“Alexa, What’s a Phishing Email?”: Training users to spot phishing emails using a voice assistant
This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction...
Saved in:
| Published in: | EURASIP Journal on Information Security Vol. 2022; no. 1; pp. 7 - 13 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
22.11.2022
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 2510-523X, 1687-4161, 2510-523X, 1687-417X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an
interaction-based phishing training
focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts. |
|---|---|
| AbstractList | This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts. This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts. Abstract This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts. This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts. |
| ArticleNumber | 7 |
| Author | Jachim, Peter Sharevski, Filipo |
| Author_xml | – sequence: 1 givenname: Filipo orcidid: 0000-0003-3058-7255 surname: Sharevski fullname: Sharevski, Filipo email: fsharevs@cdm.depaul.edu organization: School of Computing, DePaul University – sequence: 2 givenname: Peter surname: Jachim fullname: Jachim, Peter organization: School of Computing, DePaul University |
| BookMark | eNp9ks1u1DAUhSNUJErpC7CKxIYFgevfJCxAVVWgUiVYFMHOurGdjEeZeLCdtuzmNZDg5eZJyDStoF10Zfve75xrW-dptjf4wWbZcwKvCankm0iYZKIASgsAwlhx-Sjbp4JAISj7vvff_kl2GOMSAGgFVQ1iP-u2m99Hvb3CV_m3Babt5lfMMf-ycHHhhi4_WaHr3283f97m5wHdsKuN0YaYJ5_HtU_5-ha1OzRO3d0B8wvvtM0xRhcTDulZ9rjFPtrDm_Ug-_rh5Pz4U3H2-ePp8dFZoQUpU2GRSsMtb2mtTVXXmlBtWSlMLduSIDRtKaXWQIlsaltKqpEJNAKbBioJnB1kp7Ov8bhU6-BWGH4qj05dF3zoFIbkdG9VLbA1hhtpKs4bUjWl5Uiatm2YLgmYyevd7LUem5U12g4pYH_H9G5ncAvV-QtVy0oArSeDlzcGwf8YbUxq5aK2fY-D9WNUtOQlAOccJvTFPXTpxzBMXzVRrJK1ACYmqpopHXyMwbZKu4TJ-d181ysCapcINSdCTYlQ14lQl5OU3pPevuNBEZtFcYKHzoZ_t3pA9Rcjfc-l |
| CitedBy_id | crossref_primary_10_1142_S0219649225500297 crossref_primary_10_1080_19393555_2025_2469519 |
| Cites_doi | 10.1016/j.ijhcs.2021.102604 10.1145/1978942.1979459 10.1109/MC.2017.3571053 10.1016/j.chb.2016.02.065 10.1007/978-3-030-00470-5_4 10.1145/1357054.1357219 10.1145/3055305.3055310 10.1016/j.ijhcs.2018.06.004 10.1145/3369807 10.1145/3025453.3025831 10.1145/1280680.1280692 10.1145/3290605.3300338 10.1145/3334480.3381435 10.1145/2501604.2501610 10.1109/SP.2019.00016 10.1007/978-3-319-20376-8_4 10.1145/2898375.2898382 10.1109/SP.2016.24 10.1145/3336141 10.1007/978-3-319-11851-2_14 10.1109/MSP.2013.106 10.1145/3173574.3174066 10.1145/3027063.3053246 10.1177/1541931214581306 10.1109/MSP.2013.69 10.1016/j.apergo.2020.103084 10.1093/cybsec/tyv008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s13635-022-00133-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Computer Science Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2510-523X 1687-417X |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_95afdd4d6d844b18b7e4a1bffb3c710d PMC9685029 10_1186_s13635_022_00133_w |
| GroupedDBID | -A0 .4S .DC 2WC 3V. 4.4 40G 5VS 6KP 8FE 8FG 8R4 8R5 AAKPC ABUWG ACGFS ADBBV ADINQ ADMLS AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EDO EIS GNUQQ GROUPED_DOAJ HCIFZ HZ~ K6V K7- KQ8 M0N M~E OK1 P62 PQQKQ PROAC Q2X RHU SEG TR2 TUS U2A AAYXX CITATION OVT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-ea26d4e4f29cd899c12ce375d96f71a0bf766cc0216b9e762ca35ad5abb086043 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2510-523X 1687-4161 |
| IngestDate | Fri Oct 03 12:43:59 EDT 2025 Tue Nov 04 02:07:59 EST 2025 Fri Sep 05 14:00:25 EDT 2025 Sat Oct 11 05:54:22 EDT 2025 Sat Nov 29 03:33:02 EST 2025 Tue Nov 18 20:51:21 EST 2025 Fri Feb 21 02:44:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Phishing training Alexa Voice assistants |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-ea26d4e4f29cd899c12ce375d96f71a0bf766cc0216b9e762ca35ad5abb086043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3058-7255 |
| OpenAccessLink | https://doaj.org/article/95afdd4d6d844b18b7e4a1bffb3c710d |
| PQID | 2738695035 |
| PQPubID | 237294 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_95afdd4d6d844b18b7e4a1bffb3c710d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685029 proquest_miscellaneous_2747004440 proquest_journals_2738695035 crossref_citationtrail_10_1186_s13635_022_00133_w crossref_primary_10_1186_s13635_022_00133_w springer_journals_10_1186_s13635_022_00133_w |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-22 |
| PublicationDateYYYYMMDD | 2022-11-22 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP Journal on Information Security |
| PublicationTitleAbbrev | EURASIP J. on Info. Security |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | D.J. O’keefe, Persuasion: Theory and research (Sage Publications, 2015) WilliamsEJHindsJJoinsonANExploring susceptibility to phishing in the workplaceInt. J. Hum.-Comput. Stud.201812011310.1016/j.ijhcs.2018.06.004 E.M. Redmiles, A.R. Malone, M.L. Mazurek, in 2016 IEEE Symposium on Security and Privacy (SP). I Think They’re Trying to Tell Me Something: Advice Sources and Selection for Digital Security (2016), pp. 272–288 GondreeMPetersonZNJDenningTSecurity through playIEEE Secur. Priv.2013113646710.1109/MSP.2013.69 CaputoDDPfleegerSLFreemanJDJohnsonMEGoing spear phishing: Exploring embedded training and awarenessIEEE Secur. Priv.2014121283810.1109/MSP.2013.106 M. Tabassum, T. Kosiński, A. Frik, N. Malkin, P. Wijesekera, S. Egelman, H.R. Lipford, Investigating users’ preferences and expectations for always-listening voice assistants. 3(4) (2019). https://doi.org/10.1145/3369807 G. Canova, M. Volkamer, C. Bergmann, R. Borza, in Security and Trust Management, ed. by S. Mauw, C.D. Jensen. NoPhish: An Anti-Phishing Education App (Springer International Publishing, Cham, 2014), pp.188–192 H. Hu, G. Wang, in 27th USENIX Security Symposium (USENIX Security 18). End-to-End Measurements of Email Spoofing Attacks (USENIX Association, Baltimore, 2018), pp. 1095–1112. https://www.usenix.org/conference/usenixsecurity18/presentation/hu O. Zielinska, A. Welk, C.B. Mayhorn, E. Murphy-Hill, in Proceedings of the Symposium and Bootcamp on the Science of Security. The Persuasive Phish: Examining the Social Psychological Principles Hidden in Phishing Emails (Association for Computing Machinery, New York, 2016), HotSos ’16, p. 126. https://doi.org/10.1145/2898375.2898382 S. Egelman, L.F. Cranor, J. Hong, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. You’ve Been Warned: An Empirical Study of the Effectiveness of Web Browser Phishing Warnings (Association for Computing Machinery, New York, 2008), CHI ’08, p. 1065–1074. https://doi.org/10.1145/1357054.1357219 N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, F. Qian, in 2019 IEEE Symposium on Security and Privacy (SP). Dangerous Skills: Understanding and Mitigating Security Risks of Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems (2019). pp. 1381–1396. https://doi.org/10.1109/SP.2019.00016 H. Gascon, S. Ullrich, B. Stritter, K. Rieck, in Research in Attacks, Intrusions, and Defenses. ed. by M. Bailey, T. Holz, M. Stamatogiannakis, S. Ioannidis, R. Between, the Lines: Content-Agnostic Detection of Spear-Phishing Emails, (Springer International Publishing, Cham, 2018), pp.69–91 W. Yang, A. Xiong, J. Chen, R.W. Proctor, N. Li, in Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. Use of Phishing Training to Improve Security Warning Compliance: Evidence from a Field Experiment (Association for Computing Machinery, New York, 2017), HoTSoS, p. 52–61. https://doi.org/10.1145/3055305.3055310 C. Gao. Use New Alexa Emotions and Speaking Styles to Create a More Natural and Intuitive Voice Experience (2019). Accessed 26 Nov 2019, https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2019/11/new-alexa-emotions-and-speaking-styles SharevskiFTreebridgePJachimPLiABabinAWestbrookJMeet malexa, alexa’s malicious twin: Malware-induced misperception through intelligent voice assistantsInt J Hum-Comput Stud2020149102604510.1016/j.ijhcs.2021.102604 S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L.F. Cranor, J. Hong, E. Nunge, in Proceedings of the 3rd Symposium on Usable Privacy and Security. Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches People Not to Fall for Phish (Association for Computing Machinery, New York, 2007), SOUPS ’07, p. 88–99. https://doi.org/10.1145/1280680.1280692 ArachchilageNAGLoveSBeznosovKPhishing threat avoidance behaviour: An empirical investigationComput. Hum. Behav.20166018519710.1016/j.chb.2016.02.065 O.A. Zielinska, R. Tembe, K.W. Hong, X. Ge, E. Murphy-Hill, C.B. Mayhorn, One phish, two phish, how to avoid the internet phish: Analysis of training strategies to detect phishing emails. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58(1), 1466–1470 (2014) R. Wash, M.M. Cooper, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Who Provides Phishing Training? Facts, Stories, and People Like Me (Association for Computing Machinery, New York, 2018), CHI ’18. https://doi.org/10.1145/3173574.3174066 ChungHIorgaMVoasJLeeSAlexa, Can I Trust You?Computer201750910010410.1109/MC.2017.3571053 P. Lawson, C.J. Pearson, A. Crowson, C.B. Mayhorn, Email phishing and signal detection: how persuasion principles and personality influence response patterns and accuracy. Appl. Ergon. 86, 103084 (2020). https://doi.org/10.1016/j.apergo.2020.103084. http://www.sciencedirect.com/science/article/pii/S0003687020300478 Z.A. Wen, Z. Lin, R. Chen, E. Andersen, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. What.Hack: Engaging Anti-Phishing Training Through a Role-playing Phishing Simulation Game (ACM, New York, 2019), CHI ’19, pp. 108:1–108:12. https://doi.org/10.1145/3290605.3300338 D. Oliveira, H. Rocha, H. Yang, D. Ellis, S. Dommaraju, M. Muradoglu, D. Weir, A. Soliman, T. Lin, N. Ebner, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Dissecting Spear phishing emails for older vs young adults: On the interplay of weapons of influence and life domains in predicting susceptibility to phishing (2017), ser. CHI ’17, pp. 6412–6424. https://doi.org/10.1145/3025453.3025831 A. Purington, J.G. Taft, S. Sannon, N.N. Bazarova, S.H. Taylor, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. “Alexa is My New BFF”: Social Roles, User Satisfaction, and Personification of the Amazon Echo (Association for Computing Machinery, New York, 2017), CHI EA ’17, p. 2853–2859. https://doi.org/10.1145/3027063.3053246 J. Marsden, Z. Albrecht, P. Berggren, J. Halbert, K. Lemons, A. Moncivais, M. Thompson, in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. Facts and Stories in Phishing Training: A Replication and Extension (Association for Computing Machinery, New York, 2020), CHI EA ’20, p. 1–6. https://doi.org/10.1145/3334480.3381435 RaderEWashRIdentifying patterns in informal sources of security informationJ. Cybersecurity20151112114410.1093/cybsec/tyv008 M. Carlisle, M. Chiaramonte, D. Caswell, in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 15). Using CTFs for an Undergraduate Cyber Education (USENIX Association, Washington, 2015). https://www.usenix.org/conference/3gse15/summit-program/presentation/carlisle T. Lin, D.E. Capecci, D.M. Ellis, H.A. Rocha, S. Dommaraju, D.S. Oliveira, N.C. Ebner, Susceptibility to spear-phishing emails: Effects of internet user demographics and email content. ACM Trans. Comput.-Hum. Interact. 26(5) (2019). https://doi.org/10.1145/3336141 A. Ferreira, L. Coventry, G. Lenzini, in Human Aspects of Information Security, Privacy, and Trust, ed. by T. Tryfonas, I. Askoxylakis. Principles of Persuasion in Social Engineering and Their Use in Phishing (Springer, 2015), pp. 36–47 C. Bravo-Lillo, S. Komanduri, L.F. Cranor, R.W. Reeder, M. Sleeper, J. Downs, S. Schechter, in Proceedings of the Ninth Symposium on Usable Privacy and Security. Your Attention Please: Designing Security-Decision UIs to Make Genuine Risks Harder to Ignore (Association for Computing Machinery, New York, 2013), SOUPS ’13. https://doi.org/10.1145/2501604.2501610 M. Blythe, H. Petrie, J.A. Clark, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. F for Fake: Four Studies on How We Fall for Phish (Association for Computing Machinery, New York, 2011), CHI ’11, p. 3469–3478. https://doi.org/10.1145/1978942.1979459 EJ Williams (133_CR22) 2018; 120 133_CR20 M Gondree (133_CR17) 2013; 11 133_CR21 133_CR23 F Sharevski (133_CR11) 2020; 149 DD Caputo (133_CR26) 2014; 12 NAG Arachchilage (133_CR19) 2016; 60 H Chung (133_CR24) 2017; 50 133_CR14 133_CR15 133_CR16 133_CR18 133_CR30 133_CR31 133_CR4 133_CR10 133_CR3 133_CR2 133_CR12 133_CR1 133_CR8 133_CR7 133_CR6 133_CR5 133_CR9 E Rader (133_CR13) 2015; 1 133_CR25 133_CR27 133_CR28 133_CR29 |
| References_xml | – reference: D.J. O’keefe, Persuasion: Theory and research (Sage Publications, 2015) – reference: P. Lawson, C.J. Pearson, A. Crowson, C.B. Mayhorn, Email phishing and signal detection: how persuasion principles and personality influence response patterns and accuracy. Appl. Ergon. 86, 103084 (2020). https://doi.org/10.1016/j.apergo.2020.103084. http://www.sciencedirect.com/science/article/pii/S0003687020300478 – reference: ArachchilageNAGLoveSBeznosovKPhishing threat avoidance behaviour: An empirical investigationComput. Hum. Behav.20166018519710.1016/j.chb.2016.02.065 – reference: RaderEWashRIdentifying patterns in informal sources of security informationJ. Cybersecurity20151112114410.1093/cybsec/tyv008 – reference: WilliamsEJHindsJJoinsonANExploring susceptibility to phishing in the workplaceInt. J. Hum.-Comput. Stud.201812011310.1016/j.ijhcs.2018.06.004 – reference: J. Marsden, Z. Albrecht, P. Berggren, J. Halbert, K. Lemons, A. Moncivais, M. Thompson, in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. Facts and Stories in Phishing Training: A Replication and Extension (Association for Computing Machinery, New York, 2020), CHI EA ’20, p. 1–6. https://doi.org/10.1145/3334480.3381435 – reference: S. Egelman, L.F. Cranor, J. Hong, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. You’ve Been Warned: An Empirical Study of the Effectiveness of Web Browser Phishing Warnings (Association for Computing Machinery, New York, 2008), CHI ’08, p. 1065–1074. https://doi.org/10.1145/1357054.1357219 – reference: N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, F. Qian, in 2019 IEEE Symposium on Security and Privacy (SP). Dangerous Skills: Understanding and Mitigating Security Risks of Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems (2019). pp. 1381–1396. https://doi.org/10.1109/SP.2019.00016 – reference: M. Tabassum, T. Kosiński, A. Frik, N. Malkin, P. Wijesekera, S. Egelman, H.R. Lipford, Investigating users’ preferences and expectations for always-listening voice assistants. 3(4) (2019). https://doi.org/10.1145/3369807 – reference: E.M. Redmiles, A.R. Malone, M.L. Mazurek, in 2016 IEEE Symposium on Security and Privacy (SP). I Think They’re Trying to Tell Me Something: Advice Sources and Selection for Digital Security (2016), pp. 272–288 – reference: G. Canova, M. Volkamer, C. Bergmann, R. Borza, in Security and Trust Management, ed. by S. Mauw, C.D. Jensen. NoPhish: An Anti-Phishing Education App (Springer International Publishing, Cham, 2014), pp.188–192 – reference: CaputoDDPfleegerSLFreemanJDJohnsonMEGoing spear phishing: Exploring embedded training and awarenessIEEE Secur. Priv.2014121283810.1109/MSP.2013.106 – reference: A. Purington, J.G. Taft, S. Sannon, N.N. Bazarova, S.H. Taylor, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. “Alexa is My New BFF”: Social Roles, User Satisfaction, and Personification of the Amazon Echo (Association for Computing Machinery, New York, 2017), CHI EA ’17, p. 2853–2859. https://doi.org/10.1145/3027063.3053246 – reference: W. Yang, A. Xiong, J. Chen, R.W. Proctor, N. Li, in Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. Use of Phishing Training to Improve Security Warning Compliance: Evidence from a Field Experiment (Association for Computing Machinery, New York, 2017), HoTSoS, p. 52–61. https://doi.org/10.1145/3055305.3055310 – reference: SharevskiFTreebridgePJachimPLiABabinAWestbrookJMeet malexa, alexa’s malicious twin: Malware-induced misperception through intelligent voice assistantsInt J Hum-Comput Stud2020149102604510.1016/j.ijhcs.2021.102604 – reference: C. Gao. Use New Alexa Emotions and Speaking Styles to Create a More Natural and Intuitive Voice Experience (2019). Accessed 26 Nov 2019, https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2019/11/new-alexa-emotions-and-speaking-styles – reference: H. Hu, G. Wang, in 27th USENIX Security Symposium (USENIX Security 18). End-to-End Measurements of Email Spoofing Attacks (USENIX Association, Baltimore, 2018), pp. 1095–1112. https://www.usenix.org/conference/usenixsecurity18/presentation/hu – reference: ChungHIorgaMVoasJLeeSAlexa, Can I Trust You?Computer201750910010410.1109/MC.2017.3571053 – reference: Z.A. Wen, Z. Lin, R. Chen, E. Andersen, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. What.Hack: Engaging Anti-Phishing Training Through a Role-playing Phishing Simulation Game (ACM, New York, 2019), CHI ’19, pp. 108:1–108:12. https://doi.org/10.1145/3290605.3300338 – reference: C. Bravo-Lillo, S. Komanduri, L.F. Cranor, R.W. Reeder, M. Sleeper, J. Downs, S. Schechter, in Proceedings of the Ninth Symposium on Usable Privacy and Security. Your Attention Please: Designing Security-Decision UIs to Make Genuine Risks Harder to Ignore (Association for Computing Machinery, New York, 2013), SOUPS ’13. https://doi.org/10.1145/2501604.2501610 – reference: S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L.F. Cranor, J. Hong, E. Nunge, in Proceedings of the 3rd Symposium on Usable Privacy and Security. Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches People Not to Fall for Phish (Association for Computing Machinery, New York, 2007), SOUPS ’07, p. 88–99. https://doi.org/10.1145/1280680.1280692 – reference: T. Lin, D.E. Capecci, D.M. Ellis, H.A. Rocha, S. Dommaraju, D.S. Oliveira, N.C. Ebner, Susceptibility to spear-phishing emails: Effects of internet user demographics and email content. ACM Trans. Comput.-Hum. Interact. 26(5) (2019). https://doi.org/10.1145/3336141 – reference: O. Zielinska, A. Welk, C.B. Mayhorn, E. Murphy-Hill, in Proceedings of the Symposium and Bootcamp on the Science of Security. The Persuasive Phish: Examining the Social Psychological Principles Hidden in Phishing Emails (Association for Computing Machinery, New York, 2016), HotSos ’16, p. 126. https://doi.org/10.1145/2898375.2898382 – reference: O.A. Zielinska, R. Tembe, K.W. Hong, X. Ge, E. Murphy-Hill, C.B. Mayhorn, One phish, two phish, how to avoid the internet phish: Analysis of training strategies to detect phishing emails. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58(1), 1466–1470 (2014) – reference: D. Oliveira, H. Rocha, H. Yang, D. Ellis, S. Dommaraju, M. Muradoglu, D. Weir, A. Soliman, T. Lin, N. Ebner, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Dissecting Spear phishing emails for older vs young adults: On the interplay of weapons of influence and life domains in predicting susceptibility to phishing (2017), ser. CHI ’17, pp. 6412–6424. https://doi.org/10.1145/3025453.3025831 – reference: M. Carlisle, M. Chiaramonte, D. Caswell, in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 15). Using CTFs for an Undergraduate Cyber Education (USENIX Association, Washington, 2015). https://www.usenix.org/conference/3gse15/summit-program/presentation/carlisle – reference: R. Wash, M.M. Cooper, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Who Provides Phishing Training? Facts, Stories, and People Like Me (Association for Computing Machinery, New York, 2018), CHI ’18. https://doi.org/10.1145/3173574.3174066 – reference: GondreeMPetersonZNJDenningTSecurity through playIEEE Secur. Priv.2013113646710.1109/MSP.2013.69 – reference: H. Gascon, S. Ullrich, B. Stritter, K. Rieck, in Research in Attacks, Intrusions, and Defenses. ed. by M. Bailey, T. Holz, M. Stamatogiannakis, S. Ioannidis, R. Between, the Lines: Content-Agnostic Detection of Spear-Phishing Emails, (Springer International Publishing, Cham, 2018), pp.69–91 – reference: A. Ferreira, L. Coventry, G. Lenzini, in Human Aspects of Information Security, Privacy, and Trust, ed. by T. Tryfonas, I. Askoxylakis. Principles of Persuasion in Social Engineering and Their Use in Phishing (Springer, 2015), pp. 36–47 – reference: M. Blythe, H. Petrie, J.A. Clark, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. F for Fake: Four Studies on How We Fall for Phish (Association for Computing Machinery, New York, 2011), CHI ’11, p. 3469–3478. https://doi.org/10.1145/1978942.1979459 – volume: 149 start-page: 102604 year: 2020 ident: 133_CR11 publication-title: Int J Hum-Comput Stud doi: 10.1016/j.ijhcs.2021.102604 – ident: 133_CR30 doi: 10.1145/1978942.1979459 – volume: 50 start-page: 100 issue: 9 year: 2017 ident: 133_CR24 publication-title: Computer doi: 10.1109/MC.2017.3571053 – volume: 60 start-page: 185 year: 2016 ident: 133_CR19 publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2016.02.065 – ident: 133_CR23 doi: 10.1007/978-3-030-00470-5_4 – ident: 133_CR2 doi: 10.1145/1357054.1357219 – ident: 133_CR7 doi: 10.1145/3055305.3055310 – volume: 120 start-page: 1 year: 2018 ident: 133_CR22 publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2018.06.004 – ident: 133_CR16 doi: 10.1145/3369807 – ident: 133_CR21 doi: 10.1145/3025453.3025831 – ident: 133_CR1 – ident: 133_CR6 doi: 10.1145/1280680.1280692 – ident: 133_CR3 doi: 10.1145/3290605.3300338 – ident: 133_CR12 doi: 10.1145/3334480.3381435 – ident: 133_CR4 doi: 10.1145/2501604.2501610 – ident: 133_CR10 doi: 10.1109/SP.2019.00016 – ident: 133_CR28 doi: 10.1007/978-3-319-20376-8_4 – ident: 133_CR27 doi: 10.1145/2898375.2898382 – ident: 133_CR25 – ident: 133_CR14 doi: 10.1109/SP.2016.24 – ident: 133_CR20 doi: 10.1145/3336141 – ident: 133_CR8 doi: 10.1007/978-3-319-11851-2_14 – ident: 133_CR31 – volume: 12 start-page: 28 issue: 1 year: 2014 ident: 133_CR26 publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2013.106 – ident: 133_CR5 doi: 10.1145/3173574.3174066 – ident: 133_CR15 doi: 10.1145/3027063.3053246 – ident: 133_CR18 – ident: 133_CR9 doi: 10.1177/1541931214581306 – volume: 11 start-page: 64 issue: 3 year: 2013 ident: 133_CR17 publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2013.69 – ident: 133_CR29 doi: 10.1016/j.apergo.2020.103084 – volume: 1 start-page: 121 issue: 1 year: 2015 ident: 133_CR13 publication-title: J. Cybersecurity doi: 10.1093/cybsec/tyv008 |
| SSID | ssj0002808905 ssj0064073 |
| Score | 2.2542534 |
| Snippet | This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to... Abstract This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7 |
| SubjectTerms | Alexa Communications Engineering Cybercrime Effectiveness Engineering Networks Phishing Phishing training Principles Security Science and Technology Signal,Image and Speech Processing Systems and Data Security Training User training Voice Voice assistants |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQxYINb0SgICOxo1bjxPGDHaBWLFDVRUHdWX62RTS3atJ2e38DCX7ufgljJ7k0lYAN23jixJ4Zzxl7PIPQa2ph0VdREQvmg7DoK2KEqImQnhopgzG5SsSXT2JvTx4eqv1rpb5STNiQHniYuG3VmOg989xLxqBDKwIz1MZoawfW0afVF1DPNWfqa94yKqUq10A4nVbV05UZybc7WoOhJSmSPWGgmlzNzFLO3j-DnDcDJm-cmmZjtHsf3R1RJH43_P0DdCu0D9G9qUIDHhX2ETpaLX_kKyxbOOXoXi2_d9jg_eNh4wnvnKbw0dXy51t8MJaKwGnXosP9AoO_2-OziTQk0g6nMPkj6OJyAQsMBuCd4GfbP0afd3cOPnwkY2kF4hoqehJMxT0LLFbKeXC5HK1cqEXjFY-CmtJGwblzAAC4VQEWTGfqxvjGWAs-UMnqJ2ijXbThKcKOS-YBxZXWMhaAILLSW0uFjE2wQhaITjOr3Zh3PJW_-Kaz_yG5HrihgRs6c0NfFejN-p2zIevGX6nfJ4atKVPG7PwA5EiPcqT_JUcF2pzYrUc17nS6t8RVU9ZNgV6tm0EB06mKacPiItEwkbPulQUSMzGZ_dC8pT05zqm8FZdNWakCbU0C9fvjfx7ws_8x4OfoTpUUgFJSVZtooz-_CC_QbXfZn3TnL7M6_QJWDSeM priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIADhQIiUJCRuFGLOPGTG1StOKCqh4J6s_zcFkFSbdL2un8DCf7c_hJsb7KQCpDgGk-c2J4Zf2PPA4AX2ESlL4NEJm4fiARXIc15jbhwWAvhtc5VIj6-5wcH4vhYHg5BYd3o7T5eSWZNncVasFcdruPmiJL3ecItNbq8Dm5QLGTi690hxuFTPi4qhSzXIDjdVNVjuMxv-5lsSTlz_wRuXnWWvHJjmjei_c3_G8JdcGcAnvDNilPugWu-2QKbY1EHOMj4Frj9S4bC-2C2XHzLMTA7MCX5Xi6-dlDDw5PVyRXc-5L8T5eL76_h0VBrAqZjjw72LYwGcw_PRlKfSDuY_OxnsYuLNmooGJF7wq9N_wB82N872n2HhtoMyFLMe-R1xRzxJFTSumizWVxZX3PqJAsc69IEzpi1EUEwI33UuFbXVDuqjYlGVEnqh2CjaRv_CEDLBHERBpbGEOIjQSClMwZzEag3XBQAj8uj7JC4PNXP-KyyASOYWs2rivOq8ryqywK8XL9ztkrb8Vfqt2nV15Qp5XZ-0M5napBgJakOzhHHnCAkcrbhnmhsQjC1jTDNFWB75Bk16IFOpcAnJmlZ0wI8XzdHCU7XMrrx7XmiITyn7SsLwCe8NvmhaUtzepJzgUsmaFnJAuyMHPfz438e8ON_I38CblWJaTFGVbUNNvr5uX8KbtqL_rSbP8vS9wOIdy63 priority: 102 providerName: Springer Nature |
| Title | “Alexa, What’s a Phishing Email?”: Training users to spot phishing emails using a voice assistant |
| URI | https://link.springer.com/article/10.1186/s13635-022-00133-w https://www.proquest.com/docview/2738695035 https://www.proquest.com/docview/2747004440 https://pubmed.ncbi.nlm.nih.gov/PMC9685029 https://doaj.org/article/95afdd4d6d844b18b7e4a1bffb3c710d |
| Volume | 2022 |
| WOSCitedRecordID | wos000886468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2510-523X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808905 issn: 2510-523X databaseCode: C24 dateStart: 20071201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFB9s68GLVVSM1mUEb3ZoZjJf6UVs2SKoyyJVFi9hvrItaLJu0vYm-28I-s_tX-LMbLJlC_biJZDkJZnwPub33rx5D4BXWHujn5c50n76QLS0BCkhMiSkxUpKp1TsEvHlgxiN5GSSj7uAW9OlVfY2MRpqW5sQIz8IW0h4ztKMvZn9QKFrVFhd7VpobIEdTAgOcv5eoOBjca87Abv3-2QkP2hw5mdXFNLXA_DJ0NXGXBRL9m_gzJtZkjeWSuMMdLL7v2N_AO532BO-XQnLQ3DHVY_AdLn4HXe57MNQxnu5-NVABcdnq9gUHH4PGabLxZ9DeNp1k4AhsNHAtobeJW7hrCd1gbSBIZN-6l9xWXsbBD02Dwi1ah-DzyfD0-N3qOu-gAzDokVOEW6poyXJjfVemcHEuEwwm_NSYJXqUnBujMcIXOfO21SjMqYsU1p7Nyml2ROwXdWVewqg4ZJaD_RSrSl1nqCkqdUaC1kyp4VMAO75UJiuNHnokPGtiC6K5MWKd4XnXRF5V1wl4PX6mdmqMMet1EeBvWvKUFQ7Xqjn06LT0SJnqrSWWm4lpV52tXBUYV2WOjMeiNkE7PXsLTpNb4pr3ibg5fq219Gw8KIqV18EGipiYb40AWJDqDYGtHmnOj-L1b5zLllK8gTs9-J3_fF___Cz28f6HNwjQREwRoTsge12fuFegLvmsj1v5gOwJSZyAHaOhqPxJ392TOggBisGUb_88ePPoT-O2de_GvkvtQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwEiUMBIcKJR48SxHSSEeLRq1WW1hwVVXFy_sq0EybJJu-K2fwMJ_gI_an8J42yy1Vaitx64xhPHjr952Z4ZhJ4TDUI_y7NQg_oIaW7jUHGehFxYooRwSjVVIj73eL8vDg6ywRr608XC-GuVnUxsBLUtjd8j3_IhJCxLoyR9M_4e-qpR_nS1K6GxgMW--zEFl616vfcB1vdFHO9sD9_vhm1VgdCkhNehUzGz1NE8zowFb8OQ2LiEpzZjOScq0jlnzBjQfUxnDmSFUUmqbKq0BvM_ogn0ewVdpRScJeCfQfrF-3QMeNX7Cl1cjmBbFUlAm4f-urw3tJJwuqL7mhIBK3bt-VuZ545mG423c-t_-1e30c3WtsZvF8xwB6254i4azWe_miieTezTlM9nPyus8OBosfeGt7_5G7Tz2e9XeNhWy8B-46bCdYnB5a_xuCN1nrTCPlJgBF2cliBjMfge3gIv6nvo06XM7T5aL8rCPUDYMEEtGLKR1pQ6IMhpZLUmXOSp01wEiHTrLk2bet1XAPkqGxdMMLnAigSsyAYrchqgl8t3xovEIxdSv_NwWlL6pOHNg3Iykq0MklmqcmupZVZQCrypuaOK6DzXiQFD0wZoo4OTbCVZJc-wFKBny2aQQf5gSRWuPPE0lDeJB6MA8RUQrwxotaU4PmqymWdMpFGcBWizg_vZx_894YcXj_Upur47_NiTvb3-_iN0I_ZMSEgYxxtovZ6cuMfomjmtj6vJk4aDMTq8bDb4Cxa8h2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtMwGLbGQIgbDgJExgAjwRWzGieO7SAhBGwV06aqFwNN3Bgfu0mQdE22iru-BhK8CI_TJ8FOk06dxO52wW38x4mT7z_Z_wGAF1h5oZ-7HCmvPhBxJkGSsRQxbrDk3ErZdIn4vM8GA354mA_XwJ8uFyaEVXYysRHUptRhj7wXUkhonsVp1nNtWMRwu_92fIJCB6lw0tq101hAZM_-mHr3rXqzu-3_9csk6e8cfPiI2g4DSGeY1cjKhBpiiUtybbznoXGibcoyk1PHsIyVY5Rq7fUgVbn1ckPLNJMmk0p5VyAmqZ_3GrjOvI8ZuGuYfQn-HfV8G_yGLkeH016FU6_ZUQidD0ZXiqYrerBpF7Bi416M0LxwTNtov_6d__m73QW3W5sbvlswyT2wZov7YDSf_Wqye7ZgKF8-n_2soITDo8WeHNz5HiJr57Pfr-FB20UDhg2dCtYlrMZlDccdqQ2kFQwZBCM_xVnpZS_0PkmwzIv6Afh0JWt7CNaLsrCPANSUE-MN3FgpQqwncCQ2SmHGXWYV4xHAHQaEbkuyh84g30TjmnEqFrgRHjeiwY2YRuDV8p7xoiDJpdTvA7SWlKGYeHOhnIxEK5tEnklnDDHUcEI8zypmicTKOZVqb4CaCGx20BKthKvEOa4i8Hw57GVTOHCShS1PAw1hTUHCOAJsBdArL7Q6UhwfNVXOc8qzOMkjsNVB__zh_17wxuXv-gzc9OgX-7uDvcfgVhL4EWOUJJtgvZ6c2ifghj6rj6vJ04aZIfh61VzwF1HFkDc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CAlexa%2C+What%E2%80%99s+a+Phishing+Email%3F%E2%80%9D%3A+Training+users+to+spot+phishing+emails+using+a+voice+assistant&rft.jtitle=EURASIP+Journal+on+Information+Security&rft.au=Sharevski%2C+Filipo&rft.au=Jachim%2C+Peter&rft.date=2022-11-22&rft.pub=Springer+Nature+B.V&rft.issn=1687-4161&rft.eissn=1687-417X&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1186%2Fs13635-022-00133-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2510-523X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2510-523X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2510-523X&client=summon |