Assessing the accuracy and efficacy of multiscale computational methods in predicting reaction mechanisms and kinetics of SN2 reactions and Claisen rearrangement
This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S N 2 reactions involving methyl iodide with NH 2 OH and NH 2 O − , as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our a...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 16791 - 13 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
22.07.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S
N
2 reactions involving methyl iodide with NH
2
OH and NH
2
O
−
, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the S
N
2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at
https://github.com/iranimehdi/pdbtoORCA
. |
|---|---|
| AbstractList | This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O-, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O-, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA . This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S N 2 reactions involving methyl iodide with NH 2 OH and NH 2 O − , as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the S N 2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA . Abstract This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA . This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA. This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA. |
| ArticleNumber | 16791 |
| Author | Zafari, Faezeh Saidi, Hamid Haji Dehabadi, Maryam Irani, Mehdi |
| Author_xml | – sequence: 1 givenname: Maryam surname: Haji Dehabadi fullname: Haji Dehabadi, Maryam organization: Department of Chemistry, University of Kurdistan – sequence: 2 givenname: Hamid surname: Saidi fullname: Saidi, Hamid organization: Department of Chemistry, University of Kurdistan – sequence: 3 givenname: Faezeh surname: Zafari fullname: Zafari, Faezeh organization: Department of Chemistry, University of Kurdistan – sequence: 4 givenname: Mehdi surname: Irani fullname: Irani, Mehdi email: m.irani@uok.ac.ir organization: Department of Chemistry, University of Kurdistan |
| BookMark | eNp9kstu1TAQhiNUREvpC7CKxIZNwGM7ibNCVcWlUgULurcmvpzjQ2If7KRqH4c3xTmpCu2i3vgy3_977JnXxZEP3hTFWyAfgDDxMXGoO1ERyqum5Y2obl8UJ5TwuqKM0qP_1sfFWUo7kkdNOw7dq-KYdYR1IMhJ8ec8JZOS85ty2poSlZojqrsSvS6NtU4tm2DLcR4mlxQOplRh3M8TTi54HMrRTNugU-l8uY9GOzUtXtGgWoAcVlv0Lo3pYPnLeTM5lRbLn9_pA7dGLwZ0yfjlNEb0GzMaP70pXlockjm7n0-L6y-fry--VVc_vl5enF9VqgYxVdBrww3wGiwzdd2SFrkGymtqtSHQK9Vb0VObYQRlBBF939peAxP5pxp2WlyutjrgTu6jGzHeyYBOHg5C3EiMOfXBSM3rDnqCRKDmWtRIoQWlkVmAHnubvT6tXvu5H41W-RURh0emjyPebeUm3EgA2rCGd9nh_b1DDL9nkyY55t83w4DehDlJRgRrWgBY0HdP0F2YYy7NSrHMCMgUXSkVQ0rR2IdsgMiloeTaUDI3lDw0lLzNIvFEpNxa-Jy1G56XslWa8j25kvFfVs-o_gLch-WU |
| CitedBy_id | crossref_primary_10_1021_acs_jpcc_5c00499 |
| Cites_doi | 10.1063/1.464397 10.1063/1.448799 10.1021/ja908680c 10.1021/acs.jpca.9b04121 10.1103/PhysRevA.38.3098 10.1021/jo00264a002 10.1002/wcms.1493 10.1038/s41598-023-37755-0 10.1134/S003602442305014X 10.1021/ja00238a029 10.1063/1.1626543 10.1063/1.448118 10.1063/1.445869 10.1021/jp070186p 10.1021/ja00250a040 10.1021/ie990645b 10.1021/jp9716997 10.1002/jcc.10216 10.1002/jcc.21759 10.1021/ja021423z 10.1016/0021-9991(77)90098-5 10.1002/wcms.1327 10.1088/1674-1056/27/3/033401 10.1021/ja961500o 10.1021/ja01350a001 10.1021/ja00287a028 10.1039/b515623h 10.1021/acs.jctc.8b01176 10.1039/b508541a 10.1021/je60011a015 10.1021/jo00835a097 10.1063/1.460447 10.1002/jcc.21224 10.1016/j.cplett.2003.10.013 10.1063/1.464913 10.1063/1.455064 10.1002/0471220655.ch15 10.3389/fchem.2018.00089 10.1016/j.softx.2017.11.002 10.1063/1.3382344 10.1002/jcc.20290 10.3184/146867807X227462 10.1016/j.cpc.2012.05.007 10.1021/j100142a004 10.4016/10896.01 10.1002/jcc.540110404 10.1021/acs.jctc.7b00174 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-67468-x |
| DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_d4591b0a08ad4d85a2171cda3f11babf PMC11263649 10_1038_s41598_024_67468_x |
| GrantInformation_xml | – fundername: University of Kurdistan grantid: 02/9/35563 funderid: http://dx.doi.org/10.13039/501100008973 – fundername: Iran's Federation of Scientific Elites |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c518t-1bde4e1451f3e55707a4d12452fde01bccbf8b2f518a1ce808bb7fbd13820463 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001274726000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:37 EDT 2025 Tue Nov 04 02:05:31 EST 2025 Wed Oct 01 14:25:43 EDT 2025 Tue Oct 28 16:25:56 EDT 2025 Tue Nov 18 21:08:20 EST 2025 Sat Nov 29 02:13:38 EST 2025 Fri Feb 21 02:38:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Reaction mechanism ORCA software QM/MM Multiscale modeling Python scripting |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-1bde4e1451f3e55707a4d12452fde01bccbf8b2f518a1ce808bb7fbd13820463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d4591b0a08ad4d85a2171cda3f11babf |
| PMID | 39039180 |
| PQID | 3083311981 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d4591b0a08ad4d85a2171cda3f11babf pubmedcentral_primary_oai_pubmedcentral_nih_gov_11263649 proquest_miscellaneous_3083671119 proquest_journals_3083311981 crossref_primary_10_1038_s41598_024_67468_x crossref_citationtrail_10_1038_s41598_024_67468_x springer_journals_10_1038_s41598_024_67468_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-22 |
| PublicationDateYYYYMMDD | 2024-07-22 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | BeslerBHMerzKMKollmanPAAtomic charges derived from semiempirical methodsJ. Comput. Chem.1990114314391:CAS:528:DyaK3cXkt12nu7k%3D10.1002/jcc.540110404 JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLComparison of simple potential functions for simulating liquid waterJ. Chem. Phys.1983799269351983JChPh..79..926J1:CAS:528:DyaL3sXksF2htL4%3D10.1063/1.445869 Young, D. C. Efficient use of computer resources. In Computational Chemistry 128–134 (2001). https://doi.org/10.1002/0471220655.ch15. ParrishRMPsi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperabilityJ. Chem. Theory Comput.201713318531971:CAS:528:DC%2BC2sXnsV2ju7k%3D28489372749535510.1021/acs.jctc.7b00174 BrandesEGriecoPAGajewskiJJEffect of polar solvents on the rates of Claisen rearrangements: Assessment of ionic characterJ. Org. Chem.1989545155161:CAS:528:DyaL1MXnsVGrsg%3D%3D10.1021/jo00264a002 LuzhkovVBKrapivinVBSaninaNAAldoshinSMTheoretical study of the hydrolysis of iron–sulfur–nitrosyl complex [Fe(NO)2(SCH2)2]+Russ. J. Phys. Chem. A2023978138211:CAS:528:DC%2BB3sXhtF2isbvK10.1134/S003602442305014X BannwarthCExtended tight-binding quantum chemistry methodsWIREs Comput. Mol. Sci.202111e14931:CAS:528:DC%2BB3MXnt1aru74%3D10.1002/wcms.1493 BaroneVCossiMQuantum calculation of molecular energies and energy gradients in solution by a conductor solvent modelJ. Phys. Chem. A199810219951:CAS:528:DyaK1cXht1Cgt7o%3D10.1021/jp9716997 PeterssonGAA complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elementsJ. Chem. Phys.198889219322181988JChPh..89.2193P1:CAS:528:DyaL1cXlvFOgtbs%3D10.1063/1.455064 LehtolaSSteigemannCOliveiraMJTMarquesMALRecent developments in libxc—A comprehensive library of functionals for density functional theorySoftwareX20187152018SoftX...7....1L10.1016/j.softx.2017.11.002 MikhailSZKimelWRDensities and viscosities of methanol-water mixturesJ. Chem. Eng. Data196165335371:CAS:528:DyaF38XksVKltr8%3D10.1021/je60011a015 AradiBHourahineBFrauenheimTDFTB+, a sparse matrix-based implementation of the DFTB Method†J. Phys. Chem. A2007111567856841:CAS:528:DC%2BD2sXmsVaju7c%3D1756711010.1021/jp070186p WhiteWNWolfarthEFOrtho-Claisen rearrangement. IX. Effect of solvent on the substituent effectJ. Org. Chem.197035358535851:CAS:528:DyaE3cXltF2qs7s%3D10.1021/jo00835a097 BannwarthCEhlertSGrimmeSGFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributionsJ. Chem. Theory Comput.201915165216711:CAS:528:DC%2BC1MXis1entL0%3D3074154710.1021/acs.jctc.8b01176 RyckaertJPCiccottiGBerendsenHJNumerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411977JCoPh..23..327R1:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-5 LiCLiuPLiYWangDSolvent effects and potential of mean force study of the SN2 reaction of CH3F+ CN− in waterChin. Phys. B2018273340110.1088/1674-1056/27/3/033401 MartinezLAndradeRBirginEGMartínezJMPACKMOL: A package for building initial configurations for molecular dynamics simulationsJ. Comput. Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224 NeeseFSoftware update: The ORCA program system, version 4.0Wiley Interdiscip. Rev. Comput. Mol. Sci.20188e132710.1002/wcms.1327 HaqghuMIraniMGholamiMRTheoretical study of kinetics and mechanism of reactions of hydroxylamine and amineoxide anion with methyl iodide in gas and aqueous phasesProg. React. Kinet. Mech.20073229501:CAS:528:DC%2BD2sXptFKnsbg%3D10.3184/146867807X227462 BerendsenHJCPostmaJPMvan GunsterenWFDiNolaAHaakJRMolecular dynamics with coupling to an external bathJ. Chem. Phys.198481368436901984JChPh..81.3684B1:CAS:528:DyaL2cXmtlGksbY%3D10.1063/1.448118 HayPJWadtWRAbinitio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to HgJ. Chem. Phys.1985822701985JChPh..82..270H1:CAS:528:DyaL2MXhtlyju70%3D10.1063/1.448799 CaseDAThe Amber biomolecular simulation programsJ. Comput. Chem.200526166816881:CAS:528:DC%2BD2MXht1SlsbbM16200636198966710.1002/jcc.20290 BaylyCICieplakPCornellWKollmanPAA well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP modelJ. Phys. Chem.19939710269102801:CAS:528:DyaK3sXlvVyqsLs%3D10.1021/j100142a004 Tirado-RivesJJorgensenWLQM/MM calculations for the Cl– + CH3Cl SN2 reaction in water using CM5 charges and density functional theoryJ. Phys. Chem. A2019123571357171:CAS:528:DC%2BC1MXhtFyjtrrO31246023662588210.1021/acs.jpca.9b04121 Cau Dit CoumesCChopin-DumasJDevismeFKinetics of the reaction of methyl iodide with hydroxylamine in an aqueous solution within the framework of nuclear spent fuel reprocessingInd. Eng. Chem. Res.200140372137311:CAS:528:DC%2BD3MXltlSntr8%3D10.1021/ie990645b DardenTYorkDPedersenLParticle mesh Ewald: An N⋅log(N) method for Ewald sums in large systemsJ. Chem. Phys.19939810089100921993JChPh..9810089D1:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.464397 CarlsonAHJorgensenWLMonte Carlo investigations of solvent effects on the chorismate to prephenate rearrangementJ. Am. Chem. Soc.1996118847584841:CAS:528:DyaK28XkvFCmt7k%3D10.1021/ja961500o FrischMJGaussian 98, revision a. 71998Gaussian Inc.12 GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344 WeigendFAccurate Coulomb-fitting basis sets for H to RnPhys. Chem. Chem. Phys.20068105710651:CAS:528:DC%2BD28Xhs12ntrc%3D1663358610.1039/b515623h AkerlofGDielectric constants of some organic solvent-water mixtures at various temperaturesJ. Am. Chem. Soc.193254412541391:CAS:528:DyaA3sXmtlyq10.1021/ja01350a001 CaoLRydeUOn the difference between additive and subtractive QM/MM calculationsFront. Chem.20186892018FrCh....6...89C29666794589159610.3389/fchem.2018.00089 Stewart, J. J. P. MOPAC2009. Stewart Computational Chemistry. (2009). MarquesMALOliveiraMJTBurnusTLibxc: A library of exchange and correlation functionals for density functional theoryComput. Phys. Commun.2012183227222812012CoPhC.183.2272M1:CAS:528:DC%2BC38XotlWitLY%3D10.1016/j.cpc.2012.05.007 BeckeADDensity-functional exchange-energy approximation with correct asymptotic behaviorPhys. Rev. A198838309831001988PhRvA..38.3098B1:CAS:528:DyaL1cXmtlOhsLo%3D10.1103/PhysRevA.38.3098 RepaskyMPWerneck GuimarãesCRChandrasekharJTirado-RivesJJorgensenWLInvestigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: Mechanistic interpretation via near attack conformationsJ. Am. Chem. Soc.2003125666366721:CAS:528:DC%2BD3sXjsVOju70%3D1276957510.1021/ja021423z BeckeADDensity-functional thermochemistry. III. The role of exact exchangeJ. Chem. Phys.199398564856521993JChPh..98.5648B1:CAS:528:DyaK3sXisVWgtrw%3D10.1063/1.464913 ChandrasekharJSmithSFJorgensenWLTheoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solutionJ. Am. Chem. Soc.19851071541631:CAS:528:DyaL2MXksFaguw%3D%3D10.1021/ja00287a028 StaroverovVNScuseriaGETaoJPerdewJPComparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexesJ. Chem. Phys.200311912129121372003JChPh.11912129S1:CAS:528:DC%2BD3sXps1Wlu7w%3D10.1063/1.1626543 WuXBrooksBRSelf-guided Langevin dynamics simulation methodChem. Phys. Lett.20033815125182003CPL...381..512W1:CAS:528:DC%2BD3sXovVKgtrk%3D10.1016/j.cplett.2003.10.013 PeterssonGAAl-LahamMAA complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atomsJ. Chem. Phys.199194608160901991JChPh..94.6081P1:CAS:528:DyaK3MXitlGiu7o%3D10.1063/1.460447 MartínezJMMartínezLPacking optimization for automated generation of complex system’s initial configurations for molecular dynamics and dockingJ. Comput. Chem.2003248198251269279110.1002/jcc.10216 JafariSRydeUIraniMTwo local minima for structures of [4Fe–4S] clusters obtained with density functional theory methodsSci. Rep.202313108322023NatSR..1310832J1:CAS:528:DC%2BB3sXhsVejs7%2FK374027671031973510.1038/s41598-023-37755-0 CopleySDKnowlesJRThe conformational equilibrium of chorismate in solution: Implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenateJ. Am. Chem. Soc.1987109500850131:CAS:528:DyaL2sXlslWgtbk%3D10.1021/ja00250a040 WeigendFAhlrichsRBalanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyPhys. Chem. Chem. Phys.2005732971:CAS:528:DC%2BD2MXpsFWgu7o%3D1624004410.1039/b508541a GrimmeSEhrlichSGoerigkLEffect of the damping function in dispersion corrected density functional theoryJ. Comput. Chem.201132145614651:CAS:528:DC%2BC3MXjsF2isL0%3D2137024310.1002/jcc.21759 AcevedoOArmacostKClaisen rearrangements: Insight into solvent effects and ‘on water’ reactivity from QM/MM simulationsJ. Am. Chem. Soc.2010132196619751:CAS:528:DC%2BC3cXnvFWguw%3D%3D2008852110.1021/ja908680c Frisch, M. J. et al. Gaussian 16. (2016). GajewskiJJThe mechanism of rearrangement of chorismic acid and related compoundsJ. Am. Chem. Soc.1987109117011861:CAS:528:DyaL2sXhtF2jsbc%3D10.1021/ja00238a029 LeeCYangWParrGRDevelopment of the Colic–Salvetti correlation-energy into a functional of the electron densityAm. Phys. Soc.1988377857891:CAS:528:DyaL1cXktFWrtbw%3D MP Repasky (67468_CR16) 2003; 125 67468_CR1 L Cao (67468_CR50) 2018; 6 67468_CR6 F Neese (67468_CR5) 2018; 8 X Wu (67468_CR42) 2003; 381 C Bannwarth (67468_CR48) 2021; 11 MAL Marques (67468_CR21) 2012; 183 67468_CR39 E Brandes (67468_CR9) 1989; 54 O Acevedo (67468_CR15) 2010; 132 CI Bayly (67468_CR40) 1993; 97 V Barone (67468_CR2) 1998; 102 S Lehtola (67468_CR20) 2018; 7 PJ Hay (67468_CR37) 1985; 82 VN Staroverov (67468_CR22) 2003; 119 GA Petersson (67468_CR36) 1988; 89 M Haqghu (67468_CR13) 2007; 32 AD Becke (67468_CR34) 1993; 98 T Darden (67468_CR44) 1993; 98 JJ Gajewski (67468_CR11) 1987; 109 C Cau Dit Coumes (67468_CR8) 2001; 40 L Martinez (67468_CR46) 2009; 30 C Li (67468_CR14) 2018; 27 F Weigend (67468_CR24) 2006; 8 SD Copley (67468_CR17) 1987; 109 HJC Berendsen (67468_CR43) 1984; 81 DA Case (67468_CR30) 2005; 26 RM Parrish (67468_CR4) 2017; 13 G Akerlof (67468_CR29) 1932; 54 S Grimme (67468_CR26) 2011; 32 JP Ryckaert (67468_CR41) 1977; 23 S Grimme (67468_CR25) 2010; 132 J Chandrasekhar (67468_CR12) 1985; 107 B Aradi (67468_CR7) 2007; 111 WN White (67468_CR10) 1970; 35 JM Martínez (67468_CR45) 2003; 24 AD Becke (67468_CR33) 1988; 38 VB Luzhkov (67468_CR27) 2023; 97 WL Jorgensen (67468_CR31) 1983; 79 GA Petersson (67468_CR35) 1991; 94 BH Besler (67468_CR38) 1990; 11 SZ Mikhail (67468_CR47) 1961; 6 AH Carlson (67468_CR18) 1996; 118 F Weigend (67468_CR23) 2005; 7 J Tirado-Rives (67468_CR19) 2019; 123 MJ Frisch (67468_CR3) 1998 C Bannwarth (67468_CR49) 2019; 15 C Lee (67468_CR32) 1988; 37 S Jafari (67468_CR28) 2023; 13 |
| References_xml | – reference: BannwarthCExtended tight-binding quantum chemistry methodsWIREs Comput. Mol. Sci.202111e14931:CAS:528:DC%2BB3MXnt1aru74%3D10.1002/wcms.1493 – reference: HaqghuMIraniMGholamiMRTheoretical study of kinetics and mechanism of reactions of hydroxylamine and amineoxide anion with methyl iodide in gas and aqueous phasesProg. React. Kinet. Mech.20073229501:CAS:528:DC%2BD2sXptFKnsbg%3D10.3184/146867807X227462 – reference: GajewskiJJThe mechanism of rearrangement of chorismic acid and related compoundsJ. Am. Chem. Soc.1987109117011861:CAS:528:DyaL2sXhtF2jsbc%3D10.1021/ja00238a029 – reference: WuXBrooksBRSelf-guided Langevin dynamics simulation methodChem. Phys. Lett.20033815125182003CPL...381..512W1:CAS:528:DC%2BD3sXovVKgtrk%3D10.1016/j.cplett.2003.10.013 – reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344 – reference: Young, D. C. Efficient use of computer resources. In Computational Chemistry 128–134 (2001). https://doi.org/10.1002/0471220655.ch15. – reference: Stewart, J. J. P. MOPAC2009. Stewart Computational Chemistry. (2009). – reference: HayPJWadtWRAbinitio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to HgJ. Chem. Phys.1985822701985JChPh..82..270H1:CAS:528:DyaL2MXhtlyju70%3D10.1063/1.448799 – reference: DardenTYorkDPedersenLParticle mesh Ewald: An N⋅log(N) method for Ewald sums in large systemsJ. Chem. Phys.19939810089100921993JChPh..9810089D1:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.464397 – reference: RepaskyMPWerneck GuimarãesCRChandrasekharJTirado-RivesJJorgensenWLInvestigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: Mechanistic interpretation via near attack conformationsJ. Am. Chem. Soc.2003125666366721:CAS:528:DC%2BD3sXjsVOju70%3D1276957510.1021/ja021423z – reference: BeckeADDensity-functional exchange-energy approximation with correct asymptotic behaviorPhys. Rev. A198838309831001988PhRvA..38.3098B1:CAS:528:DyaL1cXmtlOhsLo%3D10.1103/PhysRevA.38.3098 – reference: CopleySDKnowlesJRThe conformational equilibrium of chorismate in solution: Implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenateJ. Am. Chem. Soc.1987109500850131:CAS:528:DyaL2sXlslWgtbk%3D10.1021/ja00250a040 – reference: WeigendFAhlrichsRBalanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyPhys. Chem. Chem. Phys.2005732971:CAS:528:DC%2BD2MXpsFWgu7o%3D1624004410.1039/b508541a – reference: PeterssonGAAl-LahamMAA complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atomsJ. Chem. Phys.199194608160901991JChPh..94.6081P1:CAS:528:DyaK3MXitlGiu7o%3D10.1063/1.460447 – reference: ChandrasekharJSmithSFJorgensenWLTheoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solutionJ. Am. Chem. Soc.19851071541631:CAS:528:DyaL2MXksFaguw%3D%3D10.1021/ja00287a028 – reference: MikhailSZKimelWRDensities and viscosities of methanol-water mixturesJ. Chem. Eng. Data196165335371:CAS:528:DyaF38XksVKltr8%3D10.1021/je60011a015 – reference: ParrishRMPsi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperabilityJ. Chem. Theory Comput.201713318531971:CAS:528:DC%2BC2sXnsV2ju7k%3D28489372749535510.1021/acs.jctc.7b00174 – reference: CaseDAThe Amber biomolecular simulation programsJ. Comput. Chem.200526166816881:CAS:528:DC%2BD2MXht1SlsbbM16200636198966710.1002/jcc.20290 – reference: LeeCYangWParrGRDevelopment of the Colic–Salvetti correlation-energy into a functional of the electron densityAm. Phys. Soc.1988377857891:CAS:528:DyaL1cXktFWrtbw%3D – reference: LuzhkovVBKrapivinVBSaninaNAAldoshinSMTheoretical study of the hydrolysis of iron–sulfur–nitrosyl complex [Fe(NO)2(SCH2)2]+Russ. J. Phys. Chem. A2023978138211:CAS:528:DC%2BB3sXhtF2isbvK10.1134/S003602442305014X – reference: Cau Dit CoumesCChopin-DumasJDevismeFKinetics of the reaction of methyl iodide with hydroxylamine in an aqueous solution within the framework of nuclear spent fuel reprocessingInd. Eng. Chem. Res.200140372137311:CAS:528:DC%2BD3MXltlSntr8%3D10.1021/ie990645b – reference: MartinezLAndradeRBirginEGMartínezJMPACKMOL: A package for building initial configurations for molecular dynamics simulationsJ. Comput. Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224 – reference: BeckeADDensity-functional thermochemistry. III. The role of exact exchangeJ. Chem. Phys.199398564856521993JChPh..98.5648B1:CAS:528:DyaK3sXisVWgtrw%3D10.1063/1.464913 – reference: NeeseFSoftware update: The ORCA program system, version 4.0Wiley Interdiscip. Rev. Comput. Mol. Sci.20188e132710.1002/wcms.1327 – reference: CaoLRydeUOn the difference between additive and subtractive QM/MM calculationsFront. Chem.20186892018FrCh....6...89C29666794589159610.3389/fchem.2018.00089 – reference: AkerlofGDielectric constants of some organic solvent-water mixtures at various temperaturesJ. Am. Chem. Soc.193254412541391:CAS:528:DyaA3sXmtlyq10.1021/ja01350a001 – reference: Frisch, M. J. et al. Gaussian 16. (2016). – reference: RyckaertJPCiccottiGBerendsenHJNumerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411977JCoPh..23..327R1:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-5 – reference: JafariSRydeUIraniMTwo local minima for structures of [4Fe–4S] clusters obtained with density functional theory methodsSci. Rep.202313108322023NatSR..1310832J1:CAS:528:DC%2BB3sXhsVejs7%2FK374027671031973510.1038/s41598-023-37755-0 – reference: MartínezJMMartínezLPacking optimization for automated generation of complex system’s initial configurations for molecular dynamics and dockingJ. Comput. Chem.2003248198251269279110.1002/jcc.10216 – reference: BaylyCICieplakPCornellWKollmanPAA well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP modelJ. Phys. Chem.19939710269102801:CAS:528:DyaK3sXlvVyqsLs%3D10.1021/j100142a004 – reference: BaroneVCossiMQuantum calculation of molecular energies and energy gradients in solution by a conductor solvent modelJ. Phys. Chem. A199810219951:CAS:528:DyaK1cXht1Cgt7o%3D10.1021/jp9716997 – reference: AcevedoOArmacostKClaisen rearrangements: Insight into solvent effects and ‘on water’ reactivity from QM/MM simulationsJ. Am. Chem. Soc.2010132196619751:CAS:528:DC%2BC3cXnvFWguw%3D%3D2008852110.1021/ja908680c – reference: BerendsenHJCPostmaJPMvan GunsterenWFDiNolaAHaakJRMolecular dynamics with coupling to an external bathJ. Chem. Phys.198481368436901984JChPh..81.3684B1:CAS:528:DyaL2cXmtlGksbY%3D10.1063/1.448118 – reference: LehtolaSSteigemannCOliveiraMJTMarquesMALRecent developments in libxc—A comprehensive library of functionals for density functional theorySoftwareX20187152018SoftX...7....1L10.1016/j.softx.2017.11.002 – reference: WhiteWNWolfarthEFOrtho-Claisen rearrangement. IX. Effect of solvent on the substituent effectJ. Org. Chem.197035358535851:CAS:528:DyaE3cXltF2qs7s%3D10.1021/jo00835a097 – reference: CarlsonAHJorgensenWLMonte Carlo investigations of solvent effects on the chorismate to prephenate rearrangementJ. Am. Chem. Soc.1996118847584841:CAS:528:DyaK28XkvFCmt7k%3D10.1021/ja961500o – reference: BrandesEGriecoPAGajewskiJJEffect of polar solvents on the rates of Claisen rearrangements: Assessment of ionic characterJ. Org. Chem.1989545155161:CAS:528:DyaL1MXnsVGrsg%3D%3D10.1021/jo00264a002 – reference: AradiBHourahineBFrauenheimTDFTB+, a sparse matrix-based implementation of the DFTB Method†J. Phys. Chem. A2007111567856841:CAS:528:DC%2BD2sXmsVaju7c%3D1756711010.1021/jp070186p – reference: Tirado-RivesJJorgensenWLQM/MM calculations for the Cl– + CH3Cl SN2 reaction in water using CM5 charges and density functional theoryJ. Phys. Chem. A2019123571357171:CAS:528:DC%2BC1MXhtFyjtrrO31246023662588210.1021/acs.jpca.9b04121 – reference: FrischMJGaussian 98, revision a. 71998Gaussian Inc.12 – reference: PeterssonGAA complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elementsJ. Chem. Phys.198889219322181988JChPh..89.2193P1:CAS:528:DyaL1cXlvFOgtbs%3D10.1063/1.455064 – reference: MarquesMALOliveiraMJTBurnusTLibxc: A library of exchange and correlation functionals for density functional theoryComput. Phys. Commun.2012183227222812012CoPhC.183.2272M1:CAS:528:DC%2BC38XotlWitLY%3D10.1016/j.cpc.2012.05.007 – reference: WeigendFAccurate Coulomb-fitting basis sets for H to RnPhys. Chem. Chem. Phys.20068105710651:CAS:528:DC%2BD28Xhs12ntrc%3D1663358610.1039/b515623h – reference: BeslerBHMerzKMKollmanPAAtomic charges derived from semiempirical methodsJ. Comput. Chem.1990114314391:CAS:528:DyaK3cXkt12nu7k%3D10.1002/jcc.540110404 – reference: BannwarthCEhlertSGrimmeSGFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributionsJ. Chem. Theory Comput.201915165216711:CAS:528:DC%2BC1MXis1entL0%3D3074154710.1021/acs.jctc.8b01176 – reference: GrimmeSEhrlichSGoerigkLEffect of the damping function in dispersion corrected density functional theoryJ. Comput. Chem.201132145614651:CAS:528:DC%2BC3MXjsF2isL0%3D2137024310.1002/jcc.21759 – reference: JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLComparison of simple potential functions for simulating liquid waterJ. Chem. Phys.1983799269351983JChPh..79..926J1:CAS:528:DyaL3sXksF2htL4%3D10.1063/1.445869 – reference: LiCLiuPLiYWangDSolvent effects and potential of mean force study of the SN2 reaction of CH3F+ CN− in waterChin. Phys. B2018273340110.1088/1674-1056/27/3/033401 – reference: StaroverovVNScuseriaGETaoJPerdewJPComparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexesJ. Chem. Phys.200311912129121372003JChPh.11912129S1:CAS:528:DC%2BD3sXps1Wlu7w%3D10.1063/1.1626543 – volume: 98 start-page: 10089 year: 1993 ident: 67468_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 82 start-page: 270 year: 1985 ident: 67468_CR37 publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 132 start-page: 1966 year: 2010 ident: 67468_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908680c – volume: 123 start-page: 5713 year: 2019 ident: 67468_CR19 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b04121 – volume: 38 start-page: 3098 year: 1988 ident: 67468_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – start-page: 12 volume-title: Gaussian 98, revision a. 7 year: 1998 ident: 67468_CR3 – volume: 54 start-page: 515 year: 1989 ident: 67468_CR9 publication-title: J. Org. Chem. doi: 10.1021/jo00264a002 – volume: 11 start-page: e1493 year: 2021 ident: 67468_CR48 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1493 – volume: 13 start-page: 10832 year: 2023 ident: 67468_CR28 publication-title: Sci. Rep. doi: 10.1038/s41598-023-37755-0 – volume: 97 start-page: 813 year: 2023 ident: 67468_CR27 publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S003602442305014X – volume: 109 start-page: 1170 year: 1987 ident: 67468_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00238a029 – volume: 119 start-page: 12129 year: 2003 ident: 67468_CR22 publication-title: J. Chem. Phys. doi: 10.1063/1.1626543 – volume: 81 start-page: 3684 year: 1984 ident: 67468_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 79 start-page: 926 year: 1983 ident: 67468_CR31 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 111 start-page: 5678 year: 2007 ident: 67468_CR7 publication-title: J. Phys. Chem. A doi: 10.1021/jp070186p – ident: 67468_CR39 – volume: 109 start-page: 5008 year: 1987 ident: 67468_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00250a040 – volume: 40 start-page: 3721 year: 2001 ident: 67468_CR8 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990645b – volume: 102 start-page: 1995 year: 1998 ident: 67468_CR2 publication-title: J. Phys. Chem. A doi: 10.1021/jp9716997 – volume: 24 start-page: 819 year: 2003 ident: 67468_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10216 – volume: 32 start-page: 1456 year: 2011 ident: 67468_CR26 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 125 start-page: 6663 year: 2003 ident: 67468_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja021423z – volume: 23 start-page: 327 year: 1977 ident: 67468_CR41 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 8 start-page: e1327 year: 2018 ident: 67468_CR5 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1327 – volume: 27 start-page: 33401 year: 2018 ident: 67468_CR14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/3/033401 – volume: 118 start-page: 8475 year: 1996 ident: 67468_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961500o – volume: 54 start-page: 4125 year: 1932 ident: 67468_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01350a001 – volume: 107 start-page: 154 year: 1985 ident: 67468_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00287a028 – volume: 8 start-page: 1057 year: 2006 ident: 67468_CR24 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b515623h – volume: 15 start-page: 1652 year: 2019 ident: 67468_CR49 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01176 – volume: 7 start-page: 3297 year: 2005 ident: 67468_CR23 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 6 start-page: 533 year: 1961 ident: 67468_CR47 publication-title: J. Chem. Eng. Data doi: 10.1021/je60011a015 – volume: 35 start-page: 3585 year: 1970 ident: 67468_CR10 publication-title: J. Org. Chem. doi: 10.1021/jo00835a097 – volume: 37 start-page: 785 year: 1988 ident: 67468_CR32 publication-title: Am. Phys. Soc. – volume: 94 start-page: 6081 year: 1991 ident: 67468_CR35 publication-title: J. Chem. Phys. doi: 10.1063/1.460447 – volume: 30 start-page: 2157 year: 2009 ident: 67468_CR46 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 381 start-page: 512 year: 2003 ident: 67468_CR42 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.10.013 – volume: 98 start-page: 5648 year: 1993 ident: 67468_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 89 start-page: 2193 year: 1988 ident: 67468_CR36 publication-title: J. Chem. Phys. doi: 10.1063/1.455064 – ident: 67468_CR1 doi: 10.1002/0471220655.ch15 – volume: 6 start-page: 89 year: 2018 ident: 67468_CR50 publication-title: Front. Chem. doi: 10.3389/fchem.2018.00089 – volume: 7 start-page: 1 year: 2018 ident: 67468_CR20 publication-title: SoftwareX doi: 10.1016/j.softx.2017.11.002 – volume: 132 start-page: 154104 year: 2010 ident: 67468_CR25 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 26 start-page: 1668 year: 2005 ident: 67468_CR30 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 32 start-page: 29 year: 2007 ident: 67468_CR13 publication-title: Prog. React. Kinet. Mech. doi: 10.3184/146867807X227462 – volume: 183 start-page: 2272 year: 2012 ident: 67468_CR21 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.007 – volume: 97 start-page: 10269 year: 1993 ident: 67468_CR40 publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – ident: 67468_CR6 doi: 10.4016/10896.01 – volume: 11 start-page: 431 year: 1990 ident: 67468_CR38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540110404 – volume: 13 start-page: 3185 year: 2017 ident: 67468_CR4 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00174 |
| SSID | ssj0000529419 |
| Score | 2.4372435 |
| Snippet | This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics... Abstract This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16791 |
| SubjectTerms | 639/638/403 639/638/563 Accuracy Computer applications Humanities and Social Sciences Hybrids Iodides Kinetics multidisciplinary Multiscale modeling ORCA software Python scripting QM/MM Reaction mechanism Reaction mechanisms Science Science (multidisciplinary) Solvents |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYlLKS-xpVRG4gZR48RJnBOiVaueVhX00JvlJ6xakiXpovbn8E-ZcbypUoleekw8eVgee8bzeb4h5KMDE2Cd0onNRZlwniNImOkETVWROViWtQ3FJqr5XJyf16cx4NbHY5XrNTEs1LY1GCPfz8FXyBlskdmX5e8Eq0YhuhpLaDwmm8hUBnq-eXA0P_02RlkQx-KsjtkyaS72e7BYmFWW8aSsMO3oemKRAnH_xNu8e1byDmAa7NDx84f2YJtsRQ-Ufh1U5gV55JqX5OlQk_LmFfk7wMDwbQq-IVXGrDplbqhqLHXIN4EXrafhJGIPI-yoCZUhYlSRDjWpe7po6LJDGAgPVlPwTUMGBTRjrvGi_9WHV16Al4tM0fjK7_NslBtaDy8R2WrwbtdhGgTGMl-Ts-Ojs8OTJNZxSEzBxFXCtHXcYUlgnzuk_KoUtwwhX29dyrQx2gudeRBWzDiRCq0rry3SIyKh2Ruy0bSNe0soqL0FD0kVnhtuua5dVnvmRVFa2Bn5ekbYeiiliRznWGrjUgasPRdyGH4Jwy_D8MvrGfk0PrMcGD7ulT5ADRklkZ073Gi7HzJOdml5UTOdqlQoy60oFOz7mLEq94xppf2M7K41RMYlo5e36jEjH8ZmmOyI4KjGtatBpqzAPEFPxUQvJz80bWkWPwNtOCaL5SWHRz-vVfj26__v8c79P_uOPMtwMqVVkmW7ZOOqW7n35In5AzrY7cX5-A8cHEQT priority: 102 providerName: ProQuest |
| Title | Assessing the accuracy and efficacy of multiscale computational methods in predicting reaction mechanisms and kinetics of SN2 reactions and Claisen rearrangement |
| URI | https://link.springer.com/article/10.1038/s41598-024-67468-x https://www.proquest.com/docview/3083311981 https://www.proquest.com/docview/3083671119 https://pubmed.ncbi.nlm.nih.gov/PMC11263649 https://doaj.org/article/d4591b0a08ad4d85a2171cda3f11babf |
| Volume | 14 |
| WOSCitedRecordID | wos001274726000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Complete (ProQuest Database) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4ikWyspI3CBq7Dixc6RVKzh0FUEPyynyU6xaslXSRe3P4Z8yY2eXbiXgwsVS4nFiZ8aZscfzDSFvPagA57XJXKGqTIgCnYTcZKiqSu7ht2xcTDYhZzM1n9fNjVRfeCYswQOnD7fvRFkzk-tcaSecKjXY0Mw6XQTGjDYB_765rG8sphKqN68Fq8combxQ-wNoKowm4yKrJIYbXW1pogjYv2Vl3j4jectRGvXP8SPycDQc6YfU4cfkju-ekPspleT1U_IzeW-hKQWTjmprV72211R3jnqEicCLZaDxAOEAjPHUxoQO42YgTamkB7ro6EWP3hs8D03BpIyBD1CNIcKL4fsQH3kGxikCPOMjv8z4hi7VHp6jQ6rDu32P0Qu4BfmMnB4fnR5-zMb0C5ktmbrMmHFeeMzkGwqPSF1SC8fQUxucz5mx1gRleABizaxXuTJGBuMQ1RBxyJ6TnW7Z-ReEgrQ6MGx0GYQVTpja8zqwoMrKwYIm1BPC1pxo7QhNjhkyztvoIi9Um7jXAvfayL32akLebdpcJGCOv1IfIIM3lAiqHW-AqLWjqLX_ErUJ2VuLRzvO9KEtwIYtGKsVm5A3m2qYo-h40Z1frhJNJUGrwEjVllhtdWi7plt8i2jfGONVVAKavl9L4O-3_3nEL__HiF-RBxxnTC4zzvfIzmW_8q_JPfsDJLWfkrtyLmOppmT34GjWfJ7GaQjlCW-wlFDuNp9Omq-_AKEQPMM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFZxELBYwEJ4gaO87GOSAEhapVy6oSe-jN8hNWlOySdKH7c_gB_EdmnGSrrURvPXDceOKNk28e9rwIeeFBBTivTeIyOUyEyNBJyE2CqirnHsSycbHZRDEayaOj8nCN_OlzYTCsspeJUVC7qcUz8q0MbIWMwRaZvZ39SLBrFHpX-xYaLSz2_eIXbNmaN3sf4Pu-5Hzn43h7N-m6CiQ2Z_IkYcZ54bFBbcg8FqAqtHAMHZDB-ZQZa02Qhgcg1sx6mUpjimAcFuvD8low7RVyFawInsZIwcPlkQ46zQQru9ScNJNbDahHTGHjIhkWmON0uqL-YpeAFdP2fGDmOe9sVHo7t_-z13WH3Oqsa_quZYe7ZM1X98j1tt_m4j753bq4YakU7F6qrZ3X2i6orhz1WEsDf0wDjVGWDaDXUxu7XnQnprTtt93QSUVnNbq4MGicgt0ds0NgGPOoJ833Jk75DSx4rIKNU34e8SVdO7p9jF67Cq_WNaZ44DntBhlfxut5QNaraeUfEgos7cD603kQVjhhSs_LwILMhw52faEcENYjR9mufju2ETlWMY4gk6pFmwK0qYg2dTogr5b3zNrqJRdSv0dALimx8ni8MK2_qE6QKSfykplUp1I74WSuYU_LrNNZYMxoEwZkswek6sRho87QOCDPl8MgyNA7pSs_nbc0wwJUL6xUrrDBygOtjlSTr7EkOibCZUMBt77uOebs3_-94kcXP-wzcmN3_OlAHeyN9h-Tmxz5OC0SzjfJ-kk990_INfsT8Fg_jYKAEnXJnPQXZ0afkw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXrkMUBhgJniBq7DiN84AQbExMQ1Ul9rA3y1eoGGlJVlh_Dj-Df8c5TtKpk9jbHnhsfOLGyXcu9rkR8sKDCnBem8RlcpQIkaGTkJsEVVXOPYhl42KziWI8lkdH5WSD_OlzYTCsspeJUVC7mcUz8mEGtkLGYIvMhqELi5js7r2d_0iwgxR6Wvt2Gi1EDvzyF2zfmjf7u_CtX3K-9-Fw52PSdRhIbM7kScKM88Jjs9qQeSxGVWjhGDojg_MpM9aaIA0PQKyZ9TKVxhTBOCzch6W2YNor5GqBRbEwapBPVsc76EATrOzSdNJMDhtQlZjOxkUyKjDf6XRNFcaOAWtm7vkgzXOe2qgA927_x6_uDrnVWd30Xcsmd8mGr-6R620fzuV98rt1fcOyKdjDVFu7qLVdUl056rHGBv6YBRqjLxtAtac2dsPoTlJp24e7odOKzmt0fWEwOQV7PGaNwDDmV0-b702c8htY9lgdG6f8POYrunZ05xi9eRVerWtM_cDz2y1yeBmv5wHZrGaVf0gosLoDq1DnQVjhhCk9LwMLMh852A2GckBYjyJlu7ru2F7kWMX4gkyqFnkKkKci8tTpgLxa3TNvq5pcSP0ewbmixIrk8cKs_qI6AaecyEtmUp1K7YSTuYa9LrNOZ4Exo00YkO0enKoTk406Q-aAPF8Ng4BDr5Wu_GzR0owKUMmwUrnGEmsPtD5STb_GUumYIJeNBNz6uuees3__94ofXfywz8gNYCD1aX988Jjc5MjSaZFwvk02T-qFf0Ku2Z8Ax_pplAmUqEtmpL_eTKhX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+accuracy+and+efficacy+of+multiscale+computational+methods+in+predicting+reaction+mechanisms+and+kinetics+of+SN2+reactions+and+Claisen+rearrangement&rft.jtitle=Scientific+reports&rft.au=Haji+Dehabadi%2C+Maryam&rft.au=Saidi%2C+Hamid&rft.au=Zafari%2C+Faezeh&rft.au=Irani%2C+Mehdi&rft.date=2024-07-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=16791&rft_id=info:doi/10.1038%2Fs41598-024-67468-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |