“Alexa, What’s a Phishing Email?”: Training users to spot phishing emails using a voice assistant

This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP Journal on Information Security Vol. 2022; no. 1; pp. 7 - 13
Main Authors: Sharevski, Filipo, Jachim, Peter
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 22.11.2022
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2510-523X, 1687-4161, 2510-523X, 1687-417X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.
AbstractList This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.
This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.
Abstract This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.
This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.
ArticleNumber 7
Author Jachim, Peter
Sharevski, Filipo
Author_xml – sequence: 1
  givenname: Filipo
  orcidid: 0000-0003-3058-7255
  surname: Sharevski
  fullname: Sharevski, Filipo
  email: fsharevs@cdm.depaul.edu
  organization: School of Computing, DePaul University
– sequence: 2
  givenname: Peter
  surname: Jachim
  fullname: Jachim, Peter
  organization: School of Computing, DePaul University
BookMark eNp9ks1u1DAUhSNUJErpC7CKxIYFgevfJCxAVVWgUiVYFMHOurGdjEeZeLCdtuzmNZDg5eZJyDStoF10Zfve75xrW-dptjf4wWbZcwKvCankm0iYZKIASgsAwlhx-Sjbp4JAISj7vvff_kl2GOMSAGgFVQ1iP-u2m99Hvb3CV_m3Babt5lfMMf-ycHHhhi4_WaHr3283f97m5wHdsKuN0YaYJ5_HtU_5-ha1OzRO3d0B8wvvtM0xRhcTDulZ9rjFPtrDm_Ug-_rh5Pz4U3H2-ePp8dFZoQUpU2GRSsMtb2mtTVXXmlBtWSlMLduSIDRtKaXWQIlsaltKqpEJNAKbBioJnB1kp7Ov8bhU6-BWGH4qj05dF3zoFIbkdG9VLbA1hhtpKs4bUjWl5Uiatm2YLgmYyevd7LUem5U12g4pYH_H9G5ncAvV-QtVy0oArSeDlzcGwf8YbUxq5aK2fY-D9WNUtOQlAOccJvTFPXTpxzBMXzVRrJK1ACYmqpopHXyMwbZKu4TJ-d181ysCapcINSdCTYlQ14lQl5OU3pPevuNBEZtFcYKHzoZ_t3pA9Rcjfc-l
CitedBy_id crossref_primary_10_1142_S0219649225500297
crossref_primary_10_1080_19393555_2025_2469519
Cites_doi 10.1016/j.ijhcs.2021.102604
10.1145/1978942.1979459
10.1109/MC.2017.3571053
10.1016/j.chb.2016.02.065
10.1007/978-3-030-00470-5_4
10.1145/1357054.1357219
10.1145/3055305.3055310
10.1016/j.ijhcs.2018.06.004
10.1145/3369807
10.1145/3025453.3025831
10.1145/1280680.1280692
10.1145/3290605.3300338
10.1145/3334480.3381435
10.1145/2501604.2501610
10.1109/SP.2019.00016
10.1007/978-3-319-20376-8_4
10.1145/2898375.2898382
10.1109/SP.2016.24
10.1145/3336141
10.1007/978-3-319-11851-2_14
10.1109/MSP.2013.106
10.1145/3173574.3174066
10.1145/3027063.3053246
10.1177/1541931214581306
10.1109/MSP.2013.69
10.1016/j.apergo.2020.103084
10.1093/cybsec/tyv008
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s13635-022-00133-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Computer Science Database


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2510-523X
1687-417X
EndPage 13
ExternalDocumentID oai_doaj_org_article_95afdd4d6d844b18b7e4a1bffb3c710d
PMC9685029
10_1186_s13635_022_00133_w
GroupedDBID -A0
.4S
.DC
2WC
3V.
4.4
40G
5VS
6KP
8FE
8FG
8R4
8R5
AAKPC
ABUWG
ACGFS
ADBBV
ADINQ
ADMLS
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EDO
EIS
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PQQKQ
PROAC
Q2X
RHU
SEG
TR2
TUS
U2A
AAYXX
CITATION
OVT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-ea26d4e4f29cd899c12ce375d96f71a0bf766cc0216b9e762ca35ad5abb086043
IEDL.DBID K7-
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2510-523X
1687-4161
IngestDate Fri Oct 03 12:43:59 EDT 2025
Tue Nov 04 02:07:59 EST 2025
Fri Sep 05 14:00:25 EDT 2025
Sat Oct 11 05:54:22 EDT 2025
Sat Nov 29 03:33:02 EST 2025
Tue Nov 18 20:51:21 EST 2025
Fri Feb 21 02:44:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phishing training
Alexa
Voice assistants
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-ea26d4e4f29cd899c12ce375d96f71a0bf766cc0216b9e762ca35ad5abb086043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3058-7255
OpenAccessLink https://doaj.org/article/95afdd4d6d844b18b7e4a1bffb3c710d
PQID 2738695035
PQPubID 237294
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_95afdd4d6d844b18b7e4a1bffb3c710d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685029
proquest_miscellaneous_2747004440
proquest_journals_2738695035
crossref_citationtrail_10_1186_s13635_022_00133_w
crossref_primary_10_1186_s13635_022_00133_w
springer_journals_10_1186_s13635_022_00133_w
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP Journal on Information Security
PublicationTitleAbbrev EURASIP J. on Info. Security
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References D.J. O’keefe, Persuasion: Theory and research (Sage Publications, 2015)
WilliamsEJHindsJJoinsonANExploring susceptibility to phishing in the workplaceInt. J. Hum.-Comput. Stud.201812011310.1016/j.ijhcs.2018.06.004
E.M. Redmiles, A.R. Malone, M.L. Mazurek, in 2016 IEEE Symposium on Security and Privacy (SP). I Think They’re Trying to Tell Me Something: Advice Sources and Selection for Digital Security (2016), pp. 272–288
GondreeMPetersonZNJDenningTSecurity through playIEEE Secur. Priv.2013113646710.1109/MSP.2013.69
CaputoDDPfleegerSLFreemanJDJohnsonMEGoing spear phishing: Exploring embedded training and awarenessIEEE Secur. Priv.2014121283810.1109/MSP.2013.106
M. Tabassum, T. Kosiński, A. Frik, N. Malkin, P. Wijesekera, S. Egelman, H.R. Lipford, Investigating users’ preferences and expectations for always-listening voice assistants. 3(4) (2019). https://doi.org/10.1145/3369807
G. Canova, M. Volkamer, C. Bergmann, R. Borza, in Security and Trust Management, ed. by S. Mauw, C.D. Jensen. NoPhish: An Anti-Phishing Education App (Springer International Publishing, Cham, 2014), pp.188–192
H. Hu, G. Wang, in 27th USENIX Security Symposium (USENIX Security 18). End-to-End Measurements of Email Spoofing Attacks (USENIX Association, Baltimore, 2018), pp. 1095–1112. https://www.usenix.org/conference/usenixsecurity18/presentation/hu
O. Zielinska, A. Welk, C.B. Mayhorn, E. Murphy-Hill, in Proceedings of the Symposium and Bootcamp on the Science of Security. The Persuasive Phish: Examining the Social Psychological Principles Hidden in Phishing Emails (Association for Computing Machinery, New York, 2016), HotSos ’16, p. 126. https://doi.org/10.1145/2898375.2898382
S. Egelman, L.F. Cranor, J. Hong, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. You’ve Been Warned: An Empirical Study of the Effectiveness of Web Browser Phishing Warnings (Association for Computing Machinery, New York, 2008), CHI ’08, p. 1065–1074. https://doi.org/10.1145/1357054.1357219
N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, F. Qian, in 2019 IEEE Symposium on Security and Privacy (SP). Dangerous Skills: Understanding and Mitigating Security Risks of Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems (2019). pp. 1381–1396. https://doi.org/10.1109/SP.2019.00016
H. Gascon, S. Ullrich, B. Stritter, K. Rieck, in Research in Attacks, Intrusions, and Defenses. ed. by M. Bailey, T. Holz, M. Stamatogiannakis, S. Ioannidis, R. Between, the Lines: Content-Agnostic Detection of Spear-Phishing Emails, (Springer International Publishing, Cham, 2018), pp.69–91
W. Yang, A. Xiong, J. Chen, R.W. Proctor, N. Li, in Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. Use of Phishing Training to Improve Security Warning Compliance: Evidence from a Field Experiment (Association for Computing Machinery, New York, 2017), HoTSoS, p. 52–61. https://doi.org/10.1145/3055305.3055310
C. Gao. Use New Alexa Emotions and Speaking Styles to Create a More Natural and Intuitive Voice Experience (2019). Accessed 26 Nov 2019, https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2019/11/new-alexa-emotions-and-speaking-styles
SharevskiFTreebridgePJachimPLiABabinAWestbrookJMeet malexa, alexa’s malicious twin: Malware-induced misperception through intelligent voice assistantsInt J Hum-Comput Stud2020149102604510.1016/j.ijhcs.2021.102604
S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L.F. Cranor, J. Hong, E. Nunge, in Proceedings of the 3rd Symposium on Usable Privacy and Security. Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches People Not to Fall for Phish (Association for Computing Machinery, New York, 2007), SOUPS ’07, p. 88–99. https://doi.org/10.1145/1280680.1280692
ArachchilageNAGLoveSBeznosovKPhishing threat avoidance behaviour: An empirical investigationComput. Hum. Behav.20166018519710.1016/j.chb.2016.02.065
O.A. Zielinska, R. Tembe, K.W. Hong, X. Ge, E. Murphy-Hill, C.B. Mayhorn, One phish, two phish, how to avoid the internet phish: Analysis of training strategies to detect phishing emails. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58(1), 1466–1470 (2014)
R. Wash, M.M. Cooper, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Who Provides Phishing Training? Facts, Stories, and People Like Me (Association for Computing Machinery, New York, 2018), CHI ’18. https://doi.org/10.1145/3173574.3174066
ChungHIorgaMVoasJLeeSAlexa, Can I Trust You?Computer201750910010410.1109/MC.2017.3571053
P. Lawson, C.J. Pearson, A. Crowson, C.B. Mayhorn, Email phishing and signal detection: how persuasion principles and personality influence response patterns and accuracy. Appl. Ergon. 86, 103084 (2020). https://doi.org/10.1016/j.apergo.2020.103084. http://www.sciencedirect.com/science/article/pii/S0003687020300478
Z.A. Wen, Z. Lin, R. Chen, E. Andersen, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. What.Hack: Engaging Anti-Phishing Training Through a Role-playing Phishing Simulation Game (ACM, New York, 2019), CHI ’19, pp. 108:1–108:12. https://doi.org/10.1145/3290605.3300338
D. Oliveira, H. Rocha, H. Yang, D. Ellis, S. Dommaraju, M. Muradoglu, D. Weir, A. Soliman, T. Lin, N. Ebner, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Dissecting Spear phishing emails for older vs young adults: On the interplay of weapons of influence and life domains in predicting susceptibility to phishing (2017), ser. CHI ’17, pp. 6412–6424. https://doi.org/10.1145/3025453.3025831
A. Purington, J.G. Taft, S. Sannon, N.N. Bazarova, S.H. Taylor, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. “Alexa is My New BFF”: Social Roles, User Satisfaction, and Personification of the Amazon Echo (Association for Computing Machinery, New York, 2017), CHI EA ’17, p. 2853–2859. https://doi.org/10.1145/3027063.3053246
J. Marsden, Z. Albrecht, P. Berggren, J. Halbert, K. Lemons, A. Moncivais, M. Thompson, in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. Facts and Stories in Phishing Training: A Replication and Extension (Association for Computing Machinery, New York, 2020), CHI EA ’20, p. 1–6. https://doi.org/10.1145/3334480.3381435
RaderEWashRIdentifying patterns in informal sources of security informationJ. Cybersecurity20151112114410.1093/cybsec/tyv008
M. Carlisle, M. Chiaramonte, D. Caswell, in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 15). Using CTFs for an Undergraduate Cyber Education (USENIX Association, Washington, 2015). https://www.usenix.org/conference/3gse15/summit-program/presentation/carlisle
T. Lin, D.E. Capecci, D.M. Ellis, H.A. Rocha, S. Dommaraju, D.S. Oliveira, N.C. Ebner, Susceptibility to spear-phishing emails: Effects of internet user demographics and email content. ACM Trans. Comput.-Hum. Interact. 26(5) (2019). https://doi.org/10.1145/3336141
A. Ferreira, L. Coventry, G. Lenzini, in Human Aspects of Information Security, Privacy, and Trust, ed. by T. Tryfonas, I. Askoxylakis. Principles of Persuasion in Social Engineering and Their Use in Phishing (Springer, 2015), pp. 36–47
C. Bravo-Lillo, S. Komanduri, L.F. Cranor, R.W. Reeder, M. Sleeper, J. Downs, S. Schechter, in Proceedings of the Ninth Symposium on Usable Privacy and Security. Your Attention Please: Designing Security-Decision UIs to Make Genuine Risks Harder to Ignore (Association for Computing Machinery, New York, 2013), SOUPS ’13. https://doi.org/10.1145/2501604.2501610
M. Blythe, H. Petrie, J.A. Clark, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. F for Fake: Four Studies on How We Fall for Phish (Association for Computing Machinery, New York, 2011), CHI ’11, p. 3469–3478. https://doi.org/10.1145/1978942.1979459
EJ Williams (133_CR22) 2018; 120
133_CR20
M Gondree (133_CR17) 2013; 11
133_CR21
133_CR23
F Sharevski (133_CR11) 2020; 149
DD Caputo (133_CR26) 2014; 12
NAG Arachchilage (133_CR19) 2016; 60
H Chung (133_CR24) 2017; 50
133_CR14
133_CR15
133_CR16
133_CR18
133_CR30
133_CR31
133_CR4
133_CR10
133_CR3
133_CR2
133_CR12
133_CR1
133_CR8
133_CR7
133_CR6
133_CR5
133_CR9
E Rader (133_CR13) 2015; 1
133_CR25
133_CR27
133_CR28
133_CR29
References_xml – reference: D.J. O’keefe, Persuasion: Theory and research (Sage Publications, 2015)
– reference: P. Lawson, C.J. Pearson, A. Crowson, C.B. Mayhorn, Email phishing and signal detection: how persuasion principles and personality influence response patterns and accuracy. Appl. Ergon. 86, 103084 (2020). https://doi.org/10.1016/j.apergo.2020.103084. http://www.sciencedirect.com/science/article/pii/S0003687020300478
– reference: ArachchilageNAGLoveSBeznosovKPhishing threat avoidance behaviour: An empirical investigationComput. Hum. Behav.20166018519710.1016/j.chb.2016.02.065
– reference: RaderEWashRIdentifying patterns in informal sources of security informationJ. Cybersecurity20151112114410.1093/cybsec/tyv008
– reference: WilliamsEJHindsJJoinsonANExploring susceptibility to phishing in the workplaceInt. J. Hum.-Comput. Stud.201812011310.1016/j.ijhcs.2018.06.004
– reference: J. Marsden, Z. Albrecht, P. Berggren, J. Halbert, K. Lemons, A. Moncivais, M. Thompson, in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. Facts and Stories in Phishing Training: A Replication and Extension (Association for Computing Machinery, New York, 2020), CHI EA ’20, p. 1–6. https://doi.org/10.1145/3334480.3381435
– reference: S. Egelman, L.F. Cranor, J. Hong, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. You’ve Been Warned: An Empirical Study of the Effectiveness of Web Browser Phishing Warnings (Association for Computing Machinery, New York, 2008), CHI ’08, p. 1065–1074. https://doi.org/10.1145/1357054.1357219
– reference: N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, F. Qian, in 2019 IEEE Symposium on Security and Privacy (SP). Dangerous Skills: Understanding and Mitigating Security Risks of Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems (2019). pp. 1381–1396. https://doi.org/10.1109/SP.2019.00016
– reference: M. Tabassum, T. Kosiński, A. Frik, N. Malkin, P. Wijesekera, S. Egelman, H.R. Lipford, Investigating users’ preferences and expectations for always-listening voice assistants. 3(4) (2019). https://doi.org/10.1145/3369807
– reference: E.M. Redmiles, A.R. Malone, M.L. Mazurek, in 2016 IEEE Symposium on Security and Privacy (SP). I Think They’re Trying to Tell Me Something: Advice Sources and Selection for Digital Security (2016), pp. 272–288
– reference: G. Canova, M. Volkamer, C. Bergmann, R. Borza, in Security and Trust Management, ed. by S. Mauw, C.D. Jensen. NoPhish: An Anti-Phishing Education App (Springer International Publishing, Cham, 2014), pp.188–192
– reference: CaputoDDPfleegerSLFreemanJDJohnsonMEGoing spear phishing: Exploring embedded training and awarenessIEEE Secur. Priv.2014121283810.1109/MSP.2013.106
– reference: A. Purington, J.G. Taft, S. Sannon, N.N. Bazarova, S.H. Taylor, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. “Alexa is My New BFF”: Social Roles, User Satisfaction, and Personification of the Amazon Echo (Association for Computing Machinery, New York, 2017), CHI EA ’17, p. 2853–2859. https://doi.org/10.1145/3027063.3053246
– reference: W. Yang, A. Xiong, J. Chen, R.W. Proctor, N. Li, in Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp. Use of Phishing Training to Improve Security Warning Compliance: Evidence from a Field Experiment (Association for Computing Machinery, New York, 2017), HoTSoS, p. 52–61. https://doi.org/10.1145/3055305.3055310
– reference: SharevskiFTreebridgePJachimPLiABabinAWestbrookJMeet malexa, alexa’s malicious twin: Malware-induced misperception through intelligent voice assistantsInt J Hum-Comput Stud2020149102604510.1016/j.ijhcs.2021.102604
– reference: C. Gao. Use New Alexa Emotions and Speaking Styles to Create a More Natural and Intuitive Voice Experience (2019). Accessed 26 Nov 2019, https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2019/11/new-alexa-emotions-and-speaking-styles
– reference: H. Hu, G. Wang, in 27th USENIX Security Symposium (USENIX Security 18). End-to-End Measurements of Email Spoofing Attacks (USENIX Association, Baltimore, 2018), pp. 1095–1112. https://www.usenix.org/conference/usenixsecurity18/presentation/hu
– reference: ChungHIorgaMVoasJLeeSAlexa, Can I Trust You?Computer201750910010410.1109/MC.2017.3571053
– reference: Z.A. Wen, Z. Lin, R. Chen, E. Andersen, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. What.Hack: Engaging Anti-Phishing Training Through a Role-playing Phishing Simulation Game (ACM, New York, 2019), CHI ’19, pp. 108:1–108:12. https://doi.org/10.1145/3290605.3300338
– reference: C. Bravo-Lillo, S. Komanduri, L.F. Cranor, R.W. Reeder, M. Sleeper, J. Downs, S. Schechter, in Proceedings of the Ninth Symposium on Usable Privacy and Security. Your Attention Please: Designing Security-Decision UIs to Make Genuine Risks Harder to Ignore (Association for Computing Machinery, New York, 2013), SOUPS ’13. https://doi.org/10.1145/2501604.2501610
– reference: S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L.F. Cranor, J. Hong, E. Nunge, in Proceedings of the 3rd Symposium on Usable Privacy and Security. Anti-Phishing Phil: The Design and Evaluation of a Game That Teaches People Not to Fall for Phish (Association for Computing Machinery, New York, 2007), SOUPS ’07, p. 88–99. https://doi.org/10.1145/1280680.1280692
– reference: T. Lin, D.E. Capecci, D.M. Ellis, H.A. Rocha, S. Dommaraju, D.S. Oliveira, N.C. Ebner, Susceptibility to spear-phishing emails: Effects of internet user demographics and email content. ACM Trans. Comput.-Hum. Interact. 26(5) (2019). https://doi.org/10.1145/3336141
– reference: O. Zielinska, A. Welk, C.B. Mayhorn, E. Murphy-Hill, in Proceedings of the Symposium and Bootcamp on the Science of Security. The Persuasive Phish: Examining the Social Psychological Principles Hidden in Phishing Emails (Association for Computing Machinery, New York, 2016), HotSos ’16, p. 126. https://doi.org/10.1145/2898375.2898382
– reference: O.A. Zielinska, R. Tembe, K.W. Hong, X. Ge, E. Murphy-Hill, C.B. Mayhorn, One phish, two phish, how to avoid the internet phish: Analysis of training strategies to detect phishing emails. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58(1), 1466–1470 (2014)
– reference: D. Oliveira, H. Rocha, H. Yang, D. Ellis, S. Dommaraju, M. Muradoglu, D. Weir, A. Soliman, T. Lin, N. Ebner, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Dissecting Spear phishing emails for older vs young adults: On the interplay of weapons of influence and life domains in predicting susceptibility to phishing (2017), ser. CHI ’17, pp. 6412–6424. https://doi.org/10.1145/3025453.3025831
– reference: M. Carlisle, M. Chiaramonte, D. Caswell, in 2015 USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 15). Using CTFs for an Undergraduate Cyber Education (USENIX Association, Washington, 2015). https://www.usenix.org/conference/3gse15/summit-program/presentation/carlisle
– reference: R. Wash, M.M. Cooper, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Who Provides Phishing Training? Facts, Stories, and People Like Me (Association for Computing Machinery, New York, 2018), CHI ’18. https://doi.org/10.1145/3173574.3174066
– reference: GondreeMPetersonZNJDenningTSecurity through playIEEE Secur. Priv.2013113646710.1109/MSP.2013.69
– reference: H. Gascon, S. Ullrich, B. Stritter, K. Rieck, in Research in Attacks, Intrusions, and Defenses. ed. by M. Bailey, T. Holz, M. Stamatogiannakis, S. Ioannidis, R. Between, the Lines: Content-Agnostic Detection of Spear-Phishing Emails, (Springer International Publishing, Cham, 2018), pp.69–91
– reference: A. Ferreira, L. Coventry, G. Lenzini, in Human Aspects of Information Security, Privacy, and Trust, ed. by T. Tryfonas, I. Askoxylakis. Principles of Persuasion in Social Engineering and Their Use in Phishing (Springer, 2015), pp. 36–47
– reference: M. Blythe, H. Petrie, J.A. Clark, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. F for Fake: Four Studies on How We Fall for Phish (Association for Computing Machinery, New York, 2011), CHI ’11, p. 3469–3478. https://doi.org/10.1145/1978942.1979459
– volume: 149
  start-page: 102604
  year: 2020
  ident: 133_CR11
  publication-title: Int J Hum-Comput Stud
  doi: 10.1016/j.ijhcs.2021.102604
– ident: 133_CR30
  doi: 10.1145/1978942.1979459
– volume: 50
  start-page: 100
  issue: 9
  year: 2017
  ident: 133_CR24
  publication-title: Computer
  doi: 10.1109/MC.2017.3571053
– volume: 60
  start-page: 185
  year: 2016
  ident: 133_CR19
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2016.02.065
– ident: 133_CR23
  doi: 10.1007/978-3-030-00470-5_4
– ident: 133_CR2
  doi: 10.1145/1357054.1357219
– ident: 133_CR7
  doi: 10.1145/3055305.3055310
– volume: 120
  start-page: 1
  year: 2018
  ident: 133_CR22
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2018.06.004
– ident: 133_CR16
  doi: 10.1145/3369807
– ident: 133_CR21
  doi: 10.1145/3025453.3025831
– ident: 133_CR1
– ident: 133_CR6
  doi: 10.1145/1280680.1280692
– ident: 133_CR3
  doi: 10.1145/3290605.3300338
– ident: 133_CR12
  doi: 10.1145/3334480.3381435
– ident: 133_CR4
  doi: 10.1145/2501604.2501610
– ident: 133_CR10
  doi: 10.1109/SP.2019.00016
– ident: 133_CR28
  doi: 10.1007/978-3-319-20376-8_4
– ident: 133_CR27
  doi: 10.1145/2898375.2898382
– ident: 133_CR25
– ident: 133_CR14
  doi: 10.1109/SP.2016.24
– ident: 133_CR20
  doi: 10.1145/3336141
– ident: 133_CR8
  doi: 10.1007/978-3-319-11851-2_14
– ident: 133_CR31
– volume: 12
  start-page: 28
  issue: 1
  year: 2014
  ident: 133_CR26
  publication-title: IEEE Secur. Priv.
  doi: 10.1109/MSP.2013.106
– ident: 133_CR5
  doi: 10.1145/3173574.3174066
– ident: 133_CR15
  doi: 10.1145/3027063.3053246
– ident: 133_CR18
– ident: 133_CR9
  doi: 10.1177/1541931214581306
– volume: 11
  start-page: 64
  issue: 3
  year: 2013
  ident: 133_CR17
  publication-title: IEEE Secur. Priv.
  doi: 10.1109/MSP.2013.69
– ident: 133_CR29
  doi: 10.1016/j.apergo.2020.103084
– volume: 1
  start-page: 121
  issue: 1
  year: 2015
  ident: 133_CR13
  publication-title: J. Cybersecurity
  doi: 10.1093/cybsec/tyv008
SSID ssj0002808905
ssj0064073
Score 2.2542534
Snippet This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to...
Abstract This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7
SubjectTerms Alexa
Communications Engineering
Cybercrime
Effectiveness
Engineering
Networks
Phishing
Phishing training
Principles
Security Science and Technology
Signal,Image and Speech Processing
Systems and Data Security
Training
User training
Voice
Voice assistants
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQxYINb0SgICOxo1bjxPGDHaBWLFDVRUHdWX62RTS3atJ2e38DCX7ufgljJ7k0lYAN23jixJ4Zzxl7PIPQa2ph0VdREQvmg7DoK2KEqImQnhopgzG5SsSXT2JvTx4eqv1rpb5STNiQHniYuG3VmOg989xLxqBDKwIz1MZoawfW0afVF1DPNWfqa94yKqUq10A4nVbV05UZybc7WoOhJSmSPWGgmlzNzFLO3j-DnDcDJm-cmmZjtHsf3R1RJH43_P0DdCu0D9G9qUIDHhX2ETpaLX_kKyxbOOXoXi2_d9jg_eNh4wnvnKbw0dXy51t8MJaKwGnXosP9AoO_2-OziTQk0g6nMPkj6OJyAQsMBuCd4GfbP0afd3cOPnwkY2kF4hoqehJMxT0LLFbKeXC5HK1cqEXjFY-CmtJGwblzAAC4VQEWTGfqxvjGWAs-UMnqJ2ijXbThKcKOS-YBxZXWMhaAILLSW0uFjE2wQhaITjOr3Zh3PJW_-Kaz_yG5HrihgRs6c0NfFejN-p2zIevGX6nfJ4atKVPG7PwA5EiPcqT_JUcF2pzYrUc17nS6t8RVU9ZNgV6tm0EB06mKacPiItEwkbPulQUSMzGZ_dC8pT05zqm8FZdNWakCbU0C9fvjfx7ws_8x4OfoTpUUgFJSVZtooz-_CC_QbXfZn3TnL7M6_QJWDSeM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIADhQIiUJCRuFGLOPGTG1StOKCqh4J6s_zcFkFSbdL2un8DCf7c_hJsb7KQCpDgGk-c2J4Zf2PPA4AX2ESlL4NEJm4fiARXIc15jbhwWAvhtc5VIj6-5wcH4vhYHg5BYd3o7T5eSWZNncVasFcdruPmiJL3ecItNbq8Dm5QLGTi690hxuFTPi4qhSzXIDjdVNVjuMxv-5lsSTlz_wRuXnWWvHJjmjei_c3_G8JdcGcAnvDNilPugWu-2QKbY1EHOMj4Frj9S4bC-2C2XHzLMTA7MCX5Xi6-dlDDw5PVyRXc-5L8T5eL76_h0VBrAqZjjw72LYwGcw_PRlKfSDuY_OxnsYuLNmooGJF7wq9N_wB82N872n2HhtoMyFLMe-R1xRzxJFTSumizWVxZX3PqJAsc69IEzpi1EUEwI33UuFbXVDuqjYlGVEnqh2CjaRv_CEDLBHERBpbGEOIjQSClMwZzEag3XBQAj8uj7JC4PNXP-KyyASOYWs2rivOq8ryqywK8XL9ztkrb8Vfqt2nV15Qp5XZ-0M5napBgJakOzhHHnCAkcrbhnmhsQjC1jTDNFWB75Bk16IFOpcAnJmlZ0wI8XzdHCU7XMrrx7XmiITyn7SsLwCe8NvmhaUtzepJzgUsmaFnJAuyMHPfz438e8ON_I38CblWJaTFGVbUNNvr5uX8KbtqL_rSbP8vS9wOIdy63
  priority: 102
  providerName: Springer Nature
Title “Alexa, What’s a Phishing Email?”: Training users to spot phishing emails using a voice assistant
URI https://link.springer.com/article/10.1186/s13635-022-00133-w
https://www.proquest.com/docview/2738695035
https://www.proquest.com/docview/2747004440
https://pubmed.ncbi.nlm.nih.gov/PMC9685029
https://doaj.org/article/95afdd4d6d844b18b7e4a1bffb3c710d
Volume 2022
WOSCitedRecordID wos000886468000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2510-523X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808905
  issn: 2510-523X
  databaseCode: C24
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFB9s68GLVVSM1mUEb3ZoZjJf6UVs2SKoyyJVFi9hvrItaLJu0vYm-28I-s_tX-LMbLJlC_biJZDkJZnwPub33rx5D4BXWHujn5c50n76QLS0BCkhMiSkxUpKp1TsEvHlgxiN5GSSj7uAW9OlVfY2MRpqW5sQIz8IW0h4ztKMvZn9QKFrVFhd7VpobIEdTAgOcv5eoOBjca87Abv3-2QkP2hw5mdXFNLXA_DJ0NXGXBRL9m_gzJtZkjeWSuMMdLL7v2N_AO532BO-XQnLQ3DHVY_AdLn4HXe57MNQxnu5-NVABcdnq9gUHH4PGabLxZ9DeNp1k4AhsNHAtobeJW7hrCd1gbSBIZN-6l9xWXsbBD02Dwi1ah-DzyfD0-N3qOu-gAzDokVOEW6poyXJjfVemcHEuEwwm_NSYJXqUnBujMcIXOfO21SjMqYsU1p7Nyml2ROwXdWVewqg4ZJaD_RSrSl1nqCkqdUaC1kyp4VMAO75UJiuNHnokPGtiC6K5MWKd4XnXRF5V1wl4PX6mdmqMMet1EeBvWvKUFQ7Xqjn06LT0SJnqrSWWm4lpV52tXBUYV2WOjMeiNkE7PXsLTpNb4pr3ibg5fq219Gw8KIqV18EGipiYb40AWJDqDYGtHmnOj-L1b5zLllK8gTs9-J3_fF___Cz28f6HNwjQREwRoTsge12fuFegLvmsj1v5gOwJSZyAHaOhqPxJ392TOggBisGUb_88ePPoT-O2de_GvkvtQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwEiUMBIcKJR48SxHSSEeLRq1WW1hwVVXFy_sq0EybJJu-K2fwMJ_gI_an8J42yy1Vaitx64xhPHjr952Z4ZhJ4TDUI_y7NQg_oIaW7jUHGehFxYooRwSjVVIj73eL8vDg6ywRr608XC-GuVnUxsBLUtjd8j3_IhJCxLoyR9M_4e-qpR_nS1K6GxgMW--zEFl616vfcB1vdFHO9sD9_vhm1VgdCkhNehUzGz1NE8zowFb8OQ2LiEpzZjOScq0jlnzBjQfUxnDmSFUUmqbKq0BvM_ogn0ewVdpRScJeCfQfrF-3QMeNX7Cl1cjmBbFUlAm4f-urw3tJJwuqL7mhIBK3bt-VuZ545mG423c-t_-1e30c3WtsZvF8xwB6254i4azWe_miieTezTlM9nPyus8OBosfeGt7_5G7Tz2e9XeNhWy8B-46bCdYnB5a_xuCN1nrTCPlJgBF2cliBjMfge3gIv6nvo06XM7T5aL8rCPUDYMEEtGLKR1pQ6IMhpZLUmXOSp01wEiHTrLk2bet1XAPkqGxdMMLnAigSsyAYrchqgl8t3xovEIxdSv_NwWlL6pOHNg3Iykq0MklmqcmupZVZQCrypuaOK6DzXiQFD0wZoo4OTbCVZJc-wFKBny2aQQf5gSRWuPPE0lDeJB6MA8RUQrwxotaU4PmqymWdMpFGcBWizg_vZx_894YcXj_Upur47_NiTvb3-_iN0I_ZMSEgYxxtovZ6cuMfomjmtj6vJk4aDMTq8bDb4Cxa8h2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtMwGLbGQIgbDgJExgAjwRWzGieO7SAhBGwV06aqFwNN3Bgfu0mQdE22iru-BhK8CI_TJ8FOk06dxO52wW38x4mT7z_Z_wGAF1h5oZ-7HCmvPhBxJkGSsRQxbrDk3ErZdIn4vM8GA354mA_XwJ8uFyaEVXYysRHUptRhj7wXUkhonsVp1nNtWMRwu_92fIJCB6lw0tq101hAZM_-mHr3rXqzu-3_9csk6e8cfPiI2g4DSGeY1cjKhBpiiUtybbznoXGibcoyk1PHsIyVY5Rq7fUgVbn1ckPLNJMmk0p5VyAmqZ_3GrjOvI8ZuGuYfQn-HfV8G_yGLkeH016FU6_ZUQidD0ZXiqYrerBpF7Bi416M0LxwTNtov_6d__m73QW3W5sbvlswyT2wZov7YDSf_Wqye7ZgKF8-n_2soITDo8WeHNz5HiJr57Pfr-FB20UDhg2dCtYlrMZlDccdqQ2kFQwZBCM_xVnpZS_0PkmwzIv6Afh0JWt7CNaLsrCPANSUE-MN3FgpQqwncCQ2SmHGXWYV4xHAHQaEbkuyh84g30TjmnEqFrgRHjeiwY2YRuDV8p7xoiDJpdTvA7SWlKGYeHOhnIxEK5tEnklnDDHUcEI8zypmicTKOZVqb4CaCGx20BKthKvEOa4i8Hw57GVTOHCShS1PAw1hTUHCOAJsBdArL7Q6UhwfNVXOc8qzOMkjsNVB__zh_17wxuXv-gzc9OgX-7uDvcfgVhL4EWOUJJtgvZ6c2ifghj6rj6vJ04aZIfh61VzwF1HFkDc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CAlexa%2C+What%E2%80%99s+a+Phishing+Email%3F%E2%80%9D%3A+Training+users+to+spot+phishing+emails+using+a+voice+assistant&rft.jtitle=EURASIP+Journal+on+Information+Security&rft.au=Sharevski%2C+Filipo&rft.au=Jachim%2C+Peter&rft.date=2022-11-22&rft.pub=Springer+Nature+B.V&rft.issn=1687-4161&rft.eissn=1687-417X&rft.volume=2022&rft.issue=1&rft_id=info:doi/10.1186%2Fs13635-022-00133-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2510-523X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2510-523X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2510-523X&client=summon