One simulation to fit them all – changing the background parameters of a cosmological N-body simulation
We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of leng...
Saved in:
| Published in: | Monthly notices of the Royal Astronomical Society Vol. 405; no. 1; pp. 143 - 154 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Blackwell Publishing Ltd
11.06.2010
Wiley-Blackwell Oxford University Press |
| Subjects: | |
| ISSN: | 0035-8711, 1365-2966 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. |
|---|---|
| AbstractList | We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales ( k < 0.1 h Mpc-1 ) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc-1 . Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h-1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. [PUBLICATION ABSTRACT] We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc-1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc-1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h-1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large-scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three-year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non-linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo-by-halo comparison shows that centre-of-mass positions and velocities are reproduced to better than 90 h −1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi-analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large-scale structure surveys. ABSTRACT We demonstrate that the output of a cosmological N‐body simulation can, to remarkable accuracy, be scaled to represent the growth of large‐scale structure in a cosmology with parameters similar to but different from those originally assumed. Our algorithm involves three steps: a reassignment of length, mass and velocity units; a relabelling of the time axis and a rescaling of the amplitudes of individual large‐scale fluctuation modes. We test it using two matched pairs of simulations. Within each pair, one simulation assumes parameters consistent with analyses of the first‐year Wilkinson Microwave Anisotropy Probe (WMAP) data. The other has lower matter and baryon densities and a 15 per cent lower fluctuation amplitude, consistent with analyses of the three‐year WMAP data. The pairs differ by a factor of a thousand in mass resolution, enabling performance tests on both linear and non‐linear scales. Our scaling reproduces the mass power spectra of the target cosmology to better than 0.5 per cent on large scales (k < 0.1 h Mpc−1) both in real and in redshift space. In particular, the baryonic acoustic oscillation features of the original cosmology are removed and are correctly replaced by those of the target cosmology. Errors are still below 3 per cent for k < 1 h Mpc−1. Power spectra of the dark halo distribution are even more precisely reproduced, with errors below 1 per cent on all scales tested. A halo‐by‐halo comparison shows that centre‐of‐mass positions and velocities are reproduced to better than 90 h−1 kpc and 5 per cent, respectively. Halo masses, concentrations and spins are also reproduced at about the 10 per cent level, although with small biases. Halo assembly histories are accurately reproduced, leading to central galaxy magnitudes with errors of about 0.25 mag and a bias of about 0.13 mag for a representative semi‐analytic model. This algorithm will enable a systematic exploration of the coupling between cosmological parameter estimates and uncertainties in galaxy formation in future large‐scale structure surveys. |
| Author | White, S. D. M. Angulo, R. E. |
| Author_xml | – sequence: 1 givenname: R. E. surname: Angulo fullname: Angulo, R. E. email: rangulo@mpa-garching.mpg.de, * rangulo@mpa-garching.mpg.de organization: Max Planck Intitute fur Astrophysik, D-85741 Garching, Germany – sequence: 2 givenname: S. D. M. surname: White fullname: White, S. D. M. organization: Max Planck Intitute fur Astrophysik, D-85741 Garching, Germany |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22847575$$DView record in Pascal Francis |
| BookMark | eNqNkd9qFDEUxoNUcFt9hyCI3syaP5Nk5kaQaq2wbcE_IL0JZzKZbbaZyZrM4PbOd_ANfRJndtciRaW5STj5fd_hnO8QHXShswhhSuZ0PC9Xc8qlyFgp5ZyRqSpzUc43D9Ds9uMAzQjhIisUpY_QYUorQkjOmZwhd9FZnFw7eOhd6HAfcON63F_ZFoP3-Of3H9hcQbd03XKq4grM9TKGoavxGiK0trcx4dBgwCakNviwdAY8Ps-qUN_8Yf0YPWzAJ_tkfx-hzydvPx2fZouLd--PXy8yI2hRZnVphc0V0LxiChrGJIjSNHllDRcMwKiqgiKvLbeWkKYuy8oqAWVuqqoQUPMj9Hznu47h62BTr1uXjPUeOhuGpFUuCSkKIkfyxX9JKhXlQoxLG9Gnd9BVGGI3zqG5kKXghOYj9GwPQRpX0ETojEt6HV0L8UYzVuRKKDFyr3aciSGlaBttXL_dUR_BeU2JnqLVKz0lqKcE9RSt3karN6NBccfgd497SPe9vzlvb-6t02fnH7bP0YDvDMKw_oc8-1vbbKdyqbebWx3Eay0VV0KffrnUH9-whbw8E_qE_wLHON1h |
| CODEN | MNRAA4 |
| CitedBy_id | crossref_primary_10_1093_mnras_stac200 crossref_primary_10_1093_mnras_stad058 crossref_primary_10_1088_1475_7516_2022_10_036 crossref_primary_10_1093_mnras_stz2152 crossref_primary_10_1088_1475_7516_2022_09_068 crossref_primary_10_1093_mnras_stz2194 crossref_primary_10_1093_mnras_stac847 crossref_primary_10_1093_mnras_staa3117 crossref_primary_10_1093_mnras_staa2825 crossref_primary_10_1093_mnras_stad2008 crossref_primary_10_1093_mnras_staa2780 crossref_primary_10_1088_0004_637X_728_2_137 crossref_primary_10_1093_mnras_stw673 crossref_primary_10_1103_PhysRevD_111_023508 crossref_primary_10_1093_mnras_stw2901 crossref_primary_10_1093_mnras_stac3762 crossref_primary_10_3847_1538_4357_acdb6c crossref_primary_10_3847_1538_4357_ad781d crossref_primary_10_1093_mnras_stac1263 crossref_primary_10_1093_mnras_staa3075 crossref_primary_10_1093_mnras_stz2513 crossref_primary_10_1093_mnras_stab2837 crossref_primary_10_1093_mnras_stz1694 crossref_primary_10_1093_mnras_stac1656 crossref_primary_10_3847_1538_4357_ad90ae crossref_primary_10_1088_1475_7516_2022_09_051 crossref_primary_10_1093_mnras_stab741 crossref_primary_10_1093_mnras_stac3637 crossref_primary_10_1093_mnras_stad368 crossref_primary_10_1093_mnras_stac2785 crossref_primary_10_1093_mnras_stac3677 crossref_primary_10_1093_mnras_stad122 crossref_primary_10_1088_1475_7516_2015_12_059 crossref_primary_10_1093_mnras_stab1133 crossref_primary_10_1093_mnras_stad2452 crossref_primary_10_1093_mnras_stw1225 crossref_primary_10_1088_1475_7516_2020_09_018 crossref_primary_10_1093_mnras_stac1858 crossref_primary_10_1093_mnras_stac1091 crossref_primary_10_1093_mnras_stad2854 crossref_primary_10_1088_0004_637X_807_1_87 crossref_primary_10_1093_mnras_staa4011 crossref_primary_10_1093_mnras_staa2675 crossref_primary_10_1093_mnras_stab1654 crossref_primary_10_1093_mnras_stad2336 crossref_primary_10_1088_0004_637X_785_1_59 crossref_primary_10_1093_mnras_stab2621 crossref_primary_10_1093_mnras_stw268 crossref_primary_10_1088_0004_637X_776_2_91 crossref_primary_10_1088_1475_7516_2013_05_032 crossref_primary_10_1093_mnras_stab3239 crossref_primary_10_1093_mnras_stac1292 crossref_primary_10_1093_mnras_stac3273 crossref_primary_10_3847_1538_4357_ab6986 crossref_primary_10_1093_mnras_stab3066 crossref_primary_10_1093_mnras_staf578 crossref_primary_10_1088_0004_637X_741_1_15 crossref_primary_10_1088_0067_0049_190_2_311 crossref_primary_10_1093_mnras_stab1245 crossref_primary_10_1093_mnras_staa1478 crossref_primary_10_1088_0004_637X_786_1_50 crossref_primary_10_1093_mnras_stab699 crossref_primary_10_1093_mnras_stw3253 crossref_primary_10_1093_mnras_staa3495 crossref_primary_10_1093_mnras_stad1657 crossref_primary_10_1093_mnras_staa1399 crossref_primary_10_1093_mnras_stab2018 crossref_primary_10_3847_1538_4357_aa9525 crossref_primary_10_1088_1475_7516_2023_06_035 crossref_primary_10_1093_mnras_stac894 crossref_primary_10_1093_mnras_stz1198 crossref_primary_10_1093_mnras_stac2205 crossref_primary_10_1093_mnras_stab2367 crossref_primary_10_1093_mnras_stac3699 crossref_primary_10_1002_andp_201200212 crossref_primary_10_1088_0004_637X_784_1_11 crossref_primary_10_1093_mnras_staf1389 crossref_primary_10_1088_0004_637X_801_2_139 crossref_primary_10_1088_1475_7516_2020_09_039 crossref_primary_10_1103_PhysRevD_111_023004 crossref_primary_10_1093_mnras_stab1517 crossref_primary_10_1093_mnras_stab1911 crossref_primary_10_1007_s41115_021_00013_z crossref_primary_10_1093_mnras_stad907 crossref_primary_10_1093_mnras_stad2434 crossref_primary_10_1093_mnras_stab3337 crossref_primary_10_1093_mnras_stac3213 crossref_primary_10_3847_2041_8213_aa7e7b crossref_primary_10_1007_s10714_022_02966_9 crossref_primary_10_1093_mnras_stw248 crossref_primary_10_1093_mnras_stw523 crossref_primary_10_3847_1538_4357_ad320e crossref_primary_10_1088_0004_637X_728_2_109 crossref_primary_10_1088_1475_7516_2022_11_041 crossref_primary_10_1093_mnras_stw405 |
| Cites_doi | 10.1016/S0370-1573(02)00276-4 10.1111/j.1365-2966.2005.09782.x 10.1086/587840 10.1086/163168 10.1111/j.1365-2966.2005.09655.x 10.1103/PhysRevLett.103.091302 10.1111/j.1365-2966.2007.12797.x 10.1086/503249 10.1086/512151 10.1086/309179 10.1086/592020 10.1111/j.1365-2966.2004.07962.x 10.1111/j.1365-2966.2009.15921.x 10.1111/j.1365-2966.2006.11287.x 10.1111/j.1365-2966.2009.15572.x 10.1088/0034-4885/69/12/R02 10.1111/j.1365-2966.2008.14211.x 10.1086/377226 10.1038/nature04805 10.1111/j.1365-2966.2007.12587.x 10.1038/nature03597 10.1086/466512 10.1111/j.1365-2966.2009.15819.x 10.1086/513700 10.1111/j.1365-2966.2005.09833.x 10.1103/PhysRevLett.102.021302 10.1086/321477 10.1046/j.1365-8711.2001.04591.x 10.1111/j.1365-2966.2005.09318.x 10.1086/341434 10.1086/152650 10.1086/178037 10.1111/j.1365-2966.2007.12508.x 10.1086/591439 10.1111/j.1365-2966.2007.12035.x 10.1051/0004-6361:20031757 10.1038/nature06555 10.1086/589636 10.1093/mnras/286.1.38 |
| ContentType | Journal Article |
| Copyright | 2010 The Authors. Journal compilation © 2010 RAS 2010 2010 The Authors. Journal compilation © 2010 RAS 2015 INIST-CNRS Journal compilation © 2010 RAS |
| Copyright_xml | – notice: 2010 The Authors. Journal compilation © 2010 RAS 2010 – notice: 2010 The Authors. Journal compilation © 2010 RAS – notice: 2015 INIST-CNRS – notice: Journal compilation © 2010 RAS |
| DBID | BSCLL AAYXX CITATION IQODW 8FD H8D L7M 7SE JG9 7TG KL. |
| DOI | 10.1111/j.1365-2966.2010.16459.x |
| DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Corrosion Abstracts Materials Research Database Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Materials Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
| DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 154 |
| ExternalDocumentID | 2048703941 22847575 10_1111_j_1365_2966_2010_16459_x MNR16459 10.1111/j.1365-2966.2010.16459.x ark_67375_HXZ_SD2L6ZM5_F |
| Genre | article Feature |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABVLG ABXVV ABZBJ ACBWZ ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFZJQ AGINJ AGQPQ AGSYK AGXDD AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AAHHS AASNB ABFSI ABJNI ABSAR ABSMQ ABTAH ACBNA ACCFJ ACFRR ACUTJ ADRIX AEEZP AEQDE AETEA AFFNX AFXEN AGMDO AIWBW AJBDE ASAOO ATDFG BCRHZ CXTWN DFGAJ E.L EAD EAP ESX MBTAY O0~ OHT RHF RNP ROX UQL VOH WRC ZY4 AAYXX AHGBF APJGH CITATION O8X IQODW 8FD H8D L7M 7SE JG9 7TG KL. |
| ID | FETCH-LOGICAL-c5189-d9e5e47a14b27af226a59cf4bec352aac7bba84de3ee00fd99be75a94cbb85ad3 |
| ISICitedReferencesCount | 202 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278313200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-8711 |
| IngestDate | Thu Jul 10 18:38:32 EDT 2025 Fri Jul 11 16:50:12 EDT 2025 Mon Jul 14 10:26:12 EDT 2025 Mon Jul 21 09:12:04 EDT 2025 Tue Nov 18 22:14:15 EST 2025 Sat Nov 29 02:06:55 EST 2025 Wed Jan 22 16:19:17 EST 2025 Wed Aug 28 03:23:45 EDT 2024 Sat Sep 20 11:01:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | large-scale structure of Universe cosmology: theory Red shift Fluctuations Uncertainty Coupling constants Galaxies Power spectra Digital simulation N body system WMAP satellite Large-scale structure Baryons Algorithms Cosmological parameter Galaxy formation Center of mass Positions Cosmology Models Performance Mass spectra |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c5189-d9e5e47a14b27af226a59cf4bec352aac7bba84de3ee00fd99be75a94cbb85ad3 |
| Notes | ark:/67375/HXZ-SD2L6ZM5-F istex:624FB1235E7943E63B04EC35FE6D3E5AA3A141F0 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 356953014 |
| PQPubID | 42411 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_746008806 proquest_miscellaneous_1671355711 proquest_journals_356953014 pascalfrancis_primary_22847575 crossref_citationtrail_10_1111_j_1365_2966_2010_16459_x crossref_primary_10_1111_j_1365_2966_2010_16459_x wiley_primary_10_1111_j_1365_2966_2010_16459_x_MNR16459 oup_primary_10_1111_j_1365-2966_2010_16459_x istex_primary_ark_67375_HXZ_SD2L6ZM5_F |
| PublicationCentury | 2000 |
| PublicationDate | 2010-06-11 |
| PublicationDateYYYYMMDD | 2010-06-11 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA – name: London |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
| PublicationTitleAlternate | Monthly Notices of the Royal Astronomical Society |
| PublicationYear | 2010 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell Oxford University Press |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Oxford University Press |
| References | 2007; 382 2010; 402 2002; 372 2002; 575 2010; 401 2005; 633 2005; 435 2000; 538 2009 2008; 688 2009; 393 2008; 684 2008; 682 1974; 187 2008; 384 2008; 383 1970; 5 2001; 326 2007; 379 2004; 351 2006; 647 2005; 362 2005; 364 2007; 170 1997; 286 2007; 375 2006; 69 2006; 440 2009; 102 2008; 677 1996; 472 2003; 148 1985; 292 2004; 416 2008; 451 2007; 659 2001; 555 2009; 103 2009; 400 2006; 366 Dolag (10.1111/j.1365-2966.2010.16459.x-BIB15) 2004; 416 Seljak (10.1111/j.1365-2966.2010.16459.x-BIB32) 2009; 102 10.1111/j.1365-2966.2010.16459.x-BIB14 Angulo (10.1111/j.1365-2966.2010.16459.x-BIB1) 2008; 383 Cole (10.1111/j.1365-2966.2010.16459.x-BIB7) 1997; 286 10.1111/j.1365-2966.2010.16459.x-BIB38 Zel'dovich (10.1111/j.1365-2966.2010.16459.x-BIB42) 1970; 5 Croton (10.1111/j.1365-2966.2010.16459.x-BIB11) 2007; 379 Tinker (10.1111/j.1365-2966.2010.16459.x-BIB39) 2008; 688 Eisenstein (10.1111/j.1365-2966.2010.16459.x-BIB16) 2005; 633 Percival (10.1111/j.1365-2966.2010.16459.x-BIB27) 2009; 393 Hoekstra (10.1111/j.1365-2966.2010.16459.x-BIB64) 2006; 647 Sánchez (10.1111/j.1365-2966.2010.16459.x-BIB31) 2009; 400 Wang (10.1111/j.1365-2966.2010.16459.x-BIB41) 2008; 384 Guzzo (10.1111/j.1365-2966.2010.16459.x-BIB18) 2008; 451 Zheng (10.1111/j.1365-2966.2010.16459.x-BIB44) 2002; 575 Baugh (10.1111/j.1365-2966.2010.16459.x-BIB2) 2006; 69 Matarrese (10.1111/j.1365-2966.2010.16459.x-BIB25) 2008; 677 Sánchez (10.1111/j.1365-2966.2010.16459.x-BIB30) 2006; 366 Gaztanaga (10.1111/j.1365-2966.2010.16459.x-BIB17) 2009; 103 Harker (10.1111/j.1365-2966.2010.16459.x-BIB19) 2007; 382 Springel (10.1111/j.1365-2966.2010.16459.x-BIB35) 2005; 364 Ross (10.1111/j.1365-2966.2010.16459.x-BIB29) 2008; 682 Zheng (10.1111/j.1365-2966.2010.16459.x-BIB43) 2007; 659 Baugh (10.1111/j.1365-2966.2010.16459.x-BIB3) 2004; 351 10.1111/j.1365-2966.2010.16459.x-BIB26 Cooray (10.1111/j.1365-2966.2010.16459.x-BIB10) 2002; 372 Spergel (10.1111/j.1365-2966.2010.16459.x-BIB33) 2003; 148 Springel (10.1111/j.1365-2966.2010.16459.x-BIB36) 2005; 435 Cole (10.1111/j.1365-2966.2010.16459.x-BIB9) 2005; 362 Springel (10.1111/j.1365-2966.2010.16459.x-BIB37) 2006; 440 Press (10.1111/j.1365-2966.2010.16459.x-BIB28) 1974; 187 De Lucia (10.1111/j.1365-2966.2010.16459.x-BIB13) 2007; 375 Bullock (10.1111/j.1365-2966.2010.16459.x-BIB5) 2001; 555 Carbone (10.1111/j.1365-2966.2010.16459.x-BIB6) 2008; 684 10.1111/j.1365-2966.2010.16459.x-BIB4 Lewis (10.1111/j.1365-2966.2010.16459.x-BIB23) 2000; 538 Tormen (10.1111/j.1365-2966.2010.16459.x-BIB40) 1996; 472 Cole (10.1111/j.1365-2966.2010.16459.x-BIB8) 2001; 326 Spergel (10.1111/j.1365-2966.2010.16459.x-BIB34) 2007; 170 Huterer (10.1111/j.1365-2966.2010.16459.x-BIB21) 2006; 366 Jennings (10.1111/j.1365-2966.2010.16459.x-BIB22) 2010; 401 Davis (10.1111/j.1365-2966.2010.16459.x-BIB12) 1985; 292 Manera (10.1111/j.1365-2966.2010.16459.x-BIB24) 2010; 402 |
| References_xml | – year: 2009 – volume: 187 start-page: 425 year: 1974 publication-title: ApJ – volume: 366 start-page: 189 year: 2006 publication-title: MNRAS – volume: 170 start-page: 377 year: 2007 publication-title: ApJS – volume: 326 start-page: 255 year: 2001 publication-title: MNRAS – volume: 372 start-page: 1 year: 2002 publication-title: Phys. Rep. – volume: 375 start-page: 2 year: 2007 publication-title: MNRAS – volume: 364 start-page: 1105 year: 2005 publication-title: MNRAS – volume: 435 start-page: 629 year: 2005 publication-title: Nat – volume: 575 start-page: 617 year: 2002 publication-title: ApJ – volume: 440 start-page: 1137 year: 2006 publication-title: Nat – volume: 538 start-page: 473 year: 2000 publication-title: ApJ – volume: 682 start-page: 737 year: 2008 publication-title: ApJ – volume: 366 start-page: 101 year: 2006 publication-title: MNRAS – volume: 402 start-page: 589 year: 2010 publication-title: MNRAS – volume: 382 start-page: 1503 year: 2007 publication-title: MNRAS – volume: 69 start-page: 3101 year: 2006 publication-title: Rep. Progress Phys. – volume: 684 start-page: L1 year: 2008 publication-title: ApJ – volume: 659 start-page: 1 year: 2007 publication-title: ApJ – volume: 379 start-page: 1562 year: 2007 publication-title: MNRAS – volume: 286 start-page: 38 year: 1997 publication-title: MNRAS – volume: 393 start-page: 297 year: 2009 publication-title: MNRAS – volume: 5 start-page: 84 year: 1970 publication-title: A&A – volume: 351 start-page: L44 year: 2004 publication-title: MNRAS – volume: 103 start-page: 091302 year: 2009 publication-title: Phys. Rev. Lett. – volume: 647 start-page: 116 year: 2006 publication-title: ApJ – volume: 688 start-page: 709 year: 2008 publication-title: ApJ – volume: 472 start-page: 14 year: 1996 publication-title: ApJ – volume: 102 start-page: 021302 year: 2009 publication-title: Phys. Rev. Lett. – volume: 400 start-page: 1643 year: 2009 publication-title: MNRAS – volume: 362 start-page: 505 year: 2005 publication-title: MNRAS – volume: 451 start-page: 541 year: 2008 publication-title: Nat – volume: 416 start-page: 853 year: 2004 publication-title: A&A – volume: 401 start-page: 2181 year: 2010 publication-title: MNRAS – volume: 384 start-page: 1301 year: 2008 publication-title: MNRAS – volume: 555 start-page: 240 year: 2001 publication-title: ApJ – volume: 383 start-page: 755 year: 2008 publication-title: MNRAS – volume: 633 start-page: 560 year: 2005 publication-title: ApJ – volume: 292 start-page: 371 year: 1985 publication-title: ApJ – volume: 148 start-page: 175 year: 2003 publication-title: ApJS – volume: 677 start-page: L77 year: 2008 publication-title: ApJ – volume: 372 start-page: 1 year: 2002 ident: 10.1111/j.1365-2966.2010.16459.x-BIB10 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00276-4 – volume: 366 start-page: 101 year: 2006 ident: 10.1111/j.1365-2966.2010.16459.x-BIB21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09782.x – volume: 5 start-page: 84 year: 1970 ident: 10.1111/j.1365-2966.2010.16459.x-BIB42 publication-title: A&A – volume: 677 start-page: L77 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB25 publication-title: ApJ doi: 10.1086/587840 – volume: 292 start-page: 371 year: 1985 ident: 10.1111/j.1365-2966.2010.16459.x-BIB12 publication-title: ApJ doi: 10.1086/163168 – volume: 364 start-page: 1105 year: 2005 ident: 10.1111/j.1365-2966.2010.16459.x-BIB35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09655.x – volume: 103 start-page: 091302 year: 2009 ident: 10.1111/j.1365-2966.2010.16459.x-BIB17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.091302 – volume: 384 start-page: 1301 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB41 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12797.x – volume: 647 start-page: 116 year: 2006 ident: 10.1111/j.1365-2966.2010.16459.x-BIB64 publication-title: ApJ doi: 10.1086/503249 – volume: 659 start-page: 1 year: 2007 ident: 10.1111/j.1365-2966.2010.16459.x-BIB43 publication-title: ApJ doi: 10.1086/512151 – volume: 538 start-page: 473 year: 2000 ident: 10.1111/j.1365-2966.2010.16459.x-BIB23 publication-title: ApJ doi: 10.1086/309179 – volume: 684 start-page: L1 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB6 publication-title: ApJ doi: 10.1086/592020 – ident: 10.1111/j.1365-2966.2010.16459.x-BIB26 – ident: 10.1111/j.1365-2966.2010.16459.x-BIB38 – volume: 351 start-page: L44 year: 2004 ident: 10.1111/j.1365-2966.2010.16459.x-BIB3 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07962.x – volume: 402 start-page: 589 year: 2010 ident: 10.1111/j.1365-2966.2010.16459.x-BIB24 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15921.x – volume: 375 start-page: 2 year: 2007 ident: 10.1111/j.1365-2966.2010.16459.x-BIB13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11287.x – volume: 400 start-page: 1643 year: 2009 ident: 10.1111/j.1365-2966.2010.16459.x-BIB31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15572.x – volume: 69 start-page: 3101 year: 2006 ident: 10.1111/j.1365-2966.2010.16459.x-BIB2 publication-title: Rep. Progress Phys. doi: 10.1088/0034-4885/69/12/R02 – volume: 393 start-page: 297 year: 2009 ident: 10.1111/j.1365-2966.2010.16459.x-BIB27 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14211.x – volume: 148 start-page: 175 year: 2003 ident: 10.1111/j.1365-2966.2010.16459.x-BIB33 publication-title: ApJS doi: 10.1086/377226 – volume: 440 start-page: 1137 year: 2006 ident: 10.1111/j.1365-2966.2010.16459.x-BIB37 publication-title: Nat doi: 10.1038/nature04805 – volume: 383 start-page: 755 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB1 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12587.x – volume: 435 start-page: 629 year: 2005 ident: 10.1111/j.1365-2966.2010.16459.x-BIB36 publication-title: Nat doi: 10.1038/nature03597 – volume: 633 start-page: 560 year: 2005 ident: 10.1111/j.1365-2966.2010.16459.x-BIB16 publication-title: ApJ doi: 10.1086/466512 – volume: 401 start-page: 2181 year: 2010 ident: 10.1111/j.1365-2966.2010.16459.x-BIB22 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15819.x – volume: 170 start-page: 377 year: 2007 ident: 10.1111/j.1365-2966.2010.16459.x-BIB34 publication-title: ApJS doi: 10.1086/513700 – ident: 10.1111/j.1365-2966.2010.16459.x-BIB14 – volume: 366 start-page: 189 year: 2006 ident: 10.1111/j.1365-2966.2010.16459.x-BIB30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09833.x – volume: 102 start-page: 021302 year: 2009 ident: 10.1111/j.1365-2966.2010.16459.x-BIB32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.021302 – volume: 555 start-page: 240 year: 2001 ident: 10.1111/j.1365-2966.2010.16459.x-BIB5 publication-title: ApJ doi: 10.1086/321477 – volume: 326 start-page: 255 year: 2001 ident: 10.1111/j.1365-2966.2010.16459.x-BIB8 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04591.x – volume: 362 start-page: 505 year: 2005 ident: 10.1111/j.1365-2966.2010.16459.x-BIB9 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09318.x – volume: 575 start-page: 617 year: 2002 ident: 10.1111/j.1365-2966.2010.16459.x-BIB44 publication-title: ApJ doi: 10.1086/341434 – volume: 187 start-page: 425 year: 1974 ident: 10.1111/j.1365-2966.2010.16459.x-BIB28 publication-title: ApJ doi: 10.1086/152650 – volume: 472 start-page: 14 year: 1996 ident: 10.1111/j.1365-2966.2010.16459.x-BIB40 publication-title: ApJ doi: 10.1086/178037 – volume: 382 start-page: 1503 year: 2007 ident: 10.1111/j.1365-2966.2010.16459.x-BIB19 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12508.x – volume: 688 start-page: 709 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB39 publication-title: ApJ doi: 10.1086/591439 – volume: 379 start-page: 1562 year: 2007 ident: 10.1111/j.1365-2966.2010.16459.x-BIB11 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12035.x – volume: 416 start-page: 853 year: 2004 ident: 10.1111/j.1365-2966.2010.16459.x-BIB15 publication-title: A&A doi: 10.1051/0004-6361:20031757 – volume: 451 start-page: 541 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB18 publication-title: Nat doi: 10.1038/nature06555 – volume: 682 start-page: 737 year: 2008 ident: 10.1111/j.1365-2966.2010.16459.x-BIB29 publication-title: ApJ doi: 10.1086/589636 – volume: 286 start-page: 38 year: 1997 ident: 10.1111/j.1365-2966.2010.16459.x-BIB7 publication-title: MNRAS doi: 10.1093/mnras/286.1.38 – ident: 10.1111/j.1365-2966.2010.16459.x-BIB4 |
| SSID | ssj0004326 |
| Score | 2.4706204 |
| Snippet | We demonstrate that the output of a cosmological N-body simulation can, to remarkable accuracy, be scaled to represent the growth of large-scale structure in a... ABSTRACT We demonstrate that the output of a cosmological N‐body simulation can, to remarkable accuracy, be scaled to represent the growth of large‐scale... |
| SourceID | proquest pascalfrancis crossref wiley oup istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 143 |
| SubjectTerms | Algorithms Amplitudes Astronomy Computer simulation Cosmology cosmology: theory Earth, ocean, space Errors Exact sciences and technology Halos large-scale structure of Universe Mathematical models Scale (corrosion) Simulation Universe |
| Title | One simulation to fit them all – changing the background parameters of a cosmological N-body simulation |
| URI | https://api.istex.fr/ark:/67375/HXZ-SD2L6ZM5-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.16459.x https://www.proquest.com/docview/356953014 https://www.proquest.com/docview/1671355711 https://www.proquest.com/docview/746008806 |
| Volume | 405 |
| WOSCitedRecordID | wos000278313200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBej3cNgjK3bqNetaDD64jnEsWVZj6Uf9GFJR5tB6IuRbbkNTewQJyP573cnf2Y0LBvsJTiydRjdz6e7030Q8kW4fpeFYJ0koeNZrqeUJWHIcmWI9doU85TUzSb4YOCPRuJ76czJdTsBnqb-aiVm_5XVMAbMxtTZv2B3TRQG4BqYDr_AdvjdifHXoDbm42nZlgt1y2SsExanJh5DW0Wub5UlFcroETM7sFyAxEAtrLZZJk1m-bQWjQPTCrN43aLcVmtBMiweJmszzTCWLq8CDwrfxGmO7vasqEtQRok23of7ZXH4c9MxLzrNFlG27bvtmOcds99pOyfwXN2zSuFZClyHgcAth1QhY3VgnSiarWyX4NVTRfidjUVvqsjOdtHs3zazOsSwZdwApQApBUgp0JTQ7NjvcSZQEA6vR00qraM79NXvvRn89eQ7bWg0-_hxrqpsyZczmcPaJkWPlA0jpm0KaV1m-Jq8Ko0QelqA5w15ptIDcljxaU1PqL4uvF75ATH6AItsrk9g4ObZZAx2jv73ljwA3miDCrrIKOCNIt4o4I1atMIbjtEGb7TBG80SKmkbb3RANd5alN-RH5cXw7Mrq2zfYUXM9oUVw5euXC5tN-xxmYCeL5mIEhekBmj9UkY8DKXvxspRqttNYiFCxZkUbhSGPpOx857spVmqDgl14m7MY1BtEz9xbRnKxBY-c20Fu1HEPG4QXrEgiMra9thiZRL8CQYGseuZs6K-yw5zTjSX6wly_ojxkZwFV6O74Pa8982767Pg0iBfAQZb6FpP0D3ewEs9sYc6JNhVBjmqABSUEicPHOYJho4Rg3yu78IegQd_MlXZMgf62IiTAZwNQrc8w10wfWAz92AtNTR3Xo6gP7jRlx_-YS2PyItGbnwke4v5Un0iz6Ofi3E-P9bf5i8VMvQD |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+simulation+to+fit+them+all+-+changing+the+background+parameters+of+a+cosmological+N+-body+simulation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Angulo%2C+R.+E.&rft.au=White%2C+S.+D.+M.&rft.date=2010-06-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.16459.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2966_2010_16459_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |