Cytomegalovirus and human immunosenescence

‘Immunosenescence’ is an imprecise term used to describe deleterious age‐associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old peo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews in medical virology Jg. 19; H. 1; S. 47 - 56
Hauptverfasser: Pawelec, Graham, Derhovanessian, Evelyna, Larbi, Anis, Strindhall, Jan, Wikby, Anders
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.01.2009
Schlagworte:
ISSN:1052-9276, 1099-1654, 1099-1654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ‘Immunosenescence’ is an imprecise term used to describe deleterious age‐associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age‐associated alterations measured in the immune system. Cross‐sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross‐sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross‐sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow‐up; CMV infection makes a material contribution to this so‐called ‘immune risk profile (IRP)’. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList Immunosenescence is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age-associated alterations measured in the immune system. Cross-sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross-sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross-sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow-up; CMV infection makes a material contribution to this so-called immune risk profile (IRP). Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review.
‘Immunosenescence’ is an imprecise term used to describe deleterious age‐associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age‐associated alterations measured in the immune system. Cross‐sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross‐sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross‐sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow‐up; CMV infection makes a material contribution to this so‐called ‘immune risk profile (IRP)’. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review. Copyright © 2008 John Wiley & Sons, Ltd.
'Immunosenescence' is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age-associated alterations measured in the immune system. Cross-sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross-sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross-sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow-up; CMV infection makes a material contribution to this so-called 'immune risk profile (IRP)'. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review.'Immunosenescence' is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age-associated alterations measured in the immune system. Cross-sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross-sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross-sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow-up; CMV infection makes a material contribution to this so-called 'immune risk profile (IRP)'. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review.
'Immunosenescence' is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age-associated alterations measured in the immune system. Cross-sectional studies comparing those currently young with those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross-sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross-sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow-up; CMV infection makes a material contribution to this so-called 'immune risk profile (IRP)'. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review.
'Immunosenescence' is all imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far. Primarily anecdotal evidence implies that failing immunity is responsible for the increased incidence and severity of infectious disease in old people. However, there is a serious dearth of accurate hard data concerning the actual cause of death in the elderly and the contribution thereto of the multitude of age-associated alterations measured in the immune system. Cross-sectional studies comparing those currently young With those currently old reveal a large number of differences in the distribution of immune cell types in the blood, and to some extent the functional integrity of those cells. Many of these parameters differ markedly between individuals infected with CMV and uninfected people, regardless of infection with other persistent herpesviruses. The adaptive arm of immunity appears to be more seriously affected than the innate arm, particularly the T lymphocytes. However, cross-sectional studies suffer the disadvantage that like is not being compared with like, because the conditions applied during the entire life course of the currently elderly were different from those applied now to the young. These differences in environment, nutrition, pathology and possibly genetics, rather than merely age, may be expected to influence the parameters studied. Moreover, pathogen exposure of the currently elderly was also different from contemporary exposure, probably including CMV. Some of the problems associated with cross-sectional studies can be overcome by performing longitudinal studies, as pointed out in an earlier analysis of the Baltimore Longitudinal Ageing study looking at lymphocyte numbers. However, longitudinal studies are challenging in humans. L Nonetheless, the pioneering Swedish OCTO/NONA studies of the very elderly which for the first time included a range of immune parameters, have identified a set of immune parameters predicting mortality at 2, 4 and 6 year follow-up; CMV infection makes a material contribution to this so-called immune risk profile (IRP)'. Whether the IRP is informative in younger individuals and the mechanism of the CMV effect is discussed in this review. 
Author Wikby, Anders
Strindhall, Jan
Pawelec, Graham
Larbi, Anis
Derhovanessian, Evelyna
Author_xml – sequence: 1
  givenname: Graham
  surname: Pawelec
  fullname: Pawelec, Graham
  email: graham.pawelec@uni-tuebingen.de
  organization: Center for Medical Research, University of Tübingen Medical School, Tübingen, Germany
– sequence: 2
  givenname: Evelyna
  surname: Derhovanessian
  fullname: Derhovanessian, Evelyna
  organization: Center for Medical Research, University of Tübingen Medical School, Tübingen, Germany
– sequence: 3
  givenname: Anis
  surname: Larbi
  fullname: Larbi, Anis
  organization: Center for Medical Research, University of Tübingen Medical School, Tübingen, Germany
– sequence: 4
  givenname: Jan
  surname: Strindhall
  fullname: Strindhall, Jan
  organization: Department of Natural Science and Biomedicine, School of Health Sciences, Jönköping University, Jönköping, Sweden
– sequence: 5
  givenname: Anders
  surname: Wikby
  fullname: Wikby, Anders
  organization: Department of Natural Science and Biomedicine, School of Health Sciences, Jönköping University, Jönköping, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19035529$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-9294$$DView record from Swedish Publication Index (Högskolan i Jönköping)
BookMark eNqF0VtPFDEYBuDGYOSg8R-YvdIEM9DD9HSJi4KKmBhF403T6XwDhZl2bWfA_feWLEI0EtOLNl-evG36bqK1EAMg9JTgHYIx3U3D5Q7X6gHaIFjrigher12fOa00lWIdbeZ8jjEpq36E1onGjHOqN9D2fDnGAU5tHy99mvLMhnZ2Ng02zPwwTCFmCJAdBAeP0cPO9hme3Oxb6Mub15_nh9XRx4O3872jynGiVNURqlrZNp2UmjDKHEDTkI5xzbUok5ZYp2uFa4Ib2hLnWMeB8zLsZCdazLbQ9io3X8Fiaswi-cGmpYnWm31_smdiOjVn50ZTXRf8fIUXKf6YII9m8OW5fW8DxCkbIaRiqhb_hRQzJQVVBT67gVMzQHt7_e8_K-DFCrgUc07Q3RFsrtswpQ1T2iiy-ks6P9rRxzAm6_t_-Jcrf-V7WN4Xaz59OPkj3ecRft5qmy6MkExy8_X4wHx_9e0Qv3u_bwT7BeiyqGQ
CitedBy_id crossref_primary_10_3389_fimmu_2016_00476
crossref_primary_10_1016_j_dld_2012_03_018
crossref_primary_10_1136_bmjdrc_2015_000140
crossref_primary_10_1111_ene_14961
crossref_primary_10_1007_s10522_015_9578_8
crossref_primary_10_1007_s10522_017_9702_z
crossref_primary_10_1111_imr_12864
crossref_primary_10_1016_j_jgo_2021_02_022
crossref_primary_10_1093_infdis_jis288
crossref_primary_10_1016_j_exger_2009_09_003
crossref_primary_10_3390_ijerph19116777
crossref_primary_10_1016_j_pmr_2009_12_002
crossref_primary_10_1016_j_bbi_2018_06_019
crossref_primary_10_1016_j_ebiom_2015_07_029
crossref_primary_10_1016_j_arr_2023_102096
crossref_primary_10_1371_journal_pone_0019197
crossref_primary_10_1017_S0950268817001881
crossref_primary_10_1016_j_healun_2015_03_015
crossref_primary_10_1186_1742_4933_6_7
crossref_primary_10_1016_j_micpath_2020_104541
crossref_primary_10_1007_s10875_009_9297_5
crossref_primary_10_1016_j_neurobiolaging_2013_06_024
crossref_primary_10_1016_j_lana_2025_101122
crossref_primary_10_1016_S1473_3099_12_70197_4
crossref_primary_10_1016_j_mad_2009_07_003
crossref_primary_10_1126_scitranslmed_aaa2293
crossref_primary_10_3390_ijms222212539
crossref_primary_10_3390_pathogens8040219
crossref_primary_10_1093_cid_cir837
crossref_primary_10_3389_fimmu_2021_638010
crossref_primary_10_1016_j_arr_2009_10_004
crossref_primary_10_1016_j_bbi_2010_02_002
crossref_primary_10_1016_j_maturitas_2011_01_011
crossref_primary_10_1159_000382076
crossref_primary_10_1111_cei_12846
crossref_primary_10_1016_j_sdj_2016_10_002
crossref_primary_10_1016_j_virusres_2010_09_010
crossref_primary_10_1017_S0007114512005119
crossref_primary_10_1016_j_vaccine_2012_10_074
crossref_primary_10_1186_1742_4933_9_18
crossref_primary_10_1371_journal_pone_0016103
crossref_primary_10_1007_s10522_016_9669_1
crossref_primary_10_1186_1742_4933_9_15
crossref_primary_10_4049_jimmunol_1401821
crossref_primary_10_1016_j_exger_2011_04_002
crossref_primary_10_1371_journal_pone_0108481
crossref_primary_10_1186_s12979_023_00405_0
crossref_primary_10_1016_j_psyneuen_2014_08_002
crossref_primary_10_1186_1742_4933_7_1
crossref_primary_10_1002_rmv_1982
crossref_primary_10_1371_journal_pone_0107167
crossref_primary_10_1016_j_eurger_2010_07_002
crossref_primary_10_1111_cei_12836
crossref_primary_10_1371_journal_pone_0061973
crossref_primary_10_1111_ctr_13794
crossref_primary_10_1371_journal_pone_0167097
crossref_primary_10_3390_ijms22147263
crossref_primary_10_1016_j_coi_2009_05_012
crossref_primary_10_1016_j_mpmed_2013_10_004
crossref_primary_10_1016_j_arr_2010_09_005
crossref_primary_10_1128_JVI_01386_16
crossref_primary_10_1155_2013_267078
crossref_primary_10_1016_j_mehy_2010_04_023
crossref_primary_10_31083_j_jin2102073
crossref_primary_10_1517_14712598_2012_693471
crossref_primary_10_1002_path_4437
crossref_primary_10_1073_pnas_0910794107
crossref_primary_10_1097_PSY_0000000000000320
crossref_primary_10_1353_dem_2010_0005
crossref_primary_10_1093_infdis_jit064
crossref_primary_10_3389_fmicb_2016_02111
crossref_primary_10_1007_s10522_017_9739_z
crossref_primary_10_1038_gene_2011_71
crossref_primary_10_3390_cells12040516
crossref_primary_10_1016_j_jneuroim_2015_11_008
crossref_primary_10_1080_07853890_2020_1811888
crossref_primary_10_3109_23744235_2015_1135252
crossref_primary_10_1186_1742_4933_8_3
crossref_primary_10_1016_j_critrevonc_2010_06_012
crossref_primary_10_1016_j_cellimm_2015_02_002
crossref_primary_10_1016_j_vaccine_2011_03_086
crossref_primary_10_1016_j_arr_2018_10_009
crossref_primary_10_1186_1742_4933_8_8
crossref_primary_10_1080_14737140_2022_2098718
crossref_primary_10_1016_j_arr_2010_10_004
crossref_primary_10_1016_j_exger_2016_02_005
crossref_primary_10_1111_j_1751_7915_2011_00283_x
crossref_primary_10_3233_NHA_160017
crossref_primary_10_1016_j_psyneuen_2016_01_024
crossref_primary_10_1517_14712590902967588
crossref_primary_10_1016_j_vaccine_2013_02_044
crossref_primary_10_1111_j_1399_0039_2010_01603_x
crossref_primary_10_2174_0929867325666181009161048
crossref_primary_10_1016_j_bbi_2012_09_006
crossref_primary_10_3390_immuno1030009
crossref_primary_10_1016_j_eurger_2010_01_010
crossref_primary_10_1186_s12879_018_3197_3
crossref_primary_10_1111_bjhp_12092
crossref_primary_10_1093_humrep_der327
crossref_primary_10_1186_s12979_022_00267_y
crossref_primary_10_1093_ageing_afu094
crossref_primary_10_1007_s40472_023_00405_5
crossref_primary_10_3389_fgene_2019_00616
crossref_primary_10_1016_j_psyneuen_2012_08_005
crossref_primary_10_1016_j_arr_2010_08_004
crossref_primary_10_1155_2014_947432
crossref_primary_10_1371_journal_pone_0195730
crossref_primary_10_1016_j_bbi_2014_10_008
crossref_primary_10_1016_j_jcpa_2009_09_005
crossref_primary_10_1016_j_jcpa_2009_09_009
crossref_primary_10_1016_j_ebiom_2022_104179
crossref_primary_10_1111_j_1532_5415_2011_03719_x
crossref_primary_10_1016_j_exger_2011_09_010
crossref_primary_10_1371_journal_pone_0268530
crossref_primary_10_1016_j_mehy_2010_01_011
crossref_primary_10_1016_j_jcv_2016_02_010
crossref_primary_10_1186_s12977_015_0203_3
crossref_primary_10_1007_s10522_010_9302_7
crossref_primary_10_1016_j_mad_2012_05_005
crossref_primary_10_1016_j_jgo_2010_04_002
crossref_primary_10_1016_j_arr_2012_03_003
crossref_primary_10_1007_s10522_015_9563_2
crossref_primary_10_1016_j_jgo_2013_09_001
crossref_primary_10_1097_QAD_0b013e328351f756
crossref_primary_10_1186_s12979_023_00352_w
crossref_primary_10_12688_f1000research_109365_1
crossref_primary_10_3390_v4071116
crossref_primary_10_1007_s00421_011_2273_9
crossref_primary_10_1016_j_vaccine_2010_10_002
crossref_primary_10_1186_1742_4933_6_10
crossref_primary_10_1111_j_1749_6632_2009_05370_x
crossref_primary_10_1186_1742_4933_6_11
crossref_primary_10_1161_JAHA_117_006535
crossref_primary_10_1155_2015_979645
crossref_primary_10_2217_fca_11_55
crossref_primary_10_1016_j_bbi_2011_09_004
crossref_primary_10_1016_j_bbi_2014_01_012
crossref_primary_10_1016_j_exger_2012_12_010
crossref_primary_10_1097_TXD_0000000000000762
crossref_primary_10_1007_s00430_009_0136_3
crossref_primary_10_1007_s40263_020_00737_1
crossref_primary_10_1111_j_1365_2796_2010_02220_x
crossref_primary_10_1016_j_bbih_2023_100608
crossref_primary_10_37155_2972_4759_2023_01_01_3
crossref_primary_10_1016_j_exger_2012_04_008
crossref_primary_10_1071_SH11028
crossref_primary_10_1016_j_coi_2011_05_002
crossref_primary_10_1186_1742_4933_10_30
crossref_primary_10_1016_j_cellimm_2013_07_009
crossref_primary_10_1097_COH_0b013e32833ed6f4
crossref_primary_10_1016_j_mpmed_2009_09_004
crossref_primary_10_1093_infdis_jix256
crossref_primary_10_4049_jimmunol_1001629
crossref_primary_10_1186_s12879_019_4214_x
crossref_primary_10_1016_j_exger_2013_01_016
crossref_primary_10_1016_j_bbi_2013_10_031
crossref_primary_10_1089_rej_2010_1085
crossref_primary_10_3389_fcimb_2024_1423739
crossref_primary_10_1093_jleuko_qiad091
crossref_primary_10_1111_ene_14360
crossref_primary_10_1016_j_vaccine_2010_10_023
crossref_primary_10_1186_s12979_014_0022_8
crossref_primary_10_1016_j_bbi_2011_09_014
crossref_primary_10_1093_ajh_hpad045
crossref_primary_10_3389_fimmu_2021_713763
crossref_primary_10_1586_erv_13_46
crossref_primary_10_1371_journal_pone_0227763
crossref_primary_10_1097_QAI_0000000000000559
crossref_primary_10_1007_s10522_011_9366_z
crossref_primary_10_1093_aje_kwq177
crossref_primary_10_1016_j_neurobiolaging_2013_01_011
crossref_primary_10_1007_s10522_010_9286_3
crossref_primary_10_1186_1742_4933_7_13
crossref_primary_10_1371_journal_pone_0125287
crossref_primary_10_1016_j_mad_2016_06_001
crossref_primary_10_1016_j_ajoc_2021_101055
crossref_primary_10_1016_j_mehy_2010_02_009
crossref_primary_10_3390_ijms22189973
crossref_primary_10_1017_S0950268811001397
crossref_primary_10_1007_s10522_011_9353_4
crossref_primary_10_1016_j_bbi_2020_03_013
crossref_primary_10_1073_pnas_1705065114
crossref_primary_10_37155_2972_4759_2024_02_01_2
crossref_primary_10_1016_j_bbi_2011_11_007
crossref_primary_10_1111_acel_12430
crossref_primary_10_1113_EP087499
crossref_primary_10_1111_imm_12991
crossref_primary_10_1371_journal_pone_0182498
crossref_primary_10_1007_s11357_024_01124_0
crossref_primary_10_3390_ijms21031126
crossref_primary_10_1016_j_exger_2014_01_004
crossref_primary_10_1007_s10522_010_9287_2
crossref_primary_10_3390_vaccines11020480
crossref_primary_10_1016_j_bbi_2013_11_015
crossref_primary_10_1007_s00262_009_0767_7
crossref_primary_10_1016_j_exger_2013_11_010
crossref_primary_10_1016_j_physbeh_2015_09_027
crossref_primary_10_1016_j_coi_2014_05_008
crossref_primary_10_1038_s41598_019_49332_5
crossref_primary_10_1186_1471_2318_10_39
crossref_primary_10_1016_j_exger_2021_111337
crossref_primary_10_1128_JVI_02427_12
crossref_primary_10_1016_j_patbio_2011_10_006
crossref_primary_10_1089_jir_2009_0064
crossref_primary_10_1016_j_antiviral_2020_104732
crossref_primary_10_1016_j_mad_2015_09_003
crossref_primary_10_4049_jimmunol_1401990
crossref_primary_10_1111_imr_13206
crossref_primary_10_1007_s10875_010_9501_7
crossref_primary_10_4049_jimmunol_1500520
crossref_primary_10_1007_s10522_015_9615_7
Cites_doi 10.4049/jimmunol.179.11.7767
10.1111/j.1600-065X.1997.tb01026.x
10.1016/j.coi.2005.04.010
10.1023/A:1024580531705
10.1084/jem.179.2.609
10.2353/ajpath.2008.070448
10.1182/blood.V95.9.2860.009k35_2860_2868
10.1016/S0047-6374(03)00026-5
10.1007/s00262-006-0272-1
10.1111/j.1532-5415.2005.53250.x
10.4049/jimmunol.176.4.2645
10.4049/jimmunol.173.12.7481
10.1006/clim.1998.4638
10.1086/379711
10.1038/nri2318
10.1016/S0531-5565(03)00134-7
10.1007/s10620-006-9712-1
10.3748/wjg.v12.i42.6898
10.1007/s00281-001-0094-3
10.1038/nbt0898-743
10.1007/s10522-008-9138-6
10.1055/s-2005-872590
10.1016/S0531-5565(96)00097-6
10.1038/nature04444
10.1186/1743-422X-5-47
10.1111/j.1365-2567.2004.02006.x
10.4049/jimmunol.169.4.1984
10.1186/1742-4933-5-6
10.1016/S0531-5565(99)00033-9
10.1186/1471-2334-7-71
10.1016/S0047-6374(00)00240-2
10.1016/0047-6374(94)90016-7
10.1046/j.1365-2249.2001.01571.x
10.1111/j.0042-9007.2004.00388.x
10.1136/jcp.41.7.722
10.1016/j.exger.2004.04.004
10.1023/A:1026282917406
10.1016/S0264-410X(03)00251-2
10.1016/0531-5565(94)90036-1
10.1007/s15010-003-3129-y
10.1001/jama.2008.697
10.4049/jimmunol.180.7.4848
10.4103/0255-0857.13870
10.1016/j.trim.2006.02.006
10.1016/j.exger.2007.01.005
10.1196/annals.1354.033
10.1128/JVI.79.6.3675-3683.2005
10.4049/jimmunol.180.7.4836
10.1016/S0047-6374(03)00024-1
10.1038/nature05762
10.1017/S0959259898008028
10.1017/S1462399407000221
10.1016/j.exger.2007.05.001
10.1371/journal.pone.0002905
10.1084/jem.20040437
10.1111/j.1600-065X.1993.tb01517.x
10.1111/j.0105-2896.2005.00271.x
10.1186/1742-4933-3-11
10.1111/j.1440-1711.2005.01321.x
10.1093/gerona/63.6.610
10.1016/S0167-5699(97)01079-7
10.1016/S1471-4906(02)02255-X
10.1086/508173
10.1016/j.mad.2006.11.016
10.4049/jimmunol.174.11.7446
10.1128/JVI.01262-06
10.1016/S0047-6374(03)00021-6
10.1016/j.mad.2006.01.011
10.1016/j.immuni.2006.05.003
10.1007/s10620-005-2544-6
10.4049/jimmunol.178.7.4112
10.1007/s00018-002-8488-5
10.1016/S0047-6374(00)00210-4
10.1016/S0264-410X(03)00309-8
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
ADTPV
AOWAS
D8X
DOI 10.1002/rmv.598
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Högskolan i Jönköping
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1099-1654
EndPage 56
ExternalDocumentID oai_DiVA_org_hj_9294
19035529
10_1002_rmv_598
RMV598
ark_67375_WNG_ZBXH0JKD_6
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
D1J
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M65
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
ADTPV
AOWAS
D8X
ID FETCH-LOGICAL-c5188-f128d7dbf7791323ceebb1f359596913d1ac9480410b2d1cc3f5e55ac9f7f6d03
IEDL.DBID DRFUL
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262519600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1052-9276
1099-1654
IngestDate Tue Nov 04 16:05:56 EST 2025
Sun Nov 09 11:44:02 EST 2025
Wed Oct 01 15:00:09 EDT 2025
Mon Jul 21 05:58:55 EDT 2025
Sat Nov 29 02:22:30 EST 2025
Tue Nov 18 21:21:11 EST 2025
Wed Jan 22 16:28:39 EST 2025
Tue Nov 11 03:33:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5188-f128d7dbf7791323ceebb1f359596913d1ac9480410b2d1cc3f5e55ac9f7f6d03
Notes ArticleID:RMV598
istex:01D5A1B4ADC76A02F55E796D1719500403071843
ark:/67375/WNG-ZBXH0JKD-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rmv.598
PMID 19035529
PQID 20387628
PQPubID 23462
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_hj_9294
proquest_miscellaneous_66783846
proquest_miscellaneous_20387628
pubmed_primary_19035529
crossref_primary_10_1002_rmv_598
crossref_citationtrail_10_1002_rmv_598
wiley_primary_10_1002_rmv_598_RMV598
istex_primary_ark_67375_WNG_ZBXH0JKD_6
PublicationCentury 2000
PublicationDate January 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: January 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Reviews in medical virology
PublicationTitleAlternate Rev. Med. Virol
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Ataman S, Colak D, Gunseren F, et al. Investigation of cytomegalovirus seroepidemiology in Antalya with a population-based cross-sectional study and review of related data in Turkey. Mikrobiyol Bul 2007; 41: 545-555.
Komatsu H, Inui A, Sogo T, et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun Ageing 2006; 3: 11.
Khan N, Hislop A, Gudgeon N, et al. Herpesvirus-specific CD8 T cell immunity in old age: Cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 2004; 173: 7481-7489.
Peres A, Bauer M, da Cruz IB, et al. Immunophenotyping and T-cell proliferative capacity in a healthy aged population. Biogerontology 2003; 4: 289-296.
Varani S, Cederarv M, Feld S, et al. Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells. J Immunol 2007; 179: 7767-7776.
Ouyang Q, Wagner WM, Walter S, et al. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech Ageing Dev 2003; 124: 477-485.
Koch S, Solana R, Dela Rosa O, et al. Human cytomegalovirus infection and T cell immunosenescence: A mini review. Mech Ageing Dev 2006; 127: 538-543.
Weksler ME, Goodhardt M, Szabo P. The effect of age on B cell development and humoral immunity. Springer Semin Immunopathol 2002; 24: 35-52.
Rufer N, Dragowska W, Thornbury G, et al. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 1998; 16: 743-747.
Ouyang Q, Wagner WM, Voehringer D, et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 2003; 38: 911-920.
Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years. Mech Ageing Dev 2001; 122: 132-134.
Weng NP, Palmer LD, Levine BL, et al. Tales of tails: Regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev 1997; 160: 43-54.
Assy N, Gefen H, Schlesinger S, et al. Reactivation versus primary CMV infection after splenectomy in immunocompetent patients. Dig Dis Sci 2007; 52: 3477-3479.
Ben-Yehuda A, Joseph A, Barenholz Y, et al. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine 2003; 21: 3169-3178.
Pawelec G, Akbar A, Caruso C, et al. Human immunosenescence: is it infectious? Immunol Rev 2005; 205: 257-268.
Just-Nubling G, Korn S, Ludwig B, et al. Primary cytomegalovirus infection in an outpatient setting-laboratory markers and clinical aspects. Infection 2003; 31: 318-323.
Galiatsatos P, Shrier I, Lamoureux E, et al. Meta-analysis of outcome of cytomegalovirus colitis in immunocompetent hosts. Dig Dis Sci 2005; 50: 609-616.
Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007; 56: 739-745.
Ouyang Q, Wagner WM, Wikby A, et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 2003; 23: 247-257.
Jimenez M, Martinez C, Ercilla G, et al. Clinical factors influencing T-cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults. Transpl Immunol 2006; 16: 52-59.
Marshall GS, Stout GG. Cytomegalovirus seroprevalence among women of childbearing age during a 10-year period. Am J Perinatol 2005; 22: 371-376.
Benedict CA, Loewendorf A, Garcia Z, et al. Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD-L1/PD-1 pathway. J Immunol 2008; 180: 4836-4847.
Barton ES, White DW, Cathelyn JS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007; 447: 326-329.
Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 2008; 8: 512-522.
Northfield J, Lucas M, Jones H, et al. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with 'memory inflation' in human cytomegalovirus infection. Immunol Cell Biol 2005; 83: 182-188.
Zinkernagel RM, Moskophidis D, Kundig T, et al. Effector T-cell induction and T-cell memory versus peripheral deletion of T cells. Immunol Rev 1993; 133: 199-223.
Miles DJ, van der Sande M, Jeffries D, et al. Maintenance of large subpopulations of differentiated CD8 T-cells two years after cytomegalovirus infection in Gambian infants. PLoS ONE. 2008; 3: e2905.
Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity 2006; 24: 491-494.
Wikby A, Johansson B, Ferguson F, et al. Age-related changes in immune parameters in a very old population of Swedish people: A longitudinal study. Exp Gerontol 1994; 29: 531-541.
Lang KS, Moris A, Gouttefangeas C, et al. High frequency of human cytomegalovirus (HCMV)-specific CD8+ T cells detected in a healthy CMV-seropositive donor. Cell Mol Life Sci 2002; 59: 1076-1080.
Effros RB, Pawelec G. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 1997; 18: 450-454.
Rafailidis PI, Mourtzoukou EG, Varbobitis IC, et al. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J 2008; 5: 47.
Sheevani, Jindal N, Aggarwal A. A pilot seroepidemiological study of cytomegalovirus infection in women of child bearing age. Indian J Med Microbiol 2005; 23: 34-36.
Qin W, Jiang J, Chen Q, et al. CpG ODN enhances immunization effects of hepatitis B vaccine in aged mice. Cell Mol Immunol 2004; 1: 148-152.
Wikby A, Mansson IA, Johansson B, et al. The immune risk profile is associated with age and gender: Findings from three Swedish population studies of individuals 20-100 years of age. Biogerontology 2008; 9: 299-308.
Koch S, Larbi A, Derhovanessian E, et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 2008; 5: 6.
Posnett DN, Sinha R, Kabak S, et al. Clonal populations of T cells in normal elderly humans: the T cell equivalent to "benign monoclonal gammapathy". J Exp Med 1994; 179: 609-618.
Pawelec G, Sansom D, Rehbein A, et al. Decreased proliferative capacity and increased susceptibility to activation-induced cell death in late-passage human CD4+ TCR2+ cultured T cell clones. Exp Gerontol 1996; 31: 655-668.
Nilsson BO, Ernerudh J, Johansson B, et al. Morbidity does not influence the T-cell immune risk phenotype in the elderly: Findings in the Swedish NONA Immune Study using sample selection protocols. Mech Ageing Dev 2003; 124: 469-476.
Ogata K, An E, Shioi Y, et al. Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 2001; 124: 392-397.
Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002; 169: 1984-1992.
Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007; 128: 92-105.
Lazuardi L, Jenewein B, Wolf AM, et al. Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 2005; 114: 37-43.
Stowe RP, Mehta SK, Ferrando AA, et al. Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 2001; 72: 884-891.
Pourgheysari B, Khan N, Best D, et al. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol 2007; 81: 7759-7765.
Messaoudi I, Lemaoult J, Guevara-Patino JA, et al. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 2004; 200: 1347-1358.
Fagnoni FF, Vescovini R, Passeri G, et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 2000; 95: 2860-2868.
Trzonkowski P, Mysliwska J, Szmit E, et al. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination-an impact of immunosenescence. Vaccine 2003; 21: 3826-3836.
Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 2005; 17: 326-332.
Almanzar G, Schwaiger S, Jenewein B, et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 2005; 79: 3675-3683.
Kovaiou RD, Herndler-Brandstetter D, Grubeck-Loebenstein B. Age-related changes in immunity: Implications for vaccination in the elderly. Expert Rev Mol Med 2007; 9: 1-17.
Strindhall J, Nilsson BO, Lofgren S, et al. No Immune Risk Profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study. Exp Gerontol 2007; 42: 753-761.
Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J Immunol 2005; 174: 7446-7452.
Romero P, Zippelius A, Kurth I, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007; 178: 4112-4119.
Aiello AE, Haan MN, Pierce CM, et al. Persistent infection, inflammation, and functional impairment in older Latinos. J Gerontol A Biol Sci Med Sci 2008; 63: 610-618.
Provinciali M, Di Stefano G, Colombo M, et al. Adjuvant effect of low-dose interleukin-2 on antibody response to influenza virus vaccination in healthy elderly subjects. Mech Ageing Dev 1994; 77: 75-82.
Pawelec G, Ouyang Q, Colonna-Romano G, et al. I
2004; 200
1994; 179
2002; 59
2005; 174
2008; 9
2000; 95
2006; 176
2008; 8
2008; 5
1994; 29
2008; 3
2008; 300
2004; 1
2005; 22
2005; 23
1996; 31
1998; 16
2007; 178
2007; 179
2006; 24
2004; 39
2004; 173
2007; 9
1997; 18
1994; 77
2003; 4
2007; 7
2000; 121
1988; 41
2008; 63
2006; 127
2003; 124
1999; 90
2005; 79
1993; 133
2001; 122
2001; 124
2004; 86
2001; 72
2006; 439
2007; 128
2007; 447
2006; 12
2005; 114
2006; 16
2008
2003; 37
2003; 38
2006; 1067
2006; 3
2005; 83
2007; 52
2007; 56
2003; 31
2008; 180
1997; 160
2006; 43
2002; 23
2002; 24
2002; 169
2005; 205
1999; 34
2005; 53
2007; 81
2007; 41
2005; 50
2007; 42
2005; 17
2003; 21
2008; 172
2003; 23
1998; 8
Ataman S (e_1_2_1_21_2) 2007; 41
e_1_2_1_41_2
e_1_2_1_64_2
e_1_2_1_66_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_68_2
e_1_2_1_28_2
Carter D (e_1_2_1_30_2) 2006; 12
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_75_2
e_1_2_1_4_2
e_1_2_1_56_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_50_2
e_1_2_1_71_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_52_2
e_1_2_1_73_2
e_1_2_1_16_2
e_1_2_1_37_2
Qin W (e_1_2_1_77_2) 2004; 1
e_1_2_1_14_2
Stowe RP (e_1_2_1_34_2) 2001; 72
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_79_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
Just‐Nubling G (e_1_2_1_26_2) 2003; 31
e_1_2_1_80_2
e_1_2_1_40_2
e_1_2_1_65_2
e_1_2_1_67_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_61_2
e_1_2_1_42_2
e_1_2_1_63_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_69_2
e_1_2_1_29_2
e_1_2_1_70_2
Trzonkowski P (e_1_2_1_76_2) 2008
e_1_2_1_53_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_78_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_72_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_74_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_17_2
e_1_2_1_59_2
e_1_2_1_9_2
References_xml – reference: Provinciali M, Di Stefano G, Colombo M, et al. Adjuvant effect of low-dose interleukin-2 on antibody response to influenza virus vaccination in healthy elderly subjects. Mech Ageing Dev 1994; 77: 75-82.
– reference: Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007; 128: 92-105.
– reference: Varani S, Cederarv M, Feld S, et al. Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells. J Immunol 2007; 179: 7767-7776.
– reference: Capri M, Salvioli S, Sevini F, et al. The genetics of human longevity. Ann NY Acad Sci 2006; 1067: 252-263.
– reference: Komatsu H, Inui A, Sogo T, et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun Ageing 2006; 3: 11.
– reference: Kovaiou RD, Herndler-Brandstetter D, Grubeck-Loebenstein B. Age-related changes in immunity: Implications for vaccination in the elderly. Expert Rev Mol Med 2007; 9: 1-17.
– reference: Hadrup SR, Strindhall J, Kollgaard T, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 2006; 176: 2645-2653.
– reference: Fagnoni FF, Vescovini R, Passeri G, et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 2000; 95: 2860-2868.
– reference: Lazuardi L, Jenewein B, Wolf AM, et al. Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 2005; 114: 37-43.
– reference: Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002; 169: 1984-1992.
– reference: Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J Immunol 2005; 174: 7446-7452.
– reference: Qin W, Jiang J, Chen Q, et al. CpG ODN enhances immunization effects of hepatitis B vaccine in aged mice. Cell Mol Immunol 2004; 1: 148-152.
– reference: Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years. Mech Ageing Dev 2001; 122: 132-134.
– reference: Posnett DN, Sinha R, Kabak S, et al. Clonal populations of T cells in normal elderly humans: the T cell equivalent to "benign monoclonal gammapathy". J Exp Med 1994; 179: 609-618.
– reference: Miles DJ, van der Sande M, Jeffries D, et al. Maintenance of large subpopulations of differentiated CD8 T-cells two years after cytomegalovirus infection in Gambian infants. PLoS ONE. 2008; 3: e2905.
– reference: Lang A, Brien JD, Messaoudi I, et al. Age-related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication. J Immunol 2008; 180: 4848-4857.
– reference: Just-Nubling G, Korn S, Ludwig B, et al. Primary cytomegalovirus infection in an outpatient setting-laboratory markers and clinical aspects. Infection 2003; 31: 318-323.
– reference: Carter D, Olchovsky D, Pokroy R, et al. Cytomegalovirus-associated colitis causing diarrhea in an immunocompetent patient. World J Gastroenterol 2006; 12: 6898-6899.
– reference: Koch S, Larbi A, Derhovanessian E, et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 2008; 5: 6.
– reference: Ogata K, An E, Shioi Y, et al. Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 2001; 124: 392-397.
– reference: Romero P, Zippelius A, Kurth I, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007; 178: 4112-4119.
– reference: Jimenez M, Martinez C, Ercilla G, et al. Clinical factors influencing T-cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults. Transpl Immunol 2006; 16: 52-59.
– reference: Almanzar G, Schwaiger S, Jenewein B, et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 2005; 79: 3675-3683.
– reference: Lang KS, Moris A, Gouttefangeas C, et al. High frequency of human cytomegalovirus (HCMV)-specific CD8+ T cells detected in a healthy CMV-seropositive donor. Cell Mol Life Sci 2002; 59: 1076-1080.
– reference: Trzonkowski P, Mysliwska J, Szmit E, et al. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination-an impact of immunosenescence. Vaccine 2003; 21: 3826-3836.
– reference: Olsson J, Wikby A, Johansson B, et al. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 2000; 121: 187-201.
– reference: Wikby A, Mansson IA, Johansson B, et al. The immune risk profile is associated with age and gender: Findings from three Swedish population studies of individuals 20-100 years of age. Biogerontology 2008; 9: 299-308.
– reference: Strindhall J, Nilsson BO, Lofgren S, et al. No Immune Risk Profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study. Exp Gerontol 2007; 42: 753-761.
– reference: Colugnati FA, Staras SA, Dollard SC, et al. Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect Dis 2007; 7: 71.
– reference: Vescovini R, Telera A, Fagnoni FF, et al. Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp Gerontol 2004; 39: 1233-1243.
– reference: Assy N, Gefen H, Schlesinger S, et al. Reactivation versus primary CMV infection after splenectomy in immunocompetent patients. Dig Dis Sci 2007; 52: 3477-3479.
– reference: Ouyang Q, Wagner WM, Walter S, et al. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech Ageing Dev 2003; 124: 477-485.
– reference: Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity 2006; 24: 491-494.
– reference: Khan N, Hislop A, Gudgeon N, et al. Herpesvirus-specific CD8 T cell immunity in old age: Cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 2004; 173: 7481-7489.
– reference: Weksler ME, Goodhardt M, Szabo P. The effect of age on B cell development and humoral immunity. Springer Semin Immunopathol 2002; 24: 35-52.
– reference: Hecker M, Qiu D, Marquardt K, et al. Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang 2004; 86: 41-44.
– reference: Benedict CA, Loewendorf A, Garcia Z, et al. Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD-L1/PD-1 pathway. J Immunol 2008; 180: 4836-4847.
– reference: Rafailidis PI, Mourtzoukou EG, Varbobitis IC, et al. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J 2008; 5: 47.
– reference: Wreghitt TG, Teare EL, Sule O, et al. Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 2003; 37: 1603-1606.
– reference: Ben-Yehuda A, Joseph A, Barenholz Y, et al. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine 2003; 21: 3169-3178.
– reference: Ouyang Q, Wagner WM, Wikby A, et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 2003; 23: 247-257.
– reference: Musiani M, Zerbini M, Zauli D, et al. Impairment of cytomegalovirus and host balance in elderly subjects. J Clin Pathol 1988; 41: 722-725.
– reference: Remarque E, Pawelec G. T-cell immunosenescence and its clinical relevance in man. Rev Clin Gerontol 1998; 8: 5-14.
– reference: Pawelec G, Akbar A, Caruso C, et al. Human immunosenescence: is it infectious? Immunol Rev 2005; 205: 257-268.
– reference: Spaulding C, Guo W, Effros RB. Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 1999; 34: 633-644.
– reference: Wikby A, Johansson B, Ferguson F, et al. Age-related changes in immune parameters in a very old population of Swedish people: A longitudinal study. Exp Gerontol 1994; 29: 531-541.
– reference: Pourgheysari B, Khan N, Best D, et al. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol 2007; 81: 7759-7765.
– reference: Rufer N, Dragowska W, Thornbury G, et al. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 1998; 16: 743-747.
– reference: Effros RB, Pawelec G. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 1997; 18: 450-454.
– reference: Pawelec G, Ouyang Q, Colonna-Romano G, et al. Is human immunosenescence clinically relevant? Looking for 'immunological risk phenotypes'. Trends Immunol 2002; 23: 330-332.
– reference: Nilsson BO, Ernerudh J, Johansson B, et al. Morbidity does not influence the T-cell immune risk phenotype in the elderly: Findings in the Swedish NONA Immune Study using sample selection protocols. Mech Ageing Dev 2003; 124: 469-476.
– reference: Weng NP, Palmer LD, Levine BL, et al. Tales of tails: Regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev 1997; 160: 43-54.
– reference: Stowe RP, Mehta SK, Ferrando AA, et al. Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 2001; 72: 884-891.
– reference: Ouyang Q, Wagner WM, Voehringer D, et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 2003; 38: 911-920.
– reference: Trzonkowski P, Mysliwska J, Pawelec G, et al. From bench to bedside and back: The SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 2008; [E-pub ahead of print]
– reference: Looney RJ, Falsey A, Campbell D, et al. Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol 1999; 90: 213-219.
– reference: Pawelec G, Sansom D, Rehbein A, et al. Decreased proliferative capacity and increased susceptibility to activation-induced cell death in late-passage human CD4+ TCR2+ cultured T cell clones. Exp Gerontol 1996; 31: 655-668.
– reference: Tabata T, Kawakatsu H, Maidji E, et al. Induction of an epithelial integrin alphavbeta6 in human cytomegalovirus-infected endothelial cells leads to activation of transforming growth factor-beta1 and increased collagen production. Am J Pathol 2008; 172: 1127-1140.
– reference: Northfield J, Lucas M, Jones H, et al. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with 'memory inflation' in human cytomegalovirus infection. Immunol Cell Biol 2005; 83: 182-188.
– reference: Aiello AE, Haan MN, Pierce CM, et al. Persistent infection, inflammation, and functional impairment in older Latinos. J Gerontol A Biol Sci Med Sci 2008; 63: 610-618.
– reference: Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007; 56: 739-745.
– reference: Sheevani, Jindal N, Aggarwal A. A pilot seroepidemiological study of cytomegalovirus infection in women of child bearing age. Indian J Med Microbiol 2005; 23: 34-36.
– reference: Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 2005; 17: 326-332.
– reference: Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682-687.
– reference: Huppert FA, Pinto EM, Morgan K, et al. Survival in a population sample is predicted by proportions of lymphocyte subsets. Mech Ageing Dev 2003; 124: 449-451.
– reference: Galiatsatos P, Shrier I, Lamoureux E, et al. Meta-analysis of outcome of cytomegalovirus colitis in immunocompetent hosts. Dig Dis Sci 2005; 50: 609-616.
– reference: Stowe RP, Kozlova EV, Yetman DL, et al. Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 2007; 42: 563-570.
– reference: Barton ES, White DW, Cathelyn JS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007; 447: 326-329.
– reference: Schmaltz HN, Fried LP, Xue QL, et al. Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community-dwelling older women. J Am Geriatr Soc 2005; 53: 747-754.
– reference: Peres A, Bauer M, da Cruz IB, et al. Immunophenotyping and T-cell proliferative capacity in a healthy aged population. Biogerontology 2003; 4: 289-296.
– reference: !Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 2008; 8: 512-522.
– reference: Ataman S, Colak D, Gunseren F, et al. Investigation of cytomegalovirus seroepidemiology in Antalya with a population-based cross-sectional study and review of related data in Turkey. Mikrobiyol Bul 2007; 41: 545-555.
– reference: Limaye AP, Kirby KA, Rubenfeld GD, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 2008; 300: 413-422.
– reference: Marshall GS, Stout GG. Cytomegalovirus seroprevalence among women of childbearing age during a 10-year period. Am J Perinatol 2005; 22: 371-376.
– reference: Messaoudi I, Lemaoult J, Guevara-Patino JA, et al. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 2004; 200: 1347-1358.
– reference: Zinkernagel RM, Moskophidis D, Kundig T, et al. Effector T-cell induction and T-cell memory versus peripheral deletion of T cells. Immunol Rev 1993; 133: 199-223.
– reference: Koch S, Solana R, Dela Rosa O, et al. Human cytomegalovirus infection and T cell immunosenescence: A mini review. Mech Ageing Dev 2006; 127: 538-543.
– reference: Staras SA, Dollard SC, Radford KW, et al. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis 2006; 43: 1143-1151.
– volume: 178
  start-page: 4112
  year: 2007
  end-page: 4119
  article-title: Four functionally distinct populations of human effector‐memory CD8+ T lymphocytes
  publication-title: J Immunol
– volume: 173
  start-page: 7481
  year: 2004
  end-page: 7489
  article-title: Herpesvirus‐specific CD8 T cell immunity in old age: Cytomegalovirus impairs the response to a coresident EBV infection
  publication-title: J Immunol
– volume: 37
  start-page: 1603
  year: 2003
  end-page: 1606
  article-title: Cytomegalovirus infection in immunocompetent patients
  publication-title: Clin Infect Dis
– volume: 114
  start-page: 37
  year: 2005
  end-page: 43
  article-title: Age‐related loss of naive T cells and dysregulation of T‐cell/B‐cell interactions in human lymph nodes
  publication-title: Immunology
– volume: 59
  start-page: 1076
  year: 2002
  end-page: 1080
  article-title: High frequency of human cytomegalovirus (HCMV)‐specific CD8+ T cells detected in a healthy CMV‐seropositive donor
  publication-title: Cell Mol Life Sci
– volume: 1067
  start-page: 252
  year: 2006
  end-page: 263
  article-title: The genetics of human longevity
  publication-title: Ann NY Acad Sci
– volume: 174
  start-page: 7446
  year: 2005
  end-page: 7452
  article-title: The influence of age on T cell generation and TCR diversity
  publication-title: J Immunol
– volume: 63
  start-page: 610
  year: 2008
  end-page: 618
  article-title: Persistent infection, inflammation, and functional impairment in older Latinos
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 127
  start-page: 538
  year: 2006
  end-page: 543
  article-title: Human cytomegalovirus infection and T cell immunosenescence: A mini review
  publication-title: Mech Ageing Dev
– volume: 52
  start-page: 3477
  year: 2007
  end-page: 3479
  article-title: Reactivation versus primary CMV infection after splenectomy in immunocompetent patients
  publication-title: Dig Dis Sci
– volume: 4
  start-page: 289
  year: 2003
  end-page: 296
  article-title: Immunophenotyping and T‐cell proliferative capacity in a healthy aged population
  publication-title: Biogerontology
– volume: 77
  start-page: 75
  year: 1994
  end-page: 82
  article-title: Adjuvant effect of low‐dose interleukin‐2 on antibody response to influenza virus vaccination in healthy elderly subjects
  publication-title: Mech Ageing Dev
– volume: 23
  start-page: 247
  year: 2003
  end-page: 257
  article-title: Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old
  publication-title: J Clin Immunol
– volume: 124
  start-page: 469
  year: 2003
  end-page: 476
  article-title: Morbidity does not influence the T‐cell immune risk phenotype in the elderly: Findings in the Swedish NONA Immune Study using sample selection protocols
  publication-title: Mech Ageing Dev
– volume: 39
  start-page: 1233
  year: 2004
  end-page: 1243
  article-title: Different contribution of EBV and CMV infections in very long‐term carriers to age‐related alterations of CD8+ T cells
  publication-title: Exp Gerontol
– volume: 16
  start-page: 52
  year: 2006
  end-page: 59
  article-title: Clinical factors influencing T‐cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults
  publication-title: Transpl Immunol
– volume: 95
  start-page: 2860
  year: 2000
  end-page: 2868
  article-title: Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging
  publication-title: Blood
– volume: 8
  start-page: 512
  year: 2008
  end-page: 522
  article-title: Ageing and life‐long maintenance of T‐cell subsets in the face of latent persistent infections
  publication-title: Nat Rev Immunol
– volume: 24
  start-page: 491
  year: 2006
  end-page: 494
  article-title: Aging and innate immunity
  publication-title: Immunity
– volume: 34
  start-page: 633
  year: 1999
  end-page: 644
  article-title: Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen‐specific proliferation
  publication-title: Exp Gerontol
– volume: 5
  start-page: 47
  year: 2008
  article-title: Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review
  publication-title: Virol J
– volume: 205
  start-page: 257
  year: 2005
  end-page: 268
  article-title: Human immunosenescence: is it infectious
  publication-title: Immunol Rev
– volume: 79
  start-page: 3675
  year: 2005
  end-page: 3683
  article-title: Long‐term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T‐cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons
  publication-title: J Virol
– volume: 9
  start-page: 1
  year: 2007
  end-page: 17
  article-title: Age‐related changes in immunity: Implications for vaccination in the elderly
  publication-title: Expert Rev Mol Med
– volume: 29
  start-page: 531
  year: 1994
  end-page: 541
  article-title: Age‐related changes in immune parameters in a very old population of Swedish people: A longitudinal study
  publication-title: Exp Gerontol
– volume: 1
  start-page: 148
  year: 2004
  end-page: 152
  article-title: CpG ODN enhances immunization effects of hepatitis B vaccine in aged mice
  publication-title: Cell Mol Immunol
– volume: 18
  start-page: 450
  year: 1997
  end-page: 454
  article-title: Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion
  publication-title: Immunol Today
– volume: 50
  start-page: 609
  year: 2005
  end-page: 616
  article-title: Meta‐analysis of outcome of cytomegalovirus colitis in immunocompetent hosts
  publication-title: Dig Dis Sci
– volume: 128
  start-page: 92
  year: 2007
  end-page: 105
  article-title: Inflammaging and anti‐inflammaging: A systemic perspective on aging and longevity emerged from studies in humans
  publication-title: Mech Ageing Dev
– volume: 160
  start-page: 43
  year: 1997
  end-page: 54
  article-title: Tales of tails: Regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging
  publication-title: Immunol Rev
– volume: 23
  start-page: 34
  year: 2005
  end-page: 36
  article-title: A pilot seroepidemiological study of cytomegalovirus infection in women of child bearing age
  publication-title: Indian J Med Microbiol
– volume: 17
  start-page: 326
  year: 2005
  end-page: 332
  article-title: Understanding the generation and function of memory T cell subsets
  publication-title: Curr Opin Immunol
– volume: 21
  start-page: 3169
  year: 2003
  end-page: 3178
  article-title: Immunogenicity and safety of a novel IL‐2‐supplemented liposomal influenza vaccine (INFLUSOME‐VAC) in nursing‐home residents
  publication-title: Vaccine
– volume: 172
  start-page: 1127
  year: 2008
  end-page: 1140
  article-title: Induction of an epithelial integrin alphavbeta6 in human cytomegalovirus‐infected endothelial cells leads to activation of transforming growth factor‐beta1 and increased collagen production
  publication-title: Am J Pathol
– volume: 81
  start-page: 7759
  year: 2007
  end-page: 7765
  article-title: The cytomegalovirus‐specific CD4+ T‐cell response expands with age and markedly alters the CD4+ T‐cell repertoire
  publication-title: J Virol
– volume: 180
  start-page: 4836
  year: 2008
  end-page: 4847
  article-title: Dendritic cell programming by cytomegalovirus stunts naive T cell responses via the PD‐L1/PD‐1 pathway
  publication-title: J Immunol
– volume: 124
  start-page: 392
  year: 2001
  end-page: 397
  article-title: Association between natural killer cell activity and infection in immunologically normal elderly people
  publication-title: Clin Exp Immunol
– volume: 43
  start-page: 1143
  year: 2006
  end-page: 1151
  article-title: Seroprevalence of cytomegalovirus infection in the United States, 1988–1994
  publication-title: Clin Infect Dis
– volume: 53
  start-page: 747
  year: 2005
  end-page: 754
  article-title: Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community‐dwelling older women
  publication-title: J Am Geriatr Soc
– volume: 83
  start-page: 182
  year: 2005
  end-page: 188
  article-title: Does memory improve with age? CD85j (ILT‐2/LIR‐1) expression on CD8 T cells correlates with ‘memory inflation’ in human cytomegalovirus infection
  publication-title: Immunol Cell Biol
– volume: 38
  start-page: 911
  year: 2003
  end-page: 920
  article-title: Age‐associated accumulation of CMV‐specific CD8+ T cells expressing the inhibitory killer cell lectin‐like receptor G1 (KLRG1)
  publication-title: Exp Gerontol
– volume: 3
  start-page: e2905
  year: 2008
  article-title: Maintenance of large subpopulations of differentiated CD8 T‐cells two years after cytomegalovirus infection in Gambian infants
  publication-title: PLoS ONE.
– year: 2008
  article-title: From bench to bedside and back: The SENIEUR Protocol and the efficacy of influenza vaccination in the elderly
  publication-title: Biogerontology
– volume: 176
  start-page: 2645
  year: 2006
  end-page: 2653
  article-title: Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus‐specific T cells in the very elderly
  publication-title: J Immunol
– volume: 8
  start-page: 5
  year: 1998
  end-page: 14
  article-title: T‐cell immunosenescence and its clinical relevance in man
  publication-title: Rev Clin Gerontol
– volume: 122
  start-page: 132
  year: 2001
  end-page: 134
  article-title: The SENIEUR protocol after 16 years
  publication-title: Mech Ageing Dev
– volume: 200
  start-page: 1347
  year: 2004
  end-page: 1358
  article-title: Age‐related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense
  publication-title: J Exp Med
– volume: 169
  start-page: 1984
  year: 2002
  end-page: 1992
  article-title: Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals
  publication-title: J Immunol
– volume: 12
  start-page: 6898
  year: 2006
  end-page: 6899
  article-title: Cytomegalovirus‐associated colitis causing diarrhea in an immunocompetent patient
  publication-title: World J Gastroenterol
– volume: 42
  start-page: 753
  year: 2007
  end-page: 761
  article-title: No Immune Risk Profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study
  publication-title: Exp Gerontol
– volume: 5
  start-page: 6
  year: 2008
  article-title: Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people
  publication-title: Immun Ageing
– volume: 121
  start-page: 187
  year: 2000
  end-page: 201
  article-title: Age‐related change in peripheral blood T‐lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study
  publication-title: Mech Ageing Dev
– volume: 41
  start-page: 545
  year: 2007
  end-page: 555
  article-title: Investigation of cytomegalovirus seroepidemiology in Antalya with a population‐based cross‐sectional study and review of related data in Turkey
  publication-title: Mikrobiyol Bul
– volume: 42
  start-page: 563
  year: 2007
  end-page: 570
  article-title: Chronic herpesvirus reactivation occurs in aging
  publication-title: Exp Gerontol
– volume: 124
  start-page: 449
  year: 2003
  end-page: 451
  article-title: Survival in a population sample is predicted by proportions of lymphocyte subsets
  publication-title: Mech Ageing Dev
– volume: 90
  start-page: 213
  year: 1999
  end-page: 219
  article-title: Role of cytomegalovirus in the T cell changes seen in elderly individuals
  publication-title: Clin Immunol
– volume: 22
  start-page: 371
  year: 2005
  end-page: 376
  article-title: Cytomegalovirus seroprevalence among women of childbearing age during a 10‐year period
  publication-title: Am J Perinatol
– volume: 41
  start-page: 722
  year: 1988
  end-page: 725
  article-title: Impairment of cytomegalovirus and host balance in elderly subjects
  publication-title: J Clin Pathol
– volume: 179
  start-page: 7767
  year: 2007
  end-page: 7776
  article-title: Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 180
  start-page: 4848
  year: 2008
  end-page: 4857
  article-title: Age‐related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication
  publication-title: J Immunol
– volume: 56
  start-page: 739
  year: 2007
  end-page: 745
  article-title: Contribution of the PD‐L1/PD‐1 pathway to T‐cell exhaustion: an update on implications for chronic infections and tumor evasion
  publication-title: Cancer Immunol Immunother
– volume: 3
  start-page: 11
  year: 2006
  article-title: Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses
  publication-title: Immun Ageing
– volume: 21
  start-page: 3826
  year: 2003
  end-page: 3836
  article-title: Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti‐hemagglutinins during the anti‐influenza vaccination–an impact of immunosenescence
  publication-title: Vaccine
– volume: 86
  start-page: 41
  year: 2004
  end-page: 44
  article-title: Continuous cytomegalovirus seroconversion in a large group of healthy blood donors
  publication-title: Vox Sang
– volume: 447
  start-page: 326
  year: 2007
  end-page: 329
  article-title: Herpesvirus latency confers symbiotic protection from bacterial infection
  publication-title: Nature
– volume: 31
  start-page: 318
  year: 2003
  end-page: 323
  article-title: Primary cytomegalovirus infection in an outpatient setting–laboratory markers and clinical aspects
  publication-title: Infection
– volume: 72
  start-page: 884
  year: 2001
  end-page: 891
  article-title: Immune responses and latent herpesvirus reactivation in spaceflight
  publication-title: Aviat Space Environ Med
– volume: 24
  start-page: 35
  year: 2002
  end-page: 52
  article-title: The effect of age on B cell development and humoral immunity
  publication-title: Springer Semin Immunopathol
– volume: 133
  start-page: 199
  year: 1993
  end-page: 223
  article-title: Effector T‐cell induction and T‐cell memory versus peripheral deletion of T cells
  publication-title: Immunol Rev
– volume: 31
  start-page: 655
  year: 1996
  end-page: 668
  article-title: Decreased proliferative capacity and increased susceptibility to activation‐induced cell death in late‐passage human CD4+ TCR2+ cultured T cell clones
  publication-title: Exp Gerontol
– volume: 9
  start-page: 299
  year: 2008
  end-page: 308
  article-title: The immune risk profile is associated with age and gender: Findings from three Swedish population studies of individuals 20–100 years of age
  publication-title: Biogerontology
– volume: 439
  start-page: 682
  year: 2006
  end-page: 687
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
– volume: 124
  start-page: 477
  year: 2003
  end-page: 485
  article-title: An age‐related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein‐Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen‐specific responsiveness
  publication-title: Mech Ageing Dev
– volume: 7
  start-page: 71
  year: 2007
  article-title: Incidence of cytomegalovirus infection among the general population and pregnant women in the United States
  publication-title: BMC Infect Dis
– volume: 23
  start-page: 330
  year: 2002
  end-page: 332
  article-title: Is human immunosenescence clinically relevant? Looking for ‘immunological risk phenotypes’
  publication-title: Trends Immunol
– volume: 179
  start-page: 609
  year: 1994
  end-page: 618
  article-title: Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”
  publication-title: J Exp Med
– volume: 16
  start-page: 743
  year: 1998
  end-page: 747
  article-title: Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry
  publication-title: Nat Biotechnol
– volume: 300
  start-page: 413
  year: 2008
  end-page: 422
  article-title: Cytomegalovirus reactivation in critically ill immunocompetent patients
  publication-title: JAMA
– ident: e_1_2_1_66_2
  doi: 10.4049/jimmunol.179.11.7767
– ident: e_1_2_1_46_2
  doi: 10.1111/j.1600-065X.1997.tb01026.x
– ident: e_1_2_1_44_2
  doi: 10.1016/j.coi.2005.04.010
– ident: e_1_2_1_14_2
  doi: 10.1023/A:1024580531705
– ident: e_1_2_1_40_2
  doi: 10.1084/jem.179.2.609
– ident: e_1_2_1_67_2
  doi: 10.2353/ajpath.2008.070448
– volume: 1
  start-page: 148
  year: 2004
  ident: e_1_2_1_77_2
  article-title: CpG ODN enhances immunization effects of hepatitis B vaccine in aged mice
  publication-title: Cell Mol Immunol
– ident: e_1_2_1_2_2
  doi: 10.1182/blood.V95.9.2860.009k35_2860_2868
– ident: e_1_2_1_68_2
  doi: 10.1016/S0047-6374(03)00026-5
– ident: e_1_2_1_78_2
  doi: 10.1007/s00262-006-0272-1
– ident: e_1_2_1_36_2
  doi: 10.1111/j.1532-5415.2005.53250.x
– ident: e_1_2_1_5_2
  doi: 10.4049/jimmunol.176.4.2645
– ident: e_1_2_1_70_2
  doi: 10.4049/jimmunol.173.12.7481
– ident: e_1_2_1_13_2
  doi: 10.1006/clim.1998.4638
– ident: e_1_2_1_27_2
  doi: 10.1086/379711
– ident: e_1_2_1_72_2
  doi: 10.1038/nri2318
– ident: e_1_2_1_63_2
  doi: 10.1016/S0531-5565(03)00134-7
– ident: e_1_2_1_24_2
  doi: 10.1007/s10620-006-9712-1
– volume: 12
  start-page: 6898
  year: 2006
  ident: e_1_2_1_30_2
  article-title: Cytomegalovirus‐associated colitis causing diarrhea in an immunocompetent patient
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v12.i42.6898
– year: 2008
  ident: e_1_2_1_76_2
  article-title: From bench to bedside and back: The SENIEUR Protocol and the efficacy of influenza vaccination in the elderly
  publication-title: Biogerontology
– ident: e_1_2_1_8_2
  doi: 10.1007/s00281-001-0094-3
– ident: e_1_2_1_45_2
  doi: 10.1038/nbt0898-743
– ident: e_1_2_1_56_2
  doi: 10.1007/s10522-008-9138-6
– ident: e_1_2_1_18_2
  doi: 10.1055/s-2005-872590
– ident: e_1_2_1_49_2
  doi: 10.1016/S0531-5565(96)00097-6
– ident: e_1_2_1_73_2
  doi: 10.1038/nature04444
– ident: e_1_2_1_39_2
  doi: 10.1006/clim.1998.4638
– ident: e_1_2_1_28_2
  doi: 10.1186/1743-422X-5-47
– ident: e_1_2_1_3_2
  doi: 10.1111/j.1365-2567.2004.02006.x
– ident: e_1_2_1_12_2
  doi: 10.4049/jimmunol.169.4.1984
– ident: e_1_2_1_43_2
  doi: 10.1186/1742-4933-5-6
– ident: e_1_2_1_50_2
  doi: 10.1016/S0531-5565(99)00033-9
– ident: e_1_2_1_19_2
  doi: 10.1186/1471-2334-7-71
– ident: e_1_2_1_52_2
  doi: 10.1016/S0047-6374(00)00240-2
– volume: 72
  start-page: 884
  year: 2001
  ident: e_1_2_1_34_2
  article-title: Immune responses and latent herpesvirus reactivation in spaceflight
  publication-title: Aviat Space Environ Med
– ident: e_1_2_1_79_2
  doi: 10.1016/0047-6374(94)90016-7
– ident: e_1_2_1_9_2
  doi: 10.1046/j.1365-2249.2001.01571.x
– ident: e_1_2_1_23_2
  doi: 10.1111/j.0042-9007.2004.00388.x
– ident: e_1_2_1_33_2
  doi: 10.1136/jcp.41.7.722
– ident: e_1_2_1_69_2
  doi: 10.1016/j.exger.2004.04.004
– ident: e_1_2_1_58_2
  doi: 10.1023/A:1026282917406
– ident: e_1_2_1_80_2
  doi: 10.1016/S0264-410X(03)00251-2
– ident: e_1_2_1_51_2
  doi: 10.1016/0531-5565(94)90036-1
– volume: 31
  start-page: 318
  year: 2003
  ident: e_1_2_1_26_2
  article-title: Primary cytomegalovirus infection in an outpatient setting–laboratory markers and clinical aspects
  publication-title: Infection
  doi: 10.1007/s15010-003-3129-y
– ident: e_1_2_1_29_2
  doi: 10.1001/jama.2008.697
– ident: e_1_2_1_71_2
  doi: 10.4049/jimmunol.180.7.4848
– ident: e_1_2_1_20_2
  doi: 10.4103/0255-0857.13870
– ident: e_1_2_1_74_2
  doi: 10.1016/j.trim.2006.02.006
– ident: e_1_2_1_32_2
  doi: 10.1016/j.exger.2007.01.005
– ident: e_1_2_1_35_2
  doi: 10.1196/annals.1354.033
– ident: e_1_2_1_64_2
  doi: 10.1128/JVI.79.6.3675-3683.2005
– ident: e_1_2_1_65_2
  doi: 10.4049/jimmunol.180.7.4836
– ident: e_1_2_1_54_2
  doi: 10.1016/S0047-6374(03)00024-1
– ident: e_1_2_1_37_2
  doi: 10.1038/nature05762
– ident: e_1_2_1_42_2
  doi: 10.1017/S0959259898008028
– ident: e_1_2_1_11_2
  doi: 10.1017/S1462399407000221
– ident: e_1_2_1_55_2
  doi: 10.1016/j.exger.2007.05.001
– ident: e_1_2_1_60_2
  doi: 10.1371/journal.pone.0002905
– volume: 41
  start-page: 545
  year: 2007
  ident: e_1_2_1_21_2
  article-title: Investigation of cytomegalovirus seroepidemiology in Antalya with a population‐based cross‐sectional study and review of related data in Turkey
  publication-title: Mikrobiyol Bul
– ident: e_1_2_1_61_2
  doi: 10.1084/jem.20040437
– ident: e_1_2_1_6_2
  doi: 10.1111/j.1600-065X.1993.tb01517.x
– ident: e_1_2_1_15_2
  doi: 10.1111/j.0105-2896.2005.00271.x
– ident: e_1_2_1_59_2
  doi: 10.1186/1742-4933-3-11
– ident: e_1_2_1_16_2
  doi: 10.1111/j.1440-1711.2005.01321.x
– ident: e_1_2_1_38_2
  doi: 10.1093/gerona/63.6.610
– ident: e_1_2_1_48_2
  doi: 10.1016/S0167-5699(97)01079-7
– ident: e_1_2_1_53_2
  doi: 10.1016/S1471-4906(02)02255-X
– ident: e_1_2_1_22_2
  doi: 10.1086/508173
– ident: e_1_2_1_10_2
  doi: 10.1016/j.mad.2006.11.016
– ident: e_1_2_1_4_2
  doi: 10.4049/jimmunol.174.11.7446
– ident: e_1_2_1_17_2
  doi: 10.1128/JVI.01262-06
– ident: e_1_2_1_57_2
  doi: 10.1016/S0047-6374(03)00021-6
– ident: e_1_2_1_62_2
  doi: 10.1016/j.mad.2006.01.011
– ident: e_1_2_1_7_2
  doi: 10.1016/j.immuni.2006.05.003
– ident: e_1_2_1_31_2
  doi: 10.1007/s10620-005-2544-6
– ident: e_1_2_1_47_2
  doi: 10.4049/jimmunol.178.7.4112
– ident: e_1_2_1_25_2
  doi: 10.1007/s00018-002-8488-5
– ident: e_1_2_1_41_2
  doi: 10.1016/S0047-6374(00)00210-4
– ident: e_1_2_1_75_2
  doi: 10.1016/S0264-410X(03)00309-8
SSID ssj0010104
Score 2.384544
SecondaryResourceType review_article
Snippet ‘Immunosenescence’ is an imprecise term used to describe deleterious age‐associated changes to immune parameters observed in all mammals studied so far....
'Immunosenescence' is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far....
Immunosenescence is an imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far....
'Immunosenescence' is all imprecise term used to describe deleterious age-associated changes to immune parameters observed in all mammals studied so far....
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Aged
Aged, 80 and over
Aging - immunology
Animals
Cross-Sectional Studies
Cytomegalovirus
Cytomegalovirus - immunology
Cytomegalovirus Infections - immunology
Human cytomegalovirus
Humans
Immunity - physiology
Longitudinal Studies
Title Cytomegalovirus and human immunosenescence
URI https://api.istex.fr/ark:/67375/WNG-ZBXH0JKD-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.598
https://www.ncbi.nlm.nih.gov/pubmed/19035529
https://www.proquest.com/docview/20387628
https://www.proquest.com/docview/66783846
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-9294
Volume 19
WOSCitedRecordID wos000262519600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010104
  issn: 1099-1654
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYHSBe-Bhf5WNUYtoDUtk1bZrmcew4JmAnNLFx2kvUpgkcsBa1dyf232M3XccEk5B4qpQ4Umo7tlPXPwNshpKLOCHrV8RREKe5DAgSJcgji-oT20xmtm02IabTdDaTH35r9eXwIfoPbnQyWntNBzzLm-1z0ND6ZPWSy3QNhgy1lg9gOD6YHL7vUwh00WhTnZwFkonEVczS4u1u6QVXNCSu_vxbnNmDiF6MX1sHNLn1H1u_DTe7qNPfcWpyB66Ych2uuT6Up-twfb_LsN-FF7uni-rEoN-oVvN62fhZWfhtIz9_TqUkVUPGUZM9uAeHk9cfd_eCrp9CoAl2LbDoiwpR5FYIiZfQCP1jnoeWSnNlgiNFmGkZEyDRKGdFqHVkueEcB62wSTGK7sOgrErzEPzcWDSMYayZxpBEmjTKMEo3UdECeBXGg60z1irdgY1Tz4vvysEkM4U8UMgDD_ye8IfD1_iTZKuVTT-f1d_odzTB1afpG3X8arY3evturBIPnp0JT-EhocxHVppq2ShGSfqEpZdTJOi0I4zFPHjgpH6-G4naxZn04LlTg36GkLnH86MdVdWf1ZevCiPN2IPNVvKXvYw62D_Cx6N_I3sMN1z2KgxC_gQGi3ppnsJVvVrMm3oD1sQs3ej0_hcKoQVT
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rT9RAEJ8gp-gXHzy0itJEwgeTwvXd_Yicxyl3F0MAL3zZtPuAA2lN7xH5753plhKiJCZ8arI7m2xnZ2dmd3Z-A7DpsjAOItJ-MvCdIMmYQ5AoTuZrFJ9ApyzVVbGJeDhMRiP2vX5VSbkwBh-iuXCjnVHpa9rgdCG9c4saWl7Nt0OWPIJWgEKE0t3qHHaP-00MgU4aVawz9BzmxZFJmaXBO_XQO7aoRWz9_S9Hs0ERvevAVhao--Ihc38Jz2u_0941gvIKFlS-DE9MJcrrZVga1DH2Ffi0dz0trhRajmI-LmcTO82lXZXys8eUTFJMSD0K0gircNz9crTXc-qKCo4g4DVHozWSscx0HDM8hvpoIbPM1ZScyyJskW4qWECQRO3Mk64Qvg5VGGKjjnUk2_4aLOZFrt6AnSmNqtENhCfQKWEq8VP005UvKwgvqSzYuuEtFzXcOFW9-MkNULLHkQcceWCB3RD-Mggbf5NsVYvT9KflJT1Ii0P-Y7jPTz-Peu1vBx0eWbBxs3octwnFPtJcFbMJ9yhMH3nJ_RQRmm0fvTELXptlv50Na6NX5jELPho5aHoIm7szPtnlRXnGzy84-pqBBZvV0t_3M_xwcIKft_9HtgFPe0eDPu9_HR68g2cmlkUXQOuwOC1n6j08FvPpeFJ-qMX_D3qDCFY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9swDCbWZC32sqO7vK2tgRV9GOA1vq3HLll6B0WxtsFeBFvHlm2xA-fA-u9HWo6LoiswYE8GJAqQSYqkROkjwLbLwjiIyPrJwHeCJGMOQaI4ma9RfQKdslRXxSbiwSAZDtlZfauS3sIYfIjmwI1WRmWvaYGridS7N6ih5XjxMWTJCrQDKiHTgnbvvH9x0uQQaKdR5TpDz2FeHJknszR4tx56yxe1ia2__xZoNiiitwPYygP1n_zP3J_C4zrutPeMojyDBypfh1VTifJ6HdZO6xz7c_jQvZ4VY4Weo1iMyvnUTnNpV6X87BE9JimmZB4FWYQXcNH__KV74NQVFRxBwGuORm8kY5npOGa4DfXRQ2aZq-lxLouwRbqpYAFBEnUyT7pC-DpUYYiNOtaR7PgvoZUXuXoNdqY0mkY3EJ7AoISpxE8xTle-rCC8pLJgZ8lbLmq4cap68YsboGSPIw848sACuyGcGISNuyQ7lXCa_rT8SRfS4pBfDfb510_Dg87RcY9HFmwtpcdxmVDuI81VMZ9yj9L0kZfcTxGh2_YxGrPglRH7zWxYB6Myj1nw3uhB00PY3L3R5R4vym_8-w-OsWZgwXYl-vt-hp-fXuLnzb-RbcHaWa_PTw4Hx2_hkUll0fnPO2jNyrnagIdiMRtNy81a-_8A-ygH0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytomegalovirus+and+human+immunosenescence&rft.jtitle=Reviews+in+medical+virology&rft.au=Pawelec%2C+Graham&rft.au=Derhovanessian%2C+Evelyna&rft.au=Larbi%2C+Anis&rft.au=Strindhall%2C+Jan&rft.date=2009-01-01&rft.issn=1052-9276&rft.volume=19&rft.issue=1&rft.spage=47&rft_id=info:doi/10.1002%2Frmv.598&rft_id=info%3Apmid%2F19035529&rft.externalDocID=19035529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-9276&client=summon