Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland
1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from...
Saved in:
| Published in: | The Journal of ecology Vol. 104; no. 6; pp. 1542 - 1554 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
John Wiley & Sons Ltd
01.11.2016
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0022-0477, 1365-2745 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. |
|---|---|
| AbstractList | 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and delta super(15)N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Climate change is creating widespread permafrost thaw and changing boreal forest carbon cycling dynamics, yet few studies have examined post-thaw changes to nitrogen cycling. This study demonstrates that as lowland forests convert to wetlands following permafrost thaw, N availability increases. Plants appear to utilize additional deeper N sources over timescales of years to centuries following permafrost thaw. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic ( DON ) and inorganic N ( DIN ) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON . The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ 15 N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis . Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and [delta]15N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ15N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Climate change is creating widespread permafrost thaw and changing boreal forest carbon cycling dynamics, yet few studies have examined post‐thaw changes to nitrogen cycling. This study demonstrates that as lowland forests convert to wetlands following permafrost thaw, N availability increases. Plants appear to utilize additional deeper N sources over timescales of years to centuries following permafrost thaw. |
| Author | Kielland, Knut Finger, Rebecca A. Euskirchen, Eugénie S. Turetsky, Merritt R. Mack, Michelle C. Ruess, Roger W. |
| Author_xml | – sequence: 1 givenname: Rebecca A. surname: Finger fullname: Finger, Rebecca A. – sequence: 2 givenname: Merritt R. surname: Turetsky fullname: Turetsky, Merritt R. – sequence: 3 givenname: Knut surname: Kielland fullname: Kielland, Knut – sequence: 4 givenname: Roger W. surname: Ruess fullname: Ruess, Roger W. – sequence: 5 givenname: Michelle C. surname: Mack fullname: Mack, Michelle C. – sequence: 6 givenname: Eugénie S. surname: Euskirchen fullname: Euskirchen, Eugénie S. |
| BookMark | eNqFkc1uEzEUhS1UJNLCmq0lhMRmWv-MxzPLKgp_qsQG1tad8R1wcOxgO0TZ8Q68IU-C0xSEuqDeWNf6ju-955yTsxADEvKcs0tezxWXnWqEbtUlF50cHpHF35czsmBMiIa1Wj8h5zmvGWOdVmxBNqt5xqlkGme6xbSBOcVcaPkCexoDDa6k-BkDhe_gPIzOu3KgECzdegjl14-fOTpPXSiYYCouhlwLCnSMCcHTaw_5KwTq477y9il5PIPP-OzuviCfXq8-Lt82Nx_evFte3zST4v3QCGDSjshGK6VVaKdaChwsClQMrVa9GFU3wtTNHLTVAvgwtANK3QvbSikvyKvTv9sUv-0wF7NxeUJfZ8C4y0bU_VvZDrp9EOW91JK1nR4q-uIeuo67FOoilRJDy5S-7a1O1FSdzAlnM7kCR2tKqh4azswxL3NMxxzTMbd5Vd3VPd02uQ2kw38Ud532zuPhIdy8Xy3_6F6edOtcYvpXJyTTRnRca9Yr-RvnZrSj |
| CODEN | JECOAB |
| CitedBy_id | crossref_primary_10_1029_2020JG005825 crossref_primary_10_1111_ele_14205 crossref_primary_10_3389_fmicb_2021_619711 crossref_primary_10_5194_bg_20_1979_2023 crossref_primary_10_1007_s11104_022_05342_3 crossref_primary_10_1007_s10021_022_00758_5 crossref_primary_10_1007_s11104_021_04978_x crossref_primary_10_1016_j_geoderma_2018_12_009 crossref_primary_10_1038_s41467_020_17169_6 crossref_primary_10_1088_1748_9326_aa8c85 crossref_primary_10_1073_pnas_2419206122 crossref_primary_10_1111_gcb_13638 crossref_primary_10_1007_s00374_022_01679_0 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1093_femsec_fiz049 crossref_primary_10_1029_2018JG004805 crossref_primary_10_3390_nitrogen3020021 crossref_primary_10_3390_nitrogen3020023 crossref_primary_10_1038_s41467_025_58845_9 crossref_primary_10_5194_bg_19_2333_2022 crossref_primary_10_1139_as_2018_0018 crossref_primary_10_1111_1365_2745_13062 crossref_primary_10_3390_microorganisms7110543 crossref_primary_10_1038_s41467_019_10944_0 crossref_primary_10_1038_s41612_023_00463_7 crossref_primary_10_3389_fpls_2021_769710 crossref_primary_10_1146_annurev_ecolsys_121415_032349 crossref_primary_10_3390_plants9111453 crossref_primary_10_1111_gcb_15205 crossref_primary_10_1007_s11104_017_3252_7 crossref_primary_10_3390_nitrogen3020018 crossref_primary_10_1002_ppp_2264 crossref_primary_10_1111_1365_2745_13139 crossref_primary_10_1002_eco_1975 crossref_primary_10_1029_2022GB007589 crossref_primary_10_1007_s10021_020_00541_4 crossref_primary_10_1111_gcb_13661 crossref_primary_10_3390_f14102060 crossref_primary_10_1016_j_geoderma_2018_05_014 crossref_primary_10_1029_2021JG006396 crossref_primary_10_1016_j_catena_2021_105801 crossref_primary_10_3390_f15040651 crossref_primary_10_1016_j_catena_2023_106979 crossref_primary_10_1016_j_scitotenv_2018_12_464 crossref_primary_10_1088_1748_9326_ad3e8e crossref_primary_10_1139_er_2024_0070 crossref_primary_10_1007_s11104_023_06280_4 crossref_primary_10_1002_lno_11243 crossref_primary_10_3390_atmos13081170 crossref_primary_10_1016_j_scitotenv_2020_137791 crossref_primary_10_1029_2022JG006864 crossref_primary_10_1038_s41467_025_61501_x crossref_primary_10_1016_j_rse_2019_111363 crossref_primary_10_1073_pnas_1702902114 crossref_primary_10_1016_j_scitotenv_2022_157288 crossref_primary_10_1038_s41396_023_01389_x crossref_primary_10_1088_1748_9326_ad751e crossref_primary_10_1016_j_soilbio_2023_109041 crossref_primary_10_1038_s41467_018_06232_y crossref_primary_10_1111_avsc_12561 crossref_primary_10_1029_2020JG005697 crossref_primary_10_1038_s41559_018_0694_0 crossref_primary_10_1111_nph_15903 crossref_primary_10_1007_s12275_019_8661_2 crossref_primary_10_1111_gcb_15306 crossref_primary_10_1073_pnas_1715382115 crossref_primary_10_1007_s10021_023_00899_1 crossref_primary_10_1007_s11104_017_3231_z crossref_primary_10_1088_1748_9326_acacb2 crossref_primary_10_3390_atmos13010044 crossref_primary_10_1016_j_ecolind_2019_105714 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1016_j_accre_2020_07_002 crossref_primary_10_1016_j_agrformet_2022_109108 crossref_primary_10_1029_2018JG004518 crossref_primary_10_1016_j_scitotenv_2022_157176 crossref_primary_10_1029_2021GB007068 crossref_primary_10_1016_j_soilbio_2023_109012 crossref_primary_10_1038_s41561_020_0607_0 crossref_primary_10_1029_2021JF006104 crossref_primary_10_1111_jpy_13235 |
| Cites_doi | 10.2172/5433901 10.1007/s00442-011-1998-9 10.2307/1940855 10.1111/j.1365-2486.2007.01381.x 10.1078/1433-8319-0000022 10.1139/b94-042 10.1890/ES11-00364.1 10.1046/j.1440-1703.2003.00552.x 10.1016/S0016-7061(01)00143-4 10.1002/2014JG002683 10.1007/s00442-013-2784-7 10.2307/1941811 10.1016/j.soilbio.2011.03.003 10.1007/s00572-004-0296-3 10.1029/2004GL021734 10.1111/gcb.13204 10.1111/j.1462-2920.2011.02489.x 10.1029/2010JG001507 10.1007/s10040-012-0935-2 10.1007/BF00328456 10.1126/science.1128908 10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2 10.1002/2013JG002441 10.1038/nature14338 10.1016/S1360-1385(01)01889-1 10.1016/j.aquabot.2010.11.006 10.1029/2012GL051958 10.1146/annurev.arplant.59.032607.092932 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2 10.2307/3565355 10.1139/W08-127 10.1023/A:1005667424292 10.1111/j.1365-2486.2012.02663.x 10.1002/2014GB005000 10.1007/s10021-011-9504-0 10.1002/ppp.656 10.1016/0003-9861(57)90241-2 10.1139/x83-105 10.1016/0016-7061(82)90037-4 10.1139/b99-008 10.1016/j.geoderma.2005.01.024 10.1201/9781420032925 10.1016/j.tree.2008.10.008 10.1093/acprof:oso/9780198528722.001.0001 10.1007/978-0-387-87458-6 10.4141/S05-061 10.1002/bimj.200810425 |
| ContentType | Journal Article |
| Copyright | 2016 British Ecological Society 2016 The Authors. Journal of Ecology © 2016 British Ecological Society Journal of Ecology © 2016 British Ecological Society |
| Copyright_xml | – notice: 2016 British Ecological Society – notice: 2016 The Authors. Journal of Ecology © 2016 British Ecological Society – notice: Journal of Ecology © 2016 British Ecological Society |
| DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
| DOI | 10.1111/1365-2745.12639 |
| DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Ecology Abstracts CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Botany |
| EISSN | 1365-2745 |
| EndPage | 1554 |
| ExternalDocumentID | 4216490251 10_1111_1365_2745_12639 JEC12639 26177085 |
| Genre | article |
| GrantInformation_xml | – fundername: USDA Forest Service Pacific Northwest Research Grant funderid: PNW01‐JV11261952‐231 – fundername: Bonanza Creek Long‐Term Ecological Research Program – fundername: National Science Foundation funderid: DEB‐0425328; DEB‐0724514; DEB‐0830997; DEB‐0620579 – fundername: Alaska Climate Science Center |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29K 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R YF5 YQT YZZ ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 3-9 31~ 42X 8WZ A6W AAHHS ABEFU ABTAH ABYAD ACCFJ ACTWD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD MVM WHG WRC XIH YXE ZCG ZY4 AAYXX ABUFD CITATION O8X 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c5189-2a03dbe0bd33d5edc03d2e9de2e50ed7582b56bac6f1a7d72a19949e3782d4333 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 102 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385915200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-0477 |
| IngestDate | Fri Jul 11 18:26:42 EDT 2025 Tue Oct 07 09:18:21 EDT 2025 Fri Jul 25 10:38:35 EDT 2025 Sat Nov 29 04:58:58 EST 2025 Tue Nov 18 20:25:55 EST 2025 Wed Jan 22 17:12:02 EST 2025 Thu Jul 03 22:18:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5189-2a03dbe0bd33d5edc03d2e9de2e50ed7582b56bac6f1a7d72a19949e3782d4333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12639 |
| PQID | 1829405733 |
| PQPubID | 37508 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2000434974 proquest_miscellaneous_1837304679 proquest_journals_1829405733 crossref_citationtrail_10_1111_1365_2745_12639 crossref_primary_10_1111_1365_2745_12639 wiley_primary_10_1111_1365_2745_12639_JEC12639 jstor_primary_10_2307_26177085 |
| PublicationCentury | 2000 |
| PublicationDate | November 2016 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | The Journal of ecology |
| PublicationYear | 2016 |
| Publisher | John Wiley & Sons Ltd Blackwell Publishing Ltd |
| Publisher_xml | – name: John Wiley & Sons Ltd – name: Blackwell Publishing Ltd |
| References | 2011; 116 2006; 130 2011; 13 2001; 48 2012; 18 2015d 2003; 18 2015c 2011; 15 2015b 1999; 80 2014; 174 1983; 13 1996; 107 2009; 55 1982; 28 2001 1993; 74 2002; 107 2005; 32 1981 1994; 72 2011; 167 2012; 21 2014; 119 2009; 24 1991; 1 2011 2015; 520 2002; 5 2009 2008; 59 1995 2009; 256 2006 2012; 39 2008; 50 2007; 13 2006; 312 2001; 82 1990; 1 2012; 3 2006; 86 2015; 29 2015a 2001; 6 2004; 14 2011; 94 1999; 77 2011; 43 2001; 37 2014 2013 1957; 67 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Johnson D. (e_1_2_8_27_1) 1995 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Kielland K. (e_1_2_8_31_1) 2001; 37 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_56_1 Churchill A (e_1_2_8_8_1) 2011 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – year: 2011 – volume: 77 start-page: 721 year: 1999 end-page: 733 article-title: Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming publication-title: Canadian Journal of Botany – volume: 48 start-page: 551 year: 2001 end-page: 579 article-title: Permafrost degradation and ecological changes associated with a warming climate in central Alaska publication-title: Climate Change – volume: 1 start-page: 3 year: 1990 end-page: 15 article-title: Constraints and tradeoffs: toward a predictive theory of competition and succession publication-title: Oikos – year: 2009 – volume: 50 start-page: 346 year: 2008 end-page: 363 article-title: Simultaneous inference in general parametric models publication-title: Biometrical Journal – year: 1981 – volume: 67 start-page: 10 year: 1957 end-page: 15 article-title: A modified ninhydrin colorimetric analysis for amino acids publication-title: Archives of Biochemistry and Biophysics – year: 2001 – volume: 21 start-page: 201 year: 2012 end-page: 220 article-title: The active‐layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada) publication-title: Hydrogeology Journal – volume: 130 start-page: 272 year: 2006 end-page: 283 article-title: A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix publication-title: Geoderma – volume: 80 start-page: 2170 year: 1999 end-page: 2181 article-title: Plant‐mediated controls on nutrient cycling in temperate fens and bogs publication-title: Ecology – volume: 167 start-page: 355 year: 2011 end-page: 368 article-title: Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs publication-title: Oecologia – year: 2015c – volume: 5 start-page: 37 year: 2002 end-page: 61 article-title: Variation in nitrogen and phosphorus concentrations of wetland plants publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 55 start-page: 84 year: 2009 end-page: 94 article-title: Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal publication-title: Canadian Journal of Microbiology – volume: 107 start-page: 109 year: 2002 end-page: 141 article-title: Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach publication-title: Geoderma – volume: 174 start-page: 365 year: 2014 end-page: 377 article-title: Nutrient resorption of two evergreen shrubs in response to long‐term fertilization in an ombrotrophic peatland publication-title: Oecologia – volume: 14 start-page: 65 year: 2004 end-page: 77 article-title: Mycorrhiza in sedges–an overview publication-title: Mycorrhiza – volume: 72 start-page: 323 year: 1994 end-page: 329 article-title: Effects of fertilization on growth and nutrient use by in a raised bog publication-title: Canadian Journal of Botany – volume: 32 start-page: 1 year: 2005 end-page: 4 article-title: Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost publication-title: Geophysical Research Letters – volume: 13 start-page: 2299 year: 2011 end-page: 2314 article-title: Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw publication-title: Environmental Microbiology – volume: 312 start-page: 1612 year: 2006 end-page: 1613 article-title: Permafrost and the global carbon budget publication-title: Science – volume: 107 start-page: 386 year: 1996 end-page: 394 article-title: 15N natural abundances and N use by tundra plants publication-title: Oecologia – volume: 13 start-page: 747 year: 1983 end-page: 766 article-title: Productivity and nutrient cycling in taiga forest ecosystems publication-title: Canadian Journal of Forest Research – volume: 18 start-page: 1998 year: 2012 end-page: 2007 article-title: A frozen feast: thawing permafrost increases plant‐available nitrogen in subarctic peatlands publication-title: Global Change Biology – volume: 119 start-page: 1576 year: 2014 end-page: 1595 article-title: Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost publication-title: Journal of Geophysical Research – year: 2015d – volume: 29 start-page: 113 year: 2015 end-page: 121 article-title: The stoichiometry of carbon and nutrients in peat formation publication-title: Global Biogeochemical Cycles – volume: 28 start-page: 1 year: 1982 end-page: 28 article-title: A quantitative index of soil development from field descriptions: examples from a chronosequence in central California publication-title: Geoderma – volume: 256 start-page: 235 year: 2009 end-page: 256 article-title: Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska publication-title: Permafrost and Periglacial Processes – volume: 119 start-page: 418 year: 2014 end-page: 431 article-title: Controls on methane released through ebullition in peatlands affected by permafrost degradation publication-title: Journal of Geophysical Research: Biogeosciences – volume: 6 start-page: 121 year: 2001 end-page: 126 article-title: Physiological mechanisms influencing plant nitrogen isotope composition publication-title: TRENDS in Plant Science – volume: 74 start-page: 2098 year: 1993 end-page: 2113 article-title: Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed publication-title: Ecology – volume: 15 start-page: 213 year: 2011 end-page: 229 article-title: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland publication-title: Ecosystems – volume: 24 start-page: 127 year: 2009 end-page: 135 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology & Evolution – volume: 59 start-page: 341 year: 2008 end-page: 363 article-title: Roots, nitrogen transformations, and ecosystem services publication-title: Annual Review of Plant Biology – volume: 86 start-page: 57 year: 2006 end-page: 60 article-title: Particle densities of wetland soils in northern Alberta, Canada publication-title: Canadian Journal of Soil Science – volume: 520 start-page: 171 year: 2015 end-page: 179 article-title: Climate change and the permafrost carbon feedback publication-title: Nature – volume: 22 start-page: 1927 year: 2016 end-page: 1941 article-title: Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw publication-title: Global Change Biology – year: 2013 article-title: R: A Language and Environment for Statistical Computing – volume: 39 start-page: 1 year: 2012 end-page: 6 article-title: Field information links permafrost carbon to physical vulnerabilities of thawing publication-title: Geophysical Research Letters – year: 2015a – year: 2014 article-title: nlme: Linear and nonlinear mixed effects models – volume: 82 start-page: 3163 year: 2001 end-page: 3181 article-title: Species composition interacts with fertilizer to control long‐term change in tundra productivity publication-title: Ecology – volume: 1 start-page: 182 year: 1991 end-page: 195 article-title: Northern peatlands: role in the carbon cycle and probable response to climatic warming publication-title: Ecological Applications – volume: 116 start-page: 1 year: 2011 end-page: 23 article-title: Vulnerability of high‐latitude soil organic carbon in North America to disturbance publication-title: Journal of Geophysical Research – volume: 13 start-page: 1922 year: 2007 end-page: 1934 article-title: The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes publication-title: Global Change Biology – year: 2006 – year: 1995 – volume: 18 start-page: 257 year: 2003 end-page: 266 article-title: Significance of rooting depth in mire plants: Evidence from natural 15 N abundance publication-title: Ecological Research – volume: 37 start-page: 329 year: 2001 end-page: 337 article-title: Stable isotope signatures of moose in relation to seasonal forage composition: a hypothesis publication-title: Alces – volume: 94 start-page: 93 year: 2011 end-page: 101 article-title: N: P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex publication-title: Aquatic Botany – volume: 3 start-page: 1 year: 2012 end-page: 21 article-title: Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests publication-title: Ecosphere – year: 2015b – volume: 43 start-page: 1321 year: 2011 end-page: 1332 article-title: The potential of microdialysis to monitor organic and inorganic nitrogen compounds in the soil publication-title: Soil Biology and Biochemistry – ident: e_1_2_8_14_1 – ident: e_1_2_8_55_1 doi: 10.2172/5433901 – ident: e_1_2_8_6_1 doi: 10.1007/s00442-011-1998-9 – ident: e_1_2_8_17_1 doi: 10.2307/1940855 – ident: e_1_2_8_40_1 – ident: e_1_2_8_51_1 doi: 10.1111/j.1365-2486.2007.01381.x – ident: e_1_2_8_13_1 – ident: e_1_2_8_20_1 doi: 10.1078/1433-8319-0000022 – ident: e_1_2_8_4_1 doi: 10.1139/b94-042 – ident: e_1_2_8_3_1 doi: 10.1890/ES11-00364.1 – ident: e_1_2_8_33_1 doi: 10.1046/j.1440-1703.2003.00552.x – ident: e_1_2_8_43_1 doi: 10.1016/S0016-7061(01)00143-4 – ident: e_1_2_8_11_1 doi: 10.1002/2014JG002683 – ident: e_1_2_8_53_1 doi: 10.1007/s00442-013-2784-7 – ident: e_1_2_8_18_1 doi: 10.2307/1941811 – ident: e_1_2_8_25_1 doi: 10.1016/j.soilbio.2011.03.003 – ident: e_1_2_8_34_1 doi: 10.1007/s00572-004-0296-3 – ident: e_1_2_8_15_1 – volume: 37 start-page: 329 year: 2001 ident: e_1_2_8_31_1 article-title: Stable isotope signatures of moose in relation to seasonal forage composition: a hypothesis publication-title: Alces – volume-title: Plants of the Western Boreal Forest and Aspen Parkland year: 1995 ident: e_1_2_8_27_1 – ident: e_1_2_8_28_1 doi: 10.1029/2004GL021734 – ident: e_1_2_8_46_1 doi: 10.1111/gcb.13204 – ident: e_1_2_8_9_1 doi: 10.1111/j.1462-2920.2011.02489.x – ident: e_1_2_8_19_1 doi: 10.1029/2010JG001507 – ident: e_1_2_8_39_1 doi: 10.1007/s10040-012-0935-2 – ident: e_1_2_8_35_1 doi: 10.1007/BF00328456 – ident: e_1_2_8_56_1 doi: 10.1126/science.1128908 – ident: e_1_2_8_47_1 doi: 10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2 – ident: e_1_2_8_32_1 doi: 10.1002/2013JG002441 – ident: e_1_2_8_48_1 doi: 10.1038/nature14338 – ident: e_1_2_8_12_1 doi: 10.1016/S1360-1385(01)01889-1 – ident: e_1_2_8_49_1 doi: 10.1016/j.aquabot.2010.11.006 – ident: e_1_2_8_22_1 doi: 10.1029/2012GL051958 – ident: e_1_2_8_26_1 doi: 10.1146/annurev.arplant.59.032607.092932 – ident: e_1_2_8_2_1 doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2 – ident: e_1_2_8_50_1 doi: 10.2307/3565355 – ident: e_1_2_8_23_1 doi: 10.1139/W08-127 – ident: e_1_2_8_29_1 doi: 10.1023/A:1005667424292 – ident: e_1_2_8_30_1 doi: 10.1111/j.1365-2486.2012.02663.x – ident: e_1_2_8_54_1 doi: 10.1002/2014GB005000 – ident: e_1_2_8_36_1 doi: 10.1007/s10021-011-9504-0 – ident: e_1_2_8_16_1 – ident: e_1_2_8_37_1 doi: 10.1002/ppp.656 – ident: e_1_2_8_42_1 doi: 10.1016/0003-9861(57)90241-2 – ident: e_1_2_8_52_1 doi: 10.1139/x83-105 – ident: e_1_2_8_21_1 doi: 10.1016/0016-7061(82)90037-4 – ident: e_1_2_8_7_1 doi: 10.1139/b99-008 – volume-title: The Response of Plant Community Structure and Productivity to Changes in Hydrology in Alaskan Boreal Peatlands year: 2011 ident: e_1_2_8_8_1 – ident: e_1_2_8_44_1 doi: 10.1016/j.geoderma.2005.01.024 – ident: e_1_2_8_38_1 – ident: e_1_2_8_10_1 doi: 10.1201/9781420032925 – ident: e_1_2_8_5_1 doi: 10.1016/j.tree.2008.10.008 – ident: e_1_2_8_45_1 doi: 10.1093/acprof:oso/9780198528722.001.0001 – ident: e_1_2_8_57_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_8_41_1 doi: 10.4141/S05-061 – ident: e_1_2_8_24_1 doi: 10.1002/bimj.200810425 |
| SSID | ssj0006750 |
| Score | 2.5109391 |
| Snippet | 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil... Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil... Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen... Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil... 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen... |
| SourceID | proquest crossref wiley jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1542 |
| SubjectTerms | Biogeochemistry Bogs botanical composition climate change collapse scar bog Community composition Coniferous forests dissolved inorganic nitrogen dissolved organic nitrogen Foliage hydrophilicity ice lowlands Mineralization Nitrogen nutrients Organic matter Peatlands Permafrost Plant communities Plant ecology Plant species Plants Plant–soil (below-ground) interactions rooting rooting depth Soil depth Soil fertility Soil horizons Soil organic matter Soil surfaces soil-plant interactions Species composition stable isotopes subarctic Thawing thermokarst Vegetation Wetlands δ15N |
| Title | Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland |
| URI | https://www.jstor.org/stable/26177085 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12639 https://www.proquest.com/docview/1829405733 https://www.proquest.com/docview/1837304679 https://www.proquest.com/docview/2000434974 |
| Volume | 104 |
| WOSCitedRecordID | wos000385915200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2745 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0006750 issn: 0022-0477 databaseCode: WIN dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2745 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006750 issn: 0022-0477 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9K18JeuvXPaLYuqNCHvbj4jxxFj2uXsJUSxmhZ34xkyTTMs0OctuRt32HfcJ-kd5IT0kEphb7ZWLJl6e70O-nuJ4AjIw1xfPCgn_Z1wE1kaKGpCDQ6biEXBc7aLlH4XIxG_asr-b2NJqRcGM8PsVxwI81w9poUXOlmRcnbbCqeHkcxTrNohSMe0RkGP7-NlrYY4XC44AvHT4uW3Idief6r_2Be8qGJD0DnKnR1c8_wzQu0-i1stcCTffaSsg1rttqBTX8U5XwHNk5qhIl4sTlwPNbzXfjtmY0bVhdsQga8oAwRNrtWd6yuGNqCaY3ix9StGpee7nvOVGXYpMTh-vfnb1OPS0Z8FFOfPdHgDVMMpc5SSxC3_1IVK-s7iq7cg8vh4OL0a9CezhDkaUShUSpMjLahNkliUmtyvI2tNDa2aWgN-iGxTnta5b0iUsKIWBENsbQJYhLDkyR5B-tVXdl9YL0itZGwhS1CxbWJpYqVtDIVXGt8W78Dx4uxyfKWupxO0CizhQtD3ZpRt2auWzvwaVlh4lk7Hi_adYO9Wo6C4zOiqhcISDtwsJCCrNXvJkOvTHLHJdmBw-Vj1EzablGVrW-oTCJo31nIx8vEbiuWo1OH_-jk5qn2ZmeDU3fx_rkVPsBrRHs9n0h5AOuz6Y39CBv57WzcTLvw6suP4eV51-nPPZrqFUQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BaUUvBQqoW0oxEgcuqfLjrNfHUm3VwrKnInqz7NgRK0Ky2mxb7Y134A15Embs7GpbqUJI3GLFdhx7xv7GnvkM8M5KSxwfPBrkAxNxm1jaaCojg4ZbzEWJq7YPFB6J8XhweSnXY2ECP8Rqw400w8_XpOC0Ib2m5V04Fc-PkhTX2YfwiCPcoOsbvp6PV7MxAuJ4yRiOHxcdvQ9589yp4NbKFJwTb8HOdfDqV5_TJ_-j3U9hp8Oe7DgIyzN44Opd2Aq3US52YfNDg0gRH7aGnsp68Rx-BHLjljUlm9IcXlKQCJt_0zesqRlOB7MGJZDpaz2pAuP3gunasmmFI_b756-2mVSMKClmIYCixQTTDAXPUUsQun_XNauaG3KwfAFfTocXJ2dRd0FDVOQJeUfpOLPGxcZmmc2dLTCZOmld6vLYWTRFUpP3jS76ZaKFFakmJmLpMoQllmdZ9hI26qZ2e8D6Ze4S4UpXxpobm0qdaulkLrgxWNugB0fLwVFFx15Ol2hUamnFULcq6lblu7UH71cFpoG44_6sh3601_ORf7witnqBmLQHB0sxUJ2KtwoNM8k9nWQP3q5eo3LSiYuuXXNFeTJBR89C3p8n9aexHO06_EcvOH9rr_o4PPEP-_9a4A08Prv4PFKj8_GnV7CN4K8f4ioPYGM-u3KvYbO4nk_a2aFXoj8_PxfC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5B2iIuPAqIQClG4sBlq3144_gIbSIeUYQQlXqzvGtbjVh2o2zaKjf-A_-QX8KMvYlSpAohcVtrba_XnrG_sWc-A7w20hDHB4-G-bCIuEkMbTS5qEDDLebC4artA4UnYjodnp3J7ViYwA-x2XAjzfDzNSm4nRu3peVdOBXPj5IU19nbsMPpKpke7Jx8GZ9ONvMxQuJ4zRmOnxcdwQ_58_xRxbW1KbgnXgOe2_DVrz_j-_-j5Q_gXoc-2dsgLg_hlq33YS_cR7nah913DWJFfNgbeTLr1SP4HuiNW9Y4NqdZ3FGYCFue6yvW1AwnhEWDMsj0pZ5VgfN7xXRt2LzCMfv142fbzCpGpBSLEELRYoJphqJnqSUI3r_pmlXNFblYPobT8ejr8fuou6IhKvOE_KN0nJnCxoXJMpNbU2IytdLY1OaxNWiMpEU-KHQ5cIkWRqSauIilzRCYGJ5l2RPo1U1tnwIbuNwmwjrrYs0Lk0qdamllLnhRYG3DPhytB0eVHX85XaNRqbUdQ92qqFuV79Y-vNkUmAfqjpuzHvrR3s5HHvKK-OoFotI-HKzFQHVK3io0zST3hJJ9eLV5jepJZy66ts0F5ckEHT4LeXOe1J_HcrTs8B-94Pytverj6Ng_PPvXAi_hzueTsZp8mH56DncR_Q1CYOUB9JaLC_sCdsvL5axdHHZa9BsclRhr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+permafrost+thaw+on+nitrogen+availability+and+plant-soil+interactions+in+a+boreal+Alaskan+lowland&rft.jtitle=The+Journal+of+ecology&rft.au=Finger%2C+Rebecca+A&rft.au=Turetsky%2C+Merritt+R&rft.au=Kielland%2C+Knut&rft.au=Ruess%2C+Roger+W&rft.date=2016-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=104&rft.issue=6&rft.spage=1542&rft_id=info:doi/10.1111%2F1365-2745.12639&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4216490251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |