An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells

Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport lay...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 13; číslo 1; s. 2521 - 24
Hlavní autoři: Hossain, M. Khalid, Toki, G. F. Ishraque, Kuddus, Abdul, Rubel, M. H. K., Hossain, M. M., Bencherif, H., Rahman, Md. Ferdous, Islam, Md. Rasidul, Mushtaq, Muhammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 13.02.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl 3 -based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO 2 ), tungsten disulfide (WS 2 ), ceric dioxide (CeO 2 ), titanium dioxide (TiO 2 ), zinc oxide (ZnO), C 60 , PCBM, and HTLs of cuprous oxide (Cu 2 O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V 2 O 5 ), copper iodide (CuI), CuSCN, CuSbS 2 , Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO 2 , IGZO, WS 2 , PCBM, and C 60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl 3 /CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl 3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO 2 , ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl 3 -based high efficiency ( η  ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl 3 /CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl 3 -perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl 3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl 3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.
AbstractList Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.
Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl 3 -based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO 2 ), tungsten disulfide (WS 2 ), ceric dioxide (CeO 2 ), titanium dioxide (TiO 2 ), zinc oxide (ZnO), C 60 , PCBM, and HTLs of cuprous oxide (Cu 2 O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V 2 O 5 ), copper iodide (CuI), CuSCN, CuSbS 2 , Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO 2 , IGZO, WS 2 , PCBM, and C 60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl 3 /CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl 3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO 2 , ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl 3 -based high efficiency ( η  ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl 3 /CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl 3 -perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl 3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl 3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.
Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium-gallium-zinc-oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott-Schottky, generation and recombination rate, current-voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium-gallium-zinc-oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott-Schottky, generation and recombination rate, current-voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.
Abstract Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium–gallium–zinc–oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott–Schottky, generation and recombination rate, current–voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.
ArticleNumber 2521
Author Rubel, M. H. K.
Bencherif, H.
Kuddus, Abdul
Toki, G. F. Ishraque
Hossain, M. Khalid
Hossain, M. M.
Rahman, Md. Ferdous
Mushtaq, Muhammad
Islam, Md. Rasidul
Author_xml – sequence: 1
  givenname: M. Khalid
  surname: Hossain
  fullname: Hossain, M. Khalid
  email: khalid.baec@gmail.com, khalid@kyudai.jp
  organization: Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission
– sequence: 2
  givenname: G. F. Ishraque
  surname: Toki
  fullname: Toki, G. F. Ishraque
  organization: College of Materials Science and Engineering, Donghua University
– sequence: 3
  givenname: Abdul
  surname: Kuddus
  fullname: Kuddus, Abdul
  organization: Ritsumeikan Global Innovation Research Organization, Ritsumeikan University
– sequence: 4
  givenname: M. H. K.
  surname: Rubel
  fullname: Rubel, M. H. K.
  email: mhk_mse@ru.ac.bd
  organization: Department of Materials Science and Engineering, University of Rajshahi
– sequence: 5
  givenname: M. M.
  surname: Hossain
  fullname: Hossain, M. M.
  organization: Department of Physics, Chittagong University of Engineering and Technology
– sequence: 6
  givenname: H.
  surname: Bencherif
  fullname: Bencherif, H.
  organization: Higher National School of Renewable Energies, Environment and Sustainable Development
– sequence: 7
  givenname: Md. Ferdous
  surname: Rahman
  fullname: Rahman, Md. Ferdous
  organization: Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 8
  givenname: Md. Rasidul
  surname: Islam
  fullname: Islam, Md. Rasidul
  organization: Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University
– sequence: 9
  givenname: Muhammad
  surname: Mushtaq
  fullname: Mushtaq, Muhammad
  organization: Department of Physics, University of Poonch Rawalakot
BookMark eNp9UsFu1DAQjVARLaU_wMkSFy4Bx05i-4JUrQqttBIHytmaOJNdL157sZMV-xH8M95NBbSH-jLWzHtvRjPvdXHmg8eieFvRDxXl8mOqq0bJkjJeMtnQtmQvigtG66ZknLGz__7nxVVKG5pfw1RdqVfFOW-FrKSsL4rf157grxF9snskaZz6AwmebCc32p1DcnO_JOB7cpujgwPGRMZAekx25U-FZDMWRptJYSBru1qXO4xDiFvwBolD6MshIpJF-uYXjpcdJOxJxoR9-mHH3DQ4iMSgc-lN8XIAl_DqIV4W3z_f3C9uy-XXL3eL62VpmkqMJeIg2QBcAnLeC1VTI4UQtQRmsBYdihYoYqW6wQBvkLG24ZJ2CuquHZjgl8XdrNsH2OhdtFuIBx3A6lMixJWGOFrjUJuacwDKWAdZ2gxKglCVEtALKSgfstanWWs3dVvsDfoxgnsk-rji7Vqvwl4rxZp8hSzw_kEghp8TplFvbTquAzyGKWkmRNtUTc1phr57At2EKfq8qiOqyUuQqs4oNqNMDClFHP4OU1F9NI-ezaOzefTJPJplknxCMnY83TUPbd3zVD5TU-7jVxj_TfUM6w_Nwdsf
CitedBy_id crossref_primary_10_1007_s11664_025_11740_x
crossref_primary_10_1016_j_ssc_2024_115610
crossref_primary_10_1002_pssa_202400903
crossref_primary_10_1016_j_optcom_2023_130187
crossref_primary_10_1002_slct_202302252
crossref_primary_10_1002_adts_202401283
crossref_primary_10_1016_j_enconman_2025_119747
crossref_primary_10_1016_j_solener_2024_113089
crossref_primary_10_1364_OE_554379
crossref_primary_10_1038_s41598_023_39646_w
crossref_primary_10_1039_D3RA02910G
crossref_primary_10_1007_s12648_024_03350_w
crossref_primary_10_1016_j_heliyon_2024_e27581
crossref_primary_10_1016_j_jallcom_2024_174097
crossref_primary_10_1007_s11356_023_29187_0
crossref_primary_10_1039_D4RA01559B
crossref_primary_10_1016_j_heliyon_2024_e39218
crossref_primary_10_1016_j_jpcs_2024_112437
crossref_primary_10_1364_OE_566116
crossref_primary_10_1149_2162_8777_adfb2b
crossref_primary_10_1007_s12596_023_01647_3
crossref_primary_10_1016_j_mssp_2024_109138
crossref_primary_10_1016_j_mtcomm_2024_110014
crossref_primary_10_1007_s40843_025_3416_3
crossref_primary_10_1016_j_rinp_2025_108163
crossref_primary_10_1016_j_seja_2024_100077
crossref_primary_10_3390_solar5030037
crossref_primary_10_1016_j_solener_2025_113253
crossref_primary_10_3390_nano15080580
crossref_primary_10_1016_j_jpcs_2025_112944
crossref_primary_10_1088_1402_4896_acf891
crossref_primary_10_1016_j_physb_2024_416879
crossref_primary_10_1021_acs_langmuir_5c00505
crossref_primary_10_1016_j_jpcs_2025_112941
crossref_primary_10_1016_j_micrna_2025_208274
crossref_primary_10_1016_j_jpcs_2024_112096
crossref_primary_10_3389_fenrg_2025_1631201
crossref_primary_10_1007_s11082_025_08141_z
crossref_primary_10_1007_s12596_023_01574_3
crossref_primary_10_1016_j_nxener_2024_100196
crossref_primary_10_1016_j_solener_2024_112573
crossref_primary_10_1039_D4SE00958D
crossref_primary_10_1016_j_nexres_2024_100055
crossref_primary_10_1016_j_jallcom_2024_177707
crossref_primary_10_1016_j_inoche_2023_111421
crossref_primary_10_1002_adts_202500341
crossref_primary_10_1016_j_mtcomm_2023_107025
crossref_primary_10_1088_1402_4896_adf3fc
crossref_primary_10_1007_s11082_025_08200_5
crossref_primary_10_1007_s11082_025_08373_z
crossref_primary_10_1016_j_inoche_2025_115426
crossref_primary_10_1002_ese3_70153
crossref_primary_10_1039_D5DT01355K
crossref_primary_10_1016_j_inoche_2024_112360
crossref_primary_10_1016_j_jallcom_2024_176283
crossref_primary_10_1002_ente_202301198
crossref_primary_10_1016_j_nxener_2025_100245
crossref_primary_10_1007_s00339_023_06749_0
crossref_primary_10_1016_j_solener_2024_113098
crossref_primary_10_3390_ma17123026
crossref_primary_10_1016_j_ijhydene_2025_151106
crossref_primary_10_1002_wcms_1677
crossref_primary_10_1007_s12596_025_02816_2
crossref_primary_10_1002_solr_202400816
crossref_primary_10_1155_acmp_9968037
crossref_primary_10_1016_j_inoche_2024_113578
crossref_primary_10_1016_j_jpcs_2024_112300
crossref_primary_10_1016_j_rio_2025_100868
crossref_primary_10_1016_j_heliyon_2024_e29091
crossref_primary_10_1016_j_jpcs_2025_112872
crossref_primary_10_1016_j_micrna_2023_207676
crossref_primary_10_1016_j_meaene_2024_100005
crossref_primary_10_1002_pssa_202400547
crossref_primary_10_1016_j_mtcomm_2024_109906
crossref_primary_10_1002_qua_27481
crossref_primary_10_1007_s11664_025_12222_w
crossref_primary_10_1088_1402_4896_accb13
crossref_primary_10_1080_26437015_2025_2467086
crossref_primary_10_1007_s10904_024_02999_4
crossref_primary_10_1016_j_poly_2024_116937
crossref_primary_10_3762_bjnano_16_11
crossref_primary_10_1002_ente_202500613
crossref_primary_10_15446_dyna_v92n237_118481
crossref_primary_10_1016_j_inoche_2024_112776
crossref_primary_10_1364_OE_563722
crossref_primary_10_1016_j_jpcs_2024_112480
crossref_primary_10_1016_j_jpcs_2025_112861
crossref_primary_10_1016_j_jpcs_2024_112486
crossref_primary_10_1016_j_jpcs_2024_112243
crossref_primary_10_1016_j_mseb_2024_117672
crossref_primary_10_1016_j_cocis_2025_101895
crossref_primary_10_1016_j_mssp_2024_109214
crossref_primary_10_1021_acs_cgd_4c01359
crossref_primary_10_1016_j_optcom_2025_131761
crossref_primary_10_1016_j_ijleo_2023_171325
crossref_primary_10_1016_j_heliyon_2024_e29676
crossref_primary_10_1007_s10853_024_09579_4
crossref_primary_10_1016_j_optmat_2024_115125
crossref_primary_10_1016_j_optcom_2025_131769
crossref_primary_10_1002_pssa_202500200
crossref_primary_10_1016_j_jpcs_2024_112247
crossref_primary_10_1002_nano_70026
crossref_primary_10_1039_D5RA04940G
crossref_primary_10_1016_j_jpcs_2025_112622
crossref_primary_10_1021_acs_langmuir_4c05265
crossref_primary_10_1002_adts_202401268
crossref_primary_10_1016_j_ssc_2024_115590
crossref_primary_10_1039_D5NJ03069B
crossref_primary_10_1002_ente_202300459
crossref_primary_10_1016_j_micrna_2024_207819
crossref_primary_10_1063_5_0138354
crossref_primary_10_1088_1402_4896_ad8278
crossref_primary_10_1016_j_mtcomm_2024_108957
crossref_primary_10_1002_adts_202400725
crossref_primary_10_1016_j_solener_2025_113866
crossref_primary_10_1007_s11468_024_02394_2
crossref_primary_10_1007_s12596_024_01817_x
crossref_primary_10_1007_s42247_023_00558_0
crossref_primary_10_1016_j_jpcs_2023_111641
crossref_primary_10_1088_1402_4896_adbe03
crossref_primary_10_1039_D4RA00634H
crossref_primary_10_1016_j_ijleo_2023_171474
crossref_primary_10_1016_j_inoche_2024_113647
crossref_primary_10_1016_j_jpcs_2025_112777
crossref_primary_10_1038_s41598_025_99575_8
crossref_primary_10_1016_j_photonics_2025_101425
crossref_primary_10_1088_1402_4896_adeb04
crossref_primary_10_1007_s12596_023_01648_2
crossref_primary_10_1007_s10904_024_03372_1
crossref_primary_10_1016_j_surfin_2025_107458
crossref_primary_10_1002_aelm_202500312
crossref_primary_10_1016_j_ijleo_2023_171470
crossref_primary_10_1016_j_jpcs_2025_113175
crossref_primary_10_1021_acs_langmuir_5c00499
crossref_primary_10_1016_j_micrna_2024_207827
crossref_primary_10_1016_j_mssp_2025_109296
crossref_primary_10_1016_j_solener_2024_113210
crossref_primary_10_1016_j_ijleo_2023_171468
crossref_primary_10_1016_j_ijleo_2023_171469
crossref_primary_10_64589_juri_207995
crossref_primary_10_1002_aelm_202400348
crossref_primary_10_1016_j_mtcomm_2023_107575
crossref_primary_10_1007_s12209_024_00423_z
crossref_primary_10_1007_s41939_024_00701_2
crossref_primary_10_1016_j_solmat_2024_113122
crossref_primary_10_1007_s10853_023_08825_5
crossref_primary_10_1016_j_ijleo_2023_171100
crossref_primary_10_1016_j_solener_2024_112806
crossref_primary_10_1007_s11468_025_03061_w
crossref_primary_10_1016_j_electacta_2023_143086
crossref_primary_10_1016_j_inoche_2024_113261
crossref_primary_10_1016_j_mseb_2024_117744
crossref_primary_10_1016_j_mseb_2024_117622
crossref_primary_10_1038_s41598_025_00822_9
crossref_primary_10_1016_j_jpcs_2025_113088
crossref_primary_10_1016_j_mseb_2025_118796
crossref_primary_10_1016_j_optcom_2025_131558
crossref_primary_10_3390_mi14081562
crossref_primary_10_1007_s10825_024_02157_6
crossref_primary_10_1039_D5NJ01823D
crossref_primary_10_1016_j_ijleo_2025_172506
crossref_primary_10_1007_s11581_023_05242_1
crossref_primary_10_1007_s41939_025_00926_9
crossref_primary_10_1039_D3RA02485G
crossref_primary_10_1016_j_ijleo_2023_171530
crossref_primary_10_1016_j_micrna_2024_207991
crossref_primary_10_1364_OE_562952
crossref_primary_10_1016_j_mssp_2023_107853
crossref_primary_10_1016_j_micrna_2025_208319
crossref_primary_10_1007_s11082_025_08172_6
crossref_primary_10_1016_j_mseb_2024_117874
crossref_primary_10_1016_j_jpcs_2025_113191
crossref_primary_10_1016_j_heliyon_2024_e24107
crossref_primary_10_1016_j_jpcs_2025_113072
crossref_primary_10_1016_j_jpcs_2025_113193
crossref_primary_10_1016_j_heliyon_2023_e21498
crossref_primary_10_1016_j_solener_2024_113111
crossref_primary_10_1016_j_solener_2025_113539
crossref_primary_10_1007_s11468_025_03238_3
crossref_primary_10_1016_j_materresbull_2025_113488
crossref_primary_10_1016_j_inoche_2024_112864
crossref_primary_10_1063_5_0187765
crossref_primary_10_1016_j_jpcs_2024_112250
crossref_primary_10_1016_j_mseb_2024_117524
crossref_primary_10_1016_j_commatsci_2025_113701
crossref_primary_10_1016_j_mseb_2024_117520
crossref_primary_10_1016_j_ssc_2024_115437
crossref_primary_10_1007_s42341_023_00484_2
crossref_primary_10_1007_s12596_023_01570_7
crossref_primary_10_1088_1402_4896_aceb97
crossref_primary_10_1117_1_JPE_15_024501
crossref_primary_10_1007_s12596_025_02790_9
crossref_primary_10_1088_1402_4896_acf70a
crossref_primary_10_1016_j_solener_2024_112858
crossref_primary_10_1002_adts_202500068
crossref_primary_10_1016_j_cocom_2025_e01045
crossref_primary_10_1016_j_jpcs_2024_112498
crossref_primary_10_1016_j_cocom_2025_e01041
crossref_primary_10_1007_s10904_023_02970_9
crossref_primary_10_1021_acs_langmuir_4c04660
crossref_primary_10_1016_j_mseb_2024_117656
crossref_primary_10_1016_j_mseb_2024_117536
crossref_primary_10_3390_molecules29112599
crossref_primary_10_1016_j_jpcs_2023_111791
crossref_primary_10_1016_j_jpcs_2024_112386
crossref_primary_10_1002_slct_202404116
crossref_primary_10_1016_j_mseb_2024_117530
crossref_primary_10_1007_s10904_025_03853_x
crossref_primary_10_1016_j_solener_2024_112961
crossref_primary_10_1039_D5RA05441A
crossref_primary_10_1007_s41779_024_01121_8
crossref_primary_10_1007_s12596_024_01996_7
crossref_primary_10_1088_1402_4896_acfacf
crossref_primary_10_1016_j_rineng_2025_106465
crossref_primary_10_1155_2024_5188636
crossref_primary_10_1016_j_cej_2024_152213
crossref_primary_10_1016_j_solener_2024_112843
crossref_primary_10_1063_5_0233863
crossref_primary_10_1016_j_prime_2025_101093
crossref_primary_10_1016_j_mtcomm_2024_110433
crossref_primary_10_1007_s12648_023_02801_0
crossref_primary_10_1007_s00339_024_08125_y
crossref_primary_10_1088_2040_8986_ad49b1
crossref_primary_10_1007_s10853_024_10487_w
crossref_primary_10_3390_ma17215213
crossref_primary_10_1007_s12596_025_02646_2
crossref_primary_10_1016_j_renene_2025_124007
crossref_primary_10_1063_5_0156961
crossref_primary_10_3390_en16165868
crossref_primary_10_1016_j_optmat_2024_116173
crossref_primary_10_1016_j_solener_2024_113043
crossref_primary_10_1007_s10904_025_03798_1
crossref_primary_10_1002_chem_202400372
crossref_primary_10_1016_j_mtcomm_2024_108894
crossref_primary_10_1002_est2_70001
crossref_primary_10_1088_1402_4896_addfba
crossref_primary_10_1016_j_inoche_2025_115079
crossref_primary_10_1038_s41598_024_78165_0
crossref_primary_10_1088_1402_4896_ad986e
crossref_primary_10_1039_D3RA07893K
crossref_primary_10_1002_adts_202400662
crossref_primary_10_1039_D5RA03492B
crossref_primary_10_1007_s41939_025_01024_6
crossref_primary_10_3390_su151712805
crossref_primary_10_1016_j_solmat_2025_113838
crossref_primary_10_1016_j_solener_2025_113338
crossref_primary_10_1038_s41598_024_72555_0
crossref_primary_10_1002_slct_202501364
crossref_primary_10_1016_j_mtcomm_2024_109750
crossref_primary_10_1016_j_mtcomm_2024_109991
crossref_primary_10_1002_aelm_202300751
crossref_primary_10_1088_1402_4896_ad0a27
crossref_primary_10_1088_1402_4896_ad4519
crossref_primary_10_1016_j_jpcs_2025_113103
crossref_primary_10_1088_1402_4896_acfce9
crossref_primary_10_1016_j_renene_2025_124225
crossref_primary_10_1088_1402_4896_adbdfa
crossref_primary_10_1016_j_micrna_2025_208147
crossref_primary_10_1515_ijmr_2024_0050
crossref_primary_10_1016_j_mtsust_2023_100548
crossref_primary_10_1016_j_nexus_2025_100400
crossref_primary_10_1088_1402_4896_ade748
crossref_primary_10_1016_j_optmat_2023_114486
crossref_primary_10_1039_D5SU00526D
crossref_primary_10_1088_1402_4896_ad9647
crossref_primary_10_1007_s44291_024_00026_x
crossref_primary_10_1016_j_mtcomm_2025_113192
crossref_primary_10_1016_j_solener_2024_113188
crossref_primary_10_1016_j_jallcom_2023_170994
crossref_primary_10_1016_j_rio_2025_100818
crossref_primary_10_1016_j_solener_2023_112218
crossref_primary_10_1016_j_physleta_2024_130029
crossref_primary_10_1002_pssa_202300525
crossref_primary_10_1016_j_mtcomm_2025_111579
crossref_primary_10_1016_j_jpcs_2024_112179
crossref_primary_10_1016_j_micrna_2025_208267
crossref_primary_10_1007_s10854_025_15627_9
crossref_primary_10_3390_mi14091676
crossref_primary_10_26565_2312_4334_2024_3_54
crossref_primary_10_1002_nano_202400020
crossref_primary_10_1007_s42452_025_06948_9
crossref_primary_10_1016_j_jpcs_2024_112185
crossref_primary_10_1039_D4NJ03622K
crossref_primary_10_1016_j_jpcs_2024_112184
crossref_primary_10_1007_s11082_025_08154_8
crossref_primary_10_3390_eng6090222
crossref_primary_10_1016_j_optlastec_2024_111828
crossref_primary_10_1038_s41598_025_98351_y
crossref_primary_10_1007_s10904_024_03452_2
crossref_primary_10_1039_D5CP01162K
crossref_primary_10_1016_j_inoche_2025_115291
crossref_primary_10_1007_s42247_024_00842_7
crossref_primary_10_1016_j_materresbull_2023_112642
crossref_primary_10_1016_j_mseb_2025_118684
crossref_primary_10_1016_j_mtsust_2024_100857
crossref_primary_10_1007_s11082_024_07239_0
crossref_primary_10_3390_mi14061127
crossref_primary_10_1016_j_nexus_2025_100417
crossref_primary_10_1002_adpr_202300339
crossref_primary_10_1016_j_solener_2023_112105
crossref_primary_10_1039_D3RA00039G
crossref_primary_10_1016_j_solener_2024_112765
crossref_primary_10_1149_2162_8777_ad4c95
crossref_primary_10_1007_s42247_023_00542_8
crossref_primary_10_1007_s11082_025_08275_0
crossref_primary_10_1007_s11664_024_11605_9
crossref_primary_10_1016_j_matchemphys_2023_128281
crossref_primary_10_1088_1402_4896_ad070b
Cites_doi 10.1039/C9RA10407K
10.1039/D1RA02457D
10.1016/j.heliyon.2022.e12034
10.1103/PhysRevB.41.7892
10.1002/adma.201306281
10.1039/C6EE00413J
10.1038/srep00591
10.1016/j.spmi.2016.01.026
10.1039/D0RA09270C
10.1063/5.0088099
10.1016/j.ijleo.2018.05.032
10.1021/acsaem.9b00473
10.1103/PhysRevB.13.5188
10.17485/ijst/2017/v11i10/110721
10.1038/s41598-017-13172-y
10.1016/j.rinp.2022.105977
10.1126/science.1254763
10.1021/ja508464w
10.1002/aenm.201802139
10.1039/D0NJ02316G
10.1063/5.0042847
10.1021/acs.chemmater.6b00433
10.1002/anie.201902984
10.1016/j.micrna.2022.207403
10.1016/j.rinp.2017.07.047
10.1016/j.mtcomm.2022.104302
10.1007/s13391-019-00163-6
10.1038/nphys3357
10.1021/j100203a036
10.1016/j.cattod.2018.10.065
10.1021/am503728d
10.1016/j.ijhydene.2017.02.099
10.1103/PhysRevLett.95.176403
10.1038/nature14133
10.1016/j.solener.2022.11.012
10.1021/acs.jpcc.8b01177
10.1038/333836a0
10.1021/jp036158y
10.1007/s11664-020-08041-w
10.1002/adsu.202100120
10.1103/PhysRev.128.2093
10.1021/acsami.6b07658
10.1021/acs.nanolett.6b02158
10.1016/j.solmat.2015.03.025
10.1103/PhysRevLett.77.3865
10.1016/S0040-6090(99)00825-1
10.1021/acsami.8b01033
10.1002/adfm.201908462
10.1016/j.solener.2020.01.081
10.1016/j.solener.2019.10.009
10.1007/s11664-019-07374-5
10.1524/zkri.220.5.567.65075
10.1002/pip.496
10.1021/acs.jpclett.6b02560
10.1016/j.solener.2019.12.014
10.1016/j.solmat.2016.09.022
10.1021/acsomega.2c05912
10.1038/s41598-020-71223-3
10.1088/0953-8984/14/11/301
10.35848/1347-4065/acb09e
10.1002/adma.202204380
10.1038/s41467-018-04028-8
10.1021/acs.chemmater.6b00954
10.1002/pssr.201600166
10.1021/cm504022q
10.1039/D2RA06734J
10.1016/j.solener.2021.04.030
10.1126/sciadv.aav8925
10.1038/srep39555
10.1016/j.ijleo.2018.02.063
10.1021/acs.jpcc.1c09594
10.1021/acsomega.9b03015
10.1063/5.0108459
10.1021/jp506498k
10.3390/nano11051218
10.1016/j.comptc.2022.113624
10.1126/science.1228604
10.1039/D1CP02666F
10.1246/cl.150068
10.1021/acs.chemmater.6b01832
10.1021/acsaelm.2c01574
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-28506-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f
PMC9925818
10_1038_s41598_023_28506_2
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-eef82fa38ae33d7940c877748a2ce47be76a0ee19bfca35e2265380b9a4b6f273
IEDL.DBID DOA
ISICitedReferencesCount 389
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984284300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:34 EDT 2025
Tue Nov 04 02:06:46 EST 2025
Thu Oct 02 06:59:03 EDT 2025
Tue Oct 07 08:25:44 EDT 2025
Sat Nov 29 06:33:33 EST 2025
Tue Nov 18 21:43:58 EST 2025
Fri Feb 21 02:39:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-eef82fa38ae33d7940c877748a2ce47be76a0ee19bfca35e2265380b9a4b6f273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/c433aa022bae47cf98a79197ad78703f
PMID 36781884
PQID 2775877894
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925818
proquest_miscellaneous_2776515430
proquest_journals_2775877894
crossref_primary_10_1038_s41598_023_28506_2
crossref_citationtrail_10_1038_s41598_023_28506_2
springer_journals_10_1038_s41598_023_28506_2
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Srivastava, Singh, Kumar, Pradhan (CR57) 2022; 131
Saparov (CR3) 2016; 28
Chen, Park (CR32) 2018; 122
Bencherif, Hossain (CR7) 2022; 248
Mei (CR21) 2014; 345
Monkhorst, Pack (CR53) 1976; 13
Palazon (CR1) 2016; 28
Diao (CR23) 2019; 4
Ali, Das, Abed, Basith (CR41) 2021; 23
Bi (CR79) 2021; 5
Qiu (CR6) 2016; 10
Nazir (CR75) 2022; 34
Burgelman, Nollet, Degrave (CR55) 2000; 361–362
Bencherif (CR10) 2022; 171
Islam, Mazumder, Mojumder, Shifat, Hossain (CR64) 2023; 62
Islam, Hossain (CR42) 2020; 10
Kholil, Bhuiyan, Rahman, Ali, Aftabuzzaman (CR44) 2021; 11
Kim (CR26) 2016; 8
Hinks (CR67) 1988; 333
Jeyakumar, Bag, Nekovei, Radhakrishnan (CR73) 2020; 49
Wu (CR76) 2018; 9
Yin, Shi, Yan (CR8) 2014; 26
Pervez (CR18) 2018; 162
Shao (CR11) 2016; 9
Ke (CR74) 2014; 6
Clark (CR50) 2005; 220
Lin (CR71) 2020; 198
Qiu (CR5) 2017; 159
Rolston (CR12) 2018; 8
Wang (CR35) 2016; 16
Wu (CR13) 2019; 5
Baktash, Amiri, Sasani (CR24) 2016; 93
Khattak, Baig, Toura, Beg, Soucase (CR29) 2019; 48
Vanderbilt (CR52) 1990; 41
Heriche, Rouabah, Bouarissa (CR77) 2017; 42
Hawash, Ono, Raga, Lee, Qi (CR34) 2015; 27
CR49
Schwenzer (CR84) 2018; 10
CR48
Kavan (CR25) 2019; 328
Ur Rehman (CR47) 2022; 1209
Hossain (CR14) 2017; 36
Das, Di Liberto, Pacchioni (CR39) 2022; 126
Islam, Hossain (CR43) 2020; 10
Raoui (CR58) 2019; 193
Liu (CR36) 2020; 30
Segall (CR51) 2002; 14
Dupré, Vaillon, Green (CR82) 2015; 140
Hossain (CR15) 2018; 171
Hossain (CR56) 2022; 7
Yu (CR22) 2003; 107
Cojocaru (CR27) 2015; 44
Samiul Islam (CR70) 2021; 11
Jayan, Sebastian, Kurian (CR81) 2021; 221
Shin (CR37) 2016; 28
Roknuzzaman, Ostrikov, Wang, Du, Tesfamichael (CR46) 2017; 7
Bag, Radhakrishnan, Nekovei, Jeyakumar (CR72) 2020; 196
Ben Bechir, Dhaou (CR40) 2021; 11
Saidi, Poncé, Monserrat (CR85) 2016; 7
Mandadapu, Vedanayakam, Thyagarajan (CR69) 2017; 10
Rubel (CR63) 2022; 42
Kholil, Hossen Bhuiyan (CR45) 2020; 10
Rubel (CR65) 2022; 33
Chakraborty (CR38) 2019; 2
CR54
Miyata (CR9) 2015; 11
Perdew, Burke, Ernzerhof (CR60) 1996; 77
Lee, Teuscher, Miyasaka, Murakami, Snaith (CR20) 2012; 338
Wang, Wan, Ding, Hu, Wang (CR2) 2019; 58
Mia (CR17) 2017; 7
Fischer, Almlof (CR59) 1992; 96
Schira, Latouche (CR61) 2020; 44
Feng, Xiao (CR62) 2014; 118
Jeon (CR78) 2015; 517
Nishio, Ahmad, Uwe (CR66) 2005; 95
Lee (CR4) 2014; 136
Gil (CR31) 2019; 15
Hossain (CR16) 2017; 35
Penn (CR68) 1962; 128
Hossain (CR80) 2022; 12
Green (CR83) 2003; 11
Rahman (CR30) 2022; 8
Kim (CR19) 2012; 2
Rahman (CR28) 2022; 12
Rafique, Abdullah, Shahid, Ansari, Sulaiman (CR33) 2017; 7
S Wang (28506_CR35) 2016; 16
H-S Kim (28506_CR19) 2012; 2
C Liu (28506_CR36) 2020; 30
B Saparov (28506_CR3) 2016; 28
H Bencherif (28506_CR7) 2022; 248
MF Rahman (28506_CR30) 2022; 8
R Schira (28506_CR61) 2020; 44
G Nazir (28506_CR75) 2022; 34
DG Hinks (28506_CR67) 1988; 333
S Rafique (28506_CR33) 2017; 7
MHK Rubel (28506_CR63) 2022; 42
L Cojocaru (28506_CR27) 2015; 44
WA Saidi (28506_CR85) 2016; 7
MNH Mia (28506_CR17) 2017; 7
B Gil (28506_CR31) 2019; 15
L Kavan (28506_CR25) 2019; 328
MHK Rubel (28506_CR65) 2022; 33
KD Jayan (28506_CR81) 2021; 221
L Lin (28506_CR71) 2020; 198
SJ Clark (28506_CR50) 2005; 220
NJ Jeon (28506_CR78) 2015; 517
X Qiu (28506_CR6) 2016; 10
H Bencherif (28506_CR10) 2022; 171
M Ben Bechir (28506_CR40) 2021; 11
W-Q Wu (28506_CR13) 2019; 5
A Baktash (28506_CR24) 2016; 93
28506_CR48
M Burgelman (28506_CR55) 2000; 361–362
U Mandadapu (28506_CR69) 2017; 10
HJ Monkhorst (28506_CR53) 1976; 13
28506_CR49
R Jeyakumar (28506_CR73) 2020; 49
W Ke (28506_CR74) 2014; 6
Y Raoui (28506_CR58) 2019; 193
MD Segall (28506_CR51) 2002; 14
J Chen (28506_CR32) 2018; 122
J Ur Rehman (28506_CR47) 2022; 1209
X Qiu (28506_CR5) 2017; 159
Z Hawash (28506_CR34) 2015; 27
M Samiul Islam (28506_CR70) 2021; 11
A Bag (28506_CR72) 2020; 196
JP Perdew (28506_CR60) 1996; 77
DR Penn (28506_CR68) 1962; 128
MI Kholil (28506_CR45) 2020; 10
N Rolston (28506_CR12) 2018; 8
J Feng (28506_CR62) 2014; 118
Y Wang (28506_CR2) 2019; 58
TH Fischer (28506_CR59) 1992; 96
MK Hossain (28506_CR14) 2017; 36
B Lee (28506_CR4) 2014; 136
MF Pervez (28506_CR18) 2018; 162
MK Hossain (28506_CR15) 2018; 171
D Shin (28506_CR37) 2016; 28
28506_CR54
MK Hossain (28506_CR16) 2017; 35
MK Hossain (28506_CR80) 2022; 12
M Roknuzzaman (28506_CR46) 2017; 7
T Nishio (28506_CR66) 2005; 95
MI Kholil (28506_CR44) 2021; 11
A Mei (28506_CR21) 2014; 345
W-J Yin (28506_CR8) 2014; 26
J Islam (28506_CR43) 2020; 10
YH Khattak (28506_CR29) 2019; 48
MS Ali (28506_CR41) 2021; 23
MM Lee (28506_CR20) 2012; 338
J-G Yu (28506_CR22) 2003; 107
D Vanderbilt (28506_CR52) 1990; 41
MA Green (28506_CR83) 2003; 11
S Srivastava (28506_CR57) 2022; 131
Y Shao (28506_CR11) 2016; 9
Z Bi (28506_CR79) 2021; 5
R Chakraborty (28506_CR38) 2019; 2
IS Kim (28506_CR26) 2016; 8
A Miyata (28506_CR9) 2015; 11
X-F Diao (28506_CR23) 2019; 4
MF Rahman (28506_CR28) 2022; 12
T Das (28506_CR39) 2022; 126
MK Hossain (28506_CR56) 2022; 7
H Heriche (28506_CR77) 2017; 42
MR Islam (28506_CR64) 2023; 62
W-Q Wu (28506_CR76) 2018; 9
O Dupré (28506_CR82) 2015; 140
J Islam (28506_CR42) 2020; 10
JA Schwenzer (28506_CR84) 2018; 10
F Palazon (28506_CR1) 2016; 28
References_xml – volume: 10
  start-page: 7817
  year: 2020
  end-page: 7827
  ident: CR43
  article-title: Narrowing band gap and enhanced visible-light absorption of metal-doped non-toxic CsSnCl metal halides for potential optoelectronic applications
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10407K
– volume: 11
  start-page: 21767
  year: 2021
  end-page: 21780
  ident: CR40
  article-title: Study of charge transfer mechanism and dielectric relaxation of all-inorganic perovskite CsSnCl
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02457D
– volume: 8
  start-page: e12034
  year: 2022
  ident: CR30
  article-title: Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12034
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: CR52
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– ident: CR49
– volume: 26
  start-page: 4653
  year: 2014
  end-page: 4658
  ident: CR8
  article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 35
  start-page: 868
  year: 2017
  end-page: 877
  ident: CR16
  article-title: Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO film photoanode for dye-sensitized solar cell application
  publication-title: Mater. Sci.
– volume: 9
  start-page: 1752
  year: 2016
  end-page: 1759
  ident: CR11
  article-title: Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00413J
– volume: 2
  start-page: 591
  year: 2012
  ident: CR19
  article-title: Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 93
  start-page: 128
  year: 2016
  end-page: 137
  ident: CR24
  article-title: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO compact layers
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2016.01.026
– volume: 10
  start-page: 43660
  year: 2020
  end-page: 43669
  ident: CR45
  article-title: Effects of Cr- and Mn-alloying on the band gap tuning, and optical and electronic properties of lead-free CsSnBr perovskites for optoelectronic applications
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09270C
– ident: CR54
– volume: 131
  start-page: 175001
  year: 2022
  ident: CR57
  article-title: Comparative performance analysis of lead-free perovskites solar cells by numerical simulation
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0088099
– volume: 171
  start-page: 507
  year: 2018
  end-page: 516
  ident: CR15
  article-title: A comparative study on the influence of pure anatase and Degussa-P25 TiO nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.05.032
– volume: 2
  start-page: 3049
  year: 2019
  end-page: 3055
  ident: CR38
  article-title: Colloidal synthesis, optical properties, and hole transport layer applications of Cu BaSnS (CBTS) nanocrystals
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00473
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR53
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 10
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR69
  article-title: Simulation and analysis of lead based perovskite solar cell using SCAPS-1D
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2017/v11i10/110721
– volume: 7
  start-page: 14025
  year: 2017
  ident: CR46
  article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13172-y
– volume: 42
  start-page: 105977
  year: 2022
  ident: CR63
  article-title: First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd B4O (B = Ti, V) perovskites
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105977
– volume: 345
  start-page: 295
  year: 2014
  end-page: 298
  ident: CR21
  article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 136
  start-page: 15379
  year: 2014
  end-page: 15385
  ident: CR4
  article-title: Air-stable molecular semiconducting iodosalts for solar cell applications: Cs SnI as a hole conductor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508464w
– volume: 8
  start-page: 1802139
  year: 2018
  ident: CR12
  article-title: Engineering stress in perovskite solar cells to improve stability
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802139
– volume: 44
  start-page: 11602
  year: 2020
  end-page: 11607
  ident: CR61
  article-title: DFT and hybrid-DFT calculations on the electronic properties of vanadate materials: Theory meets experiments
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ02316G
– volume: 11
  start-page: 035229
  year: 2021
  ident: CR44
  article-title: Effects of Fe doping on the visible light absorption and bandgap tuning of lead-free (CsSnCl ) and lead halide (CsPbCl ) perovskites for optoelectronic applications
  publication-title: AIP Adv.
  doi: 10.1063/5.0042847
– volume: 28
  start-page: 2315
  year: 2016
  end-page: 2322
  ident: CR3
  article-title: Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs SnI
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00433
– volume: 58
  start-page: 9414
  year: 2019
  end-page: 9418
  ident: CR2
  article-title: A rutile tio electron transport layer for the enhancement of charge collection for efficient perovskite solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902984
– volume: 171
  start-page: 207403
  year: 2022
  ident: CR10
  article-title: Performance enhancement of (FAPbI ) (MAPbBr 3)x perovskite solar cell with an optimized design
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2022.207403
– volume: 7
  start-page: 2683
  year: 2017
  end-page: 2691
  ident: CR17
  article-title: Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.047
– volume: 33
  start-page: 104302
  year: 2022
  ident: CR65
  article-title: First-principles calculations to investigate physical properties of single-cubic (Ba K )(Bi Pb )O3 novel perovskite superconductor
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104302
– volume: 15
  start-page: 505
  year: 2019
  end-page: 524
  ident: CR31
  article-title: Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-019-00163-6
– volume: 11
  start-page: 582
  year: 2015
  end-page: 587
  ident: CR9
  article-title: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3357
– volume: 96
  start-page: 9768
  year: 1992
  end-page: 9774
  ident: CR59
  article-title: General methods for geometry and wave function optimization
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100203a036
– volume: 328
  start-page: 50
  year: 2019
  end-page: 56
  ident: CR25
  article-title: Conduction band engineering in semiconducting oxides (TiO , SnO ): Applications in perovskite photovoltaics and beyond
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.10.065
– volume: 6
  start-page: 15959
  year: 2014
  end-page: 15965
  ident: CR74
  article-title: Perovskite solar cell with an efficient TiO compact film
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503728d
– volume: 42
  start-page: 9524
  year: 2017
  end-page: 9532
  ident: CR77
  article-title: New ultra thin CIGS structure solar cells using SCAPS simulation program
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.099
– volume: 95
  start-page: 176403
  year: 2005
  ident: CR66
  article-title: Spectroscopic observation of bipolaronic point defects in Ba K BiO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.176403
– volume: 36
  start-page: 93
  year: 2017
  end-page: 101
  ident: CR14
  article-title: Influence of natural dye adsorption on the structural, morphological and optical properties of TiO based photoanode of dye-sensitized solar cell
  publication-title: Mater. Sci.
– volume: 517
  start-page: 476
  year: 2015
  end-page: 480
  ident: CR78
  article-title: Compositional engineering of perovskite materials for high-performance solar cells
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 248
  start-page: 137
  year: 2022
  end-page: 148
  ident: CR7
  article-title: Design and numerical investigation of efficient (FAPbI ) (CsSnI ) perovskite solar cell with optimized performances
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.11.012
– volume: 122
  start-page: 14039
  year: 2018
  end-page: 14063
  ident: CR32
  article-title: Inorganic hole transporting materials for stable and high efficiency perovskite solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01177
– volume: 333
  start-page: 836
  year: 1988
  end-page: 838
  ident: CR67
  article-title: Synthesis, structure and superconductivity in the Ba K BiO system
  publication-title: Nature
  doi: 10.1038/333836a0
– volume: 107
  start-page: 13871
  year: 2003
  end-page: 13879
  ident: CR22
  article-title: The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO thin films prepared by liquid phase deposition
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036158y
– volume: 49
  start-page: 3533
  year: 2020
  end-page: 3539
  ident: CR73
  article-title: Influence of electron transport layer (TiO ) thickness and its doping density on the performance of CH NH PbI -based planar perovskite solar cells
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08041-w
– volume: 5
  start-page: 2100120
  year: 2021
  ident: CR79
  article-title: High shunt resistance SnO –PbO electron transport layer for perovskite solar cells used in low lighting applications
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202100120
– volume: 128
  start-page: 2093
  year: 1962
  end-page: 2097
  ident: CR68
  article-title: Wave-number-dependent dielectric function of semiconductors
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2093
– volume: 8
  start-page: 24310
  year: 2016
  end-page: 24314
  ident: CR26
  article-title: Amorphous TiO compact layers via ALD for planar halide perovskite photovoltaics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07658
– volume: 16
  start-page: 5594
  year: 2016
  end-page: 5600
  ident: CR35
  article-title: Role of 4- tert -butylpyridine as a hole transport layer morphological controller in perovskite solar cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02158
– volume: 140
  start-page: 92
  year: 2015
  end-page: 100
  ident: CR82
  article-title: Physics of the temperature coefficients of solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.03.025
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR60
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 361–362
  start-page: 527
  year: 2000
  end-page: 532
  ident: CR55
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 10
  start-page: 16390
  year: 2018
  end-page: 16399
  ident: CR84
  article-title: temperature variation-induced performance decline of perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01033
– volume: 30
  start-page: 1908462
  year: 2020
  ident: CR36
  article-title: Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic-organic dopant-free double hole transporting layers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908462
– volume: 198
  start-page: 454
  year: 2020
  end-page: 460
  ident: CR71
  article-title: Simulated development and optimized performance of CsPbI based all-inorganic perovskite solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.081
– volume: 193
  start-page: 948
  year: 2019
  end-page: 955
  ident: CR58
  article-title: Performance analysis of MAPbI based perovskite solar cells employing diverse charge selective contacts: Simulation study
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.009
– volume: 48
  start-page: 5723
  year: 2019
  end-page: 5733
  ident: CR29
  article-title: CZTSe kesterite as an alternative hole transport layer for MASnI perovskite solar cells
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07374-5
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: CR50
  article-title: First principles methods using CASTEP
  publication-title: Z. Krist. Cryst. Mater.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 11
  start-page: 333
  year: 2003
  end-page: 340
  ident: CR83
  article-title: General temperature dependence of solar cell performance and implications for device modelling
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.496
– volume: 7
  start-page: 5247
  year: 2016
  end-page: 5252
  ident: CR85
  article-title: Temperature dependence of the energy levels of methylammonium lead iodide perovskite from first-principles
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02560
– volume: 196
  start-page: 177
  year: 2020
  end-page: 182
  ident: CR72
  article-title: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.014
– volume: 159
  start-page: 227
  year: 2017
  end-page: 234
  ident: CR5
  article-title: From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.09.022
– volume: 7
  start-page: 43210
  year: 2022
  end-page: 43230
  ident: CR56
  article-title: Effect of various electron and hole transport layers on the performance of CsPbI -based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05912
– volume: 10
  start-page: 14391
  year: 2020
  ident: CR42
  article-title: Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl perovskite under pressure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71223-3
– volume: 14
  start-page: 2717
  year: 2002
  end-page: 2744
  ident: CR51
  article-title: First-principles simulation: Ideas, illustrations and the CASTEP code
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/301
– volume: 62
  start-page: 011002
  issue: 1
  year: 2023
  ident: CR64
  article-title: Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl (A= K, Rb, and Cs)
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/acb09e
– volume: 34
  start-page: 2204380
  year: 2022
  ident: CR75
  article-title: Stabilization of perovskite solar cells: Recent developments and future perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204380
– volume: 9
  start-page: 1625
  year: 2018
  ident: CR76
  article-title: Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04028-8
– volume: 28
  start-page: 2902
  year: 2016
  end-page: 2906
  ident: CR1
  article-title: Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00954
– volume: 10
  start-page: 587
  year: 2016
  end-page: 591
  ident: CR6
  article-title: Lead-free mesoscopic Cs SnI perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201600166
– volume: 27
  start-page: 562
  year: 2015
  end-page: 569
  ident: CR34
  article-title: Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films
  publication-title: Chem. Mater.
  doi: 10.1021/cm504022q
– volume: 12
  start-page: 34850
  year: 2022
  end-page: 34873
  ident: CR80
  article-title: Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs BiAgI -based perovskite solar cells with different charge transport layers
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06734J
– ident: CR48
– volume: 221
  start-page: 99
  year: 2021
  end-page: 108
  ident: CR81
  article-title: Simulation and optimization studies on CsPbI based inorganic perovskite solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.04.030
– volume: 5
  start-page: eaav8925
  year: 2019
  ident: CR13
  article-title: Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8925
– volume: 7
  start-page: 39555
  year: 2017
  ident: CR33
  article-title: Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer
  publication-title: Sci. Rep.
  doi: 10.1038/srep39555
– volume: 162
  start-page: 140
  year: 2018
  end-page: 150
  ident: CR18
  article-title: Influence of total absorbed dose of gamma radiation on optical bandgap and structural properties of Mg-doped zinc oxide
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.02.063
– volume: 126
  start-page: 2184
  year: 2022
  end-page: 2198
  ident: CR39
  article-title: Density functional theory estimate of halide perovskite band gap: When spin orbit coupling helps
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c09594
– volume: 4
  start-page: 20024
  year: 2019
  end-page: 20035
  ident: CR23
  article-title: Study on the property of electron-transport layer in the doped formamidinium lead iodide perovskite based on DFT
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03015
– volume: 12
  start-page: 105317
  year: 2022
  ident: CR28
  article-title: Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi ) based double absorber solar cells to enhance power conversion efficiency
  publication-title: AIP Adv.
  doi: 10.1063/5.0108459
– volume: 118
  start-page: 19655
  year: 2014
  end-page: 19660
  ident: CR62
  article-title: Effective masses and electronic and optical properties of nontoxic MASnX (X = Cl, Br, and I) perovskite structures as solar cell absorber: A theoretical study using HSE06
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506498k
– volume: 11
  start-page: 1218
  year: 2021
  ident: CR70
  article-title: Defect study and modelling of SnX -based perovskite solar cells with SCAPS-1D
  publication-title: Nanomaterials
  doi: 10.3390/nano11051218
– volume: 1209
  start-page: 113624
  year: 2022
  ident: CR47
  article-title: First-principles calculations to investigate structural, electronics, optical and elastic properties of Sn-based inorganic Halide-perovskites CsSnX (X = I, Br, Cl) for solar cell applications
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2022.113624
– volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  ident: CR20
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 23
  start-page: 22184
  year: 2021
  end-page: 22198
  ident: CR41
  article-title: Lead-free CsSnCl perovskite nanocrystals: Rapid synthesis, experimental characterization and DFT simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP02666F
– volume: 44
  start-page: 674
  year: 2015
  end-page: 676
  ident: CR27
  article-title: Surface treatment of the compact TiO layer for efficient planar heterojunction perovskite solar cells
  publication-title: Chem. Lett.
  doi: 10.1246/cl.150068
– volume: 28
  start-page: 4771
  year: 2016
  end-page: 4780
  ident: CR37
  article-title: BaCu Sn(S, Se 4: Earth-abundant chalcogenides for thin-film photovoltaics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01832
– volume: 140
  start-page: 92
  year: 2015
  ident: 28506_CR82
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.03.025
– volume: 11
  start-page: 333
  year: 2003
  ident: 28506_CR83
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.496
– volume: 93
  start-page: 128
  year: 2016
  ident: 28506_CR24
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2016.01.026
– volume: 162
  start-page: 140
  year: 2018
  ident: 28506_CR18
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.02.063
– ident: 28506_CR48
– volume: 136
  start-page: 15379
  year: 2014
  ident: 28506_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508464w
– volume: 35
  start-page: 868
  year: 2017
  ident: 28506_CR16
  publication-title: Mater. Sci.
– volume: 345
  start-page: 295
  year: 2014
  ident: 28506_CR21
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 221
  start-page: 99
  year: 2021
  ident: 28506_CR81
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.04.030
– volume: 95
  start-page: 176403
  year: 2005
  ident: 28506_CR66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.176403
– volume: 10
  start-page: 7817
  year: 2020
  ident: 28506_CR43
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10407K
– volume: 27
  start-page: 562
  year: 2015
  ident: 28506_CR34
  publication-title: Chem. Mater.
  doi: 10.1021/cm504022q
– volume: 42
  start-page: 105977
  year: 2022
  ident: 28506_CR63
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105977
– volume: 118
  start-page: 19655
  year: 2014
  ident: 28506_CR62
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506498k
– volume: 248
  start-page: 137
  year: 2022
  ident: 28506_CR7
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.11.012
– volume: 96
  start-page: 9768
  year: 1992
  ident: 28506_CR59
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100203a036
– volume: 36
  start-page: 93
  year: 2017
  ident: 28506_CR14
  publication-title: Mater. Sci.
– volume: 8
  start-page: e12034
  year: 2022
  ident: 28506_CR30
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12034
– volume: 44
  start-page: 674
  year: 2015
  ident: 28506_CR27
  publication-title: Chem. Lett.
  doi: 10.1246/cl.150068
– volume: 6
  start-page: 15959
  year: 2014
  ident: 28506_CR74
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503728d
– volume: 8
  start-page: 1802139
  year: 2018
  ident: 28506_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802139
– volume: 30
  start-page: 1908462
  year: 2020
  ident: 28506_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908462
– volume: 361–362
  start-page: 527
  year: 2000
  ident: 28506_CR55
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 2
  start-page: 591
  year: 2012
  ident: 28506_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 196
  start-page: 177
  year: 2020
  ident: 28506_CR72
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.014
– volume: 9
  start-page: 1752
  year: 2016
  ident: 28506_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00413J
– volume: 12
  start-page: 105317
  year: 2022
  ident: 28506_CR28
  publication-title: AIP Adv.
  doi: 10.1063/5.0108459
– volume: 193
  start-page: 948
  year: 2019
  ident: 28506_CR58
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.009
– volume: 10
  start-page: 587
  year: 2016
  ident: 28506_CR6
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201600166
– ident: 28506_CR49
  doi: 10.1021/acsaelm.2c01574
– volume: 28
  start-page: 2315
  year: 2016
  ident: 28506_CR3
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00433
– volume: 28
  start-page: 2902
  year: 2016
  ident: 28506_CR1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00954
– volume: 14
  start-page: 2717
  year: 2002
  ident: 28506_CR51
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/301
– volume: 517
  start-page: 476
  year: 2015
  ident: 28506_CR78
  publication-title: Nature
  doi: 10.1038/nature14133
– ident: 28506_CR54
– volume: 49
  start-page: 3533
  year: 2020
  ident: 28506_CR73
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08041-w
– volume: 41
  start-page: 7892
  year: 1990
  ident: 28506_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 7
  start-page: 39555
  year: 2017
  ident: 28506_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/srep39555
– volume: 5
  start-page: eaav8925
  year: 2019
  ident: 28506_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8925
– volume: 171
  start-page: 507
  year: 2018
  ident: 28506_CR15
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.05.032
– volume: 42
  start-page: 9524
  year: 2017
  ident: 28506_CR77
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.099
– volume: 10
  start-page: 16390
  year: 2018
  ident: 28506_CR84
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01033
– volume: 15
  start-page: 505
  year: 2019
  ident: 28506_CR31
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-019-00163-6
– volume: 77
  start-page: 3865
  year: 1996
  ident: 28506_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 1625
  year: 2018
  ident: 28506_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04028-8
– volume: 171
  start-page: 207403
  year: 2022
  ident: 28506_CR10
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2022.207403
– volume: 122
  start-page: 14039
  year: 2018
  ident: 28506_CR32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01177
– volume: 8
  start-page: 24310
  year: 2016
  ident: 28506_CR26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07658
– volume: 44
  start-page: 11602
  year: 2020
  ident: 28506_CR61
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ02316G
– volume: 5
  start-page: 2100120
  year: 2021
  ident: 28506_CR79
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202100120
– volume: 11
  start-page: 21767
  year: 2021
  ident: 28506_CR40
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02457D
– volume: 23
  start-page: 22184
  year: 2021
  ident: 28506_CR41
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP02666F
– volume: 13
  start-page: 5188
  year: 1976
  ident: 28506_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 333
  start-page: 836
  year: 1988
  ident: 28506_CR67
  publication-title: Nature
  doi: 10.1038/333836a0
– volume: 10
  start-page: 1
  year: 2017
  ident: 28506_CR69
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2017/v11i10/110721
– volume: 338
  start-page: 643
  year: 2012
  ident: 28506_CR20
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 4
  start-page: 20024
  year: 2019
  ident: 28506_CR23
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03015
– volume: 107
  start-page: 13871
  year: 2003
  ident: 28506_CR22
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036158y
– volume: 10
  start-page: 43660
  year: 2020
  ident: 28506_CR45
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09270C
– volume: 220
  start-page: 567
  year: 2005
  ident: 28506_CR50
  publication-title: Z. Krist. Cryst. Mater.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 328
  start-page: 50
  year: 2019
  ident: 28506_CR25
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.10.065
– volume: 198
  start-page: 454
  year: 2020
  ident: 28506_CR71
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.081
– volume: 34
  start-page: 2204380
  year: 2022
  ident: 28506_CR75
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204380
– volume: 7
  start-page: 43210
  year: 2022
  ident: 28506_CR56
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05912
– volume: 28
  start-page: 4771
  year: 2016
  ident: 28506_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01832
– volume: 1209
  start-page: 113624
  year: 2022
  ident: 28506_CR47
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2022.113624
– volume: 33
  start-page: 104302
  year: 2022
  ident: 28506_CR65
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104302
– volume: 16
  start-page: 5594
  year: 2016
  ident: 28506_CR35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02158
– volume: 62
  start-page: 011002
  issue: 1
  year: 2023
  ident: 28506_CR64
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/acb09e
– volume: 48
  start-page: 5723
  year: 2019
  ident: 28506_CR29
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07374-5
– volume: 2
  start-page: 3049
  year: 2019
  ident: 28506_CR38
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00473
– volume: 26
  start-page: 4653
  year: 2014
  ident: 28506_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 10
  start-page: 14391
  year: 2020
  ident: 28506_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71223-3
– volume: 128
  start-page: 2093
  year: 1962
  ident: 28506_CR68
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2093
– volume: 11
  start-page: 1218
  year: 2021
  ident: 28506_CR70
  publication-title: Nanomaterials
  doi: 10.3390/nano11051218
– volume: 12
  start-page: 34850
  year: 2022
  ident: 28506_CR80
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06734J
– volume: 58
  start-page: 9414
  year: 2019
  ident: 28506_CR2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902984
– volume: 11
  start-page: 035229
  year: 2021
  ident: 28506_CR44
  publication-title: AIP Adv.
  doi: 10.1063/5.0042847
– volume: 131
  start-page: 175001
  year: 2022
  ident: 28506_CR57
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0088099
– volume: 11
  start-page: 582
  year: 2015
  ident: 28506_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3357
– volume: 7
  start-page: 5247
  year: 2016
  ident: 28506_CR85
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02560
– volume: 126
  start-page: 2184
  year: 2022
  ident: 28506_CR39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c09594
– volume: 7
  start-page: 14025
  year: 2017
  ident: 28506_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13172-y
– volume: 159
  start-page: 227
  year: 2017
  ident: 28506_CR5
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.09.022
– volume: 7
  start-page: 2683
  year: 2017
  ident: 28506_CR17
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.047
SSID ssj0000529419
Score 2.7244596
Snippet Cesium tin chloride (CsSnCl 3 ) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl 3...
Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not...
Abstract Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2521
SubjectTerms 639/301/299/946
639/4077/909/4101/4096/946
639/624/399
639/766/119/1002
639/766/119/995
Capacitance
Cesium
Efficiency
Electron transport
Fabrication
Gallium
Humanities and Social Sciences
Iodides
multidisciplinary
Nickel
Photovoltaic cells
Photovoltaics
Recombination
Science
Science (multidisciplinary)
Simulation
Solar cells
Tin
Titanium dioxide
Tungsten
Vanadium
Vanadium pentoxide
Zinc oxide
Zinc oxides
SummonAdditionalLinks – databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNyJQkJG4gdXE9q7jEyqrVj1UVSWK1Jvl-AErLcmy2VbiR_CfmfE6u0oleuEUKfYqzs7DX2bG3xDyYTrxwUkPEvCCM1kpyzRoBgO0bJ2qbRQhkbieqrOz-vJSn-eAW5_LKgefmBy17xzGyA-4AmSrVK3l5-Uvhl2jMLuaW2jcJfeQJUGk0r3zbYwFs1iy0vmsTCnqgx72KzxTxgXjyNXG-Gg_SrT9I6x5s1LyRro07ULHj_93_U_Io4w_6eFGYZ6SO6F9Rh5sOlL-fk7-HLY0xcWxqp0m7lnatXQoO6RHF6fUtp6ewHVhEa7TdUd9KgNJA_38Z24IRrtIkQyZLXdnE-gCVIrFVQh01n9tZwvBcBv1FOnKr3uMJNMeP7YpJhT6F-Tb8dHF7ITljg3MTSq1ZiHEmkcrahuE8GDqpUO-QVlb7oJUTVBTW4ZQ6SY6KyYBsB843LLRVjbTCEjqJdlruza8IlQEWVoAn4DA4IsnVqA5UsDNRk88584XpBrkZlymM8euGguT0uqiNhtZG5C1SbI2vCAft79Zbsg8bp39BdVhOxOJuNONbvXdZLs2DhZlLQChxsILuqhrq3SllfXoCUUsyP6gDiZ7h97sdKEg77fDYNf439o2dFdpDnapl6IsiBop4WhB45F2_iMxhGuwN0BiBfk0qOvu4f9-4de3r_UNecjRcLAbjtgne-vVVXhL7rvr9bxfvUuW9xfLcDdF
  priority: 102
  providerName: ProQuest
Title An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells
URI https://link.springer.com/article/10.1038/s41598-023-28506-2
https://www.proquest.com/docview/2775877894
https://www.proquest.com/docview/2776515430
https://pubmed.ncbi.nlm.nih.gov/PMC9925818
https://doaj.org/article/c433aa022bae47cf98a79197ad78703f
Volume 13
WOSCitedRecordID wos000984284300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZbu8Fexn4yb13QYG-bqC0pkfXYhpQO2mC2DrInIcsSC2R2idPC_oj9z7uTnbQubHvZiwKRQmzdd75P1uk7Qt5PxpV3sgILVIIzmSnLNCCDAVu2TuU2CB9FXM_UfJ4vFrq4VeoLc8I6eeBu4g6dFMJaiDSl9VK5oHOrdKaVrRBqIuDTF1jPrcVUp-rNtcx0f0omFflhC5EKT5NxwTiqtDE-iERRsH_AMu_mSN7ZKI3x5-QJedwTR3rUXfBTcs_Xz8jDrpTkz-fk11FN4wttTEenUTSWNjXd5gvS2cUZtXVFT-FzZZFn001Dq5i_ETva5Y--khdtAkUVY3Z5c6iArgALLKy9p9P2Sz1dCYbxr6KoM37d4itg2uIqmeJOQPuCfD2ZXUxPWV9qgblxpjbM-5DzYEVuvRAV-GjqUChQ5pY7mPbSq4lNvc90GZwVYw-kDZ6UaamtLCcBKNBLslc3tX9FqPAytcAagTrBUiVkYHIwoZelHlecuyoh2Xbajet1yLEcxsrE_XCRm85UBkxloqkMT8iH3W8uOxWOv44-RmvuRqKCdvwCcGV6XJl_4SohB1ssmN6tW8MVLK-UyrVMyLtdNzgkzq2tfXMVx2B5eSnShKgBhgYXNOypl9-jtLcGRwEKlZCPW7Td_Pmfb_j1_7jhN-QRR-_AYjfigOxt1lf-LXngrjfLdj0i99VCxTYfkf3j2bz4PIouB-05L7BV0O4Xn86Lb78Bp7MwCg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQhe-EYEBhgJnsBaYqd18oDQKJtarasqUaTxFBzH2SqVpDTd0H4Ef4XfyL1u0qqT2NseeKoUO6njnHt9bF-fC_Cm086sCTP8ApkUPAyU5jEigyNb1kZFOpfWibgO1HAYHR_Hoy3405yFobDKxic6R52VhtbId4VCZqtUFIcfZz85ZY2i3dUmhcYSFof24hdO2aoP_c_4fd8KcbA_7vZ4nVWAm3agFtzaPBK5lpG2UmYIR9-QJl4YaWFsqFKrOtq3NojT3GjZtshP0Cn4aazDtJPjaI_PvQHbIYI9asH2qH80-rZa1aF9szCI69M5vox2Kxwh6RSbkFyQOhwXGyOgSxSwwW4vx2Ze2qB1497Bvf-tx-7D3Zphs72lSTyALVs8hFvLnJsXj-D3XsHcyj_F7TOnrsvKgjWBlWx_PGC6yFgPf6eaJiRsUbLMBbq4gmryo055xsqckdwzn61PX7ApGg3P59aybvWl6E4lJ6KQMRJkP69orZxVtJzAaMukegxfr6UvnkCrKAv7FJi0oa-RXiPHxDldHqBthBIvpnE7E8JkHgQNThJTC7ZT3pBp4gIHZJQssZUgthKHrUR48G51z2wpV3Jl7U8Ev1VNkhp3F8r5SVJ7rsRgo7RGqpdqfEGTx5FWcRArnZGvl7kHOw38ktr_Vckaex68XhWj56K-1YUtz1ydDrLpUPoeqA3QbzRos6SYnDoN9Bg9CnJND9435rH-83-_8LOr2_oKbvfGR4Nk0B8ePoc7goyWcv_IHWgt5mf2Bdw054tJNX9Z2z2D79dtOH8Bnm2Wtg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXrkMEBhgJnsBqYqd1_IDQ6FZtWlVVYkh7C44vUKkkpemG9iP4Q_w6znGTVp3E3vbAU6XYSR3nXD77HH-HkDe9rnUmtfAFrOAsTaRmCiSDAVrWRmbaCxdIXIdyNMpOT9V4i_xpz8JgWmVrE4OhtpXBPfIOl4BspcxU2vFNWsR4f_Bx9pNhBSmMtLblNJYicuwufsHyrf5wtA_f-i3ng4OT_iFrKgww003kgjnnM-61yLQTwoJoxgb58dJMc-NSWTjZ07FziSq80aLrAKuAgYgLpdOi58Hzw3NvkJsSSctD2uB4tb-DEbQ0Uc05nVhknRp8JZ5n44Jx5IljfMMXhpIBGzj3cpbmpVBt8ICD-__z3D0g9xrcTfeWivKQbLnyEbm9rMR58Zj83itpiAdgNj8NnLu0KmmbbkkPToZUl5Yewu9U4zKFLipqQ_pLaKgnP5pCaLTyFEmg2Wx9JoNOQZWYnztH-_Xnsj8VDOGDpUjTfl7jDjqtcZOBYiCl3iFfrmUunpDtsirdU0KFS2MNoBuQJ6z0fAIakwq4WKiu5dzYiCStzOSmoXHHaiLTPKQTiCxfylkOcpYHOct5RN6t7pktSUyu7P0JRXHVEwnIw4Vq_i1v7FluYFBaAwAsNLyg8SrTUiVKaoseQPiI7LaimDdWsc7XchiR16tmsGc4t7p01Vno0wOMnYo4InJDATYGtNlSTr4HZnQFdgYQaETet6qy_vN_v_Czq8f6itwBbcmHR6Pj5-QuR_3FgkBil2wv5mfuBbllzheTev4yGABKvl631vwFM1id9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extensive+study+on+multiple+ETL+and+HTL+layers+to+design+and+simulation+of+high-performance+lead-free+CsSnCl3-based+perovskite+solar+cells&rft.jtitle=Scientific+reports&rft.au=M.+Khalid+Hossain&rft.au=G.+F.+Ishraque+Toki&rft.au=Abdul+Kuddus&rft.au=M.+H.+K.+Rubel&rft.date=2023-02-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1038%2Fs41598-023-28506-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c433aa022bae47cf98a79197ad78703f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon