One simulation to fit them all – changing the background parameters of a cosmological N-body simulation

We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of leng...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monthly notices of the Royal Astronomical Society Ročník 405; číslo 1; s. 143 - 154
Hlavní autoři: Angulo, R. E., White, S. D. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 11.06.2010
Wiley-Blackwell
Oxford University Press
Témata:
ISSN:0035-8711, 1365-2966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys.
AbstractList We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h −1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys.
We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc-1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc-1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h-1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys.
We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales ( k < 0.1 h Mpc-1 ) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc-1 . Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h-1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. [PUBLICATION ABSTRACT]
ABSTRACT We demonstrate that the output of a cosmological N‐body simulation can, to remarkable accuracy, be scaled to represent the growth of large‐scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large‐scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first‐year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three‐year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non‐linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo‐by‐halo comparison shows that centre‐of‐mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi‐analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large‐scale structure surveys.
We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys.
Author White, S. D. M.
Angulo, R. E.
Author_xml – sequence: 1
  givenname: R. E.
  surname: Angulo
  fullname: Angulo, R. E.
  email: rangulo@mpa-garching.mpg.de, * rangulo@mpa-garching.mpg.de
  organization: Max Planck Intitute fur Astrophysik, D-85741 Garching, Germany
– sequence: 2
  givenname: S. D. M.
  surname: White
  fullname: White, S. D. M.
  organization: Max Planck Intitute fur Astrophysik, D-85741 Garching, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22847575$$DView record in Pascal Francis
BookMark eNqNkd9qFDEUxoNUcFt9hyCI3syaP5Nk5kaQaq2wbcE_IL0JZzKZbbaZyZrM4PbOd_ANfRJndtciRaW5STj5fd_hnO8QHXShswhhSuZ0PC9Xc8qlyFgp5ZyRqSpzUc43D9Ds9uMAzQjhIisUpY_QYUorQkjOmZwhd9FZnFw7eOhd6HAfcON63F_ZFoP3-Of3H9hcQbd03XKq4grM9TKGoavxGiK0trcx4dBgwCakNviwdAY8Ps-qUN_8Yf0YPWzAJ_tkfx-hzydvPx2fZouLd--PXy8yI2hRZnVphc0V0LxiChrGJIjSNHllDRcMwKiqgiKvLbeWkKYuy8oqAWVuqqoQUPMj9Hznu47h62BTr1uXjPUeOhuGpFUuCSkKIkfyxX9JKhXlQoxLG9Gnd9BVGGI3zqG5kKXghOYj9GwPQRpX0ETojEt6HV0L8UYzVuRKKDFyr3aciSGlaBttXL_dUR_BeU2JnqLVKz0lqKcE9RSt3karN6NBccfgd497SPe9vzlvb-6t02fnH7bP0YDvDMKw_oc8-1vbbKdyqbebWx3Eay0VV0KffrnUH9-whbw8E_qE_wLHON1h
CODEN MNRAA4
CitedBy_id crossref_primary_10_1093_mnras_stac200
crossref_primary_10_1093_mnras_stad058
crossref_primary_10_1088_1475_7516_2022_10_036
crossref_primary_10_1093_mnras_stz2152
crossref_primary_10_1088_1475_7516_2022_09_068
crossref_primary_10_1093_mnras_stz2194
crossref_primary_10_1093_mnras_stac847
crossref_primary_10_1093_mnras_staa3117
crossref_primary_10_1093_mnras_staa2825
crossref_primary_10_1093_mnras_stad2008
crossref_primary_10_1093_mnras_staa2780
crossref_primary_10_1088_0004_637X_728_2_137
crossref_primary_10_1093_mnras_stw673
crossref_primary_10_1103_PhysRevD_111_023508
crossref_primary_10_1093_mnras_stw2901
crossref_primary_10_1093_mnras_stac3762
crossref_primary_10_3847_1538_4357_acdb6c
crossref_primary_10_3847_1538_4357_ad781d
crossref_primary_10_1093_mnras_stac1263
crossref_primary_10_1093_mnras_staa3075
crossref_primary_10_1093_mnras_stz2513
crossref_primary_10_1093_mnras_stab2837
crossref_primary_10_1093_mnras_stz1694
crossref_primary_10_1093_mnras_stac1656
crossref_primary_10_3847_1538_4357_ad90ae
crossref_primary_10_1088_1475_7516_2022_09_051
crossref_primary_10_1093_mnras_stab741
crossref_primary_10_1093_mnras_stac3637
crossref_primary_10_1093_mnras_stad368
crossref_primary_10_1093_mnras_stac2785
crossref_primary_10_1093_mnras_stac3677
crossref_primary_10_1093_mnras_stad122
crossref_primary_10_1088_1475_7516_2015_12_059
crossref_primary_10_1093_mnras_stab1133
crossref_primary_10_1093_mnras_stad2452
crossref_primary_10_1093_mnras_stw1225
crossref_primary_10_1088_1475_7516_2020_09_018
crossref_primary_10_1093_mnras_stac1858
crossref_primary_10_1093_mnras_stac1091
crossref_primary_10_1093_mnras_stad2854
crossref_primary_10_1088_0004_637X_807_1_87
crossref_primary_10_1093_mnras_staa4011
crossref_primary_10_1093_mnras_staa2675
crossref_primary_10_1093_mnras_stab1654
crossref_primary_10_1093_mnras_stad2336
crossref_primary_10_1088_0004_637X_785_1_59
crossref_primary_10_1093_mnras_stab2621
crossref_primary_10_1093_mnras_stw268
crossref_primary_10_1088_0004_637X_776_2_91
crossref_primary_10_1088_1475_7516_2013_05_032
crossref_primary_10_1093_mnras_stab3239
crossref_primary_10_1093_mnras_stac1292
crossref_primary_10_1093_mnras_stac3273
crossref_primary_10_3847_1538_4357_ab6986
crossref_primary_10_1093_mnras_stab3066
crossref_primary_10_1093_mnras_staf578
crossref_primary_10_1088_0004_637X_741_1_15
crossref_primary_10_1088_0067_0049_190_2_311
crossref_primary_10_1093_mnras_stab1245
crossref_primary_10_1093_mnras_staa1478
crossref_primary_10_1088_0004_637X_786_1_50
crossref_primary_10_1093_mnras_stab699
crossref_primary_10_1093_mnras_stw3253
crossref_primary_10_1093_mnras_staa3495
crossref_primary_10_1093_mnras_stad1657
crossref_primary_10_1093_mnras_staa1399
crossref_primary_10_1093_mnras_stab2018
crossref_primary_10_3847_1538_4357_aa9525
crossref_primary_10_1088_1475_7516_2023_06_035
crossref_primary_10_1093_mnras_stac894
crossref_primary_10_1093_mnras_stz1198
crossref_primary_10_1093_mnras_stac2205
crossref_primary_10_1093_mnras_stab2367
crossref_primary_10_1093_mnras_stac3699
crossref_primary_10_1002_andp_201200212
crossref_primary_10_1088_0004_637X_784_1_11
crossref_primary_10_1093_mnras_staf1389
crossref_primary_10_1088_0004_637X_801_2_139
crossref_primary_10_1088_1475_7516_2020_09_039
crossref_primary_10_1103_PhysRevD_111_023004
crossref_primary_10_1093_mnras_stab1517
crossref_primary_10_1093_mnras_stab1911
crossref_primary_10_1007_s41115_021_00013_z
crossref_primary_10_1093_mnras_stad907
crossref_primary_10_1093_mnras_stad2434
crossref_primary_10_1093_mnras_stab3337
crossref_primary_10_1093_mnras_stac3213
crossref_primary_10_3847_2041_8213_aa7e7b
crossref_primary_10_1007_s10714_022_02966_9
crossref_primary_10_1093_mnras_stw248
crossref_primary_10_1093_mnras_stw523
crossref_primary_10_3847_1538_4357_ad320e
crossref_primary_10_1088_0004_637X_728_2_109
crossref_primary_10_1088_1475_7516_2022_11_041
crossref_primary_10_1093_mnras_stw405
Cites_doi 10.1016/S0370-1573(02)00276-4
10.1111/j.1365-2966.2005.09782.x
10.1086/587840
10.1086/163168
10.1111/j.1365-2966.2005.09655.x
10.1103/PhysRevLett.103.091302
10.1111/j.1365-2966.2007.12797.x
10.1086/503249
10.1086/512151
10.1086/309179
10.1086/592020
10.1111/j.1365-2966.2004.07962.x
10.1111/j.1365-2966.2009.15921.x
10.1111/j.1365-2966.2006.11287.x
10.1111/j.1365-2966.2009.15572.x
10.1088/0034-4885/69/12/R02
10.1111/j.1365-2966.2008.14211.x
10.1086/377226
10.1038/nature04805
10.1111/j.1365-2966.2007.12587.x
10.1038/nature03597
10.1086/466512
10.1111/j.1365-2966.2009.15819.x
10.1086/513700
10.1111/j.1365-2966.2005.09833.x
10.1103/PhysRevLett.102.021302
10.1086/321477
10.1046/j.1365-8711.2001.04591.x
10.1111/j.1365-2966.2005.09318.x
10.1086/341434
10.1086/152650
10.1086/178037
10.1111/j.1365-2966.2007.12508.x
10.1086/591439
10.1111/j.1365-2966.2007.12035.x
10.1051/0004-6361:20031757
10.1038/nature06555
10.1086/589636
10.1093/mnras/286.1.38
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 RAS 2010
2010 The Authors. Journal compilation © 2010 RAS
2015 INIST-CNRS
Journal compilation © 2010 RAS
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 RAS 2010
– notice: 2010 The Authors. Journal compilation © 2010 RAS
– notice: 2015 INIST-CNRS
– notice: Journal compilation © 2010 RAS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
H8D
L7M
7SE
JG9
7TG
KL.
DOI 10.1111/j.1365-2966.2010.16459.x
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Corrosion Abstracts
Materials Research Database
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Materials Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 154
ExternalDocumentID 2048703941
22847575
10_1111_j_1365_2966_2010_16459_x
MNR16459
10.1111/j.1365-2966.2010.16459.x
ark_67375_HXZ_SD2L6ZM5_F
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AAHHS
AASNB
ABFSI
ABJNI
ABSAR
ABSMQ
ABTAH
ACBNA
ACCFJ
ACFRR
ACUTJ
ADRIX
AEEZP
AEQDE
AETEA
AFFNX
AFXEN
AGMDO
AIWBW
AJBDE
ASAOO
ATDFG
BCRHZ
CXTWN
DFGAJ
E.L
EAD
EAP
ESX
MBTAY
O0~
OHT
RHF
RNP
ROX
UQL
VOH
WRC
ZY4
AAYXX
AHGBF
APJGH
CITATION
O8X
IQODW
8FD
H8D
L7M
7SE
JG9
7TG
KL.
ID FETCH-LOGICAL-c5189-d9e5e47a14b27af226a59cf4bec352aac7bba84de3ee00fd99be75a94cbb85ad3
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278313200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Thu Jul 10 18:38:32 EDT 2025
Fri Jul 11 16:50:12 EDT 2025
Mon Jul 14 10:26:12 EDT 2025
Mon Jul 21 09:12:04 EDT 2025
Tue Nov 18 22:14:15 EST 2025
Sat Nov 29 02:06:55 EST 2025
Wed Jan 22 16:19:17 EST 2025
Wed Aug 28 03:23:45 EDT 2024
Sat Sep 20 11:01:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords large-scale structure of Universe
cosmology: theory
Red shift
Fluctuations
Uncertainty
Coupling constants
Galaxies
Power spectra
Digital simulation
N body system
WMAP satellite
Large-scale structure
Baryons
Algorithms
Cosmological parameter
Galaxy formation
Center of mass
Positions
Cosmology
Models
Performance
Mass spectra
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5189-d9e5e47a14b27af226a59cf4bec352aac7bba84de3ee00fd99be75a94cbb85ad3
Notes ark:/67375/HXZ-SD2L6ZM5-F
istex:624FB1235E7943E63B04EC35FE6D3E5AA3A141F0
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 356953014
PQPubID 42411
PageCount 12
ParticipantIDs proquest_miscellaneous_746008806
proquest_miscellaneous_1671355711
proquest_journals_356953014
pascalfrancis_primary_22847575
crossref_citationtrail_10_1111_j_1365_2966_2010_16459_x
crossref_primary_10_1111_j_1365_2966_2010_16459_x
wiley_primary_10_1111_j_1365_2966_2010_16459_x_MNR16459
oup_primary_10_1111_j_1365-2966_2010_16459_x
istex_primary_ark_67375_HXZ_SD2L6ZM5_F
PublicationCentury 2000
PublicationDate 2010-06-11
PublicationDateYYYYMMDD 2010-06-11
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-11
  day: 11
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationTitleAlternate Monthly Notices of the Royal Astronomical Society
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References 2007; 382
2010; 402
2002; 372
2002; 575
2010; 401
2005; 633
2005; 435
2000; 538
2009
2008; 688
2009; 393
2008; 684
2008; 682
1974; 187
2008; 384
2008; 383
1970; 5
2001; 326
2007; 379
2004; 351
2006; 647
2005; 362
2005; 364
2007; 170
1997; 286
2007; 375
2006; 69
2006; 440
2009; 102
2008; 677
1996; 472
2003; 148
1985; 292
2004; 416
2008; 451
2007; 659
2001; 555
2009; 103
2009; 400
2006; 366
Dolag (10.1111/j.1365-2966.2010.16459.x-BIB15) 2004; 416
Seljak (10.1111/j.1365-2966.2010.16459.x-BIB32) 2009; 102
10.1111/j.1365-2966.2010.16459.x-BIB14
Angulo (10.1111/j.1365-2966.2010.16459.x-BIB1) 2008; 383
Cole (10.1111/j.1365-2966.2010.16459.x-BIB7) 1997; 286
10.1111/j.1365-2966.2010.16459.x-BIB38
Zel'dovich (10.1111/j.1365-2966.2010.16459.x-BIB42) 1970; 5
Croton (10.1111/j.1365-2966.2010.16459.x-BIB11) 2007; 379
Tinker (10.1111/j.1365-2966.2010.16459.x-BIB39) 2008; 688
Eisenstein (10.1111/j.1365-2966.2010.16459.x-BIB16) 2005; 633
Percival (10.1111/j.1365-2966.2010.16459.x-BIB27) 2009; 393
Hoekstra (10.1111/j.1365-2966.2010.16459.x-BIB64) 2006; 647
Sánchez (10.1111/j.1365-2966.2010.16459.x-BIB31) 2009; 400
Wang (10.1111/j.1365-2966.2010.16459.x-BIB41) 2008; 384
Guzzo (10.1111/j.1365-2966.2010.16459.x-BIB18) 2008; 451
Zheng (10.1111/j.1365-2966.2010.16459.x-BIB44) 2002; 575
Baugh (10.1111/j.1365-2966.2010.16459.x-BIB2) 2006; 69
Matarrese (10.1111/j.1365-2966.2010.16459.x-BIB25) 2008; 677
Sánchez (10.1111/j.1365-2966.2010.16459.x-BIB30) 2006; 366
Gaztanaga (10.1111/j.1365-2966.2010.16459.x-BIB17) 2009; 103
Harker (10.1111/j.1365-2966.2010.16459.x-BIB19) 2007; 382
Springel (10.1111/j.1365-2966.2010.16459.x-BIB35) 2005; 364
Ross (10.1111/j.1365-2966.2010.16459.x-BIB29) 2008; 682
Zheng (10.1111/j.1365-2966.2010.16459.x-BIB43) 2007; 659
Baugh (10.1111/j.1365-2966.2010.16459.x-BIB3) 2004; 351
10.1111/j.1365-2966.2010.16459.x-BIB26
Cooray (10.1111/j.1365-2966.2010.16459.x-BIB10) 2002; 372
Spergel (10.1111/j.1365-2966.2010.16459.x-BIB33) 2003; 148
Springel (10.1111/j.1365-2966.2010.16459.x-BIB36) 2005; 435
Cole (10.1111/j.1365-2966.2010.16459.x-BIB9) 2005; 362
Springel (10.1111/j.1365-2966.2010.16459.x-BIB37) 2006; 440
Press (10.1111/j.1365-2966.2010.16459.x-BIB28) 1974; 187
De Lucia (10.1111/j.1365-2966.2010.16459.x-BIB13) 2007; 375
Bullock (10.1111/j.1365-2966.2010.16459.x-BIB5) 2001; 555
Carbone (10.1111/j.1365-2966.2010.16459.x-BIB6) 2008; 684
10.1111/j.1365-2966.2010.16459.x-BIB4
Lewis (10.1111/j.1365-2966.2010.16459.x-BIB23) 2000; 538
Tormen (10.1111/j.1365-2966.2010.16459.x-BIB40) 1996; 472
Cole (10.1111/j.1365-2966.2010.16459.x-BIB8) 2001; 326
Spergel (10.1111/j.1365-2966.2010.16459.x-BIB34) 2007; 170
Huterer (10.1111/j.1365-2966.2010.16459.x-BIB21) 2006; 366
Jennings (10.1111/j.1365-2966.2010.16459.x-BIB22) 2010; 401
Davis (10.1111/j.1365-2966.2010.16459.x-BIB12) 1985; 292
Manera (10.1111/j.1365-2966.2010.16459.x-BIB24) 2010; 402
References_xml – year: 2009
– volume: 187
  start-page: 425
  year: 1974
  publication-title: ApJ
– volume: 366
  start-page: 189
  year: 2006
  publication-title: MNRAS
– volume: 170
  start-page: 377
  year: 2007
  publication-title: ApJS
– volume: 326
  start-page: 255
  year: 2001
  publication-title: MNRAS
– volume: 372
  start-page: 1
  year: 2002
  publication-title: Phys. Rep.
– volume: 375
  start-page: 2
  year: 2007
  publication-title: MNRAS
– volume: 364
  start-page: 1105
  year: 2005
  publication-title: MNRAS
– volume: 435
  start-page: 629
  year: 2005
  publication-title: Nat
– volume: 575
  start-page: 617
  year: 2002
  publication-title: ApJ
– volume: 440
  start-page: 1137
  year: 2006
  publication-title: Nat
– volume: 538
  start-page: 473
  year: 2000
  publication-title: ApJ
– volume: 682
  start-page: 737
  year: 2008
  publication-title: ApJ
– volume: 366
  start-page: 101
  year: 2006
  publication-title: MNRAS
– volume: 402
  start-page: 589
  year: 2010
  publication-title: MNRAS
– volume: 382
  start-page: 1503
  year: 2007
  publication-title: MNRAS
– volume: 69
  start-page: 3101
  year: 2006
  publication-title: Rep. Progress Phys.
– volume: 684
  start-page: L1
  year: 2008
  publication-title: ApJ
– volume: 659
  start-page: 1
  year: 2007
  publication-title: ApJ
– volume: 379
  start-page: 1562
  year: 2007
  publication-title: MNRAS
– volume: 286
  start-page: 38
  year: 1997
  publication-title: MNRAS
– volume: 393
  start-page: 297
  year: 2009
  publication-title: MNRAS
– volume: 5
  start-page: 84
  year: 1970
  publication-title: A&A
– volume: 351
  start-page: L44
  year: 2004
  publication-title: MNRAS
– volume: 103
  start-page: 091302
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 647
  start-page: 116
  year: 2006
  publication-title: ApJ
– volume: 688
  start-page: 709
  year: 2008
  publication-title: ApJ
– volume: 472
  start-page: 14
  year: 1996
  publication-title: ApJ
– volume: 102
  start-page: 021302
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 400
  start-page: 1643
  year: 2009
  publication-title: MNRAS
– volume: 362
  start-page: 505
  year: 2005
  publication-title: MNRAS
– volume: 451
  start-page: 541
  year: 2008
  publication-title: Nat
– volume: 416
  start-page: 853
  year: 2004
  publication-title: A&A
– volume: 401
  start-page: 2181
  year: 2010
  publication-title: MNRAS
– volume: 384
  start-page: 1301
  year: 2008
  publication-title: MNRAS
– volume: 555
  start-page: 240
  year: 2001
  publication-title: ApJ
– volume: 383
  start-page: 755
  year: 2008
  publication-title: MNRAS
– volume: 633
  start-page: 560
  year: 2005
  publication-title: ApJ
– volume: 292
  start-page: 371
  year: 1985
  publication-title: ApJ
– volume: 148
  start-page: 175
  year: 2003
  publication-title: ApJS
– volume: 677
  start-page: L77
  year: 2008
  publication-title: ApJ
– volume: 372
  start-page: 1
  year: 2002
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB10
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00276-4
– volume: 366
  start-page: 101
  year: 2006
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09782.x
– volume: 5
  start-page: 84
  year: 1970
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB42
  publication-title: A&A
– volume: 677
  start-page: L77
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB25
  publication-title: ApJ
  doi: 10.1086/587840
– volume: 292
  start-page: 371
  year: 1985
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB12
  publication-title: ApJ
  doi: 10.1086/163168
– volume: 364
  start-page: 1105
  year: 2005
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09655.x
– volume: 103
  start-page: 091302
  year: 2009
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.091302
– volume: 384
  start-page: 1301
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB41
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12797.x
– volume: 647
  start-page: 116
  year: 2006
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB64
  publication-title: ApJ
  doi: 10.1086/503249
– volume: 659
  start-page: 1
  year: 2007
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB43
  publication-title: ApJ
  doi: 10.1086/512151
– volume: 538
  start-page: 473
  year: 2000
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB23
  publication-title: ApJ
  doi: 10.1086/309179
– volume: 684
  start-page: L1
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB6
  publication-title: ApJ
  doi: 10.1086/592020
– ident: 10.1111/j.1365-2966.2010.16459.x-BIB26
– ident: 10.1111/j.1365-2966.2010.16459.x-BIB38
– volume: 351
  start-page: L44
  year: 2004
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB3
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07962.x
– volume: 402
  start-page: 589
  year: 2010
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15921.x
– volume: 375
  start-page: 2
  year: 2007
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11287.x
– volume: 400
  start-page: 1643
  year: 2009
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15572.x
– volume: 69
  start-page: 3101
  year: 2006
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB2
  publication-title: Rep. Progress Phys.
  doi: 10.1088/0034-4885/69/12/R02
– volume: 393
  start-page: 297
  year: 2009
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB27
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14211.x
– volume: 148
  start-page: 175
  year: 2003
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB33
  publication-title: ApJS
  doi: 10.1086/377226
– volume: 440
  start-page: 1137
  year: 2006
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB37
  publication-title: Nat
  doi: 10.1038/nature04805
– volume: 383
  start-page: 755
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB1
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12587.x
– volume: 435
  start-page: 629
  year: 2005
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB36
  publication-title: Nat
  doi: 10.1038/nature03597
– volume: 633
  start-page: 560
  year: 2005
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB16
  publication-title: ApJ
  doi: 10.1086/466512
– volume: 401
  start-page: 2181
  year: 2010
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15819.x
– volume: 170
  start-page: 377
  year: 2007
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB34
  publication-title: ApJS
  doi: 10.1086/513700
– ident: 10.1111/j.1365-2966.2010.16459.x-BIB14
– volume: 366
  start-page: 189
  year: 2006
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09833.x
– volume: 102
  start-page: 021302
  year: 2009
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.021302
– volume: 555
  start-page: 240
  year: 2001
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB5
  publication-title: ApJ
  doi: 10.1086/321477
– volume: 326
  start-page: 255
  year: 2001
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB8
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04591.x
– volume: 362
  start-page: 505
  year: 2005
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB9
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09318.x
– volume: 575
  start-page: 617
  year: 2002
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB44
  publication-title: ApJ
  doi: 10.1086/341434
– volume: 187
  start-page: 425
  year: 1974
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB28
  publication-title: ApJ
  doi: 10.1086/152650
– volume: 472
  start-page: 14
  year: 1996
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB40
  publication-title: ApJ
  doi: 10.1086/178037
– volume: 382
  start-page: 1503
  year: 2007
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB19
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12508.x
– volume: 688
  start-page: 709
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB39
  publication-title: ApJ
  doi: 10.1086/591439
– volume: 379
  start-page: 1562
  year: 2007
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12035.x
– volume: 416
  start-page: 853
  year: 2004
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB15
  publication-title: A&A
  doi: 10.1051/0004-6361:20031757
– volume: 451
  start-page: 541
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB18
  publication-title: Nat
  doi: 10.1038/nature06555
– volume: 682
  start-page: 737
  year: 2008
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB29
  publication-title: ApJ
  doi: 10.1086/589636
– volume: 286
  start-page: 38
  year: 1997
  ident: 10.1111/j.1365-2966.2010.16459.x-BIB7
  publication-title: MNRAS
  doi: 10.1093/mnras/286.1.38
– ident: 10.1111/j.1365-2966.2010.16459.x-BIB4
SSID ssj0004326
Score 2.4706447
Snippet We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a...
ABSTRACT We demonstrate that the output of a cosmological N‐body simulation can, to remarkable accuracy, be scaled to represent the growth of large‐scale...
SourceID proquest
pascalfrancis
crossref
wiley
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Algorithms
Amplitudes
Astronomy
Computer simulation
Cosmology
cosmology: theory
Earth, ocean, space
Errors
Exact sciences and technology
Halos
large-scale structure of Universe
Mathematical models
Scale (corrosion)
Simulation
Universe
Title One simulation to fit them all – changing the background parameters of a cosmological N-body simulation
URI https://api.istex.fr/ark:/67375/HXZ-SD2L6ZM5-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.16459.x
https://www.proquest.com/docview/356953014
https://www.proquest.com/docview/1671355711
https://www.proquest.com/docview/746008806
Volume 405
WOSCitedRecordID wos000278313200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBej3cNgjK3bqNetaDD6kinEH7Ksx9IP-tCko80g9MXItryGJnaIk5H89zvJ8kdGw7LBXoIjW4fR_Xy6O90HQl9gywt6nEVE2ElEPJ_GhKepJF7kyNR2fCrLOrPXbDAIRiP-zThzCt1OgGVZsFrx2X9lNYwBs1Xq7F-wuyYKA3ANTIdfYDv87sT4G1Abi_HUtOVSumU61gmL0446hiZlrm-VJRWJ-FFldqhyAUIFaqlqmyZpMi-mtWgcdEiUJ-sW5bZaC5Jh8TBZd7JcxdIVVeBB6Zs4LZS7PS_rEpgo0cb78GNZHv7cdjsX3WaLMG377rqd826n3207J9S5uk-M8DQC16UgcM2QLGWsDqzjZbOV7RK8eqoMv7NV0ZsqsrNdNPu3zawOMWwZN0ApVJRCRSnUlJTZse8wypUgHN6MmlRaV3foq997M_jryXfa0Gj21ce5qrIlX85EAWublj1SNoyYtimkdZnha_TKGCH4tATPG_RMZgfosOLTGp9gfV16vYoDZPUBFvlcn8DAzbPJGOwc_e8tegC84QYVeJFjwBtWeMOAN0xwhTc1hhu84QZvOE-xwG284QHWeGtRfoe-X14Mz66Iad9BYmoHnCRcUukxYcN3z0QKer6gPE49kBqg9QsRsygSgZdIV8peL004jySjgntxFAVUJO57tJflmTxEOLGZG4iUOoy5XhwzIVzKnMSOeg5z0sCxEKtYEMamtr1qsTIJ_wQDC9n1zFlZ32WHOSeay_UEMX9U8ZGMhlej-_Du3Ln27_s0vLTQV4DBFrrkCbrHG3ipJzpKhwS7ykJHFYBCI3GK0KU-p8oxYqHP9V3YI9TBn8hkviyAvmrESQHOFsJbnmEemD6wmfuwlhqaOy9H2B_c6ssP_7CWR-hFIzc-or3FfCk_oefxz8W4mB_rb_MX8Rn0AQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+simulation+to+fit+them+all+-+changing+the+background+parameters+of+a+cosmological+N+-body+simulation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Angulo%2C+R.+E.&rft.au=White%2C+S.+D.+M.&rft.date=2010-06-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.16459.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2966_2010_16459_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon