Assessing the accuracy and efficacy of multiscale computational methods in predicting reaction mechanisms and kinetics of SN2 reactions and Claisen rearrangement

This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S N 2 reactions involving methyl iodide with NH 2 OH and NH 2 O − , as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 16791 - 13
Hlavní autoři: Haji Dehabadi, Maryam, Saidi, Hamid, Zafari, Faezeh, Irani, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 22.07.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S N 2 reactions involving methyl iodide with NH 2 OH and NH 2 O − , as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the S N 2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .
AbstractList This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O-, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O-, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .
This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of S N 2 reactions involving methyl iodide with NH 2 OH and NH 2 O − , as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the S N 2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .
This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA.
Abstract This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA .
This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics of SN2 reactions involving methyl iodide with NH2OH and NH2O−, as well as the Claisen rearrangement of 8-(vinyloxy)dec-9-enoate. Our aim is to evaluate the accuracy and effectiveness of these methods in predicting experimental outcomes for these organic reactions. We achieve this by employing QM-only calculations and several hybrids of QM and molecular mechanics (MM) methods, namely QM/MM, QM1/QM2, and QM1/QM2/MM methodologies. For the SN2 reactions, our results demonstrate the importance of explicitly including solvent effects in the calculations to accurately reproduce the transition state geometry and energetics. The multiscale methods, particularly QM/MM and QM1/QM2, show promising performance in predicting activation energies. Moreover, we observe that the size of the MM active region significantly affects the accuracy of calculated activation energies, highlighting the need for careful consideration during the setup of multiscale calculations. In the case of the Claisen rearrangement, both QM-only and multiscale methods successfully reproduce the proposed reaction mechanism. However, the activation free energies calculated using a continuum solvation model, based on single-point calculations of QM-only structures, fail to account for solvent effects. On the other hand, multiscale methods more accurately capture the impact of solvents on activation free energies, with systematic error correction enhancing the accuracy of the results. Furthermore, we introduce a Python code for setting up multiscale calculations with ORCA, which is available on GitHub at https://github.com/iranimehdi/pdbtoORCA.
ArticleNumber 16791
Author Zafari, Faezeh
Saidi, Hamid
Haji Dehabadi, Maryam
Irani, Mehdi
Author_xml – sequence: 1
  givenname: Maryam
  surname: Haji Dehabadi
  fullname: Haji Dehabadi, Maryam
  organization: Department of Chemistry, University of Kurdistan
– sequence: 2
  givenname: Hamid
  surname: Saidi
  fullname: Saidi, Hamid
  organization: Department of Chemistry, University of Kurdistan
– sequence: 3
  givenname: Faezeh
  surname: Zafari
  fullname: Zafari, Faezeh
  organization: Department of Chemistry, University of Kurdistan
– sequence: 4
  givenname: Mehdi
  surname: Irani
  fullname: Irani, Mehdi
  email: m.irani@uok.ac.ir
  organization: Department of Chemistry, University of Kurdistan
BookMark eNp9kstu1TAQhiNUREvpC7CKxIZNwGM7ibNCVcWlUgULurcmvpzjQ2If7KRqH4c3xTmpCu2i3vgy3_977JnXxZEP3hTFWyAfgDDxMXGoO1ERyqum5Y2obl8UJ5TwuqKM0qP_1sfFWUo7kkdNOw7dq-KYdYR1IMhJ8ec8JZOS85ty2poSlZojqrsSvS6NtU4tm2DLcR4mlxQOplRh3M8TTi54HMrRTNugU-l8uY9GOzUtXtGgWoAcVlv0Lo3pYPnLeTM5lRbLn9_pA7dGLwZ0yfjlNEb0GzMaP70pXlockjm7n0-L6y-fry--VVc_vl5enF9VqgYxVdBrww3wGiwzdd2SFrkGymtqtSHQK9Vb0VObYQRlBBF939peAxP5pxp2WlyutjrgTu6jGzHeyYBOHg5C3EiMOfXBSM3rDnqCRKDmWtRIoQWlkVmAHnubvT6tXvu5H41W-RURh0emjyPebeUm3EgA2rCGd9nh_b1DDL9nkyY55t83w4DehDlJRgRrWgBY0HdP0F2YYy7NSrHMCMgUXSkVQ0rR2IdsgMiloeTaUDI3lDw0lLzNIvFEpNxa-Jy1G56XslWa8j25kvFfVs-o_gLch-WU
CitedBy_id crossref_primary_10_1021_acs_jpcc_5c00499
Cites_doi 10.1063/1.464397
10.1063/1.448799
10.1021/ja908680c
10.1021/acs.jpca.9b04121
10.1103/PhysRevA.38.3098
10.1021/jo00264a002
10.1002/wcms.1493
10.1038/s41598-023-37755-0
10.1134/S003602442305014X
10.1021/ja00238a029
10.1063/1.1626543
10.1063/1.448118
10.1063/1.445869
10.1021/jp070186p
10.1021/ja00250a040
10.1021/ie990645b
10.1021/jp9716997
10.1002/jcc.10216
10.1002/jcc.21759
10.1021/ja021423z
10.1016/0021-9991(77)90098-5
10.1002/wcms.1327
10.1088/1674-1056/27/3/033401
10.1021/ja961500o
10.1021/ja01350a001
10.1021/ja00287a028
10.1039/b515623h
10.1021/acs.jctc.8b01176
10.1039/b508541a
10.1021/je60011a015
10.1021/jo00835a097
10.1063/1.460447
10.1002/jcc.21224
10.1016/j.cplett.2003.10.013
10.1063/1.464913
10.1063/1.455064
10.1002/0471220655.ch15
10.3389/fchem.2018.00089
10.1016/j.softx.2017.11.002
10.1063/1.3382344
10.1002/jcc.20290
10.3184/146867807X227462
10.1016/j.cpc.2012.05.007
10.1021/j100142a004
10.4016/10896.01
10.1002/jcc.540110404
10.1021/acs.jctc.7b00174
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-67468-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_d4591b0a08ad4d85a2171cda3f11babf
PMC11263649
10_1038_s41598_024_67468_x
GrantInformation_xml – fundername: University of Kurdistan
  grantid: 02/9/35563
  funderid: http://dx.doi.org/10.13039/501100008973
– fundername: Iran's Federation of Scientific Elites
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-1bde4e1451f3e55707a4d12452fde01bccbf8b2f518a1ce808bb7fbd13820463
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001274726000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:37 EDT 2025
Tue Nov 04 02:05:31 EST 2025
Wed Oct 01 14:25:43 EDT 2025
Tue Oct 28 16:25:56 EDT 2025
Tue Nov 18 21:08:20 EST 2025
Sat Nov 29 02:13:38 EST 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Reaction mechanism
ORCA software
QM/MM
Multiscale modeling
Python scripting
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-1bde4e1451f3e55707a4d12452fde01bccbf8b2f518a1ce808bb7fbd13820463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d4591b0a08ad4d85a2171cda3f11babf
PMID 39039180
PQID 3083311981
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d4591b0a08ad4d85a2171cda3f11babf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11263649
proquest_miscellaneous_3083671119
proquest_journals_3083311981
crossref_primary_10_1038_s41598_024_67468_x
crossref_citationtrail_10_1038_s41598_024_67468_x
springer_journals_10_1038_s41598_024_67468_x
PublicationCentury 2000
PublicationDate 2024-07-22
PublicationDateYYYYMMDD 2024-07-22
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BeslerBHMerzKMKollmanPAAtomic charges derived from semiempirical methodsJ. Comput. Chem.1990114314391:CAS:528:DyaK3cXkt12nu7k%3D10.1002/jcc.540110404
JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLComparison of simple potential functions for simulating liquid waterJ. Chem. Phys.1983799269351983JChPh..79..926J1:CAS:528:DyaL3sXksF2htL4%3D10.1063/1.445869
Young, D. C. Efficient use of computer resources. In Computational Chemistry 128–134 (2001). https://doi.org/10.1002/0471220655.ch15.
ParrishRMPsi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperabilityJ. Chem. Theory Comput.201713318531971:CAS:528:DC%2BC2sXnsV2ju7k%3D28489372749535510.1021/acs.jctc.7b00174
BrandesEGriecoPAGajewskiJJEffect of polar solvents on the rates of Claisen rearrangements: Assessment of ionic characterJ. Org. Chem.1989545155161:CAS:528:DyaL1MXnsVGrsg%3D%3D10.1021/jo00264a002
LuzhkovVBKrapivinVBSaninaNAAldoshinSMTheoretical study of the hydrolysis of iron–sulfur–nitrosyl complex [Fe(NO)2(SCH2)2]+Russ. J. Phys. Chem. A2023978138211:CAS:528:DC%2BB3sXhtF2isbvK10.1134/S003602442305014X
BannwarthCExtended tight-binding quantum chemistry methodsWIREs Comput. Mol. Sci.202111e14931:CAS:528:DC%2BB3MXnt1aru74%3D10.1002/wcms.1493
BaroneVCossiMQuantum calculation of molecular energies and energy gradients in solution by a conductor solvent modelJ. Phys. Chem. A199810219951:CAS:528:DyaK1cXht1Cgt7o%3D10.1021/jp9716997
PeterssonGAA complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elementsJ. Chem. Phys.198889219322181988JChPh..89.2193P1:CAS:528:DyaL1cXlvFOgtbs%3D10.1063/1.455064
LehtolaSSteigemannCOliveiraMJTMarquesMALRecent developments in libxc—A comprehensive library of functionals for density functional theorySoftwareX20187152018SoftX...7....1L10.1016/j.softx.2017.11.002
MikhailSZKimelWRDensities and viscosities of methanol-water mixturesJ. Chem. Eng. Data196165335371:CAS:528:DyaF38XksVKltr8%3D10.1021/je60011a015
AradiBHourahineBFrauenheimTDFTB+, a sparse matrix-based implementation of the DFTB Method†J. Phys. Chem. A2007111567856841:CAS:528:DC%2BD2sXmsVaju7c%3D1756711010.1021/jp070186p
WhiteWNWolfarthEFOrtho-Claisen rearrangement. IX. Effect of solvent on the substituent effectJ. Org. Chem.197035358535851:CAS:528:DyaE3cXltF2qs7s%3D10.1021/jo00835a097
BannwarthCEhlertSGrimmeSGFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributionsJ. Chem. Theory Comput.201915165216711:CAS:528:DC%2BC1MXis1entL0%3D3074154710.1021/acs.jctc.8b01176
RyckaertJPCiccottiGBerendsenHJNumerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411977JCoPh..23..327R1:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-5
LiCLiuPLiYWangDSolvent effects and potential of mean force study of the SN2 reaction of CH3F+ CN− in waterChin. Phys. B2018273340110.1088/1674-1056/27/3/033401
MartinezLAndradeRBirginEGMartínezJMPACKMOL: A package for building initial configurations for molecular dynamics simulationsJ. Comput. Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224
NeeseFSoftware update: The ORCA program system, version 4.0Wiley Interdiscip. Rev. Comput. Mol. Sci.20188e132710.1002/wcms.1327
HaqghuMIraniMGholamiMRTheoretical study of kinetics and mechanism of reactions of hydroxylamine and amineoxide anion with methyl iodide in gas and aqueous phasesProg. React. Kinet. Mech.20073229501:CAS:528:DC%2BD2sXptFKnsbg%3D10.3184/146867807X227462
BerendsenHJCPostmaJPMvan GunsterenWFDiNolaAHaakJRMolecular dynamics with coupling to an external bathJ. Chem. Phys.198481368436901984JChPh..81.3684B1:CAS:528:DyaL2cXmtlGksbY%3D10.1063/1.448118
HayPJWadtWRAbinitio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to HgJ. Chem. Phys.1985822701985JChPh..82..270H1:CAS:528:DyaL2MXhtlyju70%3D10.1063/1.448799
CaseDAThe Amber biomolecular simulation programsJ. Comput. Chem.200526166816881:CAS:528:DC%2BD2MXht1SlsbbM16200636198966710.1002/jcc.20290
BaylyCICieplakPCornellWKollmanPAA well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP modelJ. Phys. Chem.19939710269102801:CAS:528:DyaK3sXlvVyqsLs%3D10.1021/j100142a004
Tirado-RivesJJorgensenWLQM/MM calculations for the Cl– + CH3Cl SN2 reaction in water using CM5 charges and density functional theoryJ. Phys. Chem. A2019123571357171:CAS:528:DC%2BC1MXhtFyjtrrO31246023662588210.1021/acs.jpca.9b04121
Cau Dit CoumesCChopin-DumasJDevismeFKinetics of the reaction of methyl iodide with hydroxylamine in an aqueous solution within the framework of nuclear spent fuel reprocessingInd. Eng. Chem. Res.200140372137311:CAS:528:DC%2BD3MXltlSntr8%3D10.1021/ie990645b
DardenTYorkDPedersenLParticle mesh Ewald: An N⋅log(N) method for Ewald sums in large systemsJ. Chem. Phys.19939810089100921993JChPh..9810089D1:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.464397
CarlsonAHJorgensenWLMonte Carlo investigations of solvent effects on the chorismate to prephenate rearrangementJ. Am. Chem. Soc.1996118847584841:CAS:528:DyaK28XkvFCmt7k%3D10.1021/ja961500o
FrischMJGaussian 98, revision a. 71998Gaussian Inc.12
GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344
WeigendFAccurate Coulomb-fitting basis sets for H to RnPhys. Chem. Chem. Phys.20068105710651:CAS:528:DC%2BD28Xhs12ntrc%3D1663358610.1039/b515623h
AkerlofGDielectric constants of some organic solvent-water mixtures at various temperaturesJ. Am. Chem. Soc.193254412541391:CAS:528:DyaA3sXmtlyq10.1021/ja01350a001
CaoLRydeUOn the difference between additive and subtractive QM/MM calculationsFront. Chem.20186892018FrCh....6...89C29666794589159610.3389/fchem.2018.00089
Stewart, J. J. P. MOPAC2009. Stewart Computational Chemistry. (2009).
MarquesMALOliveiraMJTBurnusTLibxc: A library of exchange and correlation functionals for density functional theoryComput. Phys. Commun.2012183227222812012CoPhC.183.2272M1:CAS:528:DC%2BC38XotlWitLY%3D10.1016/j.cpc.2012.05.007
BeckeADDensity-functional exchange-energy approximation with correct asymptotic behaviorPhys. Rev. A198838309831001988PhRvA..38.3098B1:CAS:528:DyaL1cXmtlOhsLo%3D10.1103/PhysRevA.38.3098
RepaskyMPWerneck GuimarãesCRChandrasekharJTirado-RivesJJorgensenWLInvestigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: Mechanistic interpretation via near attack conformationsJ. Am. Chem. Soc.2003125666366721:CAS:528:DC%2BD3sXjsVOju70%3D1276957510.1021/ja021423z
BeckeADDensity-functional thermochemistry. III. The role of exact exchangeJ. Chem. Phys.199398564856521993JChPh..98.5648B1:CAS:528:DyaK3sXisVWgtrw%3D10.1063/1.464913
ChandrasekharJSmithSFJorgensenWLTheoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solutionJ. Am. Chem. Soc.19851071541631:CAS:528:DyaL2MXksFaguw%3D%3D10.1021/ja00287a028
StaroverovVNScuseriaGETaoJPerdewJPComparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexesJ. Chem. Phys.200311912129121372003JChPh.11912129S1:CAS:528:DC%2BD3sXps1Wlu7w%3D10.1063/1.1626543
WuXBrooksBRSelf-guided Langevin dynamics simulation methodChem. Phys. Lett.20033815125182003CPL...381..512W1:CAS:528:DC%2BD3sXovVKgtrk%3D10.1016/j.cplett.2003.10.013
PeterssonGAAl-LahamMAA complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atomsJ. Chem. Phys.199194608160901991JChPh..94.6081P1:CAS:528:DyaK3MXitlGiu7o%3D10.1063/1.460447
MartínezJMMartínezLPacking optimization for automated generation of complex system’s initial configurations for molecular dynamics and dockingJ. Comput. Chem.2003248198251269279110.1002/jcc.10216
JafariSRydeUIraniMTwo local minima for structures of [4Fe–4S] clusters obtained with density functional theory methodsSci. Rep.202313108322023NatSR..1310832J1:CAS:528:DC%2BB3sXhsVejs7%2FK374027671031973510.1038/s41598-023-37755-0
CopleySDKnowlesJRThe conformational equilibrium of chorismate in solution: Implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenateJ. Am. Chem. Soc.1987109500850131:CAS:528:DyaL2sXlslWgtbk%3D10.1021/ja00250a040
WeigendFAhlrichsRBalanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyPhys. Chem. Chem. Phys.2005732971:CAS:528:DC%2BD2MXpsFWgu7o%3D1624004410.1039/b508541a
GrimmeSEhrlichSGoerigkLEffect of the damping function in dispersion corrected density functional theoryJ. Comput. Chem.201132145614651:CAS:528:DC%2BC3MXjsF2isL0%3D2137024310.1002/jcc.21759
AcevedoOArmacostKClaisen rearrangements: Insight into solvent effects and ‘on water’ reactivity from QM/MM simulationsJ. Am. Chem. Soc.2010132196619751:CAS:528:DC%2BC3cXnvFWguw%3D%3D2008852110.1021/ja908680c
Frisch, M. J. et al. Gaussian 16. (2016).
GajewskiJJThe mechanism of rearrangement of chorismic acid and related compoundsJ. Am. Chem. Soc.1987109117011861:CAS:528:DyaL2sXhtF2jsbc%3D10.1021/ja00238a029
LeeCYangWParrGRDevelopment of the Colic–Salvetti correlation-energy into a functional of the electron densityAm. Phys. Soc.1988377857891:CAS:528:DyaL1cXktFWrtbw%3D
MP Repasky (67468_CR16) 2003; 125
67468_CR1
L Cao (67468_CR50) 2018; 6
67468_CR6
F Neese (67468_CR5) 2018; 8
X Wu (67468_CR42) 2003; 381
C Bannwarth (67468_CR48) 2021; 11
MAL Marques (67468_CR21) 2012; 183
67468_CR39
E Brandes (67468_CR9) 1989; 54
O Acevedo (67468_CR15) 2010; 132
CI Bayly (67468_CR40) 1993; 97
V Barone (67468_CR2) 1998; 102
S Lehtola (67468_CR20) 2018; 7
PJ Hay (67468_CR37) 1985; 82
VN Staroverov (67468_CR22) 2003; 119
GA Petersson (67468_CR36) 1988; 89
M Haqghu (67468_CR13) 2007; 32
AD Becke (67468_CR34) 1993; 98
T Darden (67468_CR44) 1993; 98
JJ Gajewski (67468_CR11) 1987; 109
C Cau Dit Coumes (67468_CR8) 2001; 40
L Martinez (67468_CR46) 2009; 30
C Li (67468_CR14) 2018; 27
F Weigend (67468_CR24) 2006; 8
SD Copley (67468_CR17) 1987; 109
HJC Berendsen (67468_CR43) 1984; 81
DA Case (67468_CR30) 2005; 26
RM Parrish (67468_CR4) 2017; 13
G Akerlof (67468_CR29) 1932; 54
S Grimme (67468_CR26) 2011; 32
JP Ryckaert (67468_CR41) 1977; 23
S Grimme (67468_CR25) 2010; 132
J Chandrasekhar (67468_CR12) 1985; 107
B Aradi (67468_CR7) 2007; 111
WN White (67468_CR10) 1970; 35
JM Martínez (67468_CR45) 2003; 24
AD Becke (67468_CR33) 1988; 38
VB Luzhkov (67468_CR27) 2023; 97
WL Jorgensen (67468_CR31) 1983; 79
GA Petersson (67468_CR35) 1991; 94
BH Besler (67468_CR38) 1990; 11
SZ Mikhail (67468_CR47) 1961; 6
AH Carlson (67468_CR18) 1996; 118
F Weigend (67468_CR23) 2005; 7
J Tirado-Rives (67468_CR19) 2019; 123
MJ Frisch (67468_CR3) 1998
C Bannwarth (67468_CR49) 2019; 15
C Lee (67468_CR32) 1988; 37
S Jafari (67468_CR28) 2023; 13
References_xml – reference: BannwarthCExtended tight-binding quantum chemistry methodsWIREs Comput. Mol. Sci.202111e14931:CAS:528:DC%2BB3MXnt1aru74%3D10.1002/wcms.1493
– reference: HaqghuMIraniMGholamiMRTheoretical study of kinetics and mechanism of reactions of hydroxylamine and amineoxide anion with methyl iodide in gas and aqueous phasesProg. React. Kinet. Mech.20073229501:CAS:528:DC%2BD2sXptFKnsbg%3D10.3184/146867807X227462
– reference: GajewskiJJThe mechanism of rearrangement of chorismic acid and related compoundsJ. Am. Chem. Soc.1987109117011861:CAS:528:DyaL2sXhtF2jsbc%3D10.1021/ja00238a029
– reference: WuXBrooksBRSelf-guided Langevin dynamics simulation methodChem. Phys. Lett.20033815125182003CPL...381..512W1:CAS:528:DC%2BD3sXovVKgtrk%3D10.1016/j.cplett.2003.10.013
– reference: GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344
– reference: Young, D. C. Efficient use of computer resources. In Computational Chemistry 128–134 (2001). https://doi.org/10.1002/0471220655.ch15.
– reference: Stewart, J. J. P. MOPAC2009. Stewart Computational Chemistry. (2009).
– reference: HayPJWadtWRAbinitio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to HgJ. Chem. Phys.1985822701985JChPh..82..270H1:CAS:528:DyaL2MXhtlyju70%3D10.1063/1.448799
– reference: DardenTYorkDPedersenLParticle mesh Ewald: An N⋅log(N) method for Ewald sums in large systemsJ. Chem. Phys.19939810089100921993JChPh..9810089D1:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.464397
– reference: RepaskyMPWerneck GuimarãesCRChandrasekharJTirado-RivesJJorgensenWLInvestigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: Mechanistic interpretation via near attack conformationsJ. Am. Chem. Soc.2003125666366721:CAS:528:DC%2BD3sXjsVOju70%3D1276957510.1021/ja021423z
– reference: BeckeADDensity-functional exchange-energy approximation with correct asymptotic behaviorPhys. Rev. A198838309831001988PhRvA..38.3098B1:CAS:528:DyaL1cXmtlOhsLo%3D10.1103/PhysRevA.38.3098
– reference: CopleySDKnowlesJRThe conformational equilibrium of chorismate in solution: Implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenateJ. Am. Chem. Soc.1987109500850131:CAS:528:DyaL2sXlslWgtbk%3D10.1021/ja00250a040
– reference: WeigendFAhlrichsRBalanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyPhys. Chem. Chem. Phys.2005732971:CAS:528:DC%2BD2MXpsFWgu7o%3D1624004410.1039/b508541a
– reference: PeterssonGAAl-LahamMAA complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atomsJ. Chem. Phys.199194608160901991JChPh..94.6081P1:CAS:528:DyaK3MXitlGiu7o%3D10.1063/1.460447
– reference: ChandrasekharJSmithSFJorgensenWLTheoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solutionJ. Am. Chem. Soc.19851071541631:CAS:528:DyaL2MXksFaguw%3D%3D10.1021/ja00287a028
– reference: MikhailSZKimelWRDensities and viscosities of methanol-water mixturesJ. Chem. Eng. Data196165335371:CAS:528:DyaF38XksVKltr8%3D10.1021/je60011a015
– reference: ParrishRMPsi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperabilityJ. Chem. Theory Comput.201713318531971:CAS:528:DC%2BC2sXnsV2ju7k%3D28489372749535510.1021/acs.jctc.7b00174
– reference: CaseDAThe Amber biomolecular simulation programsJ. Comput. Chem.200526166816881:CAS:528:DC%2BD2MXht1SlsbbM16200636198966710.1002/jcc.20290
– reference: LeeCYangWParrGRDevelopment of the Colic–Salvetti correlation-energy into a functional of the electron densityAm. Phys. Soc.1988377857891:CAS:528:DyaL1cXktFWrtbw%3D
– reference: LuzhkovVBKrapivinVBSaninaNAAldoshinSMTheoretical study of the hydrolysis of iron–sulfur–nitrosyl complex [Fe(NO)2(SCH2)2]+Russ. J. Phys. Chem. A2023978138211:CAS:528:DC%2BB3sXhtF2isbvK10.1134/S003602442305014X
– reference: Cau Dit CoumesCChopin-DumasJDevismeFKinetics of the reaction of methyl iodide with hydroxylamine in an aqueous solution within the framework of nuclear spent fuel reprocessingInd. Eng. Chem. Res.200140372137311:CAS:528:DC%2BD3MXltlSntr8%3D10.1021/ie990645b
– reference: MartinezLAndradeRBirginEGMartínezJMPACKMOL: A package for building initial configurations for molecular dynamics simulationsJ. Comput. Chem.200930215721641:CAS:528:DC%2BD1MXptleqsb8%3D1922994410.1002/jcc.21224
– reference: BeckeADDensity-functional thermochemistry. III. The role of exact exchangeJ. Chem. Phys.199398564856521993JChPh..98.5648B1:CAS:528:DyaK3sXisVWgtrw%3D10.1063/1.464913
– reference: NeeseFSoftware update: The ORCA program system, version 4.0Wiley Interdiscip. Rev. Comput. Mol. Sci.20188e132710.1002/wcms.1327
– reference: CaoLRydeUOn the difference between additive and subtractive QM/MM calculationsFront. Chem.20186892018FrCh....6...89C29666794589159610.3389/fchem.2018.00089
– reference: AkerlofGDielectric constants of some organic solvent-water mixtures at various temperaturesJ. Am. Chem. Soc.193254412541391:CAS:528:DyaA3sXmtlyq10.1021/ja01350a001
– reference: Frisch, M. J. et al. Gaussian 16. (2016).
– reference: RyckaertJPCiccottiGBerendsenHJNumerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411977JCoPh..23..327R1:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-5
– reference: JafariSRydeUIraniMTwo local minima for structures of [4Fe–4S] clusters obtained with density functional theory methodsSci. Rep.202313108322023NatSR..1310832J1:CAS:528:DC%2BB3sXhsVejs7%2FK374027671031973510.1038/s41598-023-37755-0
– reference: MartínezJMMartínezLPacking optimization for automated generation of complex system’s initial configurations for molecular dynamics and dockingJ. Comput. Chem.2003248198251269279110.1002/jcc.10216
– reference: BaylyCICieplakPCornellWKollmanPAA well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP modelJ. Phys. Chem.19939710269102801:CAS:528:DyaK3sXlvVyqsLs%3D10.1021/j100142a004
– reference: BaroneVCossiMQuantum calculation of molecular energies and energy gradients in solution by a conductor solvent modelJ. Phys. Chem. A199810219951:CAS:528:DyaK1cXht1Cgt7o%3D10.1021/jp9716997
– reference: AcevedoOArmacostKClaisen rearrangements: Insight into solvent effects and ‘on water’ reactivity from QM/MM simulationsJ. Am. Chem. Soc.2010132196619751:CAS:528:DC%2BC3cXnvFWguw%3D%3D2008852110.1021/ja908680c
– reference: BerendsenHJCPostmaJPMvan GunsterenWFDiNolaAHaakJRMolecular dynamics with coupling to an external bathJ. Chem. Phys.198481368436901984JChPh..81.3684B1:CAS:528:DyaL2cXmtlGksbY%3D10.1063/1.448118
– reference: LehtolaSSteigemannCOliveiraMJTMarquesMALRecent developments in libxc—A comprehensive library of functionals for density functional theorySoftwareX20187152018SoftX...7....1L10.1016/j.softx.2017.11.002
– reference: WhiteWNWolfarthEFOrtho-Claisen rearrangement. IX. Effect of solvent on the substituent effectJ. Org. Chem.197035358535851:CAS:528:DyaE3cXltF2qs7s%3D10.1021/jo00835a097
– reference: CarlsonAHJorgensenWLMonte Carlo investigations of solvent effects on the chorismate to prephenate rearrangementJ. Am. Chem. Soc.1996118847584841:CAS:528:DyaK28XkvFCmt7k%3D10.1021/ja961500o
– reference: BrandesEGriecoPAGajewskiJJEffect of polar solvents on the rates of Claisen rearrangements: Assessment of ionic characterJ. Org. Chem.1989545155161:CAS:528:DyaL1MXnsVGrsg%3D%3D10.1021/jo00264a002
– reference: AradiBHourahineBFrauenheimTDFTB+, a sparse matrix-based implementation of the DFTB Method†J. Phys. Chem. A2007111567856841:CAS:528:DC%2BD2sXmsVaju7c%3D1756711010.1021/jp070186p
– reference: Tirado-RivesJJorgensenWLQM/MM calculations for the Cl– + CH3Cl SN2 reaction in water using CM5 charges and density functional theoryJ. Phys. Chem. A2019123571357171:CAS:528:DC%2BC1MXhtFyjtrrO31246023662588210.1021/acs.jpca.9b04121
– reference: FrischMJGaussian 98, revision a. 71998Gaussian Inc.12
– reference: PeterssonGAA complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elementsJ. Chem. Phys.198889219322181988JChPh..89.2193P1:CAS:528:DyaL1cXlvFOgtbs%3D10.1063/1.455064
– reference: MarquesMALOliveiraMJTBurnusTLibxc: A library of exchange and correlation functionals for density functional theoryComput. Phys. Commun.2012183227222812012CoPhC.183.2272M1:CAS:528:DC%2BC38XotlWitLY%3D10.1016/j.cpc.2012.05.007
– reference: WeigendFAccurate Coulomb-fitting basis sets for H to RnPhys. Chem. Chem. Phys.20068105710651:CAS:528:DC%2BD28Xhs12ntrc%3D1663358610.1039/b515623h
– reference: BeslerBHMerzKMKollmanPAAtomic charges derived from semiempirical methodsJ. Comput. Chem.1990114314391:CAS:528:DyaK3cXkt12nu7k%3D10.1002/jcc.540110404
– reference: BannwarthCEhlertSGrimmeSGFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributionsJ. Chem. Theory Comput.201915165216711:CAS:528:DC%2BC1MXis1entL0%3D3074154710.1021/acs.jctc.8b01176
– reference: GrimmeSEhrlichSGoerigkLEffect of the damping function in dispersion corrected density functional theoryJ. Comput. Chem.201132145614651:CAS:528:DC%2BC3MXjsF2isL0%3D2137024310.1002/jcc.21759
– reference: JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLComparison of simple potential functions for simulating liquid waterJ. Chem. Phys.1983799269351983JChPh..79..926J1:CAS:528:DyaL3sXksF2htL4%3D10.1063/1.445869
– reference: LiCLiuPLiYWangDSolvent effects and potential of mean force study of the SN2 reaction of CH3F+ CN− in waterChin. Phys. B2018273340110.1088/1674-1056/27/3/033401
– reference: StaroverovVNScuseriaGETaoJPerdewJPComparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexesJ. Chem. Phys.200311912129121372003JChPh.11912129S1:CAS:528:DC%2BD3sXps1Wlu7w%3D10.1063/1.1626543
– volume: 98
  start-page: 10089
  year: 1993
  ident: 67468_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 82
  start-page: 270
  year: 1985
  ident: 67468_CR37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 132
  start-page: 1966
  year: 2010
  ident: 67468_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908680c
– volume: 123
  start-page: 5713
  year: 2019
  ident: 67468_CR19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b04121
– volume: 38
  start-page: 3098
  year: 1988
  ident: 67468_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– start-page: 12
  volume-title: Gaussian 98, revision a. 7
  year: 1998
  ident: 67468_CR3
– volume: 54
  start-page: 515
  year: 1989
  ident: 67468_CR9
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00264a002
– volume: 11
  start-page: e1493
  year: 2021
  ident: 67468_CR48
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1493
– volume: 13
  start-page: 10832
  year: 2023
  ident: 67468_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37755-0
– volume: 97
  start-page: 813
  year: 2023
  ident: 67468_CR27
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S003602442305014X
– volume: 109
  start-page: 1170
  year: 1987
  ident: 67468_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00238a029
– volume: 119
  start-page: 12129
  year: 2003
  ident: 67468_CR22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1626543
– volume: 81
  start-page: 3684
  year: 1984
  ident: 67468_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 79
  start-page: 926
  year: 1983
  ident: 67468_CR31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 111
  start-page: 5678
  year: 2007
  ident: 67468_CR7
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp070186p
– ident: 67468_CR39
– volume: 109
  start-page: 5008
  year: 1987
  ident: 67468_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00250a040
– volume: 40
  start-page: 3721
  year: 2001
  ident: 67468_CR8
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990645b
– volume: 102
  start-page: 1995
  year: 1998
  ident: 67468_CR2
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9716997
– volume: 24
  start-page: 819
  year: 2003
  ident: 67468_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10216
– volume: 32
  start-page: 1456
  year: 2011
  ident: 67468_CR26
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 125
  start-page: 6663
  year: 2003
  ident: 67468_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja021423z
– volume: 23
  start-page: 327
  year: 1977
  ident: 67468_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 8
  start-page: e1327
  year: 2018
  ident: 67468_CR5
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1327
– volume: 27
  start-page: 33401
  year: 2018
  ident: 67468_CR14
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/3/033401
– volume: 118
  start-page: 8475
  year: 1996
  ident: 67468_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961500o
– volume: 54
  start-page: 4125
  year: 1932
  ident: 67468_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01350a001
– volume: 107
  start-page: 154
  year: 1985
  ident: 67468_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00287a028
– volume: 8
  start-page: 1057
  year: 2006
  ident: 67468_CR24
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b515623h
– volume: 15
  start-page: 1652
  year: 2019
  ident: 67468_CR49
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01176
– volume: 7
  start-page: 3297
  year: 2005
  ident: 67468_CR23
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 6
  start-page: 533
  year: 1961
  ident: 67468_CR47
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je60011a015
– volume: 35
  start-page: 3585
  year: 1970
  ident: 67468_CR10
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00835a097
– volume: 37
  start-page: 785
  year: 1988
  ident: 67468_CR32
  publication-title: Am. Phys. Soc.
– volume: 94
  start-page: 6081
  year: 1991
  ident: 67468_CR35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460447
– volume: 30
  start-page: 2157
  year: 2009
  ident: 67468_CR46
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 381
  start-page: 512
  year: 2003
  ident: 67468_CR42
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.10.013
– volume: 98
  start-page: 5648
  year: 1993
  ident: 67468_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 89
  start-page: 2193
  year: 1988
  ident: 67468_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455064
– ident: 67468_CR1
  doi: 10.1002/0471220655.ch15
– volume: 6
  start-page: 89
  year: 2018
  ident: 67468_CR50
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00089
– volume: 7
  start-page: 1
  year: 2018
  ident: 67468_CR20
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2017.11.002
– volume: 132
  start-page: 154104
  year: 2010
  ident: 67468_CR25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 26
  start-page: 1668
  year: 2005
  ident: 67468_CR30
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20290
– volume: 32
  start-page: 29
  year: 2007
  ident: 67468_CR13
  publication-title: Prog. React. Kinet. Mech.
  doi: 10.3184/146867807X227462
– volume: 183
  start-page: 2272
  year: 2012
  ident: 67468_CR21
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.05.007
– volume: 97
  start-page: 10269
  year: 1993
  ident: 67468_CR40
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a004
– ident: 67468_CR6
  doi: 10.4016/10896.01
– volume: 11
  start-page: 431
  year: 1990
  ident: 67468_CR38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540110404
– volume: 13
  start-page: 3185
  year: 2017
  ident: 67468_CR4
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00174
SSID ssj0000529419
Score 2.4371622
Snippet This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and kinetics...
Abstract This study investigates the application of quantum mechanical (QM) and multiscale computational methods in understanding the reaction mechanisms and...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16791
SubjectTerms 639/638/403
639/638/563
Accuracy
Computer applications
Humanities and Social Sciences
Hybrids
Iodides
Kinetics
multidisciplinary
Multiscale modeling
ORCA software
Python scripting
QM/MM
Reaction mechanism
Reaction mechanisms
Science
Science (multidisciplinary)
Solvents
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYlLeYstBRmJG1i1Y2_inBCtWnFaVdBDb5afsGpJlqSL2p_DP8XjeFOlEr1wTDxJHM3YHs94vg-h95IKETjTBLx9ImTBieFFTZikoQzgcBuRyCaqxUKendUnOeDW52OVmzkxTdSutRAj3-fRV-AsbpHZp9UvAqxRkF3NFBr30TYglUU73z44Wpx8HaMskMcSrM7VMpTL_T6uWFBVVghSVlB2dDVZkRJw_8TbvH1W8lbCNK1Dx4__9w-eoJ3sgeLPg8k8Rfd88ww9HDgpr5-jP0MaOH4bR98Qa2vXnbbXWDcOe8CbgIs24HQSsY8a9tgmZogcVcQDJ3WPlw1edZAGgoPVOPqmqYIiNkOt8bL_2adXnkcvF5Ci4ZXfFsUoN7QeXkBmq4G7XQdlEBDLfIFOj49OD7-QzONA7JzJS8KM88IDJXDgHiC_Ki0cg5RvcJ4yY60J0hQhCmtmvaTSmCoYB_CIAGj2Em01beNfIWwZtVRXpqx5ELx0tdVaMFFxQ4vAXZghtlGlshnjHKg2LlTKtXOpBvWrqH6V1K-uZujD-MxqQPi4U_oALGSUBHTudKPtvqs82JUT85oZqqnUTjg513Hfx6zTPDBmtInd3NtYiMpTRq9uzGOG3o3NcbBDBkc3vl0PMmUVl6d6huTELicdmrY0yx8JNhyKxXgp4qMfNyZ88_V___Hu3Z19jR4VMJhoRYpiD21ddmv_Bj2wv6MNdm_zePwLFaFCXw
  priority: 102
  providerName: ProQuest
Title Assessing the accuracy and efficacy of multiscale computational methods in predicting reaction mechanisms and kinetics of SN2 reactions and Claisen rearrangement
URI https://link.springer.com/article/10.1038/s41598-024-67468-x
https://www.proquest.com/docview/3083311981
https://www.proquest.com/docview/3083671119
https://pubmed.ncbi.nlm.nih.gov/PMC11263649
https://doaj.org/article/d4591b0a08ad4d85a2171cda3f11babf
Volume 14
WOSCitedRecordID wos001274726000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4ikCZWUkbhDVr42dI61awaGrCHpYTpGfYtWSrZIuan8O_xSPnV26lYALF0uJx06cGcdfMp5vEHqriBCBU10C2i-FYrw0nNUlVSRUAQC3ESnZhJzN1HxeNzdSfcGesEwPnB_cvhPTmhqiidJOODXVEUNT6zQPlBptArx9iaxvfExlVm9WC1qPUTKEq_0hrlQQTcZEWUkIN7raWokSYf8Wyry9R_KWozStP8eP0MMROOIP-YYfozu-e4Lu51SS10_Rz-y9jU1xhHRYW7vqtb3GunPYA00EHCwDThsIh6gYj21K6DD-DMQ5lfSAFx2-6MF7A_uhcYSUKfAhVkOI8GL4PqQuzyI4BYJn6PLLjG3kcu3hOTikOjjb9xC9AL8gn6HT46PTw4_lmH6htFOqLktqnBceMvkG7oGpS2rhKHhqg_OEGmtNUIaFKKyp9YooY2QwDlgNgYfsOdrplp1_gbClxBItTVXzIHjlaqu1oEJyQ1jgLhSIrjXR2pGaHDJknLfJRc5Vm7XXRu21SXvtVYHebdpcZGKOv0ofgII3kkCqnU5EU2tHU2v_ZWoF2lubRzvO9KHlEcNySmtFC_RmUx3nKDhedOeXqyxTybiq1AVSW2a1dUPbNd3iW2L7hhgvXonY9P3aAn9f_c8jfvk_RvwKPWAwY4gsGdtDO5f9yr9G9-yPaKn9BN2Vc5lKNUG7B0ez5vMkTcNYnrAGShnL3ebTSfP1F3vPOw8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGZxEDBYwEK4jq1yTOAiEoVK1aRpWYRXeWnzCiZIakA53P4QP4R3ydZKqpRHddsJz4xuMkx9fXvo-D0AtJhAic6gys_UxIxjPDWZlRSUIewOA2IpFNFKORPDoqD9fQnz4XBsIqe52YFLWbWjgj3-LRVuA0bpHp29mPDFijwLvaU2i0sNj3i19xy9a82fsQv-9LxnY-jrd3s45VILNDKk8yapwXHghqA_dQgKrQwlFwQAbnCTXWmiANC1FYU-slkcYUwTgo1gfltWK3V9DVaEUwkiIFD5dHOuA0E7TsUnMIl1tNXB4hhY2JLC8gx-l0ZflLLAErpu35wMxz3tm06O3c_s9e1x10q7Ou8bt2OtxFa766h663fJuL--h36-KOj4qj3Yu1tfNa2wXWlcMeamnAj2nAKcqyiej12CbWi-7EFLd82w2eVHhWg4sLgsZxtLtTdkhshjzqSfO9SV1-ixY8VMGGLj-P2FKubd0-Bq9dBVfrGlI84Jx2A40v4_U8QOvVtPIPEbaUWKILk5c8CJ670motqCi4ISxwFwaI9shRtqvfDjQixyrFEXCpWrSpiDaV0KZOB-jV8p5ZW73kQun3AMilJFQeTxem9RfVKTLlxLCkhmgitRNODnXc01LrNA-UGm3iMDd7QKpOHTbqDI0D9HzZHBUZeKd05afzViYv4tJbDpBcmQYrA1ptqSZfU0l0SITjuYi3vu5nzNm___uJH1082Gfoxu7404E62BvtP0Y3GcxjUmSMbaL1k3run6Br9mfEY_00KQKM1CXPpL9_ZZ3f
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXrkMUBhgJniCqb02cB4RgY2Iaqiqxh71ZvkLFSEuywvpz-Bn8O3ycpFMnsbc98NjYcZ3kO8fHPpcPoReSCBE41RlY-5mQjGeGszKjkoQ8gMFtRCKbKMZjeXRUTjbQnz4XBsIqe52YFLWbWTgjH_JoK3Aat8h0GLqwiMnu3tv5jwwYpMDT2tNptBA58MtfcfvWvNnfjd_6JWN7Hw53PmYdw0BmR1SeZNQ4LzyQ1QbuoRhVoYWj4IwMzhNqrDVBGhZiZ02tl0QaUwTjoHAflNqKw15BVwsoigVRg2yyOt4BB5qgZZemQ7gcNnGphHQ2JrK8gHyn07WlMDEGrJm554M0z3lq0wK4d_s_fnV30K3O6sbvWjG5izZ8dQ9db3k4l_fR79b1HR8bR3sYa2sXtbZLrCuHPdTYgB-zgFP0ZRNR7bFNbBjdSSpuebgbPK3wvAbXFwST42iPp6yR2Az51dPme5OG_BYte6iODUN-HrNVv7Z15xi8eRVcrWtI_YDz2y10eBmv5wHarGaVf4iwpcQSXZi85EHw3JVWa0FFwQ1hgbswQLRHkbJdXXegFzlWKb6AS9UiT0XkqYQ8dTpAr1b3zNuqJhf2fg_gXPWEiuTpwqz-ojoFp5wYldQQTaR2wsmRjntdap3mgVKjTZzmdg9O1anJRp0hc4Cer5qjggOvla78bNH2yYu4JJcDJNdEYm1C6y3V9GsqlQ4JcjwX8dbXvfSc_fu_n_jRxZN9hm5EAVKf9scHj9FNBiJNioyxbbR5Ui_8E3TN_oxwrJ8mnYCRumRB-gvXr6aj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+accuracy+and+efficacy+of+multiscale+computational+methods+in+predicting+reaction+mechanisms+and+kinetics+of+SN2+reactions+and+Claisen+rearrangement&rft.jtitle=Scientific+reports&rft.au=Haji+Dehabadi%2C+Maryam&rft.au=Saidi%2C+Hamid&rft.au=Zafari%2C+Faezeh&rft.au=Irani%2C+Mehdi&rft.date=2024-07-22&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-67468-x&rft.externalDocID=10_1038_s41598_024_67468_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon