Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland

1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of ecology Ročník 104; číslo 6; s. 1542 - 1554
Hlavní autoři: Finger, Rebecca A., Turetsky, Merritt R., Kielland, Knut, Ruess, Roger W., Mack, Michelle C., Euskirchen, Eugénie S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford John Wiley & Sons Ltd 01.11.2016
Blackwell Publishing Ltd
Témata:
ISSN:0022-0477, 1365-2745
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
AbstractList 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and delta super(15)N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Climate change is creating widespread permafrost thaw and changing boreal forest carbon cycling dynamics, yet few studies have examined post-thaw changes to nitrogen cycling. This study demonstrates that as lowland forests convert to wetlands following permafrost thaw, N availability increases. Plants appear to utilize additional deeper N sources over timescales of years to centuries following permafrost thaw.
Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic ( DON ) and inorganic N ( DIN ) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON . The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ 15 N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis . Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and [delta]15N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. 2. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. 3. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. 4. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ¹⁵N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. 5. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.
Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post‐thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short‐term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post‐thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and δ15N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis. Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw. Climate change is creating widespread permafrost thaw and changing boreal forest carbon cycling dynamics, yet few studies have examined post‐thaw changes to nitrogen cycling. This study demonstrates that as lowland forests convert to wetlands following permafrost thaw, N availability increases. Plants appear to utilize additional deeper N sources over timescales of years to centuries following permafrost thaw.
Author Kielland, Knut
Finger, Rebecca A.
Euskirchen, Eugénie S.
Turetsky, Merritt R.
Mack, Michelle C.
Ruess, Roger W.
Author_xml – sequence: 1
  givenname: Rebecca A.
  surname: Finger
  fullname: Finger, Rebecca A.
– sequence: 2
  givenname: Merritt R.
  surname: Turetsky
  fullname: Turetsky, Merritt R.
– sequence: 3
  givenname: Knut
  surname: Kielland
  fullname: Kielland, Knut
– sequence: 4
  givenname: Roger W.
  surname: Ruess
  fullname: Ruess, Roger W.
– sequence: 5
  givenname: Michelle C.
  surname: Mack
  fullname: Mack, Michelle C.
– sequence: 6
  givenname: Eugénie S.
  surname: Euskirchen
  fullname: Euskirchen, Eugénie S.
BookMark eNqFkc1uEzEUhS1UJNLCmq0lhMRmWv-MxzPLKgp_qsQG1tad8R1wcOxgO0TZ8Q68IU-C0xSEuqDeWNf6ju-955yTsxADEvKcs0tezxWXnWqEbtUlF50cHpHF35czsmBMiIa1Wj8h5zmvGWOdVmxBNqt5xqlkGme6xbSBOcVcaPkCexoDDa6k-BkDhe_gPIzOu3KgECzdegjl14-fOTpPXSiYYCouhlwLCnSMCcHTaw_5KwTq477y9il5PIPP-OzuviCfXq8-Lt82Nx_evFte3zST4v3QCGDSjshGK6VVaKdaChwsClQMrVa9GFU3wtTNHLTVAvgwtANK3QvbSikvyKvTv9sUv-0wF7NxeUJfZ8C4y0bU_VvZDrp9EOW91JK1nR4q-uIeuo67FOoilRJDy5S-7a1O1FSdzAlnM7kCR2tKqh4azswxL3NMxxzTMbd5Vd3VPd02uQ2kw38Ud532zuPhIdy8Xy3_6F6edOtcYvpXJyTTRnRca9Yr-RvnZrSj
CODEN JECOAB
CitedBy_id crossref_primary_10_1029_2020JG005825
crossref_primary_10_1111_ele_14205
crossref_primary_10_3389_fmicb_2021_619711
crossref_primary_10_5194_bg_20_1979_2023
crossref_primary_10_1007_s11104_022_05342_3
crossref_primary_10_1007_s10021_022_00758_5
crossref_primary_10_1007_s11104_021_04978_x
crossref_primary_10_1016_j_geoderma_2018_12_009
crossref_primary_10_1038_s41467_020_17169_6
crossref_primary_10_1088_1748_9326_aa8c85
crossref_primary_10_1073_pnas_2419206122
crossref_primary_10_1111_gcb_13638
crossref_primary_10_1007_s00374_022_01679_0
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_1093_femsec_fiz049
crossref_primary_10_1029_2018JG004805
crossref_primary_10_3390_nitrogen3020021
crossref_primary_10_3390_nitrogen3020023
crossref_primary_10_1038_s41467_025_58845_9
crossref_primary_10_5194_bg_19_2333_2022
crossref_primary_10_1139_as_2018_0018
crossref_primary_10_1111_1365_2745_13062
crossref_primary_10_3390_microorganisms7110543
crossref_primary_10_1038_s41467_019_10944_0
crossref_primary_10_1038_s41612_023_00463_7
crossref_primary_10_3389_fpls_2021_769710
crossref_primary_10_1146_annurev_ecolsys_121415_032349
crossref_primary_10_3390_plants9111453
crossref_primary_10_1111_gcb_15205
crossref_primary_10_1007_s11104_017_3252_7
crossref_primary_10_3390_nitrogen3020018
crossref_primary_10_1002_ppp_2264
crossref_primary_10_1111_1365_2745_13139
crossref_primary_10_1002_eco_1975
crossref_primary_10_1029_2022GB007589
crossref_primary_10_1007_s10021_020_00541_4
crossref_primary_10_1111_gcb_13661
crossref_primary_10_3390_f14102060
crossref_primary_10_1016_j_geoderma_2018_05_014
crossref_primary_10_1029_2021JG006396
crossref_primary_10_1016_j_catena_2021_105801
crossref_primary_10_3390_f15040651
crossref_primary_10_1016_j_catena_2023_106979
crossref_primary_10_1016_j_scitotenv_2018_12_464
crossref_primary_10_1088_1748_9326_ad3e8e
crossref_primary_10_1139_er_2024_0070
crossref_primary_10_1007_s11104_023_06280_4
crossref_primary_10_1002_lno_11243
crossref_primary_10_3390_atmos13081170
crossref_primary_10_1016_j_scitotenv_2020_137791
crossref_primary_10_1029_2022JG006864
crossref_primary_10_1038_s41467_025_61501_x
crossref_primary_10_1016_j_rse_2019_111363
crossref_primary_10_1073_pnas_1702902114
crossref_primary_10_1016_j_scitotenv_2022_157288
crossref_primary_10_1038_s41396_023_01389_x
crossref_primary_10_1088_1748_9326_ad751e
crossref_primary_10_1016_j_soilbio_2023_109041
crossref_primary_10_1038_s41467_018_06232_y
crossref_primary_10_1111_avsc_12561
crossref_primary_10_1029_2020JG005697
crossref_primary_10_1038_s41559_018_0694_0
crossref_primary_10_1111_nph_15903
crossref_primary_10_1007_s12275_019_8661_2
crossref_primary_10_1111_gcb_15306
crossref_primary_10_1073_pnas_1715382115
crossref_primary_10_1007_s10021_023_00899_1
crossref_primary_10_1007_s11104_017_3231_z
crossref_primary_10_1088_1748_9326_acacb2
crossref_primary_10_3390_atmos13010044
crossref_primary_10_1016_j_ecolind_2019_105714
crossref_primary_10_1088_1748_9326_ac417e
crossref_primary_10_1016_j_accre_2020_07_002
crossref_primary_10_1016_j_agrformet_2022_109108
crossref_primary_10_1029_2018JG004518
crossref_primary_10_1016_j_scitotenv_2022_157176
crossref_primary_10_1029_2021GB007068
crossref_primary_10_1016_j_soilbio_2023_109012
crossref_primary_10_1038_s41561_020_0607_0
crossref_primary_10_1029_2021JF006104
crossref_primary_10_1111_jpy_13235
Cites_doi 10.2172/5433901
10.1007/s00442-011-1998-9
10.2307/1940855
10.1111/j.1365-2486.2007.01381.x
10.1078/1433-8319-0000022
10.1139/b94-042
10.1890/ES11-00364.1
10.1046/j.1440-1703.2003.00552.x
10.1016/S0016-7061(01)00143-4
10.1002/2014JG002683
10.1007/s00442-013-2784-7
10.2307/1941811
10.1016/j.soilbio.2011.03.003
10.1007/s00572-004-0296-3
10.1029/2004GL021734
10.1111/gcb.13204
10.1111/j.1462-2920.2011.02489.x
10.1029/2010JG001507
10.1007/s10040-012-0935-2
10.1007/BF00328456
10.1126/science.1128908
10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2
10.1002/2013JG002441
10.1038/nature14338
10.1016/S1360-1385(01)01889-1
10.1016/j.aquabot.2010.11.006
10.1029/2012GL051958
10.1146/annurev.arplant.59.032607.092932
10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2
10.2307/3565355
10.1139/W08-127
10.1023/A:1005667424292
10.1111/j.1365-2486.2012.02663.x
10.1002/2014GB005000
10.1007/s10021-011-9504-0
10.1002/ppp.656
10.1016/0003-9861(57)90241-2
10.1139/x83-105
10.1016/0016-7061(82)90037-4
10.1139/b99-008
10.1016/j.geoderma.2005.01.024
10.1201/9781420032925
10.1016/j.tree.2008.10.008
10.1093/acprof:oso/9780198528722.001.0001
10.1007/978-0-387-87458-6
10.4141/S05-061
10.1002/bimj.200810425
ContentType Journal Article
Copyright 2016 British Ecological Society
2016 The Authors. Journal of Ecology © 2016 British Ecological Society
Journal of Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2016 British Ecological Society
– notice: 2016 The Authors. Journal of Ecology © 2016 British Ecological Society
– notice: Journal of Ecology © 2016 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.12639
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts
CrossRef
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 1554
ExternalDocumentID 4216490251
10_1111_1365_2745_12639
JEC12639
26177085
Genre article
GrantInformation_xml – fundername: USDA Forest Service Pacific Northwest Research Grant
  funderid: PNW01‐JV11261952‐231
– fundername: Bonanza Creek Long‐Term Ecological Research Program
– fundername: National Science Foundation
  funderid: DEB‐0425328; DEB‐0724514; DEB‐0830997; DEB‐0620579
– fundername: Alaska Climate Science Center
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29K
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
YF5
YQT
YZZ
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
3-9
31~
42X
8WZ
A6W
AAHHS
ABEFU
ABTAH
ABYAD
ACCFJ
ACTWD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FVMVE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
WHG
WRC
XIH
YXE
ZCG
ZY4
AAYXX
ABUFD
CITATION
O8X
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c5189-2a03dbe0bd33d5edc03d2e9de2e50ed7582b56bac6f1a7d72a19949e3782d4333
IEDL.DBID WIN
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385915200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0477
IngestDate Fri Jul 11 18:26:42 EDT 2025
Tue Oct 07 09:18:21 EDT 2025
Fri Jul 25 10:38:35 EDT 2025
Sat Nov 29 04:58:58 EST 2025
Tue Nov 18 20:25:55 EST 2025
Wed Jan 22 17:12:02 EST 2025
Thu Jul 03 22:18:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5189-2a03dbe0bd33d5edc03d2e9de2e50ed7582b56bac6f1a7d72a19949e3782d4333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12639
PQID 1829405733
PQPubID 37508
PageCount 13
ParticipantIDs proquest_miscellaneous_2000434974
proquest_miscellaneous_1837304679
proquest_journals_1829405733
crossref_citationtrail_10_1111_1365_2745_12639
crossref_primary_10_1111_1365_2745_12639
wiley_primary_10_1111_1365_2745_12639_JEC12639
jstor_primary_10_2307_26177085
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2016
Publisher John Wiley & Sons Ltd
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
References 2011; 116
2006; 130
2011; 13
2001; 48
2012; 18
2015d
2003; 18
2015c
2011; 15
2015b
1999; 80
2014; 174
1983; 13
1996; 107
2009; 55
1982; 28
2001
1993; 74
2002; 107
2005; 32
1981
1994; 72
2011; 167
2012; 21
2014; 119
2009; 24
1991; 1
2011
2015; 520
2002; 5
2009
2008; 59
1995
2009; 256
2006
2012; 39
2008; 50
2007; 13
2006; 312
2001; 82
1990; 1
2012; 3
2006; 86
2015; 29
2015a
2001; 6
2004; 14
2011; 94
1999; 77
2011; 43
2001; 37
2014
2013
1957; 67
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Johnson D. (e_1_2_8_27_1) 1995
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Kielland K. (e_1_2_8_31_1) 2001; 37
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
Churchill A (e_1_2_8_8_1) 2011
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 77
  start-page: 721
  year: 1999
  end-page: 733
  article-title: Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming
  publication-title: Canadian Journal of Botany
– volume: 48
  start-page: 551
  year: 2001
  end-page: 579
  article-title: Permafrost degradation and ecological changes associated with a warming climate in central Alaska
  publication-title: Climate Change
– volume: 1
  start-page: 3
  year: 1990
  end-page: 15
  article-title: Constraints and tradeoffs: toward a predictive theory of competition and succession
  publication-title: Oikos
– year: 2009
– volume: 50
  start-page: 346
  year: 2008
  end-page: 363
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
– year: 1981
– volume: 67
  start-page: 10
  year: 1957
  end-page: 15
  article-title: A modified ninhydrin colorimetric analysis for amino acids
  publication-title: Archives of Biochemistry and Biophysics
– year: 2001
– volume: 21
  start-page: 201
  year: 2012
  end-page: 220
  article-title: The active‐layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)
  publication-title: Hydrogeology Journal
– volume: 130
  start-page: 272
  year: 2006
  end-page: 283
  article-title: A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix
  publication-title: Geoderma
– volume: 80
  start-page: 2170
  year: 1999
  end-page: 2181
  article-title: Plant‐mediated controls on nutrient cycling in temperate fens and bogs
  publication-title: Ecology
– volume: 167
  start-page: 355
  year: 2011
  end-page: 368
  article-title: Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs
  publication-title: Oecologia
– year: 2015c
– volume: 5
  start-page: 37
  year: 2002
  end-page: 61
  article-title: Variation in nitrogen and phosphorus concentrations of wetland plants
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 55
  start-page: 84
  year: 2009
  end-page: 94
  article-title: Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal
  publication-title: Canadian Journal of Microbiology
– volume: 107
  start-page: 109
  year: 2002
  end-page: 141
  article-title: Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach
  publication-title: Geoderma
– volume: 174
  start-page: 365
  year: 2014
  end-page: 377
  article-title: Nutrient resorption of two evergreen shrubs in response to long‐term fertilization in an ombrotrophic peatland
  publication-title: Oecologia
– volume: 14
  start-page: 65
  year: 2004
  end-page: 77
  article-title: Mycorrhiza in sedges–an overview
  publication-title: Mycorrhiza
– volume: 72
  start-page: 323
  year: 1994
  end-page: 329
  article-title: Effects of fertilization on growth and nutrient use by in a raised bog
  publication-title: Canadian Journal of Botany
– volume: 32
  start-page: 1
  year: 2005
  end-page: 4
  article-title: Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost
  publication-title: Geophysical Research Letters
– volume: 13
  start-page: 2299
  year: 2011
  end-page: 2314
  article-title: Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw
  publication-title: Environmental Microbiology
– volume: 312
  start-page: 1612
  year: 2006
  end-page: 1613
  article-title: Permafrost and the global carbon budget
  publication-title: Science
– volume: 107
  start-page: 386
  year: 1996
  end-page: 394
  article-title: 15N natural abundances and N use by tundra plants
  publication-title: Oecologia
– volume: 13
  start-page: 747
  year: 1983
  end-page: 766
  article-title: Productivity and nutrient cycling in taiga forest ecosystems
  publication-title: Canadian Journal of Forest Research
– volume: 18
  start-page: 1998
  year: 2012
  end-page: 2007
  article-title: A frozen feast: thawing permafrost increases plant‐available nitrogen in subarctic peatlands
  publication-title: Global Change Biology
– volume: 119
  start-page: 1576
  year: 2014
  end-page: 1595
  article-title: Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost
  publication-title: Journal of Geophysical Research
– year: 2015d
– volume: 29
  start-page: 113
  year: 2015
  end-page: 121
  article-title: The stoichiometry of carbon and nutrients in peat formation
  publication-title: Global Biogeochemical Cycles
– volume: 28
  start-page: 1
  year: 1982
  end-page: 28
  article-title: A quantitative index of soil development from field descriptions: examples from a chronosequence in central California
  publication-title: Geoderma
– volume: 256
  start-page: 235
  year: 2009
  end-page: 256
  article-title: Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska
  publication-title: Permafrost and Periglacial Processes
– volume: 119
  start-page: 418
  year: 2014
  end-page: 431
  article-title: Controls on methane released through ebullition in peatlands affected by permafrost degradation
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 6
  start-page: 121
  year: 2001
  end-page: 126
  article-title: Physiological mechanisms influencing plant nitrogen isotope composition
  publication-title: TRENDS in Plant Science
– volume: 74
  start-page: 2098
  year: 1993
  end-page: 2113
  article-title: Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed
  publication-title: Ecology
– volume: 15
  start-page: 213
  year: 2011
  end-page: 229
  article-title: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland
  publication-title: Ecosystems
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology & Evolution
– volume: 59
  start-page: 341
  year: 2008
  end-page: 363
  article-title: Roots, nitrogen transformations, and ecosystem services
  publication-title: Annual Review of Plant Biology
– volume: 86
  start-page: 57
  year: 2006
  end-page: 60
  article-title: Particle densities of wetland soils in northern Alberta, Canada
  publication-title: Canadian Journal of Soil Science
– volume: 520
  start-page: 171
  year: 2015
  end-page: 179
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature
– volume: 22
  start-page: 1927
  year: 2016
  end-page: 1941
  article-title: Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
  publication-title: Global Change Biology
– year: 2013
  article-title: R: A Language and Environment for Statistical Computing
– volume: 39
  start-page: 1
  year: 2012
  end-page: 6
  article-title: Field information links permafrost carbon to physical vulnerabilities of thawing
  publication-title: Geophysical Research Letters
– year: 2015a
– year: 2014
  article-title: nlme: Linear and nonlinear mixed effects models
– volume: 82
  start-page: 3163
  year: 2001
  end-page: 3181
  article-title: Species composition interacts with fertilizer to control long‐term change in tundra productivity
  publication-title: Ecology
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands: role in the carbon cycle and probable response to climatic warming
  publication-title: Ecological Applications
– volume: 116
  start-page: 1
  year: 2011
  end-page: 23
  article-title: Vulnerability of high‐latitude soil organic carbon in North America to disturbance
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 1922
  year: 2007
  end-page: 1934
  article-title: The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes
  publication-title: Global Change Biology
– year: 2006
– year: 1995
– volume: 18
  start-page: 257
  year: 2003
  end-page: 266
  article-title: Significance of rooting depth in mire plants: Evidence from natural 15 N abundance
  publication-title: Ecological Research
– volume: 37
  start-page: 329
  year: 2001
  end-page: 337
  article-title: Stable isotope signatures of moose in relation to seasonal forage composition: a hypothesis
  publication-title: Alces
– volume: 94
  start-page: 93
  year: 2011
  end-page: 101
  article-title: N: P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex
  publication-title: Aquatic Botany
– volume: 3
  start-page: 1
  year: 2012
  end-page: 21
  article-title: Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests
  publication-title: Ecosphere
– year: 2015b
– volume: 43
  start-page: 1321
  year: 2011
  end-page: 1332
  article-title: The potential of microdialysis to monitor organic and inorganic nitrogen compounds in the soil
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_8_14_1
– ident: e_1_2_8_55_1
  doi: 10.2172/5433901
– ident: e_1_2_8_6_1
  doi: 10.1007/s00442-011-1998-9
– ident: e_1_2_8_17_1
  doi: 10.2307/1940855
– ident: e_1_2_8_40_1
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1365-2486.2007.01381.x
– ident: e_1_2_8_13_1
– ident: e_1_2_8_20_1
  doi: 10.1078/1433-8319-0000022
– ident: e_1_2_8_4_1
  doi: 10.1139/b94-042
– ident: e_1_2_8_3_1
  doi: 10.1890/ES11-00364.1
– ident: e_1_2_8_33_1
  doi: 10.1046/j.1440-1703.2003.00552.x
– ident: e_1_2_8_43_1
  doi: 10.1016/S0016-7061(01)00143-4
– ident: e_1_2_8_11_1
  doi: 10.1002/2014JG002683
– ident: e_1_2_8_53_1
  doi: 10.1007/s00442-013-2784-7
– ident: e_1_2_8_18_1
  doi: 10.2307/1941811
– ident: e_1_2_8_25_1
  doi: 10.1016/j.soilbio.2011.03.003
– ident: e_1_2_8_34_1
  doi: 10.1007/s00572-004-0296-3
– ident: e_1_2_8_15_1
– volume: 37
  start-page: 329
  year: 2001
  ident: e_1_2_8_31_1
  article-title: Stable isotope signatures of moose in relation to seasonal forage composition: a hypothesis
  publication-title: Alces
– volume-title: Plants of the Western Boreal Forest and Aspen Parkland
  year: 1995
  ident: e_1_2_8_27_1
– ident: e_1_2_8_28_1
  doi: 10.1029/2004GL021734
– ident: e_1_2_8_46_1
  doi: 10.1111/gcb.13204
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1462-2920.2011.02489.x
– ident: e_1_2_8_19_1
  doi: 10.1029/2010JG001507
– ident: e_1_2_8_39_1
  doi: 10.1007/s10040-012-0935-2
– ident: e_1_2_8_35_1
  doi: 10.1007/BF00328456
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1128908
– ident: e_1_2_8_47_1
  doi: 10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2
– ident: e_1_2_8_32_1
  doi: 10.1002/2013JG002441
– ident: e_1_2_8_48_1
  doi: 10.1038/nature14338
– ident: e_1_2_8_12_1
  doi: 10.1016/S1360-1385(01)01889-1
– ident: e_1_2_8_49_1
  doi: 10.1016/j.aquabot.2010.11.006
– ident: e_1_2_8_22_1
  doi: 10.1029/2012GL051958
– ident: e_1_2_8_26_1
  doi: 10.1146/annurev.arplant.59.032607.092932
– ident: e_1_2_8_2_1
  doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2
– ident: e_1_2_8_50_1
  doi: 10.2307/3565355
– ident: e_1_2_8_23_1
  doi: 10.1139/W08-127
– ident: e_1_2_8_29_1
  doi: 10.1023/A:1005667424292
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1365-2486.2012.02663.x
– ident: e_1_2_8_54_1
  doi: 10.1002/2014GB005000
– ident: e_1_2_8_36_1
  doi: 10.1007/s10021-011-9504-0
– ident: e_1_2_8_16_1
– ident: e_1_2_8_37_1
  doi: 10.1002/ppp.656
– ident: e_1_2_8_42_1
  doi: 10.1016/0003-9861(57)90241-2
– ident: e_1_2_8_52_1
  doi: 10.1139/x83-105
– ident: e_1_2_8_21_1
  doi: 10.1016/0016-7061(82)90037-4
– ident: e_1_2_8_7_1
  doi: 10.1139/b99-008
– volume-title: The Response of Plant Community Structure and Productivity to Changes in Hydrology in Alaskan Boreal Peatlands
  year: 2011
  ident: e_1_2_8_8_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.geoderma.2005.01.024
– ident: e_1_2_8_38_1
– ident: e_1_2_8_10_1
  doi: 10.1201/9781420032925
– ident: e_1_2_8_5_1
  doi: 10.1016/j.tree.2008.10.008
– ident: e_1_2_8_45_1
  doi: 10.1093/acprof:oso/9780198528722.001.0001
– ident: e_1_2_8_57_1
  doi: 10.1007/978-0-387-87458-6
– ident: e_1_2_8_41_1
  doi: 10.4141/S05-061
– ident: e_1_2_8_24_1
  doi: 10.1002/bimj.200810425
SSID ssj0006750
Score 2.5109391
Snippet 1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to water-logged open wetlands. Permafrost thaw increases soil...
Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil...
Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen...
Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil...
1. Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1542
SubjectTerms Biogeochemistry
Bogs
botanical composition
climate change
collapse scar bog
Community composition
Coniferous forests
dissolved inorganic nitrogen
dissolved organic nitrogen
Foliage
hydrophilicity
ice
lowlands
Mineralization
Nitrogen
nutrients
Organic matter
Peatlands
Permafrost
Plant communities
Plant ecology
Plant species
Plants
Plant–soil (below-ground) interactions
rooting
rooting depth
Soil depth
Soil fertility
Soil horizons
Soil organic matter
Soil surfaces
soil-plant interactions
Species composition
stable isotopes
subarctic
Thawing
thermokarst
Vegetation
Wetlands
δ15N
Title Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland
URI https://www.jstor.org/stable/26177085
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12639
https://www.proquest.com/docview/1829405733
https://www.proquest.com/docview/1837304679
https://www.proquest.com/docview/2000434974
Volume 104
WOSCitedRecordID wos000385915200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1365-2745
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0006750
  issn: 0022-0477
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEB-ktuCL1qp42h4p-ODLlv2TvVwebXuHlnKIWOzbkmwSPLruHrfXlnvzO_gN_STOJHvHVSgi9G3DTiCbzEx-s5n5BeCddFbjxm4j5xC-cccHkS61iKSh8FqnsrTaXzYhJpPh5aX83GUTUi1M4IdY_3Ajy_D-mgxc6XbDyLtqKp4fJSlus-iFE-5N89unydoXIxyOV3zhMReiI_ehXJ6_-t_Zl0Jq4h3QuQld_d4zfvYAo96Fpx3wZB-CpjyHR7beg51wFeVyD7aPG4SJ-LAz8jzWyxfwIzAbt6xxbEYO3FGFCFt8V7esqRn6gnmD6sfUjZpWge57yVRt2KzC5fr981fbTCtGfBTzUD3RYoMphlpnaSSI269UzarmlrIrX8LFePT15GPU3c4QlXlCqVEqzoy2sTZZZnJrSmymVhqb2jy2BuOQVOcDrcqBS5QwIlVEQyxthpjE8CzLXsFW3dT2NTBtjORDp5Ua5tyg8sjUCW20yRNLlXg9OFqtTVF21OV0g0ZVrEIYmtaCprXw09qD9-sOs8Dacb9o3y_2phwlxxdEVS8QkPZgf6UFRWffbYFRmeSeS7IHh-vXaJl03KJq21yTTCbo3FnI-2VSfxTLMajDb_R686_xFmejE__w5n87vIUniPYGoZByH7YW82t7ANvlzWLazvvw-PTL-OK87-3nD7TXFjI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9Btwle-DNAlI1hJB54yZQmTl0_bqPVgNIHtEl7s-zYFhUhqZpuU9_4DnxDPsnunLTqkCaExFusnCPHvrN_Z9_9DPBOemdwYXeR9wjfuOf9yORGRNKSe20SmTsTLpsQk8ng4kJu5sI0_BDrDTeyjDBfk4HThvSGlbfpVDw77CW4zt6HLY7KlHVg68PX0fl4PR8jJI5XnOExF6Il-KF4nj8-cWttasITbwHPTfga1p_R4__R8ifwqEWf7KhRl6dwz5W7sNPcR7nche3jCrEiPuwMA5n18hn8aOiNa1Z5NqNZ3FOaCFt809esKhlOCPMKdZDpKz0tGs7vJdOlZbMCx-z3z191NS0YkVLMmxSKGgtMM1Q9Ry1B8P5dl6yorinE8jmcj4ZnJ6dRe0VDlGc9io_ScWqNi41NU5s5m2MxcdK6xGWxs-iMJCbrG533fU8LKxJNXMTSpQhMLE_T9AV0yqp0L4EZayUfeKP1IOMWNUgmXhhrbNZzlI7XhcPV4Ki85S-nazQKtfJjqFsVdasK3dqF9-sKs4a6427RgzDam3IUIa-Ir14gKu3C_koNVGvktULXTPJAKNmFt-vXaJ505qJLV12STCro8FnIu2WScB7L0bPDfwyK87f2qk_Dk_Dw6l8rvIEHp2dfxmr8cfJ5Dx4i_Os3mZX70FnML91r2M6vFtN6ftCa0Q3cwxne
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BH4hLgQJiaSlG4sAlVTZx4vWxj13xqFYIUak3y45tdUVIVpttq73xH_iH_BJmnOxqi1QhJG62Mo4ce8b-Jp75DPBWemdwY3eR9wjfuOd5ZAojImnJvTaJLJwJl02I8XhwcSHXc2FafojVDzeyjLBek4G7qfVrVt6lU_HssJ_gPnsfNnkmczTOzdMvo_Oz1XqMkDhecobHXIiO4Ifief54xa29qQ1PvAU81-Fr2H9Gj_5Hzx_DToc-2VGrLk_gnqt2Ybu9j3KxC1vHNWJFLGwPA5n14il8b-mNG1Z7NqVV3FOaCJtf6htWVwwXhFmNOsj0tZ6ULef3gunKsmmJc_brx8-mnpSMSClmbQpFgxWmGaqeo54geP-mK1bWNxRi-QzOR8OvJ--j7oqGqMj6FB-l49QaFxubpjZztsBq4qR1ictiZ9EZSUyWG13kvq-FFYkmLmLpUgQmlqdp-hw2qrpyL4AZayUfeKP1IOMWNUgmXhhrbNZ3lI7Xg8Pl5Kii4y-nazRKtfRjaFgVDasKw9qDd6sG05a6427RgzDb63IUIa-Ir14gKu3B_lINVGfkjULXTPJAKNmDN6vHaJ505qIrV1-RTCro8FnIu2WScB7L0bPDbwyK87f-qo_Dk1B4-a8NXsODz6cjdfZh_GkPHiL6y9vEyn3YmM-u3CvYKq7nk2Z20FnRbz7-GVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+permafrost+thaw+on+nitrogen+availability+and+plant-soil+interactions+in+a+boreal+Alaskan+lowland&rft.jtitle=The+Journal+of+ecology&rft.au=Finger%2C+Rebecca+A&rft.au=Turetsky%2C+Merritt+R&rft.au=Kielland%2C+Knut&rft.au=Ruess%2C+Roger+W&rft.date=2016-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=104&rft.issue=6&rft.spage=1542&rft_id=info:doi/10.1111%2F1365-2745.12639&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4216490251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon