peng, Li, Li (CR29) 2022; 23 Friedewald (CR7) 2019; 19 Repsilber (CR28) 2010; 11 Robinson, Oshlack (CR30) 2010; 11 CR46 Uhlen (CR40) 2019; 366 Valk (CR2) 2004; 350 O’Connell (CR38) 2017; 48 Min (CR36) 2010; 11 Xu (CR37) 2011; 6 O’Connell (CR39) 2018 Berry (CR3) 2010; 466 Liao, Smyth, Shi (CR43) 2019; 47 Howard, Kanetsky, Egan (CR21) 2019; 9 Palmer, Diehn, Alizadeh, Brown (CR27) 2006; 7 Han, Men (CR12) 2018; 85 Huang, Fu, Huang, Huang (CR22) 2020; 38 Orfanakis, Ostlund, Bishop, Athens (CR18) 1970; 53 Forget (CR19) 2017; 10 CC Hemond (41443_CR26) 2019; 19 Y Li (41443_CR29) 2022; 23 E Maza (41443_CR32) 2013; 6 GC O’Connell (41443_CR39) 2018 MI Love (41443_CR13) 2014; 15 JL Min (41443_CR36) 2010; 11 Q Xu (41443_CR37) 2011; 6 P Forget (41443_CR19) 2017; 10 Y Qiu (41443_CR25) 2022; 24 J Zyprych-Walczak (41443_CR34) 2015; 2015 MD Robinson (41443_CR14) 2010; 26 MD Robinson (41443_CR30) 2010; 11 GC O’Connell (41443_CR45) 2018; 9 S Arora (41443_CR10) 2020; 10 Y Lin (41443_CR33) 2016; 17 M Uhlen (41443_CR40) 2019; 366 CR Scherzer (41443_CR5) 2007; 104 X Li (41443_CR20) 2020; 24 Y Liao (41443_CR43) 2019; 47 MX Pham (41443_CR6) 2010; 362 H Han (41443_CR12) 2018; 85 NG Orfanakis (41443_CR18) 1970; 53 D Kim (41443_CR42) 2019; 37 41443_CR46 Z Huang (41443_CR22) 2020; 38 C Palmer (41443_CR27) 2006; 7 KL Jeffrey (41443_CR41) 2006; 7 JJ Friedewald (41443_CR7) 2019; 19 JS Jang (41443_CR17) 2020; 21 GC O’Connell (41443_CR38) 2017; 48 MPR Berry (41443_CR3) 2010; 466 I Ross (41443_CR15) 1996; 5 P Langfelder (41443_CR44) 2008; 9 C Evans (41443_CR16) 2018; 19 ZB Abrams (41443_CR9) 2019; 20 M-A Dillies (41443_CR11) 2013; 14 T Bhat (41443_CR23) 2013; 11 R Howard (41443_CR21) 2019; 9 AR Whitney (41443_CR35) 2003; 100 D Repsilber (41443_CR28) 2010; 11 41443_CR31 S Mohr (41443_CR1) 2007; 13 J Li (41443_CR8) 2012; 13 M-S Rha (41443_CR24) 2020; 10 PJM Valk (41443_CR2) 2004; 350 GC O’Connell (41443_CR4) 2016; 1 |
| References_xml | – volume: 11 start-page: 55 year: 2013 end-page: 59 ident: CR23 article-title: Neutrophil to lymphocyte ratio and cardiovascular diseases: A review publication-title: Expert Rev. Cardiovasc. Ther. doi: 10.1586/erc.12.159 – volume: 100 start-page: 1896 year: 2003 end-page: 1901 ident: CR35 article-title: Individuality and variation in gene expression patterns in human blood publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.252784499 – volume: 362 start-page: 1890 year: 2010 end-page: 1900 ident: CR6 article-title: Gene-expression profiling for rejection surveillance after cardiac transplantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0912965 – volume: 85 start-page: 80 year: 2018 end-page: 92 ident: CR12 article-title: How does normalization impact RNA-seq disease diagnosis? publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.016 – volume: 11 start-page: R25 year: 2010 ident: CR30 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-3-r25 – volume: 17 start-page: 28 year: 2016 ident: CR33 article-title: Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual publication-title: BMC Genomics doi: 10.1186/s12864-015-2353-z – volume: 21 start-page: 890 year: 2020 ident: CR17 article-title: Comparative evaluation for the globin gene depletion methods for mRNA sequencing using the whole blood-derived total RNAs publication-title: BMC Genomics doi: 10.1186/s12864-020-07304-4 – volume: 19 start-page: 23 year: 2019 ident: CR26 article-title: The neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios are independently associated with neurological disability and brain atrophy in multiple sclerosis publication-title: BMC Neurol. doi: 10.1186/s12883-019-1245-2 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR14 article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 5 start-page: 299 year: 1996 end-page: 314 ident: CR15 article-title: R: A language for data analysis and graphics publication-title: J. Comput. Graph. Stat. – volume: 9 start-page: 559 year: 2008 ident: CR44 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-559 – volume: 1 start-page: 16038 year: 2016 end-page: 16038 ident: CR4 article-title: Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke publication-title: npj Genom. Med. doi: 10.1038/npjgenmed.2016.38 – volume: 14 start-page: 671 year: 2013 end-page: 683 ident: CR11 article-title: A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs046 – volume: 10 start-page: 10862 year: 2020 ident: CR24 article-title: Association between the neutrophil-to-lymphocyte ratio and obstructive sleep apnea: A meta-analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-67708-w – volume: 37 start-page: 907 year: 2019 end-page: 915 ident: CR42 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 466 start-page: 973 year: 2010 end-page: 977 ident: CR3 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature doi: 10.1038/nature09247 – volume: 19 start-page: 776 year: 2018 end-page: 792 ident: CR16 article-title: Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx008 – volume: 11 start-page: 96 year: 2010 ident: CR36 article-title: Variability of gene expression profiles in human blood and lymphoblastoid cell lines publication-title: BMC Genomics doi: 10.1186/1471-2164-11-96 – volume: 48 start-page: 346 year: 2017 end-page: 356 ident: CR38 article-title: Leukocyte dynamics influence reference gene stability in whole blood: Data-driven qRT-PCR normalization is a robust alternative for measurement of transcriptional biomarkers publication-title: Lab. Med. doi: 10.1093/labmed/lmx035 – volume: 6 start-page: 1 year: 2011 end-page: 11 ident: CR37 article-title: Investigation of variation in gene expression profiling of human blood by extended principle component analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0026905 – volume: 366 start-page: eaax9198 year: 2019 ident: CR40 article-title: A genome-wide transcriptomic analysis of protein-coding genes in human blood cells publication-title: Science doi: 10.1126/science.aax9198 – volume: 13 start-page: 523 year: 2012 end-page: 538 ident: CR8 article-title: Normalization, testing, and false discovery rate estimation for RNA-sequencing data publication-title: Biostatistics doi: 10.1093/biostatistics/kxr031 – volume: 9 start-page: 19673 year: 2019 ident: CR21 article-title: Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer publication-title: Sci. Rep. doi: 10.1038/s41598-019-56218-z – volume: 7 start-page: 115 year: 2006 ident: CR27 article-title: Cell-type specific gene expression profiles of leukocytes in human peripheral blood publication-title: BMC Genomics doi: 10.1186/1471-2164-7-115 – volume: 19 start-page: 98 year: 2019 end-page: 109 ident: CR7 article-title: Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant publication-title: Am. J. Transplant. doi: 10.1111/ajt.15011 – ident: CR46 – volume: 10 start-page: 12 year: 2017 ident: CR19 article-title: What is the normal value of the neutrophil-to-lymphocyte ratio? publication-title: BMC Res. Notes doi: 10.1186/s13104-016-2335-5 – volume: 23 start-page: 79 year: 2022 ident: CR29 article-title: Exaggerated false positives by popular differential expression methods when analyzing human population samples publication-title: Genome Biol. doi: 10.1186/s13059-022-02648-4 – volume: 2015 start-page: 1 year: 2015 end-page: 10 ident: CR34 article-title: The impact of normalization methods on RNA-Seq data analysis publication-title: Biomed. Res. Int. doi: 10.1155/2015/621690 – year: 2018 ident: CR39 article-title: Shifts in leukocyte counts drive the differential expression of transcriptional stroke biomarkers in whole blood publication-title: Transl. Stroke Res. doi: 10.1007/s12975-018-0623-1 – volume: 47 start-page: e47 year: 2019 end-page: e47 ident: CR43 article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz114 – volume: 13 start-page: 422 year: 2007 end-page: 432 ident: CR1 article-title: The peripheral-blood transcriptome: New insights into disease and risk assessment publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2007.08.003 – volume: 24 start-page: 195 year: 2022 end-page: 203 ident: CR25 article-title: Association of the neutrophil–lymphocyte ratio to patient outcomes after trauma: A systematic review publication-title: Trauma doi: 10.1177/14604086211034008 – volume: 7 start-page: 274 year: 2006 end-page: 283 ident: CR41 article-title: Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1 publication-title: Nat. Immunol. doi: 10.1038/ni1310 – volume: 104 start-page: 955 year: 2007 end-page: 960 ident: CR5 article-title: Molecular markers of early Parkinson’s disease based on gene expression in blood publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610204104 – volume: 15 start-page: 550 year: 2014 ident: CR13 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – ident: CR31 – volume: 9 start-page: 161 year: 2018 end-page: 166 ident: CR45 article-title: Analysis of early stroke-induced changes in circulating leukocyte counts using transcriptomic deconvolution publication-title: Transl. Neurosci. doi: 10.1515/tnsci-2018-0024 – volume: 350 start-page: 1617 year: 2004 end-page: 1628 ident: CR2 article-title: Prognostically useful gene-expression profiles in acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa040465 – volume: 24 start-page: 647 year: 2020 ident: CR20 article-title: Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis publication-title: Crit. Care doi: 10.1186/s13054-020-03374-8 – volume: 38 start-page: 641 year: 2020 end-page: 647 ident: CR22 article-title: Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2019.10.023 – volume: 11 start-page: 27 year: 2010 ident: CR28 article-title: Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-27 – volume: 20 start-page: 679 year: 2019 ident: CR9 article-title: A protocol to evaluate RNA sequencing normalization methods publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3247-x – volume: 53 start-page: 647 year: 1970 end-page: 651 ident: CR18 article-title: Normal blood leukocyte concentration values publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/53.5.647 – volume: 10 start-page: 2734 year: 2020 ident: CR10 article-title: Variability in estimated gene expression among commonly used RNA-seq pipelines publication-title: Sci. Rep. doi: 10.1038/s41598-020-59516-z – volume: 6 start-page: e25849 year: 2013 ident: CR32 article-title: Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes publication-title: Commun. Integr. Biol. doi: 10.4161/cib.25849 – ident: 41443_CR46 – volume: 362 start-page: 1890 year: 2010 ident: 41443_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0912965 – volume: 10 start-page: 10862 year: 2020 ident: 41443_CR24 publication-title: Sci. Rep. doi: 10.1038/s41598-020-67708-w – volume: 17 start-page: 28 year: 2016 ident: 41443_CR33 publication-title: BMC Genomics doi: 10.1186/s12864-015-2353-z – volume: 14 start-page: 671 year: 2013 ident: 41443_CR11 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs046 – volume: 21 start-page: 890 year: 2020 ident: 41443_CR17 publication-title: BMC Genomics doi: 10.1186/s12864-020-07304-4 – volume: 6 start-page: e25849 year: 2013 ident: 41443_CR32 publication-title: Commun. Integr. Biol. doi: 10.4161/cib.25849 – volume: 104 start-page: 955 year: 2007 ident: 41443_CR5 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610204104 – volume: 53 start-page: 647 year: 1970 ident: 41443_CR18 publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/53.5.647 – volume: 24 start-page: 647 year: 2020 ident: 41443_CR20 publication-title: Crit. Care doi: 10.1186/s13054-020-03374-8 – year: 2018 ident: 41443_CR39 publication-title: Transl. Stroke Res. doi: 10.1007/s12975-018-0623-1 – volume: 466 start-page: 973 year: 2010 ident: 41443_CR3 publication-title: Nature doi: 10.1038/nature09247 – volume: 24 start-page: 195 year: 2022 ident: 41443_CR25 publication-title: Trauma doi: 10.1177/14604086211034008 – volume: 350 start-page: 1617 year: 2004 ident: 41443_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa040465 – volume: 1 start-page: 16038 year: 2016 ident: 41443_CR4 publication-title: npj Genom. Med. doi: 10.1038/npjgenmed.2016.38 – volume: 15 start-page: 550 year: 2014 ident: 41443_CR13 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 6 start-page: 1 year: 2011 ident: 41443_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0026905 – volume: 26 start-page: 139 year: 2010 ident: 41443_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 7 start-page: 115 year: 2006 ident: 41443_CR27 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-115 – volume: 13 start-page: 523 year: 2012 ident: 41443_CR8 publication-title: Biostatistics doi: 10.1093/biostatistics/kxr031 – volume: 23 start-page: 79 year: 2022 ident: 41443_CR29 publication-title: Genome Biol. doi: 10.1186/s13059-022-02648-4 – volume: 11 start-page: 27 year: 2010 ident: 41443_CR28 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-27 – volume: 2015 start-page: 1 year: 2015 ident: 41443_CR34 publication-title: Biomed. Res. Int. doi: 10.1155/2015/621690 – volume: 11 start-page: 96 year: 2010 ident: 41443_CR36 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-96 – volume: 19 start-page: 776 year: 2018 ident: 41443_CR16 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx008 – ident: 41443_CR31 doi: 10.1038/npre.2010.4282.2 – volume: 9 start-page: 161 year: 2018 ident: 41443_CR45 publication-title: Transl. Neurosci. doi: 10.1515/tnsci-2018-0024 – volume: 13 start-page: 422 year: 2007 ident: 41443_CR1 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2007.08.003 – volume: 5 start-page: 299 year: 1996 ident: 41443_CR15 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1996.10474713 – volume: 20 start-page: 679 year: 2019 ident: 41443_CR9 publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3247-x – volume: 38 start-page: 641 year: 2020 ident: 41443_CR22 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2019.10.023 – volume: 11 start-page: 55 year: 2013 ident: 41443_CR23 publication-title: Expert Rev. Cardiovasc. Ther. doi: 10.1586/erc.12.159 – volume: 366 start-page: eaax9198 year: 2019 ident: 41443_CR40 publication-title: Science doi: 10.1126/science.aax9198 – volume: 48 start-page: 346 year: 2017 ident: 41443_CR38 publication-title: Lab. Med. doi: 10.1093/labmed/lmx035 – volume: 9 start-page: 559 year: 2008 ident: 41443_CR44 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-559 – volume: 47 start-page: e47 year: 2019 ident: 41443_CR43 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz114 – volume: 100 start-page: 1896 year: 2003 ident: 41443_CR35 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.252784499 – volume: 37 start-page: 907 year: 2019 ident: 41443_CR42 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 11 start-page: R25 year: 2010 ident: 41443_CR30 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-3-r25 – volume: 19 start-page: 98 year: 2019 ident: 41443_CR7 publication-title: Am. J. Transplant. doi: 10.1111/ajt.15011 – volume: 19 start-page: 23 year: 2019 ident: 41443_CR26 publication-title: BMC Neurol. doi: 10.1186/s12883-019-1245-2 – volume: 10 start-page: 2734 year: 2020 ident: 41443_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59516-z – volume: 9 start-page: 19673 year: 2019 ident: 41443_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56218-z – volume: 7 start-page: 274 year: 2006 ident: 41443_CR41 publication-title: Nat. Immunol. doi: 10.1038/ni1310 – volume: 85 start-page: 80 year: 2018 ident: 41443_CR12 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.016 – volume: 10 start-page: 12 year: 2017 ident: 41443_CR19 publication-title: BMC Res. Notes doi: 10.1186/s13104-016-2335-5 |
| SSID | ssj0000529419 |
| Score | 2.4172525 |
| Snippet | Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels... Abstract Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15514 |
| SubjectTerms | 631/1647/2217/2018 631/1647/514/1949 631/61/514/1949 Biomarkers Blood Flow cytometry Gene expression Genomes Humanities and Social Sciences Leukocytes multidisciplinary Next-generation sequencing Science Science (multidisciplinary) Transcriptomes Transcriptomics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yKPgi_sTqKRF803JtkqbJ4ykePsgiose9lTaZ4uLSHttW2f_JP9KZpLteD9QXX7rQpjTNzHTm28x8w9jLDNAnWe1SCyUgQMlkajOlUp8LwICh9jbUV5x_KFcrc3FhP15p9UU5YZEeOC7ciWitb1qROV8aBVJbKETpVIPgWyAEd_T1xajnCpiKrN7CqtzOVTKZNCcDeiqqJhMyVQgi8LjwRIGwfxFlXs-RvLZRGvzP2V12Zw4c-Wmc8D12A7r77FZsJbl7wH6eI-iNnNs7vu6477t-yzcwfevdbgQeekIM-IMKNXWeY9zHpwF43-I50kX-aXXK58RqnACn1FHeUUS7mUs1-TDueSXoCSN5ufDNocJmTnX8lOqz5UNMTeSXsSYBPKc_e_kP6sTLQ6L8Q_bl7N3nt-_TuRND6orcjKmuhUCptc5qWyjhlSciQmh0W0glS1zu2oBs8tZ5JbK6oeWvC93I2gNBHvmIHXV9B48ZB1HXUGpP1G8IRaUBkFCKVpfURMvohOV7qVRupimnbhmbKmyXS1NFSVYoySpIslIJe3W45zKSdPx19BsS9mEkEWyHE6h21ax21b_ULmHHe1WpZqsfKmE0wsmyNEXCXhwuo73SJkzdQT_FMWgdGKUlzCxUbDGh5ZVu_TUwf-fE1iMKkbDXe238_fQ_v_GT__HGT9ltQdZD7TPsMTsatxM8Yzfd93E9bJ8H8_sFUug1fg priority: 102 providerName: Directory of Open Access Journals |
| Title | Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood |
| URI | https://link.springer.com/article/10.1038/s41598-023-41443-4 https://www.proquest.com/docview/2866257785 https://www.proquest.com/docview/2866759910 https://pubmed.ncbi.nlm.nih.gov/PMC10509252 https://doaj.org/article/2f9dbf20cd784e369e527c4b1942761c |
| Volume | 13 |
| WOSCitedRecordID | wos001089134700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Journals (ProQuest Database) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZYCxIv_EYERmUk3iBaYjux_YQ2tAkkVlUTTOUpSmIHKqqkJCmo_xN_JHeO26mT2AsvVylx5Vj-zr6z774j5HVkYU_SaRlqKy04KBEPdSREaGJmwWDIjXb5FZef5HSq5nM98wdunQ-r3K6JbqE2TYln5EdMpWCqS6mSd6ufIVaNwttVX0LjgIyRqUyMyPjkdDq72J2y4D2WiLXPlom4Oupgx8KsMsZDAc4EyL0dyRH371mb12Mlr12Yun3o7P7_juABuectUHo8QOYhuWXrR-TOUJNy85j8uQTveSDv3tBFTU1TNy1d2vWPptz0lrriEh38ADLXtaFgQNJ1Z2lTwTPsg15Mj6mP0IYRUIxBpTWaxkuf80m7fktQgT30uF26xQszpCkSAmDMUEu7IcaRrobkBmsonhrT31jSl7qI-yfky9np5_cfQl_SISyTWPVhmjMG01-VOtWJYEYYZDS0RVolXHAJ85Ury4u4Ko1gUV7g_OVJWvDcWPSd-FMyqpvaPiPUsjy3MjXIIQc-LVfWcitZlUqsxqXSgMTbac1Kz3eOZTeWmbt35yoboJABFDIHhUwE5M3uP6uB7ePG1ieIll1LZOp2D5r2W-YVP2OVNkXFotJIJSxPtU2YLEUBaGUyjcuAHG7Rkvnlo8uuoBKQV7vXoPh4m5PXtlkPbUDNwNwLiNrD6N4H7b-pF98dhXiMtD8sYQF5u4XzVe__HvHzmz_2BbnLULGwwoY-JKO-XduX5Hb5q1907YQcyLl0Uk28nk7cEQjIczZDKUGOZx_PZ1__AgJDS50 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFNyJQwEhwgqiJ7cTxAaHyqFp1WSFUqt5CEk9gxSpZNlmq_U-I38iMk2y1leitBy6JlDix48yMx_Y38zH2PAAck0xc-AY04AQlkL4JlPJtKAAdhswaF19xNNLjcXJ8bD5tsD9DLAzBKgeb6Ay1rQtaI98WSYyuutZJ9Gb20yfWKNpdHSg0OrE4gOUJTtma1_vv8f--EGL3w-G7Pb9nFfCLKExaP86EwBaUhYlNpIRVlpLqQR6XkVRSo1RmCcg8LAurRJDltBWWRXEuMwvkvkt87yV2Ge24JgiZPtarNR0qqkLTx-YEMtlucHykGDYhfYVTFzyujX-OJmDNtz2LzDyzPetGvd2b_1t_3WI3ev-a73QKcZttQHWHXe0YN5d32e-jDDXOAYKXfFJxW1f1nE9h8aMuli1wR53R4An1blFZju4xXzTA6xKv0Tfxz-Md3uPPscc4IWx5RY7_tI9o5U07pN-gGlpyBpxppvhvTukOCBE1502H4OSzLnQDLKc1cX5ChMXcxRPcY18upKvus82qruAB4yCyDHRsKUMezthlAiBBizLWxDWWxB4LBzFKiz6bO5GKTFOHKpBJ2oleiqKXOtFLlcderp6ZdblMzi39lqRzVZLykLsL9fxb2pu1VJTG5qUICqsTBTI2EAldqDw0Sug4LDy2NUhn2hvHJj0VTY89W91Gs0Z7VVkF9aIrg0YEnVmPJWs6sdag9TvV5LtLkB5SUiMRCY-9GtTntPZ_f_HD8xv7lF3bO_w4Skf744NH7LogpSYuEbPFNtv5Ah6zK8WvdtLMnzirwNnXi1arv5hYn0o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELfG-CNe-I8IDDASPEHUxHbi-AGhwaiYNqoKwbS3kMQXqKiS0rRM_U58Aj4dd07SqZPY2x54aaTEaRzn7nxn3_1-jD0PAOckExe-AQ0YoATSN4FSvg0FoMOQWePqK44O9WiUHB-b8Rb709fCUFplbxOdobZ1QWvkA5HE6KprnUSDskuLGO8N38x--sQgRTutPZ1GKyIHsDrB8K15vb-H3_qFEMP3n9998DuGAb-IwmThx5kQ2JuyMLGJlLDKEsAe5HEZSSU1SmiWgMzDsrBKBFlO22JZFOcys0CuvMT_vcQuaxVFpF0fxXi9vkNNVWi6Op1AJoMG50qqZxPSVxjG4O_GXOgoAzb83LNZmme2at0MOLz5P4_dLXaj87v5bqsot9kWVHfY1ZaJc3WX_T7KUBNdovCKTypu66qe8yksf9TFagHcUWo0eEB9XFaWo9vMlw3wusRz9E7802iXd3npOHqcMm95RQHBtKt05c2ih-WgJyzISXAmm-rCOcEgUKbUnDdtZieftSUdYDmtlfMTIjLmrs7gHvtyIUN1n21XdQUPGAeRZaBjS8h5GMnLBECCFmWsiYMsiT0W9iKVFh3KO5GNTFOXbSCTtBXDFMUwdWKYKo-9XN8zazFOzm39liR13ZLwyd2Jev4t7cxdKkpj81IEhdWJAhkbiIQuVB4aJXQcFh7b6SU17Yxmk56KqceerS-juaM9rKyCetm2QeOCTq7Hkg392OjQ5pVq8t0Bp4cEdiQi4bFXvSqdPv3fb_zw_M4-ZddQm9LD_dHBI3ZdkH4TxYjZYduL-RIesyvFr8WkmT9xBoKzrxetVX8BZCSoFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+donor+leukocyte+counts+confound+the+use+of+common+RNA+sequencing+data+normalization+strategies+in+transcriptomic+biomarker+studies+performed+with+whole+blood&rft.jtitle=Scientific+reports&rft.au=O%27Connell%2C+Grant+C&rft.date=2023-09-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=15514&rft_id=info:doi/10.1038%2Fs41598-023-41443-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |