An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells
Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport lay...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 13; číslo 1; s. 2521 - 24 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
13.02.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cesium tin chloride (CsSnCl
3
) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl
3
not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl
3
-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO
2
), tungsten disulfide (WS
2
), ceric dioxide (CeO
2
), titanium dioxide (TiO
2
), zinc oxide (ZnO), C
60
, PCBM, and HTLs of cuprous oxide (Cu
2
O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V
2
O
5
), copper iodide (CuI), CuSCN, CuSbS
2
, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO
2
, IGZO, WS
2
, PCBM, and C
60
ETLs-based halide perovskites with ITO/ETLs/CsSnCl
3
/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl
3
absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO
2
, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl
3
-based high efficiency (
η
≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl
3
/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl
3
-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl
3
perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl
3
perovskite-based high-performance SCs for a lead-free green and pollution-free environment. |
|---|---|
| AbstractList | Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment. Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl 3 -based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO 2 ), tungsten disulfide (WS 2 ), ceric dioxide (CeO 2 ), titanium dioxide (TiO 2 ), zinc oxide (ZnO), C 60 , PCBM, and HTLs of cuprous oxide (Cu 2 O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V 2 O 5 ), copper iodide (CuI), CuSCN, CuSbS 2 , Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO 2 , IGZO, WS 2 , PCBM, and C 60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl 3 /CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl 3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO 2 , ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl 3 -based high efficiency ( η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl 3 /CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl 3 -perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl 3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl 3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment. Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium-gallium-zinc-oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott-Schottky, generation and recombination rate, current-voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium-gallium-zinc-oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott-Schottky, generation and recombination rate, current-voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment. Abstract Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment. |
| ArticleNumber | 2521 |
| Author | Rubel, M. H. K. Bencherif, H. Kuddus, Abdul Toki, G. F. Ishraque Hossain, M. Khalid Hossain, M. M. Rahman, Md. Ferdous Mushtaq, Muhammad Islam, Md. Rasidul |
| Author_xml | – sequence: 1 givenname: M. Khalid surname: Hossain fullname: Hossain, M. Khalid email: khalid.baec@gmail.com, khalid@kyudai.jp organization: Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission – sequence: 2 givenname: G. F. Ishraque surname: Toki fullname: Toki, G. F. Ishraque organization: College of Materials Science and Engineering, Donghua University – sequence: 3 givenname: Abdul surname: Kuddus fullname: Kuddus, Abdul organization: Ritsumeikan Global Innovation Research Organization, Ritsumeikan University – sequence: 4 givenname: M. H. K. surname: Rubel fullname: Rubel, M. H. K. email: mhk_mse@ru.ac.bd organization: Department of Materials Science and Engineering, University of Rajshahi – sequence: 5 givenname: M. M. surname: Hossain fullname: Hossain, M. M. organization: Department of Physics, Chittagong University of Engineering and Technology – sequence: 6 givenname: H. surname: Bencherif fullname: Bencherif, H. organization: Higher National School of Renewable Energies, Environment and Sustainable Development – sequence: 7 givenname: Md. Ferdous surname: Rahman fullname: Rahman, Md. Ferdous organization: Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 8 givenname: Md. Rasidul surname: Islam fullname: Islam, Md. Rasidul organization: Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University – sequence: 9 givenname: Muhammad surname: Mushtaq fullname: Mushtaq, Muhammad organization: Department of Physics, University of Poonch Rawalakot |
| BookMark | eNp9UsFu1DAQjVARLaU_wMkSFy4Bx05i-4JUrQqttBIHytmaOJNdL157sZMV-xH8M95NBbSH-jLWzHtvRjPvdXHmg8eieFvRDxXl8mOqq0bJkjJeMtnQtmQvigtG66ZknLGz__7nxVVKG5pfw1RdqVfFOW-FrKSsL4rf157grxF9snskaZz6AwmebCc32p1DcnO_JOB7cpujgwPGRMZAekx25U-FZDMWRptJYSBru1qXO4xDiFvwBolD6MshIpJF-uYXjpcdJOxJxoR9-mHH3DQ4iMSgc-lN8XIAl_DqIV4W3z_f3C9uy-XXL3eL62VpmkqMJeIg2QBcAnLeC1VTI4UQtQRmsBYdihYoYqW6wQBvkLG24ZJ2CuquHZjgl8XdrNsH2OhdtFuIBx3A6lMixJWGOFrjUJuacwDKWAdZ2gxKglCVEtALKSgfstanWWs3dVvsDfoxgnsk-rji7Vqvwl4rxZp8hSzw_kEghp8TplFvbTquAzyGKWkmRNtUTc1phr57At2EKfq8qiOqyUuQqs4oNqNMDClFHP4OU1F9NI-ezaOzefTJPJplknxCMnY83TUPbd3zVD5TU-7jVxj_TfUM6w_Nwdsf |
| CitedBy_id | crossref_primary_10_1007_s11664_025_11740_x crossref_primary_10_1016_j_ssc_2024_115610 crossref_primary_10_1002_pssa_202400903 crossref_primary_10_1016_j_optcom_2023_130187 crossref_primary_10_1002_slct_202302252 crossref_primary_10_1002_adts_202401283 crossref_primary_10_1016_j_enconman_2025_119747 crossref_primary_10_1016_j_solener_2024_113089 crossref_primary_10_1364_OE_554379 crossref_primary_10_1038_s41598_023_39646_w crossref_primary_10_1039_D3RA02910G crossref_primary_10_1007_s12648_024_03350_w crossref_primary_10_1016_j_heliyon_2024_e27581 crossref_primary_10_1016_j_jallcom_2024_174097 crossref_primary_10_1007_s11356_023_29187_0 crossref_primary_10_1039_D4RA01559B crossref_primary_10_1016_j_heliyon_2024_e39218 crossref_primary_10_1016_j_jpcs_2024_112437 crossref_primary_10_1364_OE_566116 crossref_primary_10_1149_2162_8777_adfb2b crossref_primary_10_1007_s12596_023_01647_3 crossref_primary_10_1016_j_mssp_2024_109138 crossref_primary_10_1016_j_mtcomm_2024_110014 crossref_primary_10_1007_s40843_025_3416_3 crossref_primary_10_1016_j_rinp_2025_108163 crossref_primary_10_1016_j_seja_2024_100077 crossref_primary_10_3390_solar5030037 crossref_primary_10_1016_j_solener_2025_113253 crossref_primary_10_3390_nano15080580 crossref_primary_10_1016_j_jpcs_2025_112944 crossref_primary_10_1088_1402_4896_acf891 crossref_primary_10_1016_j_physb_2024_416879 crossref_primary_10_1021_acs_langmuir_5c00505 crossref_primary_10_1016_j_jpcs_2025_112941 crossref_primary_10_1016_j_micrna_2025_208274 crossref_primary_10_1016_j_jpcs_2024_112096 crossref_primary_10_3389_fenrg_2025_1631201 crossref_primary_10_1007_s11082_025_08141_z crossref_primary_10_1007_s12596_023_01574_3 crossref_primary_10_1016_j_nxener_2024_100196 crossref_primary_10_1016_j_solener_2024_112573 crossref_primary_10_1039_D4SE00958D crossref_primary_10_1016_j_nexres_2024_100055 crossref_primary_10_1016_j_jallcom_2024_177707 crossref_primary_10_1016_j_inoche_2023_111421 crossref_primary_10_1002_adts_202500341 crossref_primary_10_1016_j_mtcomm_2023_107025 crossref_primary_10_1088_1402_4896_adf3fc crossref_primary_10_1007_s11082_025_08200_5 crossref_primary_10_1007_s11082_025_08373_z crossref_primary_10_1016_j_inoche_2025_115426 crossref_primary_10_1002_ese3_70153 crossref_primary_10_1039_D5DT01355K crossref_primary_10_1016_j_inoche_2024_112360 crossref_primary_10_1016_j_jallcom_2024_176283 crossref_primary_10_1002_ente_202301198 crossref_primary_10_1016_j_nxener_2025_100245 crossref_primary_10_1007_s00339_023_06749_0 crossref_primary_10_1016_j_solener_2024_113098 crossref_primary_10_3390_ma17123026 crossref_primary_10_1016_j_ijhydene_2025_151106 crossref_primary_10_1002_wcms_1677 crossref_primary_10_1007_s12596_025_02816_2 crossref_primary_10_1002_solr_202400816 crossref_primary_10_1155_acmp_9968037 crossref_primary_10_1016_j_inoche_2024_113578 crossref_primary_10_1016_j_jpcs_2024_112300 crossref_primary_10_1016_j_rio_2025_100868 crossref_primary_10_1016_j_heliyon_2024_e29091 crossref_primary_10_1016_j_jpcs_2025_112872 crossref_primary_10_1016_j_micrna_2023_207676 crossref_primary_10_1016_j_meaene_2024_100005 crossref_primary_10_1002_pssa_202400547 crossref_primary_10_1016_j_mtcomm_2024_109906 crossref_primary_10_1002_qua_27481 crossref_primary_10_1007_s11664_025_12222_w crossref_primary_10_1088_1402_4896_accb13 crossref_primary_10_1080_26437015_2025_2467086 crossref_primary_10_1007_s10904_024_02999_4 crossref_primary_10_1016_j_poly_2024_116937 crossref_primary_10_3762_bjnano_16_11 crossref_primary_10_1002_ente_202500613 crossref_primary_10_15446_dyna_v92n237_118481 crossref_primary_10_1016_j_inoche_2024_112776 crossref_primary_10_1364_OE_563722 crossref_primary_10_1016_j_jpcs_2024_112480 crossref_primary_10_1016_j_jpcs_2025_112861 crossref_primary_10_1016_j_jpcs_2024_112486 crossref_primary_10_1016_j_jpcs_2024_112243 crossref_primary_10_1016_j_mseb_2024_117672 crossref_primary_10_1016_j_cocis_2025_101895 crossref_primary_10_1016_j_mssp_2024_109214 crossref_primary_10_1021_acs_cgd_4c01359 crossref_primary_10_1016_j_optcom_2025_131761 crossref_primary_10_1016_j_ijleo_2023_171325 crossref_primary_10_1016_j_heliyon_2024_e29676 crossref_primary_10_1007_s10853_024_09579_4 crossref_primary_10_1016_j_optmat_2024_115125 crossref_primary_10_1016_j_optcom_2025_131769 crossref_primary_10_1002_pssa_202500200 crossref_primary_10_1016_j_jpcs_2024_112247 crossref_primary_10_1002_nano_70026 crossref_primary_10_1039_D5RA04940G crossref_primary_10_1016_j_jpcs_2025_112622 crossref_primary_10_1021_acs_langmuir_4c05265 crossref_primary_10_1002_adts_202401268 crossref_primary_10_1016_j_ssc_2024_115590 crossref_primary_10_1039_D5NJ03069B crossref_primary_10_1002_ente_202300459 crossref_primary_10_1016_j_micrna_2024_207819 crossref_primary_10_1063_5_0138354 crossref_primary_10_1088_1402_4896_ad8278 crossref_primary_10_1016_j_mtcomm_2024_108957 crossref_primary_10_1002_adts_202400725 crossref_primary_10_1016_j_solener_2025_113866 crossref_primary_10_1007_s11468_024_02394_2 crossref_primary_10_1007_s12596_024_01817_x crossref_primary_10_1007_s42247_023_00558_0 crossref_primary_10_1016_j_jpcs_2023_111641 crossref_primary_10_1088_1402_4896_adbe03 crossref_primary_10_1039_D4RA00634H crossref_primary_10_1016_j_ijleo_2023_171474 crossref_primary_10_1016_j_inoche_2024_113647 crossref_primary_10_1016_j_jpcs_2025_112777 crossref_primary_10_1038_s41598_025_99575_8 crossref_primary_10_1016_j_photonics_2025_101425 crossref_primary_10_1088_1402_4896_adeb04 crossref_primary_10_1007_s12596_023_01648_2 crossref_primary_10_1007_s10904_024_03372_1 crossref_primary_10_1016_j_surfin_2025_107458 crossref_primary_10_1002_aelm_202500312 crossref_primary_10_1016_j_ijleo_2023_171470 crossref_primary_10_1016_j_jpcs_2025_113175 crossref_primary_10_1021_acs_langmuir_5c00499 crossref_primary_10_1016_j_micrna_2024_207827 crossref_primary_10_1016_j_mssp_2025_109296 crossref_primary_10_1016_j_solener_2024_113210 crossref_primary_10_1016_j_ijleo_2023_171468 crossref_primary_10_1016_j_ijleo_2023_171469 crossref_primary_10_64589_juri_207995 crossref_primary_10_1002_aelm_202400348 crossref_primary_10_1016_j_mtcomm_2023_107575 crossref_primary_10_1007_s12209_024_00423_z crossref_primary_10_1007_s41939_024_00701_2 crossref_primary_10_1016_j_solmat_2024_113122 crossref_primary_10_1007_s10853_023_08825_5 crossref_primary_10_1016_j_ijleo_2023_171100 crossref_primary_10_1016_j_solener_2024_112806 crossref_primary_10_1007_s11468_025_03061_w crossref_primary_10_1016_j_electacta_2023_143086 crossref_primary_10_1016_j_inoche_2024_113261 crossref_primary_10_1016_j_mseb_2024_117744 crossref_primary_10_1016_j_mseb_2024_117622 crossref_primary_10_1038_s41598_025_00822_9 crossref_primary_10_1016_j_jpcs_2025_113088 crossref_primary_10_1016_j_mseb_2025_118796 crossref_primary_10_1016_j_optcom_2025_131558 crossref_primary_10_3390_mi14081562 crossref_primary_10_1007_s10825_024_02157_6 crossref_primary_10_1039_D5NJ01823D crossref_primary_10_1016_j_ijleo_2025_172506 crossref_primary_10_1007_s11581_023_05242_1 crossref_primary_10_1007_s41939_025_00926_9 crossref_primary_10_1039_D3RA02485G crossref_primary_10_1016_j_ijleo_2023_171530 crossref_primary_10_1016_j_micrna_2024_207991 crossref_primary_10_1364_OE_562952 crossref_primary_10_1016_j_mssp_2023_107853 crossref_primary_10_1016_j_micrna_2025_208319 crossref_primary_10_1007_s11082_025_08172_6 crossref_primary_10_1016_j_mseb_2024_117874 crossref_primary_10_1016_j_jpcs_2025_113191 crossref_primary_10_1016_j_heliyon_2024_e24107 crossref_primary_10_1016_j_jpcs_2025_113072 crossref_primary_10_1016_j_jpcs_2025_113193 crossref_primary_10_1016_j_heliyon_2023_e21498 crossref_primary_10_1016_j_solener_2024_113111 crossref_primary_10_1016_j_solener_2025_113539 crossref_primary_10_1007_s11468_025_03238_3 crossref_primary_10_1016_j_materresbull_2025_113488 crossref_primary_10_1016_j_inoche_2024_112864 crossref_primary_10_1063_5_0187765 crossref_primary_10_1016_j_jpcs_2024_112250 crossref_primary_10_1016_j_mseb_2024_117524 crossref_primary_10_1016_j_commatsci_2025_113701 crossref_primary_10_1016_j_mseb_2024_117520 crossref_primary_10_1016_j_ssc_2024_115437 crossref_primary_10_1007_s42341_023_00484_2 crossref_primary_10_1007_s12596_023_01570_7 crossref_primary_10_1088_1402_4896_aceb97 crossref_primary_10_1117_1_JPE_15_024501 crossref_primary_10_1007_s12596_025_02790_9 crossref_primary_10_1088_1402_4896_acf70a crossref_primary_10_1016_j_solener_2024_112858 crossref_primary_10_1002_adts_202500068 crossref_primary_10_1016_j_cocom_2025_e01045 crossref_primary_10_1016_j_jpcs_2024_112498 crossref_primary_10_1016_j_cocom_2025_e01041 crossref_primary_10_1007_s10904_023_02970_9 crossref_primary_10_1021_acs_langmuir_4c04660 crossref_primary_10_1016_j_mseb_2024_117656 crossref_primary_10_1016_j_mseb_2024_117536 crossref_primary_10_3390_molecules29112599 crossref_primary_10_1016_j_jpcs_2023_111791 crossref_primary_10_1016_j_jpcs_2024_112386 crossref_primary_10_1002_slct_202404116 crossref_primary_10_1016_j_mseb_2024_117530 crossref_primary_10_1007_s10904_025_03853_x crossref_primary_10_1016_j_solener_2024_112961 crossref_primary_10_1039_D5RA05441A crossref_primary_10_1007_s41779_024_01121_8 crossref_primary_10_1007_s12596_024_01996_7 crossref_primary_10_1088_1402_4896_acfacf crossref_primary_10_1016_j_rineng_2025_106465 crossref_primary_10_1155_2024_5188636 crossref_primary_10_1016_j_cej_2024_152213 crossref_primary_10_1016_j_solener_2024_112843 crossref_primary_10_1063_5_0233863 crossref_primary_10_1016_j_prime_2025_101093 crossref_primary_10_1016_j_mtcomm_2024_110433 crossref_primary_10_1007_s12648_023_02801_0 crossref_primary_10_1007_s00339_024_08125_y crossref_primary_10_1088_2040_8986_ad49b1 crossref_primary_10_1007_s10853_024_10487_w crossref_primary_10_3390_ma17215213 crossref_primary_10_1007_s12596_025_02646_2 crossref_primary_10_1016_j_renene_2025_124007 crossref_primary_10_1063_5_0156961 crossref_primary_10_3390_en16165868 crossref_primary_10_1016_j_optmat_2024_116173 crossref_primary_10_1016_j_solener_2024_113043 crossref_primary_10_1007_s10904_025_03798_1 crossref_primary_10_1002_chem_202400372 crossref_primary_10_1016_j_mtcomm_2024_108894 crossref_primary_10_1002_est2_70001 crossref_primary_10_1088_1402_4896_addfba crossref_primary_10_1016_j_inoche_2025_115079 crossref_primary_10_1038_s41598_024_78165_0 crossref_primary_10_1088_1402_4896_ad986e crossref_primary_10_1039_D3RA07893K crossref_primary_10_1002_adts_202400662 crossref_primary_10_1039_D5RA03492B crossref_primary_10_1007_s41939_025_01024_6 crossref_primary_10_3390_su151712805 crossref_primary_10_1016_j_solmat_2025_113838 crossref_primary_10_1016_j_solener_2025_113338 crossref_primary_10_1038_s41598_024_72555_0 crossref_primary_10_1002_slct_202501364 crossref_primary_10_1016_j_mtcomm_2024_109750 crossref_primary_10_1016_j_mtcomm_2024_109991 crossref_primary_10_1002_aelm_202300751 crossref_primary_10_1088_1402_4896_ad0a27 crossref_primary_10_1088_1402_4896_ad4519 crossref_primary_10_1016_j_jpcs_2025_113103 crossref_primary_10_1088_1402_4896_acfce9 crossref_primary_10_1016_j_renene_2025_124225 crossref_primary_10_1088_1402_4896_adbdfa crossref_primary_10_1016_j_micrna_2025_208147 crossref_primary_10_1515_ijmr_2024_0050 crossref_primary_10_1016_j_mtsust_2023_100548 crossref_primary_10_1016_j_nexus_2025_100400 crossref_primary_10_1088_1402_4896_ade748 crossref_primary_10_1016_j_optmat_2023_114486 crossref_primary_10_1039_D5SU00526D crossref_primary_10_1088_1402_4896_ad9647 crossref_primary_10_1007_s44291_024_00026_x crossref_primary_10_1016_j_mtcomm_2025_113192 crossref_primary_10_1016_j_solener_2024_113188 crossref_primary_10_1016_j_jallcom_2023_170994 crossref_primary_10_1016_j_rio_2025_100818 crossref_primary_10_1016_j_solener_2023_112218 crossref_primary_10_1016_j_physleta_2024_130029 crossref_primary_10_1002_pssa_202300525 crossref_primary_10_1016_j_mtcomm_2025_111579 crossref_primary_10_1016_j_jpcs_2024_112179 crossref_primary_10_1016_j_micrna_2025_208267 crossref_primary_10_1007_s10854_025_15627_9 crossref_primary_10_3390_mi14091676 crossref_primary_10_26565_2312_4334_2024_3_54 crossref_primary_10_1002_nano_202400020 crossref_primary_10_1007_s42452_025_06948_9 crossref_primary_10_1016_j_jpcs_2024_112185 crossref_primary_10_1039_D4NJ03622K crossref_primary_10_1016_j_jpcs_2024_112184 crossref_primary_10_1007_s11082_025_08154_8 crossref_primary_10_3390_eng6090222 crossref_primary_10_1016_j_optlastec_2024_111828 crossref_primary_10_1038_s41598_025_98351_y crossref_primary_10_1007_s10904_024_03452_2 crossref_primary_10_1039_D5CP01162K crossref_primary_10_1016_j_inoche_2025_115291 crossref_primary_10_1007_s42247_024_00842_7 crossref_primary_10_1016_j_materresbull_2023_112642 crossref_primary_10_1016_j_mseb_2025_118684 crossref_primary_10_1016_j_mtsust_2024_100857 crossref_primary_10_1007_s11082_024_07239_0 crossref_primary_10_3390_mi14061127 crossref_primary_10_1016_j_nexus_2025_100417 crossref_primary_10_1002_adpr_202300339 crossref_primary_10_1016_j_solener_2023_112105 crossref_primary_10_1039_D3RA00039G crossref_primary_10_1016_j_solener_2024_112765 crossref_primary_10_1149_2162_8777_ad4c95 crossref_primary_10_1007_s42247_023_00542_8 crossref_primary_10_1007_s11082_025_08275_0 crossref_primary_10_1007_s11664_024_11605_9 crossref_primary_10_1016_j_matchemphys_2023_128281 crossref_primary_10_1088_1402_4896_ad070b |
| Cites_doi | 10.1039/C9RA10407K 10.1039/D1RA02457D 10.1016/j.heliyon.2022.e12034 10.1103/PhysRevB.41.7892 10.1002/adma.201306281 10.1039/C6EE00413J 10.1038/srep00591 10.1016/j.spmi.2016.01.026 10.1039/D0RA09270C 10.1063/5.0088099 10.1016/j.ijleo.2018.05.032 10.1021/acsaem.9b00473 10.1103/PhysRevB.13.5188 10.17485/ijst/2017/v11i10/110721 10.1038/s41598-017-13172-y 10.1016/j.rinp.2022.105977 10.1126/science.1254763 10.1021/ja508464w 10.1002/aenm.201802139 10.1039/D0NJ02316G 10.1063/5.0042847 10.1021/acs.chemmater.6b00433 10.1002/anie.201902984 10.1016/j.micrna.2022.207403 10.1016/j.rinp.2017.07.047 10.1016/j.mtcomm.2022.104302 10.1007/s13391-019-00163-6 10.1038/nphys3357 10.1021/j100203a036 10.1016/j.cattod.2018.10.065 10.1021/am503728d 10.1016/j.ijhydene.2017.02.099 10.1103/PhysRevLett.95.176403 10.1038/nature14133 10.1016/j.solener.2022.11.012 10.1021/acs.jpcc.8b01177 10.1038/333836a0 10.1021/jp036158y 10.1007/s11664-020-08041-w 10.1002/adsu.202100120 10.1103/PhysRev.128.2093 10.1021/acsami.6b07658 10.1021/acs.nanolett.6b02158 10.1016/j.solmat.2015.03.025 10.1103/PhysRevLett.77.3865 10.1016/S0040-6090(99)00825-1 10.1021/acsami.8b01033 10.1002/adfm.201908462 10.1016/j.solener.2020.01.081 10.1016/j.solener.2019.10.009 10.1007/s11664-019-07374-5 10.1524/zkri.220.5.567.65075 10.1002/pip.496 10.1021/acs.jpclett.6b02560 10.1016/j.solener.2019.12.014 10.1016/j.solmat.2016.09.022 10.1021/acsomega.2c05912 10.1038/s41598-020-71223-3 10.1088/0953-8984/14/11/301 10.35848/1347-4065/acb09e 10.1002/adma.202204380 10.1038/s41467-018-04028-8 10.1021/acs.chemmater.6b00954 10.1002/pssr.201600166 10.1021/cm504022q 10.1039/D2RA06734J 10.1016/j.solener.2021.04.030 10.1126/sciadv.aav8925 10.1038/srep39555 10.1016/j.ijleo.2018.02.063 10.1021/acs.jpcc.1c09594 10.1021/acsomega.9b03015 10.1063/5.0108459 10.1021/jp506498k 10.3390/nano11051218 10.1016/j.comptc.2022.113624 10.1126/science.1228604 10.1039/D1CP02666F 10.1246/cl.150068 10.1021/acs.chemmater.6b01832 10.1021/acsaelm.2c01574 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-28506-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f PMC9925818 10_1038_s41598_023_28506_2 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-eef82fa38ae33d7940c877748a2ce47be76a0ee19bfca35e2265380b9a4b6f273 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 389 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984284300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:34 EDT 2025 Tue Nov 04 02:06:46 EST 2025 Thu Oct 02 06:59:03 EDT 2025 Tue Oct 07 08:25:44 EDT 2025 Sat Nov 29 06:33:33 EST 2025 Tue Nov 18 21:43:58 EST 2025 Fri Feb 21 02:39:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-eef82fa38ae33d7940c877748a2ce47be76a0ee19bfca35e2265380b9a4b6f273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c433aa022bae47cf98a79197ad78703f |
| PMID | 36781884 |
| PQID | 2775877894 |
| PQPubID | 2041939 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925818 proquest_miscellaneous_2776515430 proquest_journals_2775877894 crossref_primary_10_1038_s41598_023_28506_2 crossref_citationtrail_10_1038_s41598_023_28506_2 springer_journals_10_1038_s41598_023_28506_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-13 |
| PublicationDateYYYYMMDD | 2023-02-13 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Srivastava, Singh, Kumar, Pradhan (CR57) 2022; 131 Saparov (CR3) 2016; 28 Chen, Park (CR32) 2018; 122 Bencherif, Hossain (CR7) 2022; 248 Mei (CR21) 2014; 345 Monkhorst, Pack (CR53) 1976; 13 Palazon (CR1) 2016; 28 Diao (CR23) 2019; 4 Ali, Das, Abed, Basith (CR41) 2021; 23 Bi (CR79) 2021; 5 Qiu (CR6) 2016; 10 Nazir (CR75) 2022; 34 Burgelman, Nollet, Degrave (CR55) 2000; 361–362 Bencherif (CR10) 2022; 171 Islam, Mazumder, Mojumder, Shifat, Hossain (CR64) 2023; 62 Islam, Hossain (CR42) 2020; 10 Kholil, Bhuiyan, Rahman, Ali, Aftabuzzaman (CR44) 2021; 11 Kim (CR26) 2016; 8 Hinks (CR67) 1988; 333 Jeyakumar, Bag, Nekovei, Radhakrishnan (CR73) 2020; 49 Wu (CR76) 2018; 9 Yin, Shi, Yan (CR8) 2014; 26 Pervez (CR18) 2018; 162 Shao (CR11) 2016; 9 Ke (CR74) 2014; 6 Clark (CR50) 2005; 220 Lin (CR71) 2020; 198 Qiu (CR5) 2017; 159 Rolston (CR12) 2018; 8 Wang (CR35) 2016; 16 Wu (CR13) 2019; 5 Baktash, Amiri, Sasani (CR24) 2016; 93 Khattak, Baig, Toura, Beg, Soucase (CR29) 2019; 48 Vanderbilt (CR52) 1990; 41 Heriche, Rouabah, Bouarissa (CR77) 2017; 42 Hawash, Ono, Raga, Lee, Qi (CR34) 2015; 27 CR49 Schwenzer (CR84) 2018; 10 CR48 Kavan (CR25) 2019; 328 Ur Rehman (CR47) 2022; 1209 Hossain (CR14) 2017; 36 Das, Di Liberto, Pacchioni (CR39) 2022; 126 Islam, Hossain (CR43) 2020; 10 Raoui (CR58) 2019; 193 Liu (CR36) 2020; 30 Segall (CR51) 2002; 14 Dupré, Vaillon, Green (CR82) 2015; 140 Hossain (CR15) 2018; 171 Hossain (CR56) 2022; 7 Yu (CR22) 2003; 107 Cojocaru (CR27) 2015; 44 Samiul Islam (CR70) 2021; 11 Jayan, Sebastian, Kurian (CR81) 2021; 221 Shin (CR37) 2016; 28 Roknuzzaman, Ostrikov, Wang, Du, Tesfamichael (CR46) 2017; 7 Bag, Radhakrishnan, Nekovei, Jeyakumar (CR72) 2020; 196 Ben Bechir, Dhaou (CR40) 2021; 11 Saidi, Poncé, Monserrat (CR85) 2016; 7 Mandadapu, Vedanayakam, Thyagarajan (CR69) 2017; 10 Rubel (CR63) 2022; 42 Kholil, Hossen Bhuiyan (CR45) 2020; 10 Rubel (CR65) 2022; 33 Chakraborty (CR38) 2019; 2 CR54 Miyata (CR9) 2015; 11 Perdew, Burke, Ernzerhof (CR60) 1996; 77 Lee, Teuscher, Miyasaka, Murakami, Snaith (CR20) 2012; 338 Wang, Wan, Ding, Hu, Wang (CR2) 2019; 58 Mia (CR17) 2017; 7 Fischer, Almlof (CR59) 1992; 96 Schira, Latouche (CR61) 2020; 44 Feng, Xiao (CR62) 2014; 118 Jeon (CR78) 2015; 517 Nishio, Ahmad, Uwe (CR66) 2005; 95 Lee (CR4) 2014; 136 Gil (CR31) 2019; 15 Hossain (CR16) 2017; 35 Penn (CR68) 1962; 128 Hossain (CR80) 2022; 12 Green (CR83) 2003; 11 Rahman (CR30) 2022; 8 Kim (CR19) 2012; 2 Rahman (CR28) 2022; 12 Rafique, Abdullah, Shahid, Ansari, Sulaiman (CR33) 2017; 7 S Wang (28506_CR35) 2016; 16 H-S Kim (28506_CR19) 2012; 2 C Liu (28506_CR36) 2020; 30 B Saparov (28506_CR3) 2016; 28 H Bencherif (28506_CR7) 2022; 248 MF Rahman (28506_CR30) 2022; 8 R Schira (28506_CR61) 2020; 44 G Nazir (28506_CR75) 2022; 34 DG Hinks (28506_CR67) 1988; 333 S Rafique (28506_CR33) 2017; 7 MHK Rubel (28506_CR63) 2022; 42 L Cojocaru (28506_CR27) 2015; 44 WA Saidi (28506_CR85) 2016; 7 MNH Mia (28506_CR17) 2017; 7 B Gil (28506_CR31) 2019; 15 L Kavan (28506_CR25) 2019; 328 MHK Rubel (28506_CR65) 2022; 33 KD Jayan (28506_CR81) 2021; 221 L Lin (28506_CR71) 2020; 198 SJ Clark (28506_CR50) 2005; 220 NJ Jeon (28506_CR78) 2015; 517 X Qiu (28506_CR6) 2016; 10 H Bencherif (28506_CR10) 2022; 171 M Ben Bechir (28506_CR40) 2021; 11 W-Q Wu (28506_CR13) 2019; 5 A Baktash (28506_CR24) 2016; 93 28506_CR48 M Burgelman (28506_CR55) 2000; 361–362 U Mandadapu (28506_CR69) 2017; 10 HJ Monkhorst (28506_CR53) 1976; 13 28506_CR49 R Jeyakumar (28506_CR73) 2020; 49 W Ke (28506_CR74) 2014; 6 Y Raoui (28506_CR58) 2019; 193 MD Segall (28506_CR51) 2002; 14 J Chen (28506_CR32) 2018; 122 J Ur Rehman (28506_CR47) 2022; 1209 X Qiu (28506_CR5) 2017; 159 Z Hawash (28506_CR34) 2015; 27 M Samiul Islam (28506_CR70) 2021; 11 A Bag (28506_CR72) 2020; 196 JP Perdew (28506_CR60) 1996; 77 DR Penn (28506_CR68) 1962; 128 MI Kholil (28506_CR45) 2020; 10 N Rolston (28506_CR12) 2018; 8 J Feng (28506_CR62) 2014; 118 Y Wang (28506_CR2) 2019; 58 TH Fischer (28506_CR59) 1992; 96 MK Hossain (28506_CR14) 2017; 36 B Lee (28506_CR4) 2014; 136 MF Pervez (28506_CR18) 2018; 162 MK Hossain (28506_CR15) 2018; 171 D Shin (28506_CR37) 2016; 28 28506_CR54 MK Hossain (28506_CR16) 2017; 35 MK Hossain (28506_CR80) 2022; 12 M Roknuzzaman (28506_CR46) 2017; 7 T Nishio (28506_CR66) 2005; 95 MI Kholil (28506_CR44) 2021; 11 A Mei (28506_CR21) 2014; 345 W-J Yin (28506_CR8) 2014; 26 J Islam (28506_CR43) 2020; 10 YH Khattak (28506_CR29) 2019; 48 MS Ali (28506_CR41) 2021; 23 MM Lee (28506_CR20) 2012; 338 J-G Yu (28506_CR22) 2003; 107 D Vanderbilt (28506_CR52) 1990; 41 MA Green (28506_CR83) 2003; 11 S Srivastava (28506_CR57) 2022; 131 Y Shao (28506_CR11) 2016; 9 Z Bi (28506_CR79) 2021; 5 R Chakraborty (28506_CR38) 2019; 2 IS Kim (28506_CR26) 2016; 8 A Miyata (28506_CR9) 2015; 11 X-F Diao (28506_CR23) 2019; 4 MF Rahman (28506_CR28) 2022; 12 T Das (28506_CR39) 2022; 126 MK Hossain (28506_CR56) 2022; 7 H Heriche (28506_CR77) 2017; 42 MR Islam (28506_CR64) 2023; 62 W-Q Wu (28506_CR76) 2018; 9 O Dupré (28506_CR82) 2015; 140 J Islam (28506_CR42) 2020; 10 JA Schwenzer (28506_CR84) 2018; 10 F Palazon (28506_CR1) 2016; 28 |
| References_xml | – volume: 10 start-page: 7817 year: 2020 end-page: 7827 ident: CR43 article-title: Narrowing band gap and enhanced visible-light absorption of metal-doped non-toxic CsSnCl metal halides for potential optoelectronic applications publication-title: RSC Adv. doi: 10.1039/C9RA10407K – volume: 11 start-page: 21767 year: 2021 end-page: 21780 ident: CR40 article-title: Study of charge transfer mechanism and dielectric relaxation of all-inorganic perovskite CsSnCl publication-title: RSC Adv. doi: 10.1039/D1RA02457D – volume: 8 start-page: e12034 year: 2022 ident: CR30 article-title: Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12034 – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: CR52 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – ident: CR49 – volume: 26 start-page: 4653 year: 2014 end-page: 4658 ident: CR8 article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 35 start-page: 868 year: 2017 end-page: 877 ident: CR16 article-title: Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO film photoanode for dye-sensitized solar cell application publication-title: Mater. Sci. – volume: 9 start-page: 1752 year: 2016 end-page: 1759 ident: CR11 article-title: Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00413J – volume: 2 start-page: 591 year: 2012 ident: CR19 article-title: Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 93 start-page: 128 year: 2016 end-page: 137 ident: CR24 article-title: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO compact layers publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.01.026 – volume: 10 start-page: 43660 year: 2020 end-page: 43669 ident: CR45 article-title: Effects of Cr- and Mn-alloying on the band gap tuning, and optical and electronic properties of lead-free CsSnBr perovskites for optoelectronic applications publication-title: RSC Adv. doi: 10.1039/D0RA09270C – ident: CR54 – volume: 131 start-page: 175001 year: 2022 ident: CR57 article-title: Comparative performance analysis of lead-free perovskites solar cells by numerical simulation publication-title: J. Appl. Phys. doi: 10.1063/5.0088099 – volume: 171 start-page: 507 year: 2018 end-page: 516 ident: CR15 article-title: A comparative study on the influence of pure anatase and Degussa-P25 TiO nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.05.032 – volume: 2 start-page: 3049 year: 2019 end-page: 3055 ident: CR38 article-title: Colloidal synthesis, optical properties, and hole transport layer applications of Cu BaSnS (CBTS) nanocrystals publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00473 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR53 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 10 start-page: 1 year: 2017 end-page: 8 ident: CR69 article-title: Simulation and analysis of lead based perovskite solar cell using SCAPS-1D publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2017/v11i10/110721 – volume: 7 start-page: 14025 year: 2017 ident: CR46 article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations publication-title: Sci. Rep. doi: 10.1038/s41598-017-13172-y – volume: 42 start-page: 105977 year: 2022 ident: CR63 article-title: First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd B4O (B = Ti, V) perovskites publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105977 – volume: 345 start-page: 295 year: 2014 end-page: 298 ident: CR21 article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability publication-title: Science doi: 10.1126/science.1254763 – volume: 136 start-page: 15379 year: 2014 end-page: 15385 ident: CR4 article-title: Air-stable molecular semiconducting iodosalts for solar cell applications: Cs SnI as a hole conductor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508464w – volume: 8 start-page: 1802139 year: 2018 ident: CR12 article-title: Engineering stress in perovskite solar cells to improve stability publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802139 – volume: 44 start-page: 11602 year: 2020 end-page: 11607 ident: CR61 article-title: DFT and hybrid-DFT calculations on the electronic properties of vanadate materials: Theory meets experiments publication-title: New J. Chem. doi: 10.1039/D0NJ02316G – volume: 11 start-page: 035229 year: 2021 ident: CR44 article-title: Effects of Fe doping on the visible light absorption and bandgap tuning of lead-free (CsSnCl ) and lead halide (CsPbCl ) perovskites for optoelectronic applications publication-title: AIP Adv. doi: 10.1063/5.0042847 – volume: 28 start-page: 2315 year: 2016 end-page: 2322 ident: CR3 article-title: Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs SnI publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00433 – volume: 58 start-page: 9414 year: 2019 end-page: 9418 ident: CR2 article-title: A rutile tio electron transport layer for the enhancement of charge collection for efficient perovskite solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902984 – volume: 171 start-page: 207403 year: 2022 ident: CR10 article-title: Performance enhancement of (FAPbI ) (MAPbBr 3)x perovskite solar cell with an optimized design publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207403 – volume: 7 start-page: 2683 year: 2017 end-page: 2691 ident: CR17 article-title: Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.047 – volume: 33 start-page: 104302 year: 2022 ident: CR65 article-title: First-principles calculations to investigate physical properties of single-cubic (Ba K )(Bi Pb )O3 novel perovskite superconductor publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104302 – volume: 15 start-page: 505 year: 2019 end-page: 524 ident: CR31 article-title: Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-019-00163-6 – volume: 11 start-page: 582 year: 2015 end-page: 587 ident: CR9 article-title: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites publication-title: Nat. Phys. doi: 10.1038/nphys3357 – volume: 96 start-page: 9768 year: 1992 end-page: 9774 ident: CR59 article-title: General methods for geometry and wave function optimization publication-title: J. Phys. Chem. doi: 10.1021/j100203a036 – volume: 328 start-page: 50 year: 2019 end-page: 56 ident: CR25 article-title: Conduction band engineering in semiconducting oxides (TiO , SnO ): Applications in perovskite photovoltaics and beyond publication-title: Catal. Today doi: 10.1016/j.cattod.2018.10.065 – volume: 6 start-page: 15959 year: 2014 end-page: 15965 ident: CR74 article-title: Perovskite solar cell with an efficient TiO compact film publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503728d – volume: 42 start-page: 9524 year: 2017 end-page: 9532 ident: CR77 article-title: New ultra thin CIGS structure solar cells using SCAPS simulation program publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.099 – volume: 95 start-page: 176403 year: 2005 ident: CR66 article-title: Spectroscopic observation of bipolaronic point defects in Ba K BiO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.176403 – volume: 36 start-page: 93 year: 2017 end-page: 101 ident: CR14 article-title: Influence of natural dye adsorption on the structural, morphological and optical properties of TiO based photoanode of dye-sensitized solar cell publication-title: Mater. Sci. – volume: 517 start-page: 476 year: 2015 end-page: 480 ident: CR78 article-title: Compositional engineering of perovskite materials for high-performance solar cells publication-title: Nature doi: 10.1038/nature14133 – volume: 248 start-page: 137 year: 2022 end-page: 148 ident: CR7 article-title: Design and numerical investigation of efficient (FAPbI ) (CsSnI ) perovskite solar cell with optimized performances publication-title: Sol. Energy doi: 10.1016/j.solener.2022.11.012 – volume: 122 start-page: 14039 year: 2018 end-page: 14063 ident: CR32 article-title: Inorganic hole transporting materials for stable and high efficiency perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01177 – volume: 333 start-page: 836 year: 1988 end-page: 838 ident: CR67 article-title: Synthesis, structure and superconductivity in the Ba K BiO system publication-title: Nature doi: 10.1038/333836a0 – volume: 107 start-page: 13871 year: 2003 end-page: 13879 ident: CR22 article-title: The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO thin films prepared by liquid phase deposition publication-title: J. Phys. Chem. B doi: 10.1021/jp036158y – volume: 49 start-page: 3533 year: 2020 end-page: 3539 ident: CR73 article-title: Influence of electron transport layer (TiO ) thickness and its doping density on the performance of CH NH PbI -based planar perovskite solar cells publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08041-w – volume: 5 start-page: 2100120 year: 2021 ident: CR79 article-title: High shunt resistance SnO –PbO electron transport layer for perovskite solar cells used in low lighting applications publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202100120 – volume: 128 start-page: 2093 year: 1962 end-page: 2097 ident: CR68 article-title: Wave-number-dependent dielectric function of semiconductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2093 – volume: 8 start-page: 24310 year: 2016 end-page: 24314 ident: CR26 article-title: Amorphous TiO compact layers via ALD for planar halide perovskite photovoltaics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07658 – volume: 16 start-page: 5594 year: 2016 end-page: 5600 ident: CR35 article-title: Role of 4- tert -butylpyridine as a hole transport layer morphological controller in perovskite solar cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02158 – volume: 140 start-page: 92 year: 2015 end-page: 100 ident: CR82 article-title: Physics of the temperature coefficients of solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.03.025 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR60 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 361–362 start-page: 527 year: 2000 end-page: 532 ident: CR55 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 10 start-page: 16390 year: 2018 end-page: 16399 ident: CR84 article-title: temperature variation-induced performance decline of perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01033 – volume: 30 start-page: 1908462 year: 2020 ident: CR36 article-title: Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic-organic dopant-free double hole transporting layers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908462 – volume: 198 start-page: 454 year: 2020 end-page: 460 ident: CR71 article-title: Simulated development and optimized performance of CsPbI based all-inorganic perovskite solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.081 – volume: 193 start-page: 948 year: 2019 end-page: 955 ident: CR58 article-title: Performance analysis of MAPbI based perovskite solar cells employing diverse charge selective contacts: Simulation study publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.009 – volume: 48 start-page: 5723 year: 2019 end-page: 5733 ident: CR29 article-title: CZTSe kesterite as an alternative hole transport layer for MASnI perovskite solar cells publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07374-5 – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: CR50 article-title: First principles methods using CASTEP publication-title: Z. Krist. Cryst. Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 11 start-page: 333 year: 2003 end-page: 340 ident: CR83 article-title: General temperature dependence of solar cell performance and implications for device modelling publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.496 – volume: 7 start-page: 5247 year: 2016 end-page: 5252 ident: CR85 article-title: Temperature dependence of the energy levels of methylammonium lead iodide perovskite from first-principles publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02560 – volume: 196 start-page: 177 year: 2020 end-page: 182 ident: CR72 article-title: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.014 – volume: 159 start-page: 227 year: 2017 end-page: 234 ident: CR5 article-title: From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.09.022 – volume: 7 start-page: 43210 year: 2022 end-page: 43230 ident: CR56 article-title: Effect of various electron and hole transport layers on the performance of CsPbI -based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks publication-title: ACS Omega doi: 10.1021/acsomega.2c05912 – volume: 10 start-page: 14391 year: 2020 ident: CR42 article-title: Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl perovskite under pressure publication-title: Sci. Rep. doi: 10.1038/s41598-020-71223-3 – volume: 14 start-page: 2717 year: 2002 end-page: 2744 ident: CR51 article-title: First-principles simulation: Ideas, illustrations and the CASTEP code publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – volume: 62 start-page: 011002 issue: 1 year: 2023 ident: CR64 article-title: Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl (A= K, Rb, and Cs) publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/acb09e – volume: 34 start-page: 2204380 year: 2022 ident: CR75 article-title: Stabilization of perovskite solar cells: Recent developments and future perspectives publication-title: Adv. Mater. doi: 10.1002/adma.202204380 – volume: 9 start-page: 1625 year: 2018 ident: CR76 article-title: Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-04028-8 – volume: 28 start-page: 2902 year: 2016 end-page: 2906 ident: CR1 article-title: Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00954 – volume: 10 start-page: 587 year: 2016 end-page: 591 ident: CR6 article-title: Lead-free mesoscopic Cs SnI perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201600166 – volume: 27 start-page: 562 year: 2015 end-page: 569 ident: CR34 article-title: Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films publication-title: Chem. Mater. doi: 10.1021/cm504022q – volume: 12 start-page: 34850 year: 2022 end-page: 34873 ident: CR80 article-title: Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs BiAgI -based perovskite solar cells with different charge transport layers publication-title: RSC Adv. doi: 10.1039/D2RA06734J – ident: CR48 – volume: 221 start-page: 99 year: 2021 end-page: 108 ident: CR81 article-title: Simulation and optimization studies on CsPbI based inorganic perovskite solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2021.04.030 – volume: 5 start-page: eaav8925 year: 2019 ident: CR13 article-title: Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8925 – volume: 7 start-page: 39555 year: 2017 ident: CR33 article-title: Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer publication-title: Sci. Rep. doi: 10.1038/srep39555 – volume: 162 start-page: 140 year: 2018 end-page: 150 ident: CR18 article-title: Influence of total absorbed dose of gamma radiation on optical bandgap and structural properties of Mg-doped zinc oxide publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.02.063 – volume: 126 start-page: 2184 year: 2022 end-page: 2198 ident: CR39 article-title: Density functional theory estimate of halide perovskite band gap: When spin orbit coupling helps publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c09594 – volume: 4 start-page: 20024 year: 2019 end-page: 20035 ident: CR23 article-title: Study on the property of electron-transport layer in the doped formamidinium lead iodide perovskite based on DFT publication-title: ACS Omega doi: 10.1021/acsomega.9b03015 – volume: 12 start-page: 105317 year: 2022 ident: CR28 article-title: Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi ) based double absorber solar cells to enhance power conversion efficiency publication-title: AIP Adv. doi: 10.1063/5.0108459 – volume: 118 start-page: 19655 year: 2014 end-page: 19660 ident: CR62 article-title: Effective masses and electronic and optical properties of nontoxic MASnX (X = Cl, Br, and I) perovskite structures as solar cell absorber: A theoretical study using HSE06 publication-title: J. Phys. Chem. C doi: 10.1021/jp506498k – volume: 11 start-page: 1218 year: 2021 ident: CR70 article-title: Defect study and modelling of SnX -based perovskite solar cells with SCAPS-1D publication-title: Nanomaterials doi: 10.3390/nano11051218 – volume: 1209 start-page: 113624 year: 2022 ident: CR47 article-title: First-principles calculations to investigate structural, electronics, optical and elastic properties of Sn-based inorganic Halide-perovskites CsSnX (X = I, Br, Cl) for solar cell applications publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2022.113624 – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: CR20 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science doi: 10.1126/science.1228604 – volume: 23 start-page: 22184 year: 2021 end-page: 22198 ident: CR41 article-title: Lead-free CsSnCl perovskite nanocrystals: Rapid synthesis, experimental characterization and DFT simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02666F – volume: 44 start-page: 674 year: 2015 end-page: 676 ident: CR27 article-title: Surface treatment of the compact TiO layer for efficient planar heterojunction perovskite solar cells publication-title: Chem. Lett. doi: 10.1246/cl.150068 – volume: 28 start-page: 4771 year: 2016 end-page: 4780 ident: CR37 article-title: BaCu Sn(S, Se 4: Earth-abundant chalcogenides for thin-film photovoltaics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01832 – volume: 140 start-page: 92 year: 2015 ident: 28506_CR82 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.03.025 – volume: 11 start-page: 333 year: 2003 ident: 28506_CR83 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.496 – volume: 93 start-page: 128 year: 2016 ident: 28506_CR24 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.01.026 – volume: 162 start-page: 140 year: 2018 ident: 28506_CR18 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.02.063 – ident: 28506_CR48 – volume: 136 start-page: 15379 year: 2014 ident: 28506_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508464w – volume: 35 start-page: 868 year: 2017 ident: 28506_CR16 publication-title: Mater. Sci. – volume: 345 start-page: 295 year: 2014 ident: 28506_CR21 publication-title: Science doi: 10.1126/science.1254763 – volume: 221 start-page: 99 year: 2021 ident: 28506_CR81 publication-title: Sol. Energy doi: 10.1016/j.solener.2021.04.030 – volume: 95 start-page: 176403 year: 2005 ident: 28506_CR66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.176403 – volume: 10 start-page: 7817 year: 2020 ident: 28506_CR43 publication-title: RSC Adv. doi: 10.1039/C9RA10407K – volume: 27 start-page: 562 year: 2015 ident: 28506_CR34 publication-title: Chem. Mater. doi: 10.1021/cm504022q – volume: 42 start-page: 105977 year: 2022 ident: 28506_CR63 publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105977 – volume: 118 start-page: 19655 year: 2014 ident: 28506_CR62 publication-title: J. Phys. Chem. C doi: 10.1021/jp506498k – volume: 248 start-page: 137 year: 2022 ident: 28506_CR7 publication-title: Sol. Energy doi: 10.1016/j.solener.2022.11.012 – volume: 96 start-page: 9768 year: 1992 ident: 28506_CR59 publication-title: J. Phys. Chem. doi: 10.1021/j100203a036 – volume: 36 start-page: 93 year: 2017 ident: 28506_CR14 publication-title: Mater. Sci. – volume: 8 start-page: e12034 year: 2022 ident: 28506_CR30 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12034 – volume: 44 start-page: 674 year: 2015 ident: 28506_CR27 publication-title: Chem. Lett. doi: 10.1246/cl.150068 – volume: 6 start-page: 15959 year: 2014 ident: 28506_CR74 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503728d – volume: 8 start-page: 1802139 year: 2018 ident: 28506_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802139 – volume: 30 start-page: 1908462 year: 2020 ident: 28506_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908462 – volume: 361–362 start-page: 527 year: 2000 ident: 28506_CR55 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 2 start-page: 591 year: 2012 ident: 28506_CR19 publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 196 start-page: 177 year: 2020 ident: 28506_CR72 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.014 – volume: 9 start-page: 1752 year: 2016 ident: 28506_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00413J – volume: 12 start-page: 105317 year: 2022 ident: 28506_CR28 publication-title: AIP Adv. doi: 10.1063/5.0108459 – volume: 193 start-page: 948 year: 2019 ident: 28506_CR58 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.009 – volume: 10 start-page: 587 year: 2016 ident: 28506_CR6 publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201600166 – ident: 28506_CR49 doi: 10.1021/acsaelm.2c01574 – volume: 28 start-page: 2315 year: 2016 ident: 28506_CR3 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00433 – volume: 28 start-page: 2902 year: 2016 ident: 28506_CR1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00954 – volume: 14 start-page: 2717 year: 2002 ident: 28506_CR51 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – volume: 517 start-page: 476 year: 2015 ident: 28506_CR78 publication-title: Nature doi: 10.1038/nature14133 – ident: 28506_CR54 – volume: 49 start-page: 3533 year: 2020 ident: 28506_CR73 publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08041-w – volume: 41 start-page: 7892 year: 1990 ident: 28506_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 7 start-page: 39555 year: 2017 ident: 28506_CR33 publication-title: Sci. Rep. doi: 10.1038/srep39555 – volume: 5 start-page: eaav8925 year: 2019 ident: 28506_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8925 – volume: 171 start-page: 507 year: 2018 ident: 28506_CR15 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.05.032 – volume: 42 start-page: 9524 year: 2017 ident: 28506_CR77 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.099 – volume: 10 start-page: 16390 year: 2018 ident: 28506_CR84 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01033 – volume: 15 start-page: 505 year: 2019 ident: 28506_CR31 publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-019-00163-6 – volume: 77 start-page: 3865 year: 1996 ident: 28506_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 1625 year: 2018 ident: 28506_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04028-8 – volume: 171 start-page: 207403 year: 2022 ident: 28506_CR10 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207403 – volume: 122 start-page: 14039 year: 2018 ident: 28506_CR32 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01177 – volume: 8 start-page: 24310 year: 2016 ident: 28506_CR26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07658 – volume: 44 start-page: 11602 year: 2020 ident: 28506_CR61 publication-title: New J. Chem. doi: 10.1039/D0NJ02316G – volume: 5 start-page: 2100120 year: 2021 ident: 28506_CR79 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202100120 – volume: 11 start-page: 21767 year: 2021 ident: 28506_CR40 publication-title: RSC Adv. doi: 10.1039/D1RA02457D – volume: 23 start-page: 22184 year: 2021 ident: 28506_CR41 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02666F – volume: 13 start-page: 5188 year: 1976 ident: 28506_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 333 start-page: 836 year: 1988 ident: 28506_CR67 publication-title: Nature doi: 10.1038/333836a0 – volume: 10 start-page: 1 year: 2017 ident: 28506_CR69 publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2017/v11i10/110721 – volume: 338 start-page: 643 year: 2012 ident: 28506_CR20 publication-title: Science doi: 10.1126/science.1228604 – volume: 4 start-page: 20024 year: 2019 ident: 28506_CR23 publication-title: ACS Omega doi: 10.1021/acsomega.9b03015 – volume: 107 start-page: 13871 year: 2003 ident: 28506_CR22 publication-title: J. Phys. Chem. B doi: 10.1021/jp036158y – volume: 10 start-page: 43660 year: 2020 ident: 28506_CR45 publication-title: RSC Adv. doi: 10.1039/D0RA09270C – volume: 220 start-page: 567 year: 2005 ident: 28506_CR50 publication-title: Z. Krist. Cryst. Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 328 start-page: 50 year: 2019 ident: 28506_CR25 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.10.065 – volume: 198 start-page: 454 year: 2020 ident: 28506_CR71 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.081 – volume: 34 start-page: 2204380 year: 2022 ident: 28506_CR75 publication-title: Adv. Mater. doi: 10.1002/adma.202204380 – volume: 7 start-page: 43210 year: 2022 ident: 28506_CR56 publication-title: ACS Omega doi: 10.1021/acsomega.2c05912 – volume: 28 start-page: 4771 year: 2016 ident: 28506_CR37 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01832 – volume: 1209 start-page: 113624 year: 2022 ident: 28506_CR47 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2022.113624 – volume: 33 start-page: 104302 year: 2022 ident: 28506_CR65 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104302 – volume: 16 start-page: 5594 year: 2016 ident: 28506_CR35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02158 – volume: 62 start-page: 011002 issue: 1 year: 2023 ident: 28506_CR64 publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/acb09e – volume: 48 start-page: 5723 year: 2019 ident: 28506_CR29 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07374-5 – volume: 2 start-page: 3049 year: 2019 ident: 28506_CR38 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00473 – volume: 26 start-page: 4653 year: 2014 ident: 28506_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 10 start-page: 14391 year: 2020 ident: 28506_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-020-71223-3 – volume: 128 start-page: 2093 year: 1962 ident: 28506_CR68 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2093 – volume: 11 start-page: 1218 year: 2021 ident: 28506_CR70 publication-title: Nanomaterials doi: 10.3390/nano11051218 – volume: 12 start-page: 34850 year: 2022 ident: 28506_CR80 publication-title: RSC Adv. doi: 10.1039/D2RA06734J – volume: 58 start-page: 9414 year: 2019 ident: 28506_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902984 – volume: 11 start-page: 035229 year: 2021 ident: 28506_CR44 publication-title: AIP Adv. doi: 10.1063/5.0042847 – volume: 131 start-page: 175001 year: 2022 ident: 28506_CR57 publication-title: J. Appl. Phys. doi: 10.1063/5.0088099 – volume: 11 start-page: 582 year: 2015 ident: 28506_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys3357 – volume: 7 start-page: 5247 year: 2016 ident: 28506_CR85 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02560 – volume: 126 start-page: 2184 year: 2022 ident: 28506_CR39 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c09594 – volume: 7 start-page: 14025 year: 2017 ident: 28506_CR46 publication-title: Sci. Rep. doi: 10.1038/s41598-017-13172-y – volume: 159 start-page: 227 year: 2017 ident: 28506_CR5 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.09.022 – volume: 7 start-page: 2683 year: 2017 ident: 28506_CR17 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.047 |
| SSID | ssj0000529419 |
| Score | 2.7244596 |
| Snippet | Cesium tin chloride (CsSnCl
3
) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl
3... Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not... Abstract Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2521 |
| SubjectTerms | 639/301/299/946 639/4077/909/4101/4096/946 639/624/399 639/766/119/1002 639/766/119/995 Capacitance Cesium Efficiency Electron transport Fabrication Gallium Humanities and Social Sciences Iodides multidisciplinary Nickel Photovoltaic cells Photovoltaics Recombination Science Science (multidisciplinary) Simulation Solar cells Tin Titanium dioxide Tungsten Vanadium Vanadium pentoxide Zinc oxide Zinc oxides |
| SummonAdditionalLinks | – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNyJQkJG4gdXE9q7jEyqrVj1UVSWK1Jvl-AErLcmy2VbiR_CfmfE6u0oleuEUKfYqzs7DX2bG3xDyYTrxwUkPEvCCM1kpyzRoBgO0bJ2qbRQhkbieqrOz-vJSn-eAW5_LKgefmBy17xzGyA-4AmSrVK3l5-Uvhl2jMLuaW2jcJfeQJUGk0r3zbYwFs1iy0vmsTCnqgx72KzxTxgXjyNXG-Gg_SrT9I6x5s1LyRro07ULHj_93_U_Io4w_6eFGYZ6SO6F9Rh5sOlL-fk7-HLY0xcWxqp0m7lnatXQoO6RHF6fUtp6ewHVhEa7TdUd9KgNJA_38Z24IRrtIkQyZLXdnE-gCVIrFVQh01n9tZwvBcBv1FOnKr3uMJNMeP7YpJhT6F-Tb8dHF7ITljg3MTSq1ZiHEmkcrahuE8GDqpUO-QVlb7oJUTVBTW4ZQ6SY6KyYBsB843LLRVjbTCEjqJdlruza8IlQEWVoAn4DA4IsnVqA5UsDNRk88584XpBrkZlymM8euGguT0uqiNhtZG5C1SbI2vCAft79Zbsg8bp39BdVhOxOJuNONbvXdZLs2DhZlLQChxsILuqhrq3SllfXoCUUsyP6gDiZ7h97sdKEg77fDYNf439o2dFdpDnapl6IsiBop4WhB45F2_iMxhGuwN0BiBfk0qOvu4f9-4de3r_UNecjRcLAbjtgne-vVVXhL7rvr9bxfvUuW9xfLcDdF priority: 102 providerName: ProQuest |
| Title | An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells |
| URI | https://link.springer.com/article/10.1038/s41598-023-28506-2 https://www.proquest.com/docview/2775877894 https://www.proquest.com/docview/2776515430 https://pubmed.ncbi.nlm.nih.gov/PMC9925818 https://doaj.org/article/c433aa022bae47cf98a79197ad78703f |
| Volume | 13 |
| WOSCitedRecordID | wos000984284300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZbu8Fexn4yb13QYG-bqC0pkfXYhpQO2mC2DrInIcsSC2R2idPC_oj9z7uTnbQubHvZiwKRQmzdd75P1uk7Qt5PxpV3sgILVIIzmSnLNCCDAVu2TuU2CB9FXM_UfJ4vFrq4VeoLc8I6eeBu4g6dFMJaiDSl9VK5oHOrdKaVrRBqIuDTF1jPrcVUp-rNtcx0f0omFflhC5EKT5NxwTiqtDE-iERRsH_AMu_mSN7ZKI3x5-QJedwTR3rUXfBTcs_Xz8jDrpTkz-fk11FN4wttTEenUTSWNjXd5gvS2cUZtXVFT-FzZZFn001Dq5i_ETva5Y--khdtAkUVY3Z5c6iArgALLKy9p9P2Sz1dCYbxr6KoM37d4itg2uIqmeJOQPuCfD2ZXUxPWV9qgblxpjbM-5DzYEVuvRAV-GjqUChQ5pY7mPbSq4lNvc90GZwVYw-kDZ6UaamtLCcBKNBLslc3tX9FqPAytcAagTrBUiVkYHIwoZelHlecuyoh2Xbajet1yLEcxsrE_XCRm85UBkxloqkMT8iH3W8uOxWOv44-RmvuRqKCdvwCcGV6XJl_4SohB1ssmN6tW8MVLK-UyrVMyLtdNzgkzq2tfXMVx2B5eSnShKgBhgYXNOypl9-jtLcGRwEKlZCPW7Td_Pmfb_j1_7jhN-QRR-_AYjfigOxt1lf-LXngrjfLdj0i99VCxTYfkf3j2bz4PIouB-05L7BV0O4Xn86Lb78Bp7MwCg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQhe-EYEBhgJnsBaYqd18oDQKJtarasqUaTxFBzH2SqVpDTd0H4Ef4XfyL1u0qqT2NseeKoUO6njnHt9bF-fC_Cm086sCTP8ApkUPAyU5jEigyNb1kZFOpfWibgO1HAYHR_Hoy3405yFobDKxic6R52VhtbId4VCZqtUFIcfZz85ZY2i3dUmhcYSFof24hdO2aoP_c_4fd8KcbA_7vZ4nVWAm3agFtzaPBK5lpG2UmYIR9-QJl4YaWFsqFKrOtq3NojT3GjZtshP0Cn4aazDtJPjaI_PvQHbIYI9asH2qH80-rZa1aF9szCI69M5vox2Kxwh6RSbkFyQOhwXGyOgSxSwwW4vx2Ze2qB1497Bvf-tx-7D3Zphs72lSTyALVs8hFvLnJsXj-D3XsHcyj_F7TOnrsvKgjWBlWx_PGC6yFgPf6eaJiRsUbLMBbq4gmryo055xsqckdwzn61PX7ApGg3P59aybvWl6E4lJ6KQMRJkP69orZxVtJzAaMukegxfr6UvnkCrKAv7FJi0oa-RXiPHxDldHqBthBIvpnE7E8JkHgQNThJTC7ZT3pBp4gIHZJQssZUgthKHrUR48G51z2wpV3Jl7U8Ev1VNkhp3F8r5SVJ7rsRgo7RGqpdqfEGTx5FWcRArnZGvl7kHOw38ktr_Vckaex68XhWj56K-1YUtz1ydDrLpUPoeqA3QbzRos6SYnDoN9Bg9CnJND9435rH-83-_8LOr2_oKbvfGR4Nk0B8ePoc7goyWcv_IHWgt5mf2Bdw054tJNX9Z2z2D79dtOH8Bnm2Wtg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXrkMEBhgJnsBqYqd1_IDQ6FZtWlVVYkh7C44vUKkkpemG9iP4Q_w6znGTVp3E3vbAU6XYSR3nXD77HH-HkDe9rnUmtfAFrOAsTaRmCiSDAVrWRmbaCxdIXIdyNMpOT9V4i_xpz8JgWmVrE4OhtpXBPfIOl4BspcxU2vFNWsR4f_Bx9pNhBSmMtLblNJYicuwufsHyrf5wtA_f-i3ng4OT_iFrKgww003kgjnnM-61yLQTwoJoxgb58dJMc-NSWTjZ07FziSq80aLrAKuAgYgLpdOi58Hzw3NvkJsSSctD2uB4tb-DEbQ0Uc05nVhknRp8JZ5n44Jx5IljfMMXhpIBGzj3cpbmpVBt8ICD-__z3D0g9xrcTfeWivKQbLnyEbm9rMR58Zj83itpiAdgNj8NnLu0KmmbbkkPToZUl5Yewu9U4zKFLipqQ_pLaKgnP5pCaLTyFEmg2Wx9JoNOQZWYnztH-_Xnsj8VDOGDpUjTfl7jDjqtcZOBYiCl3iFfrmUunpDtsirdU0KFS2MNoBuQJ6z0fAIakwq4WKiu5dzYiCStzOSmoXHHaiLTPKQTiCxfylkOcpYHOct5RN6t7pktSUyu7P0JRXHVEwnIw4Vq_i1v7FluYFBaAwAsNLyg8SrTUiVKaoseQPiI7LaimDdWsc7XchiR16tmsGc4t7p01Vno0wOMnYo4InJDATYGtNlSTr4HZnQFdgYQaETet6qy_vN_v_Czq8f6itwBbcmHR6Pj5-QuR_3FgkBil2wv5mfuBbllzheTev4yGABKvl631vwFM1id9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extensive+study+on+multiple+ETL+and+HTL+layers+to+design+and+simulation+of+high-performance+lead-free+CsSnCl3-based+perovskite+solar+cells&rft.jtitle=Scientific+reports&rft.au=M.+Khalid+Hossain&rft.au=G.+F.+Ishraque+Toki&rft.au=Abdul+Kuddus&rft.au=M.+H.+K.+Rubel&rft.date=2023-02-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1038%2Fs41598-023-28506-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |