Census and evaluation of p53 target genes
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor suppressor function, has led to increasingly...
Saved in:
| Published in: | Oncogene Vol. 36; no. 28; pp. 3943 - 3956 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
13.07.2017
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0950-9232, 1476-5594, 1476-5594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the
TP53
gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. |
|---|---|
| AbstractList | The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53%apos;s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53%apos;s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. Oncogene (2017) 36, 3943-3956; doi: 10.1038/onc.2016.502; published online 13 March 2017 |
| Audience | Academic |
| Author | Fischer, M |
| Author_xml | – sequence: 1 givenname: M orcidid: 0000-0002-3429-1876 surname: Fischer fullname: Fischer, M email: Martin.Fischer@medizin.uni-leipzig.de, Martin_Fischer@dfci.harvard.edu organization: Molecular Oncology, Medical School, University of Leipzig, Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28288132$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kcFrFDEUh4NU7LZ68ywDXhSc9SWZTJJLoSy2CgUveg6ZzMuYMpusk5mC_71Zt9a2VHIIJN_7vbx8J-QopoiEvKawpsDVxxTdmgFt1wLYM7KijWxrIXRzRFagBdSacXZMTnK-BgCpgb0gx0wxpShnK_J-gzEvubKxr_DGjoudQ4pV8tVO8Gq204BzNWDE_JI893bM-Op2PyXfLz5923yur75eftmcX9VOUDnXqLjzqm9733nuOVjlULQNslYx3VPZQ8cEeNdgD5JZRxG85NB0TefAuZafkrND7m7pttg7jPNkR7ObwtZOv0yywTy8ieGHGdKNEYJSxnUJeHcbMKWfC-bZbEN2OI42YlqyoUpKwSRVrKBvH6HXaZliGc9QTRXXuqD_qMGOaEL0qfR1-1Bz3mjFWyGbPbV-giqrx21wxZkP5fxBwZv7g95N-FdOAT4cADelnCf0dwgFs3dvinuzd2-K-4KzR7gL8x-d5SFh_F9RfSjKJTsOON37gaf431IxvmI |
| CitedBy_id | crossref_primary_10_3390_cancers15194816 crossref_primary_10_3390_ijms26094416 crossref_primary_10_1016_j_scitotenv_2024_175007 crossref_primary_10_1111_brv_12562 crossref_primary_10_1016_j_stem_2019_02_019 crossref_primary_10_3390_cancers14184482 crossref_primary_10_1016_j_tranon_2024_102025 crossref_primary_10_1038_s41586_021_04035_8 crossref_primary_10_1182_blood_2024028239 crossref_primary_10_1016_j_drup_2018_05_001 crossref_primary_10_1038_s41417_023_00624_z crossref_primary_10_1126_scitranslmed_abn9155 crossref_primary_10_1002_ijc_31946 crossref_primary_10_1038_s41467_019_10460_1 crossref_primary_10_3390_genes12111691 crossref_primary_10_3892_mco_2019_1926 crossref_primary_10_1016_j_abb_2021_109044 crossref_primary_10_1038_s41388_021_02138_0 crossref_primary_10_3390_cimb46060322 crossref_primary_10_1093_nar_gky487 crossref_primary_10_1002_path_5164 crossref_primary_10_1016_j_ccell_2024_04_009 crossref_primary_10_1038_s41467_024_52862_w crossref_primary_10_56121_2181_3612_2025_2_74_79 crossref_primary_10_15252_msb_20199068 crossref_primary_10_1182_blood_2024027020 crossref_primary_10_1007_s12032_019_1321_x crossref_primary_10_1002_1878_0261_13405 crossref_primary_10_1002_1878_0261_12316 crossref_primary_10_3390_ijms222111828 crossref_primary_10_1007_s10495_019_01578_0 crossref_primary_10_1186_s13062_021_00305_7 crossref_primary_10_1007_s11255_023_03825_5 crossref_primary_10_1016_j_xcrm_2025_101976 crossref_primary_10_1038_s41420_022_01078_2 crossref_primary_10_1158_0008_5472_CAN_17_0949 crossref_primary_10_1038_cdd_2017_174 crossref_primary_10_1038_cdd_2017_172 crossref_primary_10_1186_s12935_019_0768_3 crossref_primary_10_1038_s41598_019_55831_2 crossref_primary_10_1038_s41598_023_43121_x crossref_primary_10_3390_cancers13133344 crossref_primary_10_3390_cancers15143593 crossref_primary_10_1186_s12979_019_0161_z crossref_primary_10_3390_ijms23063092 crossref_primary_10_1038_s41419_021_04202_9 crossref_primary_10_1126_science_adg4521 crossref_primary_10_1186_s13059_025_03667_7 crossref_primary_10_3389_fphar_2020_01211 crossref_primary_10_3390_cancers13194850 crossref_primary_10_1007_s00018_021_04004_4 crossref_primary_10_1038_s41467_020_16050_w crossref_primary_10_1063_5_0225166 crossref_primary_10_3390_cancers14215176 crossref_primary_10_3390_genes12111675 crossref_primary_10_3389_fcell_2021_695311 crossref_primary_10_3389_fcell_2023_1083401 crossref_primary_10_1016_j_blre_2021_100904 crossref_primary_10_1016_j_cbi_2022_109881 crossref_primary_10_1158_1078_0432_CCR_25_0244 crossref_primary_10_1016_j_cbi_2021_109683 crossref_primary_10_1038_s41598_018_22345_2 crossref_primary_10_3389_fimmu_2021_746017 crossref_primary_10_1038_s41368_021_00145_1 crossref_primary_10_1038_s41388_019_1109_7 crossref_primary_10_1126_science_aaz2740 crossref_primary_10_1186_s12967_017_1297_2 crossref_primary_10_1080_17474086_2024_2429604 crossref_primary_10_1016_j_trim_2022_101655 crossref_primary_10_1038_s41417_023_00634_x crossref_primary_10_1038_s41388_023_02743_1 crossref_primary_10_1038_s41467_022_32680_8 crossref_primary_10_1261_rna_080561_125 crossref_primary_10_1007_s00018_024_05154_x crossref_primary_10_1016_j_gene_2018_08_048 crossref_primary_10_1002_ctm2_1149 crossref_primary_10_1016_j_mad_2020_111264 crossref_primary_10_1038_s41419_021_04224_3 crossref_primary_10_3390_biomedicines11041091 crossref_primary_10_3390_biomedicines12071388 crossref_primary_10_3390_cells10040889 crossref_primary_10_1016_j_gene_2021_145892 crossref_primary_10_3892_ijo_2018_4289 crossref_primary_10_1002_smll_202308383 crossref_primary_10_1016_j_jconrel_2017_11_004 crossref_primary_10_1007_s10637_019_00848_7 crossref_primary_10_3390_pharmaceutics17040471 crossref_primary_10_1016_j_plipres_2019_100992 crossref_primary_10_1002_1878_0261_70006 crossref_primary_10_1038_s41586_025_09424_x crossref_primary_10_1038_s41598_022_23802_9 crossref_primary_10_1155_2018_1027453 crossref_primary_10_1016_j_exer_2021_108910 crossref_primary_10_1038_s41418_024_01259_9 crossref_primary_10_1158_2159_8290_CD_22_1315 crossref_primary_10_1002_jcp_28260 crossref_primary_10_1093_nar_gkad718 crossref_primary_10_3390_biom12030453 crossref_primary_10_3390_cancers11010003 crossref_primary_10_3390_ijms22179307 crossref_primary_10_3390_cancers12061659 crossref_primary_10_1038_s41418_025_01513_8 crossref_primary_10_1093_carcin_bgy158 crossref_primary_10_1007_s12031_019_01329_5 crossref_primary_10_3389_fgene_2022_913030 crossref_primary_10_1016_j_tiv_2022_105485 crossref_primary_10_1038_s41523_019_0143_5 crossref_primary_10_1007_s00204_021_02979_4 crossref_primary_10_3390_cancers12082222 crossref_primary_10_1002_ctm2_70461 crossref_primary_10_1158_0008_5472_CAN_22_1638 crossref_primary_10_3390_cells11050808 crossref_primary_10_1186_s12864_019_6155_6 crossref_primary_10_1016_j_arr_2022_101634 crossref_primary_10_1016_j_trsl_2021_01_008 crossref_primary_10_1038_s41467_020_17551_4 crossref_primary_10_1186_s13046_019_1403_9 crossref_primary_10_1371_journal_pgen_1007746 crossref_primary_10_1016_j_ajpath_2019_10_019 crossref_primary_10_3389_fonc_2021_751784 crossref_primary_10_3389_fnagi_2022_933015 crossref_primary_10_1093_jb_mvz075 crossref_primary_10_1093_nar_gkaa666 crossref_primary_10_1038_s41598_018_35943_x crossref_primary_10_1016_j_bbcan_2018_06_001 crossref_primary_10_1080_15368378_2022_2073547 crossref_primary_10_1038_s41598_020_59340_5 crossref_primary_10_1038_s41418_022_00988_z crossref_primary_10_3390_antiox12061255 crossref_primary_10_3390_cancers12113154 crossref_primary_10_3390_ph15111318 crossref_primary_10_3389_fimmu_2021_776879 crossref_primary_10_1002_cbin_11761 crossref_primary_10_1080_17474086_2024_2402283 crossref_primary_10_1186_s12985_023_02203_y crossref_primary_10_1016_j_envpol_2021_117103 crossref_primary_10_1093_nar_gkab526 crossref_primary_10_1016_j_canlet_2022_215924 crossref_primary_10_1016_j_isci_2025_111853 crossref_primary_10_1080_10409238_2017_1360836 crossref_primary_10_1136_jitc_2022_005068 crossref_primary_10_1016_j_canlet_2022_215804 crossref_primary_10_1038_s41389_020_0240_1 crossref_primary_10_1073_pnas_2317735121 crossref_primary_10_3389_fmicb_2017_02250 crossref_primary_10_3390_cancers16112123 crossref_primary_10_3390_ijms252212307 crossref_primary_10_1038_s41467_018_07884_6 crossref_primary_10_1186_s12979_023_00373_5 crossref_primary_10_3390_ijms22179558 crossref_primary_10_3389_fcell_2022_818744 crossref_primary_10_1016_j_aca_2019_07_048 crossref_primary_10_1038_s41594_025_01597_3 crossref_primary_10_1186_s13046_019_1404_8 crossref_primary_10_1039_D4BM01684J crossref_primary_10_1038_s41418_025_01549_w crossref_primary_10_1016_j_gene_2024_148218 crossref_primary_10_1186_s13059_018_1576_0 crossref_primary_10_1038_s42003_020_0975_4 crossref_primary_10_1158_1078_0432_CCR_17_2410 crossref_primary_10_3389_fonc_2020_593383 crossref_primary_10_3390_molecules25040946 crossref_primary_10_51847_L9JzM6cMVp crossref_primary_10_1016_j_fct_2020_111158 crossref_primary_10_1038_s41418_021_00738_7 crossref_primary_10_1038_s41587_021_01160_7 crossref_primary_10_1016_j_aquatox_2020_105719 crossref_primary_10_3390_cancers16061091 crossref_primary_10_1038_s41598_024_67810_3 crossref_primary_10_1038_s44318_024_00189_z crossref_primary_10_3390_cancers16091639 crossref_primary_10_1016_j_talanta_2019_05_087 crossref_primary_10_1073_pnas_1721764115 crossref_primary_10_1002_1873_3468_12968 crossref_primary_10_1080_15384101_2022_2041954 crossref_primary_10_1038_s41467_024_46666_1 crossref_primary_10_1371_journal_pbio_3001364 crossref_primary_10_1038_s41420_023_01378_1 crossref_primary_10_1002_1878_0261_13819 crossref_primary_10_1186_s13059_018_1466_5 crossref_primary_10_15252_embj_2021108946 crossref_primary_10_1186_s12885_022_10115_3 crossref_primary_10_3389_fonc_2021_768493 crossref_primary_10_3390_cancers15041162 crossref_primary_10_1186_s13058_019_1101_8 crossref_primary_10_1007_s00262_020_02511_0 crossref_primary_10_1002_jbt_23316 crossref_primary_10_1002_rmv_2561 crossref_primary_10_1038_s41418_023_01113_4 crossref_primary_10_1016_j_fmre_2025_06_011 crossref_primary_10_1155_2020_8587458 crossref_primary_10_1158_2159_8290_CD_24_1421 crossref_primary_10_1182_blood_2020010400 crossref_primary_10_1080_07391102_2020_1839559 crossref_primary_10_5812_ijcm_133155 crossref_primary_10_1093_toxsci_kfaa026 crossref_primary_10_1016_j_biopha_2022_113992 crossref_primary_10_1038_s41388_020_1361_x crossref_primary_10_1111_cas_15991 crossref_primary_10_18632_oncotarget_28690 crossref_primary_10_1016_j_biocel_2025_106864 crossref_primary_10_1002_jcp_31180 crossref_primary_10_3390_molecules23061479 crossref_primary_10_3390_cancers13184681 crossref_primary_10_1371_journal_pgen_1011474 crossref_primary_10_1038_s41586_019_0899_7 crossref_primary_10_1016_j_celrep_2023_112882 crossref_primary_10_1038_s41388_019_0706_9 crossref_primary_10_1038_s41467_018_06650_y crossref_primary_10_1002_advs_202402258 crossref_primary_10_1182_blood_2023021581 crossref_primary_10_7554_eLife_90683_3 crossref_primary_10_1096_fj_201802439RR crossref_primary_10_1101_gad_337683_120 crossref_primary_10_1186_s10020_025_01141_5 crossref_primary_10_1038_s41467_025_57229_3 crossref_primary_10_1186_s12929_019_0586_x crossref_primary_10_1155_2021_5537737 crossref_primary_10_1016_j_lfs_2022_120911 crossref_primary_10_1007_s10637_019_00813_4 crossref_primary_10_1016_j_bbrc_2025_151571 crossref_primary_10_15252_embr_201949269 crossref_primary_10_3390_biom10020307 crossref_primary_10_1371_journal_pcbi_1010264 crossref_primary_10_3390_ijms20153681 crossref_primary_10_1016_j_biochi_2021_06_012 crossref_primary_10_1038_s41388_022_02235_8 crossref_primary_10_1093_nar_gkab575 crossref_primary_10_1002_jcb_27408 crossref_primary_10_1182_bloodadvances_2021005360 crossref_primary_10_1016_j_oooo_2020_11_004 crossref_primary_10_1038_s41388_022_02486_5 crossref_primary_10_3892_ol_2019_10574 crossref_primary_10_1016_j_cellsig_2020_109552 crossref_primary_10_1038_s41594_023_01092_7 crossref_primary_10_1186_s12859_021_04230_4 crossref_primary_10_1016_j_molcel_2024_01_008 crossref_primary_10_1371_journal_pone_0287132 crossref_primary_10_1038_s41467_021_25122_4 crossref_primary_10_26508_lsa_202402835 crossref_primary_10_7554_eLife_90683 crossref_primary_10_3389_fpubh_2020_594789 crossref_primary_10_26508_lsa_202201680 crossref_primary_10_1016_j_devcel_2022_06_015 crossref_primary_10_1016_j_semcancer_2018_08_003 crossref_primary_10_1073_pnas_1909393116 crossref_primary_10_1038_s41418_022_01085_x crossref_primary_10_1016_j_lfs_2018_07_035 crossref_primary_10_1016_j_jmb_2025_169436 crossref_primary_10_1038_s41588_021_00893_0 crossref_primary_10_1038_s41598_018_22613_1 crossref_primary_10_7554_eLife_77357 crossref_primary_10_1371_journal_pone_0194344 crossref_primary_10_1038_s41598_020_70412_4 crossref_primary_10_1016_j_bbcan_2024_189111 crossref_primary_10_1155_2019_7959573 crossref_primary_10_1182_blood_2024027171 crossref_primary_10_1186_s12885_024_13280_9 crossref_primary_10_1080_10408444_2023_2264327 crossref_primary_10_1111_php_13279 crossref_primary_10_3390_genes11121528 crossref_primary_10_1080_14737159_2019_1563484 crossref_primary_10_1016_j_celrep_2023_112332 crossref_primary_10_1186_s13578_021_00571_y crossref_primary_10_1038_s41556_024_01431_w crossref_primary_10_3390_ph15121510 crossref_primary_10_1016_j_jbc_2024_107126 crossref_primary_10_1016_j_biopha_2024_117796 crossref_primary_10_1093_nar_gkaa147 crossref_primary_10_3892_mmr_2019_10108 crossref_primary_10_1016_j_phymed_2021_153534 crossref_primary_10_1152_ajplung_00538_2017 crossref_primary_10_3390_ijms19030921 crossref_primary_10_1186_s13039_019_0468_7 crossref_primary_10_1038_s41467_019_14151_9 crossref_primary_10_1186_s12885_024_13009_8 crossref_primary_10_1016_j_yexcr_2022_113412 crossref_primary_10_1017_erm_2020_3 crossref_primary_10_1096_fj_202100638R crossref_primary_10_1134_S2079086422040028 crossref_primary_10_1242_jcs_260918 crossref_primary_10_3390_biom12040548 crossref_primary_10_1016_j_molmet_2022_101524 crossref_primary_10_3390_ani13091520 crossref_primary_10_1080_09603123_2020_1820453 crossref_primary_10_3390_cancers11121977 crossref_primary_10_1002_adbi_202000030 crossref_primary_10_1038_s41587_023_01949_8 crossref_primary_10_1074_jbc_RA119_007965 crossref_primary_10_12688_f1000research_12682_1 crossref_primary_10_1038_s41594_022_00790_y crossref_primary_10_1038_s41598_020_58267_1 crossref_primary_10_1016_j_biopha_2018_10_155 crossref_primary_10_3390_cancers13153876 crossref_primary_10_1038_s41598_021_91023_7 crossref_primary_10_3390_biom10030420 crossref_primary_10_3390_ijms20246257 crossref_primary_10_1038_s41598_019_44496_6 crossref_primary_10_1016_j_isci_2025_112558 crossref_primary_10_3389_fcell_2021_701986 crossref_primary_10_1016_j_molcel_2019_01_033 crossref_primary_10_1080_15384101_2019_1593643 crossref_primary_10_1080_10409238_2024_2344465 crossref_primary_10_1016_j_cllc_2023_12_004 crossref_primary_10_1186_s12885_020_07210_8 crossref_primary_10_1182_blood_2021012734 crossref_primary_10_1016_j_immuni_2025_06_005 crossref_primary_10_3390_e24101402 crossref_primary_10_1101_gad_347542_120 crossref_primary_10_1088_1572_9494_abd84c crossref_primary_10_1016_j_pharmthera_2021_107881 crossref_primary_10_1038_s44319_024_00123_8 crossref_primary_10_1186_s12986_017_0212_4 crossref_primary_10_15252_embj_2022111133 crossref_primary_10_1016_j_devcel_2024_11_017 crossref_primary_10_1016_j_ejmech_2018_04_035 crossref_primary_10_1016_j_yexcr_2023_113656 crossref_primary_10_1016_j_str_2018_06_006 crossref_primary_10_1016_j_taap_2022_116037 crossref_primary_10_1158_2159_8290_CD_19_0125 crossref_primary_10_1038_s41598_021_93506_z crossref_primary_10_1038_s41388_022_02291_0 crossref_primary_10_1073_pnas_2408889121 crossref_primary_10_1186_s13059_025_03682_8 crossref_primary_10_1038_s42003_020_0836_1 crossref_primary_10_1016_j_immuni_2019_08_009 crossref_primary_10_3389_fcell_2021_678524 crossref_primary_10_1016_j_tig_2022_06_012 crossref_primary_10_1038_s41467_019_10411_w crossref_primary_10_1038_s41467_021_25359_z crossref_primary_10_1016_j_bbrc_2022_07_022 crossref_primary_10_1038_s41419_024_06783_7 crossref_primary_10_1016_j_bbalip_2018_07_011 crossref_primary_10_3390_ijms25137498 crossref_primary_10_1111_cbdd_13694 crossref_primary_10_3390_biomedicines9040388 crossref_primary_10_1038_s41419_022_05431_2 crossref_primary_10_1007_s00204_021_03014_2 crossref_primary_10_3389_fnmol_2018_00130 crossref_primary_10_3390_ijms26073185 crossref_primary_10_1016_j_yexcr_2017_08_010 crossref_primary_10_1186_s12964_024_01863_9 crossref_primary_10_1007_s13353_024_00883_y crossref_primary_10_1093_nar_gkac015 crossref_primary_10_3389_fimmu_2022_943090 crossref_primary_10_3389_fphar_2018_01367 crossref_primary_10_1016_j_yexcr_2022_113210 crossref_primary_10_1038_s41419_023_06281_2 crossref_primary_10_1111_bcpt_14111 crossref_primary_10_1016_j_jes_2024_05_036 crossref_primary_10_3390_cancers16051000 crossref_primary_10_1016_j_isci_2025_112584 crossref_primary_10_1158_0008_5472_CAN_18_3066 crossref_primary_10_1038_s41580_019_0110_x crossref_primary_10_1038_d41586_022_00566_w crossref_primary_10_7554_eLife_70429 crossref_primary_10_3390_cancers13092073 crossref_primary_10_1002_ijc_33594 crossref_primary_10_1038_s41467_024_47837_w crossref_primary_10_1002_cam4_71032 crossref_primary_10_1016_j_phrs_2020_105179 crossref_primary_10_1038_s41598_017_02831_9 crossref_primary_10_1089_cbr_2025_0078 crossref_primary_10_1002_dvdy_656 crossref_primary_10_1007_s11060_017_2518_5 crossref_primary_10_1007_s11262_020_01813_w crossref_primary_10_1038_s41419_019_1774_z crossref_primary_10_1002_cam4_2507 crossref_primary_10_1038_s41588_024_02000_5 crossref_primary_10_1093_toxsci_kfy128 crossref_primary_10_3390_ijms241310742 crossref_primary_10_1007_s12010_023_04468_z crossref_primary_10_1016_j_neo_2019_03_011 crossref_primary_10_1038_s44318_025_00402_7 crossref_primary_10_1038_s41467_020_20378_8 crossref_primary_10_3389_fcell_2021_624933 crossref_primary_10_1093_nar_gky720 crossref_primary_10_1093_mtomcs_mfaf025 crossref_primary_10_1111_febs_15767 crossref_primary_10_1016_j_ecoenv_2021_112230 crossref_primary_10_1038_s41588_023_01480_1 crossref_primary_10_3390_cancers13092125 crossref_primary_10_1093_nar_gkaf465 crossref_primary_10_7717_peerj_5203 crossref_primary_10_3390_ijms26125710 crossref_primary_10_1182_blood_2021012805 crossref_primary_10_1002_1878_0261_13187 crossref_primary_10_1016_j_advnut_2023_05_014 crossref_primary_10_1038_s41389_019_0141_3 crossref_primary_10_1073_pnas_1810582115 crossref_primary_10_1186_s12967_025_06912_6 crossref_primary_10_3390_ijms241310870 crossref_primary_10_1007_s00280_021_04337_8 crossref_primary_10_1093_toxres_tfad120 crossref_primary_10_1002_1878_0261_13060 crossref_primary_10_1016_j_cell_2017_08_028 crossref_primary_10_1016_j_jid_2024_02_009 crossref_primary_10_1038_s42255_024_01060_5 crossref_primary_10_1371_journal_pcbi_1008898 crossref_primary_10_1016_j_bbrc_2024_149789 crossref_primary_10_1038_s41419_021_03638_3 crossref_primary_10_3390_cancers14020459 crossref_primary_10_3389_fcell_2020_00498 crossref_primary_10_1186_s13046_019_1137_8 crossref_primary_10_3390_ijms21041346 crossref_primary_10_1007_s12031_019_01453_2 crossref_primary_10_1093_gpbjnl_qzae064 crossref_primary_10_1038_s41525_020_00159_4 crossref_primary_10_1096_fj_201900943R crossref_primary_10_15252_msb_202211006 crossref_primary_10_1016_j_clml_2023_10_006 crossref_primary_10_3390_cancers14194549 crossref_primary_10_1016_j_jid_2023_02_043 crossref_primary_10_1016_j_fbio_2024_105059 crossref_primary_10_1038_s41588_024_02025_w crossref_primary_10_1038_s41419_021_03736_2 crossref_primary_10_3892_ol_2021_12487 crossref_primary_10_1002_biot_202200029 crossref_primary_10_1016_j_archoralbio_2017_12_029 crossref_primary_10_1038_s41388_019_1133_7 crossref_primary_10_1038_s41390_024_03071_0 crossref_primary_10_1111_cas_15947 crossref_primary_10_1016_j_ydbio_2019_01_011 crossref_primary_10_1038_s41598_018_20466_2 crossref_primary_10_1093_toxsci_kfac131 crossref_primary_10_3390_ani13091499 crossref_primary_10_1038_s41467_022_35089_5 crossref_primary_10_1016_j_fsi_2024_110078 crossref_primary_10_3390_biology14010026 crossref_primary_10_1038_s41467_020_20783_z crossref_primary_10_1016_j_neo_2021_01_004 crossref_primary_10_1089_hum_2019_305 crossref_primary_10_1158_1078_0432_CCR_20_2272 crossref_primary_10_1038_s41598_020_73376_7 crossref_primary_10_1093_nar_gkac053 crossref_primary_10_1093_nar_gkab084 crossref_primary_10_1016_j_leukres_2019_106288 crossref_primary_10_1200_EDBK_25_473616 crossref_primary_10_1038_s41419_019_1521_5 crossref_primary_10_1016_j_mod_2018_05_007 crossref_primary_10_1038_s41420_019_0211_5 crossref_primary_10_1038_s41420_024_02149_2 crossref_primary_10_1182_blood_2023020731 crossref_primary_10_3390_molecules29225315 crossref_primary_10_1038_s41388_018_0478_7 crossref_primary_10_1101_gr_220533_117 crossref_primary_10_1016_j_cellsig_2019_109508 crossref_primary_10_1007_s00018_022_04345_8 crossref_primary_10_1080_21541264_2025_2452711 crossref_primary_10_1093_toxsci_kfab152 crossref_primary_10_1177_1010428317714634 crossref_primary_10_15252_msb_20209522 crossref_primary_10_3390_cells13050440 crossref_primary_10_7554_eLife_63266 crossref_primary_10_1038_s44319_024_00343_y crossref_primary_10_3389_fimmu_2022_841045 crossref_primary_10_1038_s41594_024_01456_7 crossref_primary_10_3389_fphar_2022_974468 crossref_primary_10_1016_j_bcp_2020_113922 crossref_primary_10_1016_j_cbi_2022_110257 crossref_primary_10_3390_cancers16050882 crossref_primary_10_1021_jacs_3c04640 crossref_primary_10_1007_s12268_024_2084_2 crossref_primary_10_3390_ph14040358 crossref_primary_10_1038_s41594_020_0372_1 crossref_primary_10_3390_biomedicines10071490 crossref_primary_10_1038_s41408_022_00664_y crossref_primary_10_1016_j_bbadis_2024_167612 crossref_primary_10_1134_S0006350920030227 crossref_primary_10_1002_ijc_34250 crossref_primary_10_3390_cancers14215226 crossref_primary_10_1038_s42003_020_01398_y crossref_primary_10_1038_s41598_022_16516_5 crossref_primary_10_1038_s41423_019_0316_z crossref_primary_10_1101_gad_335570_119 crossref_primary_10_3390_ijms19092622 crossref_primary_10_3389_fcell_2022_879632 crossref_primary_10_1111_acel_70105 crossref_primary_10_3390_cancers15133399 crossref_primary_10_1038_s41420_024_01998_1 crossref_primary_10_1007_s00280_020_04085_1 crossref_primary_10_1038_s41598_024_75861_9 crossref_primary_10_1093_nar_gkaa1283 crossref_primary_10_1016_j_stem_2023_01_006 crossref_primary_10_1186_s13014_024_02480_z crossref_primary_10_1038_s41467_021_22746_4 crossref_primary_10_1186_s12964_025_02104_3 crossref_primary_10_3390_v16111725 crossref_primary_10_1021_acschembio_4c00438 crossref_primary_10_1007_s00018_023_04733_8 crossref_primary_10_3390_cancers12113476 crossref_primary_10_3233_JND_170262 crossref_primary_10_1128_JVI_01022_18 crossref_primary_10_1016_j_bbcan_2020_188393 crossref_primary_10_3390_cancers14133145 crossref_primary_10_1111_cas_16162 crossref_primary_10_1038_s41523_023_00582_7 crossref_primary_10_7554_eLife_49044 crossref_primary_10_1007_s13402_019_00452_0 crossref_primary_10_1016_j_pan_2021_03_012 crossref_primary_10_1016_j_ydbio_2018_11_018 crossref_primary_10_1016_j_ccell_2020_11_013 crossref_primary_10_1016_j_jff_2023_105870 crossref_primary_10_1016_j_plipres_2019_04_002 crossref_primary_10_1038_s41467_019_08290_2 crossref_primary_10_1186_s12864_018_5211_y crossref_primary_10_4993_acrt_33_29 crossref_primary_10_1016_j_molcel_2024_10_006 crossref_primary_10_1186_s12860_020_00251_8 crossref_primary_10_3390_ijms20163914 crossref_primary_10_3390_ph14090942 crossref_primary_10_1038_s41598_025_11853_7 crossref_primary_10_1002_jcb_29143 crossref_primary_10_1371_journal_pgen_1009941 crossref_primary_10_3389_fonc_2017_00153 crossref_primary_10_1089_ars_2020_8074 crossref_primary_10_1182_bloodadvances_2019001248 crossref_primary_10_4155_fmc_2019_0181 crossref_primary_10_1038_s41418_024_01326_1 crossref_primary_10_3389_fcvm_2022_1036096 crossref_primary_10_3390_ijms20205179 crossref_primary_10_1080_15384101_2018_1520565 crossref_primary_10_1016_j_cbi_2019_02_010 crossref_primary_10_1007_s00018_024_05323_y crossref_primary_10_3390_biomedicines9081033 crossref_primary_10_1016_j_ejphar_2022_175239 crossref_primary_10_1038_s41467_024_51529_w crossref_primary_10_1016_j_bbrc_2024_149834 crossref_primary_10_1247_csf_25017 crossref_primary_10_1016_j_pdpdt_2017_07_003 crossref_primary_10_1016_j_celrep_2024_114366 crossref_primary_10_1016_j_kint_2024_12_003 crossref_primary_10_1038_s41420_023_01413_1 crossref_primary_10_1667_RR14897_1 crossref_primary_10_1016_j_tcb_2025_06_001 crossref_primary_10_1042_BCJ20210735 crossref_primary_10_1002_jcp_27464 crossref_primary_10_1007_s00335_018_9758_3 crossref_primary_10_1101_gad_298463_117 crossref_primary_10_3390_ijms221910793 crossref_primary_10_3389_fcell_2021_775507 crossref_primary_10_1002_cnr2_1269 crossref_primary_10_1038_s41556_024_01546_0 crossref_primary_10_1177_1559325819852508 crossref_primary_10_1073_pnas_2310770120 crossref_primary_10_3389_fgene_2022_875939 crossref_primary_10_1038_s41467_022_29120_y crossref_primary_10_1016_j_ijbiomac_2020_05_233 crossref_primary_10_1016_j_bbcan_2023_188882 crossref_primary_10_1126_scitranslmed_adj5962 crossref_primary_10_1038_s41467_024_46844_1 crossref_primary_10_1158_0008_5472_CAN_20_1034 crossref_primary_10_1016_j_bcp_2018_12_014 crossref_primary_10_3389_fmolb_2022_895887 crossref_primary_10_1016_j_jgg_2021_05_011 crossref_primary_10_1126_scitranslmed_adn6274 crossref_primary_10_1186_s13059_023_02963_4 crossref_primary_10_3389_fgene_2021_632719 crossref_primary_10_1016_j_scitotenv_2018_05_312 crossref_primary_10_1016_j_devcel_2019_05_015 crossref_primary_10_1016_j_watres_2021_117892 crossref_primary_10_4103_jcrt_JCRT_659_19 crossref_primary_10_1038_s41571_023_00842_2 crossref_primary_10_3390_ijms221910883 crossref_primary_10_1093_nar_gkz635 crossref_primary_10_3390_cancers15133448 crossref_primary_10_3390_cancers13133257 crossref_primary_10_1186_s13073_023_01236_w crossref_primary_10_3390_ijms25115854 crossref_primary_10_1002_1878_0261_13786 crossref_primary_10_1038_s41571_025_01068_0 crossref_primary_10_1016_j_bbcan_2023_188992 crossref_primary_10_1158_0008_5472_CAN_20_0177 crossref_primary_10_1002_2211_5463_12497 crossref_primary_10_3390_cells9051228 crossref_primary_10_1371_journal_pbio_3002718 crossref_primary_10_1155_2019_8207056 crossref_primary_10_1038_s41598_022_20874_5 crossref_primary_10_1038_cddiscovery_2017_71 crossref_primary_10_1007_s00432_023_04804_0 crossref_primary_10_1016_j_ccell_2024_01_008 crossref_primary_10_3390_ijms21103452 crossref_primary_10_3390_ijms21186928 crossref_primary_10_1038_s41420_021_00457_5 |
| Cites_doi | 10.1074/jbc.275.9.6051 10.1016/S0378-1119(01)00825-3 10.1016/j.cell.2008.12.002 10.4161/cc.6.15.4512 10.1073/pnas.92.18.8493 10.1073/pnas.0511130103 10.1158/0008-5472.CAN-08-3628 10.1073/pnas.89.19.9210 10.4161/cc.6.1.3665 10.1038/cddis.2014.201 10.1016/0092-8674(93)90500-P 10.1101/gad.7.7a.1126 10.1016/j.molcel.2011.11.022 10.1093/nar/gkv927 10.1186/1471-2164-9-486 10.1038/onc.2016.33 10.1038/sj.onc.1204067 10.1038/nature08544 10.1093/nar/gkr1203 10.1016/S0092-8674(03)00193-4 10.1016/j.molcel.2011.08.038 10.1016/j.celrep.2014.06.030 10.1016/j.molcel.2012.11.021 10.1128/MCB.01202-08 10.1126/science.8418500 10.1038/sj.onc.1210799 10.1080/15384101.2016.1191714 10.1242/jcs.02307 10.1038/nm.2546 10.1016/S0092-8674(01)00237-9 10.1073/pnas.0502857102 10.1016/j.cell.2014.05.051 10.1016/j.molcel.2006.05.015 10.1158/0008-5472.CAN-05-1039 10.1038/ncomms7520 10.1038/sj.onc.1206477 10.1073/pnas.1002459107 10.1074/jbc.M008495200 10.1038/nrc2657 10.1242/jcs.00739 10.1016/j.cell.2013.01.052 10.1074/jbc.274.21.15237 10.1016/j.molcel.2004.11.002 10.1101/gad.1856710 10.4161/cc.9.5.10825 10.1101/gad.212282.112 10.18632/oncotarget.4067 10.1128/MCB.15.12.6785 10.1158/0008-5472.CAN-04-2601 10.1093/nar/gkv284 10.1016/j.molcel.2012.01.020 10.1038/nature11776 10.1006/excr.1997.3604 10.1038/ng0492-45 10.1126/science.1218351 10.1038/emboj.2011.248 10.1016/0092-8674(95)90039-X 10.1093/nar/gkn888 10.1038/ncomms11091 10.1073/pnas.0400177101 10.1101/gad.1291305 10.1038/nrc3556 10.1128/MCB.23.16.5556-5571.2003 10.1038/ncb1724 10.1016/j.molcel.2010.02.037 10.1038/nrc3318 10.1128/MCB.22.10.3247-3254.2002 10.1073/pnas.202485699 10.1016/0092-8674(95)90412-3 10.1016/S1097-2765(02)00504-X 10.1038/ng1789 10.1074/jbc.M303191200 10.1016/j.ccr.2011.04.017 10.1074/jbc.M513901200 10.1038/onc.2009.154 10.1158/0008-5472.CAN-06-0121 10.18632/oncotarget.3032 10.1371/journal.pcbi.1003731 10.1002/hep.24174 10.1002/j.1460-2075.1994.tb06807.x 10.1038/nrm2395 10.1016/0092-8674(92)90593-2 10.1038/msb4100030 10.1073/pnas.1113884108 10.1158/0008-5472.CAN-09-0621 10.1038/sj.embor.7400587 10.1073/pnas.93.2.895 10.1038/cdd.2014.69 10.1073/pnas.97.8.4291 10.1016/j.cell.2005.10.043 10.4161/cc.24364 10.4161/cc.5.10.2777 10.1038/sj.onc.1210898 10.1128/MCB.25.9.3737-3751.2005 10.7554/eLife.02200 10.1016/j.cell.2011.03.035 10.1093/nar/gkw1196 10.1016/j.bbrc.2005.02.028 10.1016/j.molcel.2014.04.025 10.1016/j.cell.2006.05.034 10.1038/sj.onc.1205862 10.1038/onc.2010.588 10.1038/nature12912 10.1371/journal.pgen.1001360 10.1038/cdd.2012.168 10.1371/journal.pone.0072849 10.1126/science.1242369 10.1016/S1097-2765(01)00214-3 10.1074/jbc.M402502200 10.1038/38525 10.1158/0008-5472.CAN-04-1195 10.1038/377552a0 10.1126/science.8456305 10.1101/cshperspect.a000935 10.1038/emboj.2009.246 10.1093/nar/23.14.2584 10.1158/0008-5472.CAN-06-4149 10.1038/sj.onc.1202402 10.1101/gad.184911.111 10.1002/stem.660 10.1093/nar/gkt849 10.1016/j.cell.2013.09.017 10.1016/j.cell.2007.05.003 10.1126/science.282.5393.1497 10.1155/2011/464916 10.1128/MCB.26.7.2501-2510.2006 10.1186/gb-2013-14-4-r32 10.1038/onc.2008.32 10.1128/MCB.20.16.5930-5938.2000 10.1093/nar/gkp110 10.1038/sj.onc.1205877 10.1038/sj.onc.1207524 10.1038/35042675 10.1038/sj.cdd.4401191 10.1038/cdd.2011.33 10.1038/nrc2723 10.1074/jbc.M113.523837 10.1016/j.cell.2006.12.045 10.1016/j.molcel.2008.03.016 10.1016/j.cell.2008.06.006 10.1038/sj.onc.1208615 10.1093/carcin/bgm219 10.1016/j.tcb.2011.04.002 10.1038/sj.onc.1208114 10.1074/jbc.M005101200 10.4161/cc.9.20.13532 10.1038/ng.848 10.1073/pnas.96.7.3706 10.1016/j.ccr.2004.10.012 10.1038/cdd.2012.89 10.1093/emboj/17.12.3342 10.1038/nrc2718 10.1038/nature05077 10.1073/pnas.0407069102 10.1038/sj.onc.1210263 10.1126/science.1126863 10.1073/pnas.0903284106 10.1186/gb-2013-14-9-r104 10.1158/1541-7786.MCR-06-0178 10.1016/j.jhep.2008.10.025 10.1038/sj.cdd.4401903 10.1093/jnci/dju053 10.4161/cc.22917 10.1016/j.molonc.2011.06.004 10.1016/j.bbaexp.2004.03.002 10.1074/jbc.275.6.3867 10.1038/363281a0 10.1016/j.cell.2009.04.037 10.1371/journal.pone.0063187 10.1101/gr.204149.116 10.1038/ncb866 10.1128/MCB.15.9.4694 10.4161/cc.23597 10.1158/0008-5472.CAN-03-0846 10.1101/gad.8.15.1739 10.1074/jbc.M116.716902 10.1073/pnas.97.1.109 10.1038/ng1296-482 10.1016/S1097-2765(04)00062-0 10.1038/ng836 10.1038/ncb1730 10.1016/j.cell.2010.06.040 10.1093/nar/gkq796 10.4161/15384101.2014.949083 10.1038/44188 10.1128/MCB.20.12.4210-4223.2000 10.1074/jbc.M408679200 10.1038/sj.onc.1205353 10.1038/nrc2730 10.4161/cbt.5.11.3271 10.1073/pnas.0904715106 10.1038/sj.onc.1205218 10.1371/journal.pgen.1000104 10.1038/25867 10.1016/j.cell.2006.05.036 10.1007/s10577-015-9509-1 10.1016/S1097-2765(03)00359-9 10.1038/sj.onc.1203489 10.1371/journal.pone.0042615 10.1073/pnas.1001006107 10.1038/srep19174 10.1016/S0006-291X(02)02382-3 10.1016/j.molcel.2007.04.015 10.1093/nar/gkw523 10.1073/pnas.95.20.11945 10.1038/387296a0 10.1128/MCB.01072-10 10.1158/0008-5472.CAN-08-2742 10.1038/nrm4007 10.1084/jem.188.11.2033 10.1038/nrm1546 10.1016/j.bbrc.2009.07.063 10.1038/nrc2290 10.1074/jbc.M103088200 10.1371/journal.pgen.1003726 10.1038/nature03155 10.1016/S0014-5793(03)00485-X 10.1074/jbc.C100121200 10.1080/01926230701320337 10.1038/375159a0 10.1016/S1097-2765(00)80002-7 10.1038/374386a0 10.1186/s12864-015-1643-9 10.1080/15384101.2016.1205393 10.1126/scisignal.2005032 10.1038/sj.onc.1205069 10.1158/0008-5472.CAN-09-2280 10.1038/onc.2009.62 10.1038/sj.onc.1202274 10.1016/S1097-2765(01)00284-2 10.1073/pnas.0605562104 10.4161/cc.1.1.101 10.1074/jbc.M106643200 10.1128/MCB.21.4.1066-1076.2001 10.1038/nature14344 10.1158/0008-5472.CAN-04-3339 10.1073/pnas.95.19.11307 10.1038/nature05939 10.1093/nar/gku299 10.1128/MCB.25.22.10148-10158.2005 10.1038/cddis.2015.279 10.1074/jbc.M212517200 10.1016/j.bbagrm.2015.07.011 10.1038/cdd.2013.132 10.1152/ajprenal.00114.2002 10.1016/j.prostaglandins.2008.02.004 10.1038/sj.onc.1208380 10.1038/onc.2013.378 10.1093/nar/gkt504 10.1128/MCB.20.5.1797-1815.2000 10.1371/journal.pone.0017574 10.1038/sj.emboj.7601779 10.1016/S0014-5793(02)03004-1 10.1074/jbc.M603724200 10.1074/jbc.M101167200 10.1038/sj.cdd.4401965 10.1128/MCB.26.4.1398-1413.2006 10.1038/nature10985 10.1016/j.jhep.2011.08.022 10.1083/jcb.200105137 10.1038/nrc2715 10.1158/0008-5472.CAN-08-4156 10.1016/j.yexcr.2013.09.012 10.1073/pnas.0407729102 10.1371/journal.pone.0074297 10.1038/nature05993 10.1038/35003506 10.1371/journal.pone.0026156 10.1074/jbc.M307185200 10.1016/j.cell.2008.06.028 10.1038/onc.2008.409 10.1371/journal.pgen.1002797 10.1016/S0021-9258(18)53046-5 10.18632/oncotarget.6356 10.18632/oncotarget.10888 10.18632/oncotarget.2137 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Jul 13, 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 13, 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/onc.2016.502 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Biology |
| DocumentTitleAlternate | Census and evaluation of p53 target genes |
| EISSN | 1476-5594 |
| EndPage | 3956 |
| ExternalDocumentID | PMC5511239 A498365745 28288132 10_1038_onc_2016_502 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -Q- 0R~ 123 29N 2WC 36B 39C 3V. 4.4 406 53G 5RE 70F 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABJNI ABLJU ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMJI ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 DWQXO E3Z EAP EBLON EBS EE. EIOEI EJD ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC IWAJR JSO JZLTJ KQ8 L7B LK8 M0L M1P M2O M7P N9A NQJWS NXXTH O9- OK1 OVD P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TEORI TSG UKHRP W2D WH7 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEFQL AEZWR AFDZB AFFHD AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS CGR CUY CVF ECM EIF NPM 7TM 7TO 7U9 7XB 8FD 8FK FR3 H94 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c517t-e83cf8d6dfbf3f30a8ce564e26829d17d0b250fc4ed072ac1e0f7304b4bc0cc63 |
| IEDL.DBID | 8C1 |
| ISICitedReferencesCount | 684 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405379900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-9232 1476-5594 |
| IngestDate | Tue Nov 04 02:01:27 EST 2025 Sun Nov 09 10:32:34 EST 2025 Tue Nov 11 02:33:16 EST 2025 Tue Nov 11 10:32:35 EST 2025 Tue Nov 04 17:29:44 EST 2025 Mon Jul 21 06:05:59 EDT 2025 Sat Nov 29 04:02:37 EST 2025 Tue Nov 18 22:27:59 EST 2025 Fri Feb 21 02:38:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Language | English |
| License | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-e83cf8d6dfbf3f30a8ce564e26829d17d0b250fc4ed072ac1e0f7304b4bc0cc63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3429-1876 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5511239 |
| PMID | 28288132 |
| PQID | 1918399775 |
| PQPubID | 36330 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5511239 proquest_miscellaneous_1877527182 proquest_journals_1918399775 gale_infotracmisc_A498365745 gale_infotracacademiconefile_A498365745 pubmed_primary_28288132 crossref_primary_10_1038_onc_2016_502 crossref_citationtrail_10_1038_onc_2016_502 springer_journals_10_1038_onc_2016_502 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-13 |
| PublicationDateYYYYMMDD | 2017-07-13 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York |
| PublicationTitle | Oncogene |
| PublicationTitleAbbrev | Oncogene |
| PublicationTitleAlternate | Oncogene |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Harrington, Bruce, Harlow, Dyson (CR152) 1998; 95 Carninci, Sandelin, Lenhard, Katayama, Shimokawa, Ponjavic (CR64) 2006; 38 Nabilsi, Ryder, Peraza-Penton, Poudyal, Loose, Kladde (CR283) 2013; 288 Morachis, Murawsky, Emerson (CR61) 2010; 24 Lauberth, Nakayama, Wu, Ferris, Tang, Hughes (CR62) 2013; 152 Hung, Wang, Lin, Koegel, Kotake, Grant (CR126) 2011; 43 Golomb, Bublik, Wilder, Nevo, Kiss, Grabusic (CR214) 2012; 45 Fischer, Quaas, Nickel, Engeland (CR112) 2015; 6 Jordan, Menendez, Inga, Nourredine, Bell, Resnick (CR54) 2008; 4 Flatt, Tang, Scatena, Szak, Pietenpol (CR100) 2000; 20 Rashi-Elkeles, Elkon, Shavit, Lerenthal, Linhart, Kupershtein (CR160) 2011; 5 Menendez, Nguyen, Freudenberg, Mathew, Anderson, Jothi (CR22) 2013; 41 Okamura, Arakawa, Tanaka, Nakanishi, Ng, Taya (CR254) 2001; 8 Hudson, Morris, Latchman (CR182) 2004; 280 Munsch, Watanabe-Fukunaga, Bourdon, Nagata, May, Yonish-Rouach (CR48) 2000; 275 Hermeking (CR120) 2012; 12 Taylor, Schönthal, Galante, Stark (CR98) 2001; 276 Chen, Pacal, Wenzel, Knoepfler, Leone, Bremner (CR227) 2009; 462 Thornborrow, Patel, Mastropietro, Schwartzfarb, Manfredi (CR43) 2002; 21 Concepcion, Han, Mu, Bonetti, Yao, D’Andrea (CR128) 2012; 8 Chang, Watanabe, Broude, Fang, Poole, Kalinichenko (CR153) 2000; 97 Li, Zhang, Ströse, Tedesco, Gurova, Selivanova (CR88) 2014; 21 Baudot, Crighton, O’Prey, Somers, Sierra Gonzalez, Ryan (CR196) 2016; 15 Rouault, Falette, Guéhenneux, Guillot, Rimokh, Wang (CR155) 1996; 14 Sax, El-Deiry (CR179) 2003; 278 Saifudeen, Marks, Du, El-Dahr (CR284) 2002; 283 Riley, Sontag, Chen, Levine (CR5) 2008; 9 El-Deiry, Tokino, Waldman, Oliner, Velculescu, Burrell (CR12) 1995; 55 Liu, Yue, Khuri, Sun (CR39) 2004; 64 Panjarian, Kozhaya, Arayssi, Yehia, Bielawski, Bielawska (CR188) 2008; 86 Verfaillie, Svetlichnyy, Imrichova, Davie, Fiers, Atak (CR19) 2016; 26 Bensaad, Tsuruta, Selak, Vidal, Nakano, Bartrons (CR37) 2006; 126 Sadasivam, DeCaprio (CR106) 2013; 13 Budhram-Mahadeo, Morris, Smith, Midgley, Boxer, Latchman (CR190) 1999; 274 Vousden, Prives (CR231) 2009; 137 Stambolsky, Weisz, Shats, Klein, Goldfinger, Oren (CR193) 2006; 13 Fekry, Jeffries, Esmaeilniakooshkghazi, Ogretmen, Krupenko, Krupenko (CR187) 2016; 291 Raj, Liu, Samadashwily, Li, Grossman (CR266) 2008; 29 Vogelstein, Lane, Levine (CR1) 2000; 408 Feng, Liu, Zhang, Xiao (CR269) 2011; 30 McLure, Lee (CR8) 1998; 17 Deng, Zhang, Wade Harper, Elledge, Leder (CR148) 1995; 82 Sengupta, Harris (CR162) 2005; 6 Sengupta, Shimamoto, Koshiji, Pedeux, Rusin, Spillare (CR87) 2005; 24 de Toledo, Azzam, Keng, Laffrenier, Little (CR94) 1998; 9 McDade, Patel, Moran, Campbell, Fenwick, Kozarewa (CR26) 2014; 42 Luo, Hurwitz, Massagué (CR150) 1995; 375 Agoff, Hou, Linzer, Wu (CR75) 1993; 259 Schvartzman, Duijf, Sotillo, Coker, Benezra (CR102) 2011; 19 Imbriano, Gnesutta, Mantovani (CR77) 2012; 1825 Dimitrova, Zamudio, Jong, Soukup, Resnick, Sarma (CR129) 2014; 54 Charni, Molchadsky, Goldstein, Solomon, Tal, Goldfinger (CR135) 2015; 23 Zhang, Lin, Wu, Wang, Yang, Levine (CR133) 2011; 108 Budanov, Shoshani, Faerman, Zelin, Kamer, Kalinski (CR52) 2002; 21 Velasco-Miguel, Buckbinder, Jean, Gelbert, Talbott, Laidlaw (CR46) 1999; 18 Azzam, deToledo, Pykett, Nagasawa, Little (CR90) 1997; 8 Yan, Jiang, Lim, Wu, Ng, Chin (CR250) 2007; 104 Liu, Chen (CR202) 2002; 21 Okamoto, Beach (CR219) 1994; 13 Cui, Kamino, Nakamura, Kitamura, Miyamoto, Shinogi (CR33) 2010; 24 Mathieu, Lapierre, Brault, Raymond (CR261) 2001; 276 Zhang, Yin, Sun, Kong, Liu, You (CR123) 2014; 5 Wang, Xiao, Ren (CR85) 2009; 106 Westendorp, Mokry, Groot Koerkamp, Holstege, Cuppen, De Bruin (CR118) 2012; 40 Feng, Hu, de Stanchina, Teresky, Jin, Lowe (CR201) 2007; 67 Godar, Ince, Bell, Feldser, Donaher, Bergh (CR83) 2008; 134 Hearnes, Mays, Schavolt, Tang, Jiang, Pietenpol (CR239) 2005; 25 Goldstein, Ezra, Rivlin, Molchadsky, Madar, Goldfinger (CR255) 2012; 56 Horn, Vousden (CR4) 2007; 26 Zhai, Comai (CR213) 2000; 20 Contente, Dittmer, Koch, Roth, Dobbelstein (CR252) 2002; 30 Kastan, Zhan, El-Deiry, Carrier, Jacks, Walsh (CR13) 1992; 71 Sax, Fei, Murphy, Bernhard, Korsmeyer, El-Deiry (CR192) 2002; 4 Wei, Wu, Vega, Chiu, Ng, Zhang (CR16) 2006; 124 Tabach, Milyavsky, Shats, Brosh, Zuk, Yitzhaky, Mantovani, Domany, Rotter, Pilpel (CR93) 2005; 1 Chau, Diaz, Saunders, Cheng, Chang, Warrener (CR245) 2009; 69 Golubovskaya, Kaur, Cance (CR290) 2004; 1678 Wang, Xiao, Ko, Ren (CR70) 2010; 9 Duriez, Falette, Audoynaud, Moyret-Lalle, Bensaad, Courtois (CR36) 2002; 282 Kawase, Ohki, Shibata, Tsutsumi, Kamimura, Inazawa (CR233) 2009; 136 Ceribelli, Alcalay, Viganò, Mantovani (CR277) 2006; 5 Scian, Carchman, Mohanraj, Stagliano, Anderson, Deb (CR95) 2008; 27 Park, Nakamura (CR189) 2005; 65 CR114 Löhr, Mo, Contente, Dobbelstein (CR92) 2003; 278 Elabd, Meroni, Blattner (CR224) 2016; 35 Loayza-Puch, Drost, Rooijers, Lopes, Elkon, Agami (CR215) 2013; 14 Mannefeld, Klassen, Gaubatz (CR107) 2009; 69 Wang, Zhan, Coursen, Khan, Kontny, Yu (CR156) 1999; 96 Toshiyuki, Reed (CR41) 1995; 80 Zhang, Qian, Lu, Chen (CR247) 2009; 69 Tschaharganeh, Xue, Calvisi, Evert, Michurina, Dow (CR79) 2014; 158 Sanchez-Macedo, Feng, Faubert, Chang, Elia, Rushing (CR205) 2013; 20 Gatz, Wiesmuller (CR163) 2006; 13 Kitayner, Rozenberg, Kessler, Rabinovich, Shaulov, Haran (CR9) 2006; 22 De Stanchina, Querido, Narita, Davuluri, Pandolfi, Ferbeyre (CR222) 2004; 13 Zeilstra, Joosten, Vermeulen, Koster, Medema, Versteeg (CR272) 2013; 8 Tan, Wang, Guan, Sun (CR32) 2000; 97 Estève, Chin, Pradhan (CR265) 2005; 102 Lu, Nannenga, Donehower (CR220) 2005; 19 Mirza, Wu, Wang, McClanahan, Bishop, Gheyas (CR262) 2003; 22 Welcker, Clurman (CR158) 2008; 8 Obad, Brunnström, Vallon-Christersson, Borg, Drott, Gullberg (CR223) 2004; 23 Tanikawa, Ueda, Nakagawa, Yoshida, Nakamura, Matsuda (CR248) 2009; 69 Fischer, Grossmann, Padi, DeCaprio (CR18) 2016; 44 Christophorou, Ringshausen, Finch, Swigart, Evan (CR164) 2006; 443 Mirza, McGuirk, Hockenberry, Wu, Ashar, Black (CR268) 2002; 21 Chen, Sadowski (CR175) 2005; 102 Lipski, Lippincott, Durden, Kaplan, Keiser, Park (CR271) 2012; 7 Hu, Zhang, Wu, Sun, Levine, Feng (CR198) 2010; 107 Veprintsev, Freund, Andreeva, Rutledge, Tidow, Cañadillas (CR10) 2006; 103 Wang, Feng, Xiao, Ren (CR281) 2009; 50 Bunz, Dutriaux, Lengauer, Waldman, Zhou, Brown (CR149) 1998; 282 Banerjee, Nath, Roychoudhury (CR273) 2009; 37 Jen, Cheung (CR35) 2005; 65 Warnick, Dabbas, Ford, Strait (CR172) 2001; 276 Mack, Vartikar, Pipas, Laimins (CR73) 1993; 363 Locksley, Killeen, Lenardo (CR178) 2001; 104 Zauberman, Flusberg, Haupt, Barak, Oren (CR68) 1995; 23 Elmore (CR177) 2007; 35 Takimoto, El-Deiry (CR38) 2000; 19 El-Deiry, Kern, Pietenpol, Kinzler, Vogelstein (CR7) 1992; 1 Wang, Yu, Jiang, Li, Lin, Tang (CR200) 2013; 12 Menendez, Inga, Resnick (CR55) 2009; 9 Kawauchi, Araki, Tobiume, Tanaka (CR206) 2008; 10 Asano, Kawase, Okabe, Tsutsumi, Ichikawa, Tatebe (CR246) 2016; 6 Barak, Gottlieb, Juven-Gershon, Oren (CR67) 1994; 8 Lin, Shields, Ullrich, Appella, Mercer (CR143) 1992; 89 Jackson, Pereira-Smith (CR101) 2006; 26 Schmit, Korenjak, Mannefeld, Schmitt, Franke, Von Eyss (CR105) 2007; 6 Benson, Mungamuri, Attie, Kracikova, Sachidanandam, Manfredi (CR119) 2014; 33 Tasdemir, Maiuri, Galluzzi, Vitale, Djavaheri-Mergny, D’Amelio (CR208) 2008; 10 Fei, Wang, Kim, Wang, Burns, Sax (CR130) 2004; 6 Fiucci, Beaucourt, Duflaut, Lespagnol, Stumptner-Cuvelette, Géant (CR228) 2004; 101 Fischer, Steiner, Engeland (CR53) 2014; 13 Tebaldi, Zaccara, Alessandrini, Bisio, Ciribilli, Inga (CR56) 2015; 16 Tan, Chu (CR165) 2002; 22 Ragimov, Krauskopf, Navot, Rotter, Oren, Aloni (CR74) 1993; 8 Zhang, He, Lee, Dubois, Li, Wu (CR253) 2013; 12 Moldovan, Pfander, Jentsch (CR167) 2007; 129 Zhang, Gao, Kawauchi, Hashimoto, Tsuchida, Kitajima (CR249) 2002; 297 Fortin, Cregan, MacLaurin, Kushwaha, Hickman, Thompson (CR184) 2001; 155 Matoba, Kang, Patino, Wragg, Boehm, Gavrilova (CR203) 2006; 312 Feng, Zhang, Levine, Jin (CR210) 2005; 102 Min, Kim, Heo, Kim, Kim, Kim (CR234) 2009; 28 Mao, Perez-losada, Wu, Delrosario, Tsunematsu, Nakayama (CR159) 2004; 432 Melo, Drost, Wijchers, van de Werken, de Wit, Vrielink (CR65) 2013; 49 Engeland (CR232) 2015; 6 Waldman, Kinzler, Vogelstein (CR146) 1995; 55 Abbas, Dutta (CR145) 2009; 9 Zeron-Medina, Wang, Repapi, Campbell, Su, Castro-Giner (CR50) 2013; 155 Lerner, Francisco, Soltys, Rocha, Quinet, Vessoni, Castro, David, Bustos, Strauss, Gottifredi, Stary, Sarasin, Chammas, Menck (CR171) 2016; 45 Shirley, Rundhaug, Tian, Cullinan-Ammann, Lambertz, Conti (CR131) 2009; 69 Müller, Wilder, Bannasch, Israeli, Lehlbach, Li-Weber (CR47) 1998; 188 Guardavaccaro, Corrente, Covone, Micheli, D’Agnano, Starace (CR154) 2000; 20 Lindqvist, de Bruijn, Macurek, Brás, Mensinga, Bruinsma (CR221) 2009; 28 El-Deiry, Tokino, Velculescu, Levy, Parsons, Trent (CR11) 1993; 75 Spitkovsky, Schulze, Boye, Jansen-Dürr (CR91) 1997; 8 Bornstein, Brosh, Molchadsky, Madar, Kogan-Sakin, Goldstein (CR236) 2011; 31 Haupt, Maya, Kazaz, Oren (CR217) 1997; 387 Younger, Kenzelmann-Broz, Jung, Attardi, Rinn (CR30) 2015; 43 Gao, Shen, Shang, Wang (CR137) 2011; 18 Jiang, Du, Mancuso, Wellen, Yang (CR80) 2013; 493 Schilling, Schleithoff, Kairat, Melino, Stremmel, Oren (CR49) 2009; 387 Tanaka, Arakawa, Yamaguchi, Shiraishi, Fukuda, Matsui (CR31) 2000; 404 Laezza, D’Alessandro, Di Croce, Picardi, Ciaglia, Pisanti (CR132) 2015; 6 Calvisi, Simile, Ladu, Frau, Evert, Tomasi (CR108) 2011; 53 Zhang, Liu, Wu, Liang, Lin, Liu (CR257) 2014; 5 Jiang, Kon, Li, Wang, Su, Hibshoosh (CR81) 2015; 520 Fischer, Quaas, Steiner, Engeland (CR113) 2016; 44 Innocente, Lee (CR270) 2005; 329 Huarte, Guttman, Feldser, Garber, Koziol, Kenzelmann-Broz (CR125) 2010; 142 Wilhelm, Méndez-Vidal, Wiman (CR243) 2002; 524 Li, He, Dubois, Wu, Shi, Huang (CR17) 2012; 46 Li, Lin, Liu (CR289) 2004; 23 Mashimo, Watabe, Hirota, Hosobe, Miura, Tegtmeyer (CR241) 1998; 95 Obeid, Linardic, Karolak, Hannun (CR186) 1993; 259 Borellini, Glazer (CR76) 1993; 268 Grossi, Sánchez, Huarte (CR121) 2016; 1859 Jaber, Toufektchan, Lejour, Bardot, Toledo (CR174) 2016; 7 Kruiswijk, Labuschagne, Vousden (CR195) 2015; 16 Fischer (CR116) 2016; 15 Adimoolam, Ford (CR166) 2002; 99 Imbr H Zhu (BFonc2016502_CR97) 2002; 1 A Budde (BFonc2016502_CR212) 1999; 18 D Menendez (BFonc2016502_CR136) 2011; 7 K Nakano (BFonc2016502_CR181) 2001; 7 L Jiang (BFonc2016502_CR81) 2015; 520 A Scoumanne (BFonc2016502_CR279) 2006; 66 KH Vousden (BFonc2016502_CR194) 2009; 9 BFonc2016502_CR114 AV Budanov (BFonc2016502_CR52) 2002; 21 L Smeenk (BFonc2016502_CR20) 2011; 6 CR Lickwar (BFonc2016502_CR139) 2012; 484 GS Chang (BFonc2016502_CR27) 2014; 8 E De Stanchina (BFonc2016502_CR222) 2004; 13 D Menendez (BFonc2016502_CR22) 2013; 41 AI Robles (BFonc2016502_CR183) 2001; 61 N Rueda-Rincon (BFonc2016502_CR291) 2015; 6 DB Veprintsev (BFonc2016502_CR10) 2006; 103 J Zeron-Medina (BFonc2016502_CR50) 2013; 155 T Waldman (BFonc2016502_CR146) 1995; 55 R Lipski (BFonc2016502_CR271) 2012; 7 Yuval Tabach (BFonc2016502_CR93) 2005; 1 TA Chan (BFonc2016502_CR157) 1999; 401 F Polato (BFonc2016502_CR34) 2014; 106 R Amson (BFonc2016502_CR84) 2011; 18 S Velasco-Miguel (BFonc2016502_CR46) 1999; 18 D Raj (BFonc2016502_CR266) 2008; 29 AJ Levine (BFonc2016502_CR2) 2009; 9 J Zeilstra (BFonc2016502_CR272) 2013; 8 J-H Mao (BFonc2016502_CR159) 2004; 432 R Cui (BFonc2016502_CR134) 2007; 128 N Bansal (BFonc2016502_CR278) 2011; 6 Z Zhou (BFonc2016502_CR287) 2013; 319 W Choi (BFonc2016502_CR238) 2006; 5 JJ Jordan (BFonc2016502_CR54) 2008; 4 V Gottifredi (BFonc2016502_CR103) 2001; 21 D Crighton (BFonc2016502_CR209) 2006; 126 L Böhlig (BFonc2016502_CR199) 2011; 39 J Chen (BFonc2016502_CR151) 1995; 374 D Menendez (BFonc2016502_CR55) 2009; 9 MS Lawrence (BFonc2016502_CR3) 2014; 505 H Li (BFonc2016502_CR88) 2014; 21 SM Lauberth (BFonc2016502_CR62) 2013; 152 MT Wilhelm (BFonc2016502_CR243) 2002; 524 ZQ Zou (BFonc2016502_CR235) 2000; 275 YJ Jin (BFonc2016502_CR258) 2006; 4 EK Benson (BFonc2016502_CR119) 2014; 33 M Welcker (BFonc2016502_CR158) 2008; 8 JK Sax (BFonc2016502_CR192) 2002; 4 T Kidokoro (BFonc2016502_CR96) 2008; 27 D Chen (BFonc2016502_CR227) 2009; 462 S Sadasivam (BFonc2016502_CR106) 2013; 13 C Zhang (BFonc2016502_CR249) 2002; 297 V Golubovskaya (BFonc2016502_CR290) 2004; 1678 S Elabd (BFonc2016502_CR224) 2016; 35 R Janky (BFonc2016502_CR25) 2014; 10 M Ceribelli (BFonc2016502_CR277) 2006; 5 S Sengupta (BFonc2016502_CR87) 2005; 24 N Sanchez-Macedo (BFonc2016502_CR205) 2013; 20 M Fischer (BFonc2016502_CR112) 2015; 6 MB Kastan (BFonc2016502_CR13) 1992; 71 S Haupt (BFonc2016502_CR176) 2003; 116 V Budhram-Mahadeo (BFonc2016502_CR190) 1999; 274 L Golomb (BFonc2016502_CR214) 2012; 45 H Tanaka (BFonc2016502_CR31) 2000; 404 A Verfaillie (BFonc2016502_CR19) 2016; 26 J Brugarolas (BFonc2016502_CR147) 1995; 377 M Tan (BFonc2016502_CR32) 2000; 97 C Laezza (BFonc2016502_CR132) 2015; 6 G Le Gac (BFonc2016502_CR276) 2006; 281 DF Calvisi (BFonc2016502_CR108) 2011; 53 A Zauberman (BFonc2016502_CR68) 1995; 23 N Ragimov (BFonc2016502_CR74) 1993; 8 B Wang (BFonc2016502_CR85) 2009; 106 Y Haupt (BFonc2016502_CR217) 1997; 387 B Wang (BFonc2016502_CR70) 2010; 9 S Godar (BFonc2016502_CR83) 2008; 134 M Toshiyuki (BFonc2016502_CR41) 1995; 80 DH Mack (BFonc2016502_CR73) 1993; 363 GL Moldovan (BFonc2016502_CR167) 2007; 129 L Baranello (BFonc2016502_CR141) 2016; 24 K Okamoto (BFonc2016502_CR219) 1994; 13 LA Carvajal (BFonc2016502_CR117) 2012; 26 T Tan (BFonc2016502_CR165) 2002; 22 D Munsch (BFonc2016502_CR48) 2000; 275 G Rozenfeld-Granot (BFonc2016502_CR185) 2002; 21 KH Vousden (BFonc2016502_CR231) 2009; 137 I Shats (BFonc2016502_CR99) 2004; 279 F Nikulenkov (BFonc2016502_CR21) 2012; 19 C Duriez (BFonc2016502_CR36) 2002; 282 SA Innocente (BFonc2016502_CR270) 2005; 329 J-P Rouault (BFonc2016502_CR155) 1996; 14 JM Hearnes (BFonc2016502_CR239) 2005; 25 A Fortin (BFonc2016502_CR184) 2001; 155 F Kruiswijk (BFonc2016502_CR195) 2015; 16 C Zhang (BFonc2016502_CR257) 2014; 5 T Kawase (BFonc2016502_CR44) 2008; 27 F Schmit (BFonc2016502_CR105) 2007; 6 R Beckerman (BFonc2016502_CR6) 2010; 2 N Cotton (BFonc2016502_CR280) 2011; 29 YY Li (BFonc2016502_CR168) 2003; 544 X Zhang (BFonc2016502_CR253) 2013; 12 C Tanikawa (BFonc2016502_CR248) 2009; 69 NH Nabilsi (BFonc2016502_CR283) 2013; 288 Z Saifudeen (BFonc2016502_CR284) 2002; 283 O Marín-Béjar (BFonc2016502_CR127) 2013; 14 D Guardavaccaro (BFonc2016502_CR154) 2000; 20 T Abbas (BFonc2016502_CR145) 2009; 9 T Mashimo (BFonc2016502_CR241) 1998; 95 C Imbriano (BFonc2016502_CR86) 2005; 25 K Löhr (BFonc2016502_CR92) 2003; 278 SM de Toledo (BFonc2016502_CR94) 1998; 9 M Fischer (BFonc2016502_CR53) 2014; 13 E Zhang (BFonc2016502_CR123) 2014; 5 M Müller (BFonc2016502_CR47) 1998; 188 M Fischer (BFonc2016502_CR113) 2016; 44 B Wang (BFonc2016502_CR281) 2009; 50 JM Espinosa (BFonc2016502_CR60) 2003; 12 T Juven (BFonc2016502_CR15) 1993; 8 P Carninci (BFonc2016502_CR64) 2006; 38 L Litovchick (BFonc2016502_CR104) 2007; 26 BN Chau (BFonc2016502_CR245) 2009; 69 Y Zhang (BFonc2016502_CR247) 2009; 69 M Fischer (BFonc2016502_CR110) 2013; 8 T Hung (BFonc2016502_CR126) 2011; 43 W Hu (BFonc2016502_CR198) 2010; 107 SL Harris (BFonc2016502_CR216) 2005; 24 K Schlereth (BFonc2016502_CR59) 2010; 38 T Schilling (BFonc2016502_CR49) 2009; 387 ST Younger (BFonc2016502_CR30) 2015; 43 CD Hudson (BFonc2016502_CR182) 2004; 280 T Riley (BFonc2016502_CR5) 2008; 9 T Tebaldi (BFonc2016502_CR56) 2015; 16 BD Chang (BFonc2016502_CR153) 2000; 97 W Hu (BFonc2016502_CR260) 2007; 450 SS McDade (BFonc2016502_CR26) 2014; 42 S Suzuki (BFonc2016502_CR197) 2010; 107 NH Nabilsi (BFonc2016502_CR267) 2009; 28 S Matoba (BFonc2016502_CR203) 2006; 312 MW Jackson (BFonc2016502_CR263) 2005; 118 X Lu (BFonc2016502_CR220) 2005; 19 JK Sax (BFonc2016502_CR179) 2003; 278 M Fischer (BFonc2016502_CR116) 2016; 15 M Mathieu (BFonc2016502_CR261) 2001; 276 D Spitkovsky (BFonc2016502_CR91) 1997; 8 J Yan (BFonc2016502_CR250) 2007; 104 A Mirza (BFonc2016502_CR268) 2002; 21 CA Melo (BFonc2016502_CR65) 2013; 49 RA Johnson (BFonc2016502_CR82) 2001; 276 L Brown (BFonc2016502_CR242) 2007; 26 XW Wu (BFonc2016502_CR14) 1993; 7 J Ho (BFonc2016502_CR69) 2003; 10 P Jiang (BFonc2016502_CR80) 2013; 493 T Banerjee (BFonc2016502_CR273) 2009; 37 MB Kastan (BFonc2016502_CR142) 1991; 51 S St Clair (BFonc2016502_CR275) 2004; 16 WS El-Deiry (BFonc2016502_CR12) 1995; 55 Z Feng (BFonc2016502_CR210) 2005; 102 ML Agarwal (BFonc2016502_CR144) 1995; 92 A Lindqvist (BFonc2016502_CR221) 2009; 28 L Zhang (BFonc2016502_CR78) 2000; 60 JM Morachis (BFonc2016502_CR61) 2010; 24 MA Allen (BFonc2016502_CR24) 2014; 3 F Loayza-Puch (BFonc2016502_CR215) 2013; 14 K Okamoto (BFonc2016502_CR218) 2002; 9 P Pierzchalski (BFonc2016502_CR42) 1997; 234 DF Tschaharganeh (BFonc2016502_CR79) 2014; 158 S Elmore (BFonc2016502_CR177) 2007; 35 TF Burns (BFonc2016502_CR45) 2003; 23 L McKenzie (BFonc2016502_CR286) 2010; 9 M Li (BFonc2016502_CR17) 2012; 46 S Okamura (BFonc2016502_CR254) 2001; 8 S-H Min (BFonc2016502_CR234) 2009; 28 SJ Wang (BFonc2016502_CR200) 2013; 12 HF Horn (BFonc2016502_CR4) 2007; 26 Y Luo (BFonc2016502_CR150) 1995; 375 G Fiucci (BFonc2016502_CR228) 2004; 101 T Kawase (BFonc2016502_CR233) 2009; 136 N Dimitrova (BFonc2016502_CR129) 2014; 54 MA Christophorou (BFonc2016502_CR164) 2006; 443 Z Feng (BFonc2016502_CR201) 2007; 67 JPA Ioannidis (BFonc2016502_CR138) 2005; 2 K Kawauchi (BFonc2016502_CR206) 2008; 10 F Schwartzenberg-Bar-Yoseph (BFonc2016502_CR207) 2004; 64 K-Y Jen (BFonc2016502_CR35) 2005; 65 N Léveillé (BFonc2016502_CR66) 2015; 6 H Hermeking (BFonc2016502_CR120) 2012; 12 XW Wang (BFonc2016502_CR156) 1999; 96 Leticia K. Lerner (BFonc2016502_CR171) 2016; 45 K Bensaad (BFonc2016502_CR37) 2006; 126 D Lin (BFonc2016502_CR143) 1992; 89 S Polager (BFonc2016502_CR225) 2009; 9 C Tanikawa (BFonc2016502_CR256) 2009; 28 F Borellini (BFonc2016502_CR76) 1993; 268 C Imbriano (BFonc2016502_CR77) 2012; 1825 SA Gatz (BFonc2016502_CR163) 2006; 13 M Fischer (BFonc2016502_CR111) 2014; 42 SH Shirley (BFonc2016502_CR131) 2009; 69 X Feng (BFonc2016502_CR269) 2011; 30 S Panjarian (BFonc2016502_CR188) 2008; 86 L Vrba (BFonc2016502_CR240) 2008; 9 E Tasdemir (BFonc2016502_CR208) 2008; 10 KB Spurgers (BFonc2016502_CR115) 2006; 281 M Huarte (BFonc2016502_CR125) 2010; 142 R Takimoto (BFonc2016502_CR38) 2000; 19 EE Reczek (BFonc2016502_CR180) 2003; 1 S Bates (BFonc2016502_CR226) 1998; 395 RS Jackson (BFonc2016502_CR259) 2007; 6 L Böhlig (BFonc2016502_CR72) 2011; 2011 C Li (BFonc2016502_CR289) 2004; 23 X Liu (BFonc2016502_CR39) 2004; 64 K Schlereth (BFonc2016502_CR23) 2013; 9 JE Purvis (BFonc2016502_CR63) 2012; 336 S Sengupta (BFonc2016502_CR162) 2005; 6 M Fischer (BFonc2016502_CR18) 2016; 44 K Polyak (BFonc2016502_CR251) 1997; 389 C Zhang (BFonc2016502_CR133) 2011; 108 C Deng (BFonc2016502_CR148) 1995; 82 W Assaily (BFonc2016502_CR204) 2011; 44 D Dornan (BFonc2016502_CR230) 2004; 64 WH Hoffman (BFonc2016502_CR264) 2002; 277 GF Morris (BFonc2016502_CR285) 1996; 93 WR Taylor (BFonc2016502_CR98) 2001; 276 E Batchelor (BFonc2016502_CR57) 2008; 30 W Gao (BFonc2016502_CR137) 2011; 18 RM Locksley (BFonc2016502_CR178) 2001; 104 B Wang (BFonc2016502_CR29) 2014; 21 Ea Harrington (BFonc2016502_CR152) 1998; 95 WS El-Deiry (BFonc2016502_CR11) 1993; 75 K Engeland (BFonc2016502_CR232) 2015; 6 PM Flatt (BFonc2016502_CR100) 2000; 20 L He (BFonc2016502_CR124) 2007; 447 C Arias-Lopez (BFonc2016502_CR173) 2006; 7 G Liu (BFonc2016502_CR202) 2002; 21 WS El-Deiry (BFonc2016502_CR7) 1992; 1 JG Jackson (BFonc2016502_CR101) 2006; 26 C Bornstein (BFonc2016502_CR236) 2011; 31 JM Schvartzman (BFonc2016502_CR102) 2011; 19 WR Park (BFonc2016502_CR189) 2005; 65 K Poorey (BFonc2016502_CR140) 2013; 342 G Azzam (BFonc2016502_CR244) 2013; 8 LM Obeid (BFonc2016502_CR186) 1993; 259 W Zhai (BFonc2016502_CR213) 2000; 20 F Bunz (BFonc2016502_CR149) 1998; 282 E Grossi (BFonc2016502_CR121) 2016; 1859 J Chen (BFonc2016502_CR175) 2005; 102 AD Baudot (BFonc2016502_CR196) 2016; 15 G Liu (BFonc2016502_CR170) 2006; 26 M Kitayner (BFonc2016502_CR9) 2006; 22 D Kenzelmann Broz (BFonc2016502_CR89) 2013; 27 M Rossi (BFonc2016502_CR40) 2008; 36 BQ Li (BFonc2016502_CR288) 2001; 276 CV Shivakumar (BFonc2016502_CR169) 1995; 15 P-O Estève (BFonc2016502_CR265) 2005; 102 Y Wu (BFonc2016502_CR191) 2001; 20 M Quaas (BFonc2016502_CR109) 2012; 11 TH Shin (BFonc2016502_CR161) 1995; 15 M Mannefeld (BFonc2016502_CR107) 2009; 69 S Obad (BFonc2016502_CR223) 2004; 23 JL Rinn (BFonc2016502_CR71) 201 |
| References_xml | – volume: 275 start-page: 6051 year: 2000 end-page: 6054 ident: CR235 article-title: p53 regulates the expression of the tumor suppressor gene maspin publication-title: J Biol Chem doi: 10.1074/jbc.275.9.6051 – volume: 282 start-page: 207 year: 2002 end-page: 214 ident: CR36 article-title: The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene publication-title: Gene doi: 10.1016/S0378-1119(01)00825-3 – volume: 136 start-page: 535 year: 2009 end-page: 550 ident: CR233 article-title: PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt publication-title: Cell doi: 10.1016/j.cell.2008.12.002 – volume: 6 start-page: 1903 year: 2007 end-page: 1913 ident: CR105 article-title: LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes publication-title: Cell Cycle doi: 10.4161/cc.6.15.4512 – volume: 92 start-page: 8493 year: 1995 end-page: 8497 ident: CR144 article-title: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.18.8493 – volume: 103 start-page: 2115 year: 2006 end-page: 2119 ident: CR10 article-title: Core domain interactions in full-length p53 in solution publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0511130103 – volume: 69 start-page: 3405 year: 2009 end-page: 3414 ident: CR131 article-title: Transcriptional regulation of estrogen receptor-alpha by p53 in human breast cancer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3628 – volume: 89 start-page: 9210 year: 1992 end-page: 9214 ident: CR143 article-title: Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.19.9210 – volume: 6 start-page: 95 year: 2007 end-page: 103 ident: CR259 article-title: CYFIP2, a direct p53 target, is leptomycin-B sensitive publication-title: Cell Cycle doi: 10.4161/cc.6.1.3665 – volume: 5 start-page: e1243 year: 2014 ident: CR123 article-title: p53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression publication-title: Cell Death Dis doi: 10.1038/cddis.2014.201 – volume: 75 start-page: 817 year: 1993 end-page: 825 ident: CR11 article-title: , a potential mediator of p53 tumor suppression publication-title: Cell doi: 10.1016/0092-8674(93)90500-P – volume: 7 start-page: 1126 year: 1993 end-page: 1132 ident: CR14 article-title: The P53 Mdm-2 autoregulatory feedback loop publication-title: Genes Dev doi: 10.1101/gad.7.7a.1126 – volume: 45 start-page: 222 year: 2012 end-page: 232 ident: CR214 article-title: Importin 7 and exportin 1 Link c-Myc and p53 to regulation of ribosomal Biogenesis publication-title: Mol Cell doi: 10.1016/j.molcel.2011.11.022 – volume: 44 start-page: 164 year: 2016 end-page: 174 ident: CR113 article-title: The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv927 – volume: 9 start-page: 486 year: 2008 ident: CR240 article-title: p53 induces distinct epigenetic states at its direct target promoters publication-title: BMC Genomics doi: 10.1186/1471-2164-9-486 – volume: 35 start-page: 5577 year: 2016 end-page: 5584 ident: CR224 article-title: TRIMming p53's anticancer activity publication-title: Oncogene doi: 10.1038/onc.2016.33 – volume: 20 start-page: 240 year: 2001 end-page: 251 ident: CR191 article-title: Negative regulation of bcl-2 expression by p53 in hematopoietic cells publication-title: Oncogene doi: 10.1038/sj.onc.1204067 – volume: 462 start-page: 925 year: 2009 end-page: 929 ident: CR227 article-title: Division and apoptosis of E2f-deficient retinal progenitors publication-title: Nature doi: 10.1038/nature08544 – volume: 40 start-page: 3511 year: 2012 end-page: 3523 ident: CR118 article-title: E2F7 represses a network of oscillating cell cycle genes to control S-phase progression publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1203 – volume: 112 start-page: 779 year: 2003 end-page: 791 ident: CR229 article-title: Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation publication-title: Cell doi: 10.1016/S0092-8674(03)00193-4 – volume: 44 start-page: 491 year: 2011 end-page: 501 ident: CR204 article-title: ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress publication-title: Mol Cell doi: 10.1016/j.molcel.2011.08.038 – volume: 8 start-page: 514 year: 2014 end-page: 527 ident: CR27 article-title: A Comprehensive and high-resolution genome-wide response of p53 to stress publication-title: Cell Rep doi: 10.1016/j.celrep.2014.06.030 – volume: 49 start-page: 524 year: 2013 end-page: 535 ident: CR65 article-title: ERNAs are required for p53-dependent enhancer activity and gene transcription publication-title: Mol Cell doi: 10.1016/j.molcel.2012.11.021 – volume: 51 start-page: 6304 year: 1991 end-page: 6311 ident: CR142 article-title: Participation of p53 protein in the cellular response to DNA damage publication-title: Cancer Res – volume: 28 start-page: 6557 year: 2008 end-page: 6567 ident: CR237 article-title: p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines publication-title: Mol Cell Biol doi: 10.1128/MCB.01202-08 – volume: 8 start-page: 1161 year: 1997 end-page: 1169 ident: CR90 article-title: CDC2 is down-regulated by ionizing radiation in a p53-dependent manner publication-title: Cell Growth Differ – volume: 259 start-page: 84 year: 1993 end-page: 87 ident: CR75 article-title: Regulation of the human hsp70 promoter by p53 publication-title: Science doi: 10.1126/science.8418500 – volume: 27 start-page: 1562 year: 2008 end-page: 1571 ident: CR96 article-title: CDC20, a potential cancer therapeutic target, is negatively regulated by p53 publication-title: Oncogene doi: 10.1038/sj.onc.1210799 – volume: 15 start-page: 2299 year: 2016 end-page: 2308 ident: CR196 article-title: p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death publication-title: Cell Cycle doi: 10.1080/15384101.2016.1191714 – volume: 118 start-page: 1821 year: 2005 end-page: 1832 ident: CR263 article-title: p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2 publication-title: J Cell Sci doi: 10.1242/jcs.02307 – volume: 18 start-page: 91 year: 2011 end-page: 99 ident: CR84 article-title: Reciprocal repression between P53 and TCTP publication-title: Nat Med doi: 10.1038/nm.2546 – volume: 104 start-page: 487 year: 2001 end-page: 501 ident: CR178 article-title: The TNF and TNF receptor superfamilies: integrating mammalian biology publication-title: Cell doi: 10.1016/S0092-8674(01)00237-9 – volume: 102 start-page: 8204 year: 2005 end-page: 8209 ident: CR210 article-title: The coordinate regulation of the p53 and mTOR pathways in cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502857102 – volume: 158 start-page: 579 year: 2014 end-page: 592 ident: CR79 article-title: p53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer publication-title: Cell doi: 10.1016/j.cell.2014.05.051 – volume: 22 start-page: 741 year: 2006 end-page: 753 ident: CR9 article-title: Structural basis of DNA recognition by p53 tetramers publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.015 – volume: 65 start-page: 7666 year: 2005 end-page: 7673 ident: CR35 article-title: Identification of novel p53 target genes in ionizing radiation response publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1039 – volume: 6 start-page: 6520 year: 2015 ident: CR66 article-title: Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA publication-title: Nat Commun doi: 10.1038/ncomms7520 – volume: 22 start-page: 3645 year: 2003 end-page: 3654 ident: CR262 article-title: Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression publication-title: Oncogene doi: 10.1038/sj.onc.1206477 – volume: 107 start-page: 7461 year: 2010 end-page: 7466 ident: CR197 article-title: Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1002459107 – volume: 276 start-page: 4819 year: 2001 end-page: 4827 ident: CR261 article-title: Aromatic hydrocarbon receptor (AhR) nuclear translocator- and p53-mediated Induction of the murine multidrug resistance mdr1 gene by 3-methylcholanthrene and benzo ( pyrene in hepatoma cells publication-title: J Biol Chem doi: 10.1074/jbc.M008495200 – volume: 9 start-page: 400 year: 2009 end-page: 414 ident: CR145 article-title: P21 in cancer: intricate networks and multiple activities publication-title: Nat Rev Cancer doi: 10.1038/nrc2657 – volume: 116 start-page: 4077 year: 2003 end-page: 4085 ident: CR176 article-title: Apoptosis—the p53 network publication-title: J Cell Sci doi: 10.1242/jcs.00739 – volume: 152 start-page: 1021 year: 2013 end-page: 1036 ident: CR62 article-title: H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation publication-title: Cell doi: 10.1016/j.cell.2013.01.052 – volume: 274 start-page: 15237 year: 1999 end-page: 15244 ident: CR190 article-title: p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor publication-title: J Biol Chem doi: 10.1074/jbc.274.21.15237 – volume: 16 start-page: 725 year: 2004 end-page: 736 ident: CR275 article-title: DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: One involves direct binding to the cdc25C promoter publication-title: Mol Cell doi: 10.1016/j.molcel.2004.11.002 – volume: 24 start-page: 135 year: 2010 end-page: 147 ident: CR61 article-title: Regulation of the p53 transcriptional response by structurally diverse core promoters publication-title: Genes Dev doi: 10.1101/gad.1856710 – volume: 9 start-page: 870 year: 2010 end-page: 879 ident: CR70 article-title: The p53 response element and transcriptional repression publication-title: Cell Cycle doi: 10.4161/cc.9.5.10825 – volume: 27 start-page: 1016 year: 2013 end-page: 1031 ident: CR89 article-title: Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses publication-title: Genes Dev doi: 10.1101/gad.212282.112 – volume: 6 start-page: 21240 year: 2015 end-page: 21254 ident: CR291 article-title: p53 attenuates AKT signaling by modulating membrane phospholipid composition publication-title: Oncotarget doi: 10.18632/oncotarget.4067 – volume: 15 start-page: 6785 year: 1995 end-page: 6793 ident: CR169 article-title: Wild-type human P53 transactivates the human proliferating cell nuclear antigen promoter publication-title: Mol Cell Biol doi: 10.1128/MCB.15.12.6785 – volume: 64 start-page: 7226 year: 2004 end-page: 7230 ident: CR230 article-title: COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-2601 – volume: 43 start-page: 4447 year: 2015 end-page: 4462 ident: CR30 article-title: Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv284 – volume: 46 start-page: 30 year: 2012 end-page: 42 ident: CR17 article-title: Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells publication-title: Mol Cell doi: 10.1016/j.molcel.2012.01.020 – volume: 493 start-page: 689 year: 2013 end-page: 693 ident: CR80 article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence publication-title: Nature doi: 10.1038/nature11776 – volume: 234 start-page: 57 year: 1997 end-page: 65 ident: CR42 article-title: p53 induces myocyte apoptosis via the activation of the renin–angiotensin system publication-title: Exp Cell Res doi: 10.1006/excr.1997.3604 – volume: 1 start-page: 45 year: 1992 end-page: 49 ident: CR7 article-title: Definition of a consensus binding site for p53 publication-title: Nat Genet doi: 10.1038/ng0492-45 – volume: 336 start-page: 1440 year: 2012 end-page: 1444 ident: CR63 article-title: p53 Dynamics Control Cell Fate publication-title: Science doi: 10.1126/science.1218351 – volume: 30 start-page: 3397 year: 2011 end-page: 3415 ident: CR269 article-title: p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death publication-title: EMBO J doi: 10.1038/emboj.2011.248 – volume: 82 start-page: 675 year: 1995 end-page: 684 ident: CR148 article-title: Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control publication-title: Cell doi: 10.1016/0092-8674(95)90039-X – volume: 36 start-page: 7168 year: 2008 end-page: 7180 ident: CR40 article-title: Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn888 – volume: 7 start-page: 11091 year: 2016 ident: CR174 article-title: p53 downregulates the Fanconi anaemia DNA repair pathway publication-title: Nat Commun doi: 10.1038/ncomms11091 – volume: 8 start-page: 1183 year: 1993 end-page: 1193 ident: CR74 article-title: Wild-type but not mutant p53 can repress transcription initiation by interfering with the binding of basal transcription factors to the TATA motif publication-title: Oncogene – volume: 101 start-page: 3510 year: 2004 end-page: 3515 ident: CR228 article-title: Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0400177101 – volume: 19 start-page: 1162 year: 2005 end-page: 1174 ident: CR220 article-title: PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints publication-title: Genes Dev doi: 10.1101/gad.1291305 – volume: 13 start-page: 585 year: 2013 end-page: 595 ident: CR106 article-title: The DREAM complex: master coordinator of cell cycle-dependent gene expression publication-title: Nat Rev Cancer doi: 10.1038/nrc3556 – volume: 23 start-page: 5556 year: 2003 end-page: 5571 ident: CR45 article-title: Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (Taxol)-exposed cells publication-title: Mol Cell Biol doi: 10.1128/MCB.23.16.5556-5571.2003 – volume: 10 start-page: 611 year: 2008 end-page: 618 ident: CR206 article-title: p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation publication-title: Nat Cell Biol doi: 10.1038/ncb1724 – volume: 38 start-page: 356 year: 2010 end-page: 368 ident: CR59 article-title: DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis publication-title: Mol Cell doi: 10.1016/j.molcel.2010.02.037 – ident: CR114 – volume: 12 start-page: 613 year: 2012 end-page: 626 ident: CR120 article-title: MicroRNAs in the p53 network: micromanagement of tumour suppression publication-title: Nat Rev Cancer doi: 10.1038/nrc3318 – volume: 22 start-page: 3247 year: 2002 end-page: 3254 ident: CR165 article-title: p53 binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice publication-title: Mol Cell Biol doi: 10.1128/MCB.22.10.3247-3254.2002 – volume: 99 start-page: 12985 year: 2002 end-page: 12990 ident: CR166 article-title: p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.202485699 – volume: 80 start-page: 293 year: 1995 end-page: 299 ident: CR41 article-title: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene publication-title: Cell doi: 10.1016/0092-8674(95)90412-3 – volume: 9 start-page: 761 year: 2002 end-page: 771 ident: CR218 article-title: Cyclin G recruits PP2A to dephosphorylate Mdm2 publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00504-X – volume: 38 start-page: 626 year: 2006 end-page: 635 ident: CR64 article-title: Genome-wide analysis of mammalian promoter architecture and evolution publication-title: Nat Genet doi: 10.1038/ng1789 – volume: 278 start-page: 36435 year: 2003 end-page: 36444 ident: CR179 article-title: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene publication-title: J Biol Chem doi: 10.1074/jbc.M303191200 – volume: 19 start-page: 701 year: 2011 end-page: 714 ident: CR102 article-title: Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.04.017 – volume: 281 start-page: 25134 year: 2006 end-page: 25142 ident: CR115 article-title: Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression publication-title: J Biol Chem doi: 10.1074/jbc.M513901200 – volume: 28 start-page: 3081 year: 2009 end-page: 3092 ident: CR256 article-title: XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway publication-title: Oncogene doi: 10.1038/onc.2009.154 – volume: 66 start-page: 6271 year: 2006 end-page: 6279 ident: CR279 article-title: The epithelial cell transforming sequence 2, a guanine nucleotide exchange factor for Rho GTPases, is repressed by p53 via protein methyltransferases and is required for G1-S transition publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-0121 – volume: 6 start-page: 41402 year: 2015 end-page: 41417 ident: CR112 article-title: Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex publication-title: Oncotarget – volume: 6 start-page: 3 year: 2015 end-page: 4 ident: CR232 article-title: Simplify p53: just an activator publication-title: Oncotarget doi: 10.18632/oncotarget.3032 – volume: 10 start-page: e1003731 year: 2014 ident: CR25 article-title: iRegulon: from a gene list to a gene regulatory network using large motif and track collections publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003731 – volume: 53 start-page: 1226 year: 2011 end-page: 1236 ident: CR108 article-title: Activation of v-Myb avian myeloblastosis viral oncogene homolog-like2 (MYBL2)-LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53 publication-title: Hepatology doi: 10.1002/hep.24174 – volume: 13 start-page: 4816 year: 1994 end-page: 4822 ident: CR219 article-title: Cyclin G is a transcriptional target of the p53 tumor suppressor protein publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06807.x – volume: 9 start-page: 402 year: 2008 end-page: 412 ident: CR5 article-title: Transcriptional control of human p53-regulated genes publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2395 – volume: 71 start-page: 587 year: 1992 end-page: 597 ident: CR13 article-title: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia publication-title: Cell doi: 10.1016/0092-8674(92)90593-2 – volume: 1 start-page: E1 issue: 1 year: 2005 end-page: E15 ident: CR93 article-title: The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation publication-title: Molecular Systems Biology doi: 10.1038/msb4100030 – volume: 108 start-page: 16259 year: 2011 end-page: 16264 ident: CR133 article-title: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113884108 – volume: 69 start-page: 6049 year: 2009 end-page: 6056 ident: CR247 article-title: The G protein-coupled receptor 87 is necessary for p53-dependent cell survival in response to genotoxic stress publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-0621 – volume: 7 start-page: 219 year: 2006 end-page: 224 ident: CR173 article-title: p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene publication-title: EMBO Rep doi: 10.1038/sj.embor.7400587 – volume: 93 start-page: 895 year: 1996 end-page: 899 ident: CR285 article-title: Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.2.895 – volume: 21 start-page: 1493 year: 2014 end-page: 1502 ident: CR88 article-title: Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis publication-title: Cell Death Differ doi: 10.1038/cdd.2014.69 – volume: 97 start-page: 4291 year: 2000 end-page: 4296 ident: CR153 article-title: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.8.4291 – volume: 124 start-page: 207 year: 2006 end-page: 219 ident: CR16 article-title: A global map of p53 transcription-factor binding sites in the human genome publication-title: Cell doi: 10.1016/j.cell.2005.10.043 – volume: 12 start-page: 1279 year: 2013 end-page: 1291 ident: CR253 article-title: Rap2b, a novel p53 target, regulates p53-mediated pro-survival function publication-title: Cell Cycle doi: 10.4161/cc.24364 – volume: 5 start-page: 1102 year: 2006 end-page: 1110 ident: CR277 article-title: Repression of new p53 targets revealed by ChIP on chip experiments publication-title: Cell Cycle doi: 10.4161/cc.5.10.2777 – volume: 27 start-page: 2583 year: 2008 end-page: 2593 ident: CR95 article-title: Wild-type p53 and p73 negatively regulate expression of proliferation related genes publication-title: Oncogene doi: 10.1038/sj.onc.1210898 – volume: 25 start-page: 3737 year: 2005 end-page: 3751 ident: CR86 article-title: Direct p53 transcriptional repression: analysis of CCAAT-containing G2/M promoters publication-title: Mol Cell Biol doi: 10.1128/MCB.25.9.3737-3751.2005 – volume: 3 start-page: e02200 year: 2014 ident: CR24 article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms publication-title: Elife doi: 10.7554/eLife.02200 – volume: 145 start-page: 571 year: 2011 end-page: 583 ident: CR58 article-title: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression publication-title: Cell doi: 10.1016/j.cell.2011.03.035 – volume: 45 start-page: 1270 issue: 3 year: 2016 end-page: 1280 ident: CR171 article-title: Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1196 – volume: 329 start-page: 713 year: 2005 end-page: 718 ident: CR270 article-title: p73 is a p53-independent, Sp1-dependent repressor of cyclin B1 transcription publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.02.028 – volume: 268 start-page: 7923 year: 1993 end-page: 7928 ident: CR76 article-title: Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1 publication-title: J Biol Chem – volume: 54 start-page: 777 year: 2014 end-page: 790 ident: CR129 article-title: LincRNA-p21 activates p21 to promote polycomb target gene expression and to enforce the G1/S checkpoint publication-title: Mol Cell doi: 10.1016/j.molcel.2014.04.025 – volume: 126 start-page: 121 year: 2006 end-page: 134 ident: CR209 article-title: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis publication-title: Cell doi: 10.1016/j.cell.2006.05.034 – volume: 21 start-page: 7195 year: 2002 end-page: 7204 ident: CR202 article-title: The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1205862 – volume: 30 start-page: 2282 year: 2011 end-page: 2288 ident: CR274 article-title: Cdc25B is negatively regulated by p53 through Sp1 and NF-Y transcription factors publication-title: Oncogene doi: 10.1038/onc.2010.588 – volume: 505 start-page: 495 year: 2014 end-page: 501 ident: CR3 article-title: Discovery and saturation analysis of cancer genes across 21 tumour types publication-title: Nature doi: 10.1038/nature12912 – volume: 7 start-page: e1001360 year: 2011 ident: CR136 article-title: The Toll-like receptor gene family is integrated into human DNA damage and p53 networks publication-title: PLos Genet doi: 10.1371/journal.pgen.1001360 – volume: 20 start-page: 659 year: 2013 end-page: 668 ident: CR205 article-title: Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model publication-title: Cell Death Differ doi: 10.1038/cdd.2012.168 – volume: 8 start-page: e72849 year: 2013 ident: CR272 article-title: CD44 expression in intestinal epithelium and colorectal cancer is independent of p53 status publication-title: PLoS One doi: 10.1371/journal.pone.0072849 – volume: 9 start-page: 887 year: 1998 end-page: 896 ident: CR94 article-title: Regulation by ionizing radiation of CDC2, cyclin A, cyclin B, thymidine kinase, topoisomerase IIalpha, and RAD51 expression in normal human diploid fibroblasts is dependent on p53/p21Waf1 publication-title: Cell Growth Differ – volume: 342 start-page: 369 year: 2013 end-page: 372 ident: CR140 article-title: Measuring chromatin interaction dynamics on the second time scale at single-copy genes publication-title: Science doi: 10.1126/science.1242369 – volume: 7 start-page: 683 year: 2001 end-page: 694 ident: CR181 article-title: PUMA, a novel proapoptotic gene, is induced by p53 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00214-3 – volume: 23 start-page: 1 year: 2015 end-page: 12 ident: CR135 article-title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation publication-title: Cell Death Differ – volume: 279 start-page: 50976 year: 2004 end-page: 50985 ident: CR99 article-title: p53-dependent down-regulation of telomerase is mediated by P21 Waf1 publication-title: J Biol Chem doi: 10.1074/jbc.M402502200 – volume: 389 start-page: 300 year: 1997 end-page: 305 ident: CR251 article-title: A model for p53-induced apoptosis publication-title: Nature doi: 10.1038/38525 – volume: 64 start-page: 5078 year: 2004 end-page: 5083 ident: CR39 article-title: p53 upregulates death receptor 4 expression through an intronic p53 binding site publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1195 – volume: 377 start-page: 552 year: 1995 end-page: 557 ident: CR147 article-title: Radiation-induced cell cycle arrest compromised by p21 deficiency publication-title: Nature doi: 10.1038/377552a0 – volume: 259 start-page: 1769 year: 1993 end-page: 1771 ident: CR186 article-title: Programmed cell death induced by ceramide publication-title: Science doi: 10.1126/science.8456305 – volume: 2 start-page: a000935 year: 2010 ident: CR6 article-title: Transcriptional regulation by p53 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000935 – volume: 1825 start-page: 131 year: 2012 end-page: 139 ident: CR77 article-title: The NF-Y/p53 liaison: well beyond repression publication-title: Biochim Biophys Acta – volume: 28 start-page: 3196 year: 2009 end-page: 3206 ident: CR221 article-title: Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression publication-title: EMBO J doi: 10.1038/emboj.2009.246 – volume: 23 start-page: 2584 year: 1995 end-page: 2592 ident: CR68 article-title: A functional p53-responsive intronic promoter is contained within the human mdm2 gene publication-title: Nucleic Acids Res doi: 10.1093/nar/23.14.2584 – volume: 67 start-page: 3043 year: 2007 end-page: 3053 ident: CR201 article-title: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-4149 – volume: 18 start-page: 1119 year: 1999 end-page: 1124 ident: CR212 article-title: p53 represses ribosomal gene transcription publication-title: Oncogene doi: 10.1038/sj.onc.1202402 – volume: 26 start-page: 1533 year: 2012 end-page: 1545 ident: CR117 article-title: E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression publication-title: Genes Dev doi: 10.1101/gad.184911.111 – volume: 29 start-page: 1090 year: 2011 end-page: 1101 ident: CR280 article-title: Tissue-specific stem cells p53 directly represses Id2 to inhibit the proliferation of neural progenitor cells publication-title: Stem Cells doi: 10.1002/stem.660 – volume: 42 start-page: 163 year: 2014 end-page: 180 ident: CR111 article-title: Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt849 – volume: 155 start-page: 410 year: 2013 end-page: 422 ident: CR50 article-title: A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection publication-title: Cell doi: 10.1016/j.cell.2013.09.017 – volume: 129 start-page: 665 year: 2007 end-page: 679 ident: CR167 article-title: PCNA, the maestro of the replication fork publication-title: Cell doi: 10.1016/j.cell.2007.05.003 – volume: 282 start-page: 1497 year: 1998 end-page: 1501 ident: CR149 article-title: Requirement for p53 and p21 to sustain G2 arrest after DNA damage publication-title: Science doi: 10.1126/science.282.5393.1497 – volume: 2011 start-page: 464916 year: 2011 ident: CR72 article-title: One function—multiple mechanisms: the manifold activities of p53 as a transcriptional repressor publication-title: J Biomed Biotechnol doi: 10.1155/2011/464916 – volume: 26 start-page: 2501 year: 2006 end-page: 2510 ident: CR101 article-title: Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells publication-title: Mol Cell Biol doi: 10.1128/MCB.26.7.2501-2510.2006 – volume: 14 start-page: R32 year: 2013 ident: CR215 article-title: p53 induces transcriptional and translational programs to suppress cell proliferation and growth publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r32 – volume: 27 start-page: 3797 year: 2008 end-page: 3810 ident: CR44 article-title: p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis publication-title: Oncogene doi: 10.1038/onc.2008.32 – volume: 20 start-page: 5930 year: 2000 end-page: 5938 ident: CR213 article-title: Repression of RNA polymerase I transcription by the tumor suppressor p53 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.16.5930-5938.2000 – volume: 37 start-page: 2688 year: 2009 end-page: 2698 ident: CR273 article-title: DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp110 – volume: 21 start-page: 6017 year: 2002 end-page: 6031 ident: CR52 article-title: Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability publication-title: Oncogene doi: 10.1038/sj.onc.1205877 – volume: 23 start-page: 4050 year: 2004 end-page: 4059 ident: CR223 article-title: Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells publication-title: Oncogene doi: 10.1038/sj.onc.1207524 – volume: 408 start-page: 307 year: 2000 end-page: 310 ident: CR1 article-title: Surfing the p53 network publication-title: Nature doi: 10.1038/35042675 – volume: 10 start-page: 404 year: 2003 end-page: 408 ident: CR69 article-title: Transcriptional repression mediated by the p53 tumour suppressor publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401191 – volume: 18 start-page: 1598 year: 2011 end-page: 1607 ident: CR137 article-title: Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death publication-title: Cell Death Differ doi: 10.1038/cdd.2011.33 – volume: 9 start-page: 749 year: 2009 end-page: 758 ident: CR2 article-title: The first 30 years of p53: growing ever more complex publication-title: Nat Rev Cancer doi: 10.1038/nrc2723 – volume: 288 start-page: 35940 year: 2013 end-page: 35951 ident: CR283 article-title: Local depletion of DNA methylation identifies a repressive p53 regulatory region in the NEK2 promoter publication-title: J Biol Chem doi: 10.1074/jbc.M113.523837 – volume: 128 start-page: 853 year: 2007 end-page: 864 ident: CR134 article-title: Central role of p53 in the suntan response and pathologic hyperpigmentation publication-title: Cell doi: 10.1016/j.cell.2006.12.045 – volume: 30 start-page: 277 year: 2008 end-page: 289 ident: CR57 article-title: Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage publication-title: Mol Cell doi: 10.1016/j.molcel.2008.03.016 – volume: 134 start-page: 62 year: 2008 end-page: 73 ident: CR83 article-title: Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression publication-title: Cell doi: 10.1016/j.cell.2008.06.006 – volume: 24 start-page: 2899 year: 2005 end-page: 2908 ident: CR216 article-title: The p53 pathway: positive and negative feedback loops publication-title: Oncogene doi: 10.1038/sj.onc.1208615 – volume: 29 start-page: 194 year: 2008 end-page: 201 ident: CR266 article-title: Survivin repression by p53, Rb and E2F2 in normal human melanocytes publication-title: Carcinogenesis doi: 10.1093/carcin/bgm219 – volume: 21 start-page: 344 year: 2011 end-page: 353 ident: CR71 article-title: To repress or not to repress: this is the guardian’s question publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2011.04.002 – volume: 23 start-page: 9336 year: 2004 end-page: 9347 ident: CR289 article-title: Identification of PRC1 as the p53 target gene uncovers a novel function of p53 in the regulation of cytokinesis publication-title: Oncogene doi: 10.1038/sj.onc.1208114 – volume: 276 start-page: 1998 year: 2001 end-page: 2006 ident: CR98 article-title: P130/E2F4 binds to and represses the cdc2 promoter in response to p53 publication-title: J Biol Chem doi: 10.1074/jbc.M005101200 – volume: 9 start-page: 4200 year: 2010 end-page: 4212 ident: CR286 article-title: p53-dependent repression of polo-like kinase-1 (PLK1) publication-title: Cell Cycle doi: 10.4161/cc.9.20.13532 – volume: 43 start-page: 621 year: 2011 end-page: 629 ident: CR126 article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters publication-title: Nat Genet doi: 10.1038/ng.848 – volume: 96 start-page: 3706 year: 1999 end-page: 3711 ident: CR156 article-title: GADD45 induction of a G2/M cell cycle checkpoint publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.3706 – volume: 6 start-page: 597 year: 2004 end-page: 609 ident: CR130 article-title: Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.10.012 – volume: 19 start-page: 1992 year: 2012 end-page: 2002 ident: CR21 article-title: Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis publication-title: Cell Death Differ doi: 10.1038/cdd.2012.89 – volume: 17 start-page: 3342 year: 1998 end-page: 3350 ident: CR8 article-title: How p53 binds DNA as a tetramer publication-title: EMBO J doi: 10.1093/emboj/17.12.3342 – volume: 9 start-page: 738 year: 2009 end-page: 748 ident: CR225 article-title: p53 and E2f: partners in life and death publication-title: Nat Rev Cancer doi: 10.1038/nrc2718 – volume: 443 start-page: 214 year: 2006 end-page: 217 ident: CR164 article-title: The pathological response to DNA damage does not contribute to p53-mediated tumour suppression publication-title: Nature doi: 10.1038/nature05077 – volume: 102 start-page: 4813 year: 2005 end-page: 4818 ident: CR175 article-title: Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407069102 – volume: 26 start-page: 1306 year: 2007 end-page: 1316 ident: CR4 article-title: Coping with stress: multiple ways to activate p53 publication-title: Oncogene doi: 10.1038/sj.onc.1210263 – volume: 312 start-page: 1650 year: 2006 end-page: 1653 ident: CR203 article-title: p53 regulates mitochondrial respiration publication-title: Science doi: 10.1126/science.1126863 – volume: 106 start-page: 14373 year: 2009 end-page: 14378 ident: CR85 article-title: Redefining the p53 response element publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903284106 – volume: 14 start-page: R104 year: 2013 ident: CR127 article-title: Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2 publication-title: Genome Biol doi: 10.1186/gb-2013-14-9-r104 – volume: 4 start-page: 769 year: 2006 end-page: 778 ident: CR258 article-title: A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-06-0178 – volume: 2 start-page: 0696 year: 2005 end-page: 0701 ident: CR138 article-title: Why most published research findings are false publication-title: PLoS Med – volume: 5 start-page: 5535 year: 2014 end-page: 5546 ident: CR257 article-title: Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD publication-title: Oncotarget – volume: 50 start-page: 528 year: 2009 end-page: 537 ident: CR281 article-title: LIM and SH3 protein 1 (Lasp1) is a novel p53 transcriptional target involved in hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2008.10.025 – volume: 13 start-page: 1003 year: 2006 end-page: 1016 ident: CR163 article-title: p53 in recombination and repair publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401903 – volume: 106 start-page: dju053 year: 2014 ident: CR34 article-title: DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosupprossor publication-title: J Natl Cancer Inst doi: 10.1093/jnci/dju053 – volume: 11 start-page: 4661 year: 2012 end-page: 4672 ident: CR109 article-title: p53 can repress transcription of cell cycle genes through a p21 WAF1/CIP1-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements publication-title: Cell Cycle doi: 10.4161/cc.22917 – volume: 5 start-page: 336 year: 2011 end-page: 348 ident: CR160 article-title: Transcriptional modulation induced by ionizing radiation: P53 remains a central player publication-title: Mol Oncol doi: 10.1016/j.molonc.2011.06.004 – volume: 1678 start-page: 111 year: 2004 end-page: 125 ident: CR290 article-title: Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites publication-title: Biochim Biophys Acta doi: 10.1016/j.bbaexp.2004.03.002 – volume: 275 start-page: 3867 year: 2000 end-page: 3872 ident: CR48 article-title: Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.275.6.3867 – volume: 363 start-page: 281 year: 1993 end-page: 283 ident: CR73 article-title: Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53 publication-title: Nature doi: 10.1038/363281a0 – volume: 137 start-page: 413 year: 2009 end-page: 431 ident: CR231 article-title: Blinded by the light: the growing complexity of p53 publication-title: Cell doi: 10.1016/j.cell.2009.04.037 – volume: 8 start-page: e63187 year: 2013 ident: CR110 article-title: p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes publication-title: PLoS One doi: 10.1371/journal.pone.0063187 – volume: 26 start-page: 882 year: 2016 end-page: 895 ident: CR19 article-title: Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic publication-title: Genome Res doi: 10.1101/gr.204149.116 – volume: 4 start-page: 842 year: 2002 end-page: 849 ident: CR192 article-title: BID regulation by p53 contributes to chemosensitivity publication-title: Nat Cell Biol doi: 10.1038/ncb866 – volume: 8 start-page: 699 year: 1997 end-page: 710 ident: CR91 article-title: Down-regulation of cyclin A gene expression upon genotoxic stress correlates with reduced binding of free E2F to the promoter publication-title: Cell Growth Differ – volume: 15 start-page: 4694 year: 1995 end-page: 4701 ident: CR161 article-title: p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.9.4694 – volume: 12 start-page: 753 year: 2013 end-page: 761 ident: CR200 article-title: p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene publication-title: Cell Cycle doi: 10.4161/cc.23597 – volume: 64 start-page: 2627 year: 2004 end-page: 2633 ident: CR207 article-title: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-0846 – volume: 8 start-page: 1739 year: 1994 end-page: 1749 ident: CR67 article-title: Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential publication-title: Genes Dev doi: 10.1101/gad.8.15.1739 – volume: 291 start-page: 16586 year: 2016 end-page: 16596 ident: CR187 article-title: CerS6 is a novel transcriptional target of p53 protein activated by non-genotoxic stress publication-title: J Biol Chem doi: 10.1074/jbc.M116.716902 – volume: 97 start-page: 109 year: 2000 end-page: 114 ident: CR32 article-title: PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.1.109 – volume: 14 start-page: 482 year: 1996 end-page: 486 ident: CR155 article-title: Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway publication-title: Nat Genet doi: 10.1038/ng1296-482 – volume: 13 start-page: 523 year: 2004 end-page: 535 ident: CR222 article-title: PML is a direct p53 target that modulates p53 effector functions publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00062-0 – volume: 30 start-page: 315 year: 2002 end-page: 320 ident: CR252 article-title: A polymorphic microsatellite that mediates induction of PIG3 by p53 publication-title: Nat Genet doi: 10.1038/ng836 – volume: 10 start-page: 676 year: 2008 end-page: 687 ident: CR208 article-title: Regulation of autophagy by cytoplasmic p53 publication-title: Nat Cell Biol doi: 10.1038/ncb1730 – volume: 142 start-page: 409 year: 2010 end-page: 419 ident: CR125 article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response publication-title: Cell doi: 10.1016/j.cell.2010.06.040 – volume: 39 start-page: 440 year: 2011 end-page: 453 ident: CR199 article-title: p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq796 – volume: 13 start-page: 3037 year: 2014 end-page: 3058 ident: CR53 article-title: The transcription factor p53: not a repressor, solely an activator publication-title: Cell Cycle doi: 10.4161/15384101.2014.949083 – volume: 24 start-page: 1193 year: 2010 end-page: 1200 ident: CR33 article-title: Regulation of apoptosis by p53-inducible transmembrane protein containing sushi domain publication-title: Oncol Rep – volume: 401 start-page: 616 year: 1999 end-page: 620 ident: CR157 article-title: 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage publication-title: Nature doi: 10.1038/44188 – volume: 20 start-page: 4210 year: 2000 end-page: 4223 ident: CR100 article-title: p53 regulation of G(2) checkpoint is retinoblastoma protein dependent publication-title: Mol Cell Biol doi: 10.1128/MCB.20.12.4210-4223.2000 – volume: 1 start-page: 1048 year: 2003 end-page: 1057 ident: CR180 article-title: Multiple response elements and differential p53 binding control Perp expression during apoptosis publication-title: Mol Cancer Res – volume: 280 start-page: 11851 year: 2004 end-page: 11858 ident: CR182 article-title: Brn-3a transcription factor blocks p53 mediated activation of pro-apoptotic target genes, Noxa and Bax, and to determine cell fate publication-title: J Biol Chem doi: 10.1074/jbc.M408679200 – volume: 21 start-page: 2613 year: 2002 end-page: 2622 ident: CR268 article-title: Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway publication-title: Oncogene doi: 10.1038/sj.onc.1205353 – volume: 9 start-page: 724 year: 2009 end-page: 737 ident: CR55 article-title: The expanding universe of p53 targets publication-title: Nat Rev Cancer doi: 10.1038/nrc2730 – volume: 5 start-page: 1450 year: 2006 end-page: 1456 ident: CR238 article-title: Transcriptional activation of the carboxylesterase 2 gene by the p53 pathway publication-title: Cancer Biol Ther doi: 10.4161/cbt.5.11.3271 – volume: 106 start-page: 11667 year: 2009 end-page: 11672 ident: CR122 article-title: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0904715106 – volume: 21 start-page: 1469 year: 2002 end-page: 1476 ident: CR185 article-title: A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1 publication-title: Oncogene doi: 10.1038/sj.onc.1205218 – volume: 4 start-page: e1000104 year: 2008 ident: CR54 article-title: Noncanonical DNA motifs as transactivation targets by wild type and mutant p53 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000104 – volume: 395 start-page: 124 year: 1998 end-page: 125 ident: CR226 article-title: p14ARF links the tumour suppressors RB and p53 publication-title: Nature doi: 10.1038/25867 – volume: 126 start-page: 107 year: 2006 end-page: 120 ident: CR37 article-title: TIGAR, a p53-inducible regulator of glycolysis and apoptosis publication-title: Cell doi: 10.1016/j.cell.2006.05.036 – volume: 24 start-page: 175 year: 2016 end-page: 181 ident: CR141 article-title: ChIP bias as a function of cross-linking time publication-title: Chromosom Res doi: 10.1007/s10577-015-9509-1 – volume: 12 start-page: 1015 year: 2003 end-page: 1027 ident: CR60 article-title: p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00359-9 – volume: 19 start-page: 1735 year: 2000 end-page: 1743 ident: CR38 article-title: Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site publication-title: Oncogene doi: 10.1038/sj.onc.1203489 – volume: 7 start-page: e42615 year: 2012 ident: CR271 article-title: p53 dimers associate with a head-to-tail response element to repress cyclin B transcription publication-title: PLoS One doi: 10.1371/journal.pone.0042615 – volume: 107 start-page: 7455 year: 2010 end-page: 7460 ident: CR198 article-title: Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1001006107 – volume: 6 start-page: 19174 year: 2016 ident: CR246 article-title: IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis publication-title: Sci Rep doi: 10.1038/srep19174 – volume: 8 start-page: 3411 year: 1993 end-page: 3416 ident: CR15 article-title: Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene publication-title: Oncogene – volume: 297 start-page: 1302 year: 2002 end-page: 1310 ident: CR249 article-title: Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53 publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(02)02382-3 – volume: 26 start-page: 539 year: 2007 end-page: 551 ident: CR104 article-title: Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence publication-title: Mol Cell doi: 10.1016/j.molcel.2007.04.015 – volume: 44 start-page: 6070 year: 2016 end-page: 6086 ident: CR18 article-title: Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw523 – volume: 95 start-page: 11945 year: 1998 end-page: 11950 ident: CR152 article-title: pRB plays an essential role in cell cycle arrest induced by DNA damage publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.20.11945 – volume: 387 start-page: 296 year: 1997 end-page: 299 ident: CR217 article-title: Mdm2 promotes the rapid degradation of p53 publication-title: Nature doi: 10.1038/387296a0 – volume: 31 start-page: 1679 year: 2011 end-page: 1689 ident: CR236 article-title: SPATA18, a spermatogenesis-associated gene, is a novel transcriptional target of p53 and p63 publication-title: Mol Cell Biol doi: 10.1128/MCB.01072-10 – volume: 69 start-page: 1368 year: 2009 end-page: 1374 ident: CR245 article-title: Identification of SULF2 as a novel transcriptional target of p53 by use of integrated genomic analyses publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2742 – volume: 60 start-page: 3655 year: 2000 end-page: 3661 ident: CR78 article-title: Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression publication-title: Cancer Res – volume: 16 start-page: 393 year: 2015 end-page: 405 ident: CR195 article-title: p53 in survival, death and metabolic health: a lifeguard with a licence to kill publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm4007 – volume: 188 start-page: 2033 year: 1998 end-page: 2045 ident: CR47 article-title: p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs publication-title: J Exp Med doi: 10.1084/jem.188.11.2033 – volume: 6 start-page: 44 year: 2005 end-page: 55 ident: CR162 article-title: p53: traffic cop at the crossroads of DNA repair and recombination publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1546 – volume: 387 start-page: 399 year: 2009 end-page: 404 ident: CR49 article-title: Active transcription of the human FAS/CD95/TNFRSF6 gene involves the p53 family publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.07.063 – volume: 8 start-page: 83 year: 2008 end-page: 93 ident: CR158 article-title: FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation publication-title: Nat Rev Cancer doi: 10.1038/nrc2290 – volume: 276 start-page: 27363 year: 2001 end-page: 27370 ident: CR172 article-title: Identification of a p53 response element in the promoter region of the hMSH2 gene required for expression in A2780 ovarian cancer cells publication-title: J Biol Chem doi: 10.1074/jbc.M103088200 – volume: 9 start-page: e1003726 year: 2013 ident: CR23 article-title: Characterization of the p53 cistrome—DNA binding cooperativity dissects p53’s tumor suppressor functions publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003726 – volume: 432 start-page: 775 year: 2004 end-page: 779 ident: CR159 article-title: Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene publication-title: Nature doi: 10.1038/nature03155 – volume: 544 start-page: 112 year: 2003 end-page: 118 ident: CR168 article-title: An E2F site in the 5′-promoter region contributes to serum-dependent up-regulation of the human proliferating cell nuclear antigen gene publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00485-X – volume: 276 start-page: 27716 year: 2001 end-page: 27720 ident: CR82 article-title: Transcriptional repression by p53 through direct binding to a novel DNA element publication-title: J Biol Chem doi: 10.1074/jbc.C100121200 – volume: 35 start-page: 495 year: 2007 end-page: 516 ident: CR177 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 375 start-page: 159 year: 1995 end-page: 161 ident: CR150 article-title: Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1 publication-title: Nature doi: 10.1038/375159a0 – volume: 1 start-page: 3 year: 1997 end-page: 11 ident: CR51 article-title: 14-3-3σ Is a p53-regulated inhibitor of G2/M progression publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80002-7 – volume: 374 start-page: 386 year: 1995 end-page: 388 ident: CR151 article-title: Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA publication-title: Nature doi: 10.1038/374386a0 – volume: 16 start-page: 464 year: 2015 ident: CR56 article-title: Whole-genome cartography of p53 response elements ranked on transactivation potential publication-title: BMC Genomics doi: 10.1186/s12864-015-1643-9 – volume: 15 start-page: 2852 year: 2016 end-page: 2853 ident: CR116 article-title: P21 governs p53’s repressive side publication-title: Cell Cycle doi: 10.1080/15384101.2016.1205393 – volume: 7 start-page: 1 year: 2014 end-page: 11 ident: CR28 article-title: Parallel profiling of the transcriptome, cistrome, and epigenome in the cellular response to ionizing radiation publication-title: Sci Signal doi: 10.1126/scisignal.2005032 – volume: 21 start-page: 990 year: 2002 end-page: 999 ident: CR43 article-title: A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes publication-title: Oncogene doi: 10.1038/sj.onc.1205069 – volume: 69 start-page: 8761 year: 2009 end-page: 8769 ident: CR248 article-title: Regulation of protein Citrullination through p53/PADI4 network in DNA damage response publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-2280 – volume: 28 start-page: 2046 year: 2009 end-page: 2050 ident: CR267 article-title: DNA methylation inhibits p53-mediated survivin repression publication-title: Oncogene doi: 10.1038/onc.2009.62 – volume: 18 start-page: 127 year: 1999 end-page: 137 ident: CR46 article-title: PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes publication-title: Oncogene doi: 10.1038/sj.onc.1202274 – volume: 8 start-page: 85 year: 2001 end-page: 94 ident: CR254 article-title: p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00284-2 – volume: 104 start-page: 1841 year: 2007 end-page: 1846 ident: CR250 article-title: BLIMP1 regulates cell growth through repression of p53 transcription publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605562104 – volume: 1 start-page: 59 year: 2002 end-page: 66 ident: CR97 article-title: Identification of promoter elements responsible for transcriptional inhibition of polo-like kinase 1 and topoisomerase IIalpha genes by p21(WAF1/CIP1/SDI1) publication-title: Cell Cycle doi: 10.4161/cc.1.1.101 – volume: 277 start-page: 3247 year: 2002 end-page: 3257 ident: CR264 article-title: Transcriptional repression of the anti-apoptotic survivin gene by wild type p53 publication-title: J Biol Chem doi: 10.1074/jbc.M106643200 – volume: 21 start-page: 1066 year: 2001 end-page: 1076 ident: CR103 article-title: p53 down-regulates CHK1 through p21 and the retinoblastoma protein publication-title: Mol Cell Biol doi: 10.1128/MCB.21.4.1066-1076.2001 – volume: 520 start-page: 57 year: 2015 end-page: 62 ident: CR81 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature doi: 10.1038/nature14344 – volume: 65 start-page: 1197 year: 2005 end-page: 1206 ident: CR189 article-title: p53CSV, a novel p53-inducible gene involved in the p53-dependent cell-survival pathway publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-3339 – volume: 95 start-page: 11307 year: 1998 end-page: 11311 ident: CR241 article-title: The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.19.11307 – volume: 447 start-page: 1130 year: 2007 end-page: 1134 ident: CR124 article-title: A microRNA component of the p53 tumour suppressor network publication-title: Nature doi: 10.1038/nature05939 – volume: 42 start-page: 6270 year: 2014 end-page: 6285 ident: CR26 article-title: Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress publication-title: Nucleic Acids Res doi: 10.1093/nar/gku299 – volume: 25 start-page: 10148 year: 2005 end-page: 10158 ident: CR239 article-title: Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators publication-title: Mol Cell Biol doi: 10.1128/MCB.25.22.10148-10158.2005 – volume: 6 start-page: e1909 year: 2015 ident: CR132 article-title: p53 regulates the mevalonate pathway in human glioblastoma multiforme publication-title: Cell Death Dis doi: 10.1038/cddis.2015.279 – volume: 278 start-page: 32507 year: 2003 end-page: 32516 ident: CR92 article-title: p21/CDKN1A mediates negative regulation of transcription by p53 publication-title: J Biol Chem doi: 10.1074/jbc.M212517200 – volume: 1859 start-page: 200 year: 2016 end-page: 208 ident: CR121 article-title: Expanding the p53 regulatory network: LncRNAs take up the challenge publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2015.07.011 – volume: 21 start-page: 521 year: 2014 end-page: 532 ident: CR29 article-title: Mapping the p53 transcriptome universe using p53 natural polymorphs publication-title: Cell Death Differ doi: 10.1038/cdd.2013.132 – volume: 283 start-page: F727 year: 2002 end-page: F733 ident: CR284 article-title: Spatial repression of PCNA by p53 during kidney development publication-title: Am JPhysiol Ren Physiol doi: 10.1152/ajprenal.00114.2002 – volume: 86 start-page: 41 year: 2008 end-page: 48 ident: CR188 article-title: De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation publication-title: Prostaglandins Other Lipid Mediat doi: 10.1016/j.prostaglandins.2008.02.004 – volume: 24 start-page: 1738 year: 2005 end-page: 1748 ident: CR87 article-title: Tumor suppressor p53 represses transcription of RECQ4 helicase publication-title: Oncogene doi: 10.1038/sj.onc.1208380 – volume: 33 start-page: 3959 year: 2014 end-page: 3969 ident: CR119 article-title: p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes publication-title: Oncogene doi: 10.1038/onc.2013.378 – volume: 41 start-page: 7286 year: 2013 end-page: 7301 ident: CR22 article-title: Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt504 – volume: 20 start-page: 1797 year: 2000 end-page: 1815 ident: CR154 article-title: Arrest of G(1)–S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription publication-title: Mol Cell Biol doi: 10.1128/MCB.20.5.1797-1815.2000 – volume: 6 start-page: e17574 year: 2011 ident: CR20 article-title: Role of p53 serine 46 in p53 target gene regulation publication-title: PLoS One doi: 10.1371/journal.pone.0017574 – volume: 26 start-page: 3410 year: 2007 end-page: 3422 ident: CR242 article-title: CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner publication-title: EMBO J doi: 10.1038/sj.emboj.7601779 – volume: 524 start-page: 69 year: 2002 end-page: 72 ident: CR243 article-title: Identification of functional p53-binding motifs in the mouse wig-1 promoter publication-title: FEBS Lett doi: 10.1016/S0014-5793(02)03004-1 – volume: 281 start-page: 24161 year: 2006 end-page: 24170 ident: CR276 article-title: DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine-5) methyltransferase publication-title: J Biol Chem doi: 10.1074/jbc.M603724200 – volume: 276 start-page: 29729 year: 2001 end-page: 29739 ident: CR288 article-title: Transcriptional regulation of the human DNA polymerase delta catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1 publication-title: J Biol Chem doi: 10.1074/jbc.M101167200 – volume: 61 start-page: 6660 year: 2001 end-page: 6664 ident: CR183 article-title: APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis advances in brief APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis publication-title: Cancer Res – volume: 13 start-page: 2140 year: 2006 end-page: 2149 ident: CR193 article-title: Regulation of AIF expression by p53 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401965 – volume: 26 start-page: 1398 year: 2006 end-page: 1413 ident: CR170 article-title: DNA polymerase eta, the product of the xeroderma pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activation publication-title: Mol Cell Biol doi: 10.1128/MCB.26.4.1398-1413.2006 – volume: 484 start-page: 251 year: 2012 end-page: 255 ident: CR139 article-title: Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function publication-title: Nature doi: 10.1038/nature10985 – volume: 56 start-page: 656 year: 2012 end-page: 662 ident: CR255 article-title: p53, a novel regulator of lipid metabolism pathways publication-title: J Hepatol doi: 10.1016/j.jhep.2011.08.022 – volume: 155 start-page: 207 year: 2001 end-page: 216 ident: CR184 article-title: APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death publication-title: J Cell Biol doi: 10.1083/jcb.200105137 – volume: 9 start-page: 691 year: 2009 end-page: 700 ident: CR194 article-title: p53 and metabolism publication-title: Nat Rev Cancer doi: 10.1038/nrc2715 – volume: 69 start-page: 4073 year: 2009 end-page: 4080 ident: CR107 article-title: B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4156 – volume: 319 start-page: 3104 year: 2013 end-page: 3115 ident: CR287 article-title: p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2013.09.012 – volume: 102 start-page: 1000 year: 2005 end-page: 1005 ident: CR265 article-title: Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407729102 – volume: 8 start-page: e74297 year: 2013 ident: CR244 article-title: CSF1 is a novel p53 target gene whose protein product functions in a feed-forward manner to suppress apoptosis and enhance p53-mediated growth arrest publication-title: PLoS One doi: 10.1371/journal.pone.0074297 – volume: 450 start-page: 721 year: 2007 end-page: 724 ident: CR260 article-title: p53 regulates maternal reproduction through LIF publication-title: Nature doi: 10.1038/nature05993 – volume: 404 start-page: 42 year: 2000 end-page: 49 ident: CR31 article-title: A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage publication-title: Nature doi: 10.1038/35003506 – volume: 6 start-page: e26156 year: 2011 ident: CR278 article-title: Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress publication-title: PLoS One doi: 10.1371/journal.pone.0026156 – volume: 278 start-page: 37439 year: 2003 end-page: 37450 ident: CR282 article-title: Transcriptional regulation of mitotic checkpoint gene MAD1 by p53 publication-title: J Biol Chem doi: 10.1074/jbc.M307185200 – volume: 134 start-page: 451 year: 2008 end-page: 460 ident: CR211 article-title: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling publication-title: Cell doi: 10.1016/j.cell.2008.06.028 – volume: 28 start-page: 545 year: 2009 end-page: 554 ident: CR234 article-title: New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53 publication-title: Oncogene doi: 10.1038/onc.2008.409 – volume: 55 start-page: 2910 year: 1995 end-page: 2919 ident: CR12 article-title: Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues publication-title: Cancer Res – volume: 55 start-page: 5187 year: 1995 end-page: 5190 ident: CR146 article-title: P21 is necessary for the p53-mediated G1 arrest in human cancer cells publication-title: Cancer Res – volume: 8 start-page: e1002797 year: 2012 ident: CR128 article-title: Intact p53-dependent responses in miR-34-deficient mice publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002797 – volume: 10 start-page: 676 year: 2008 ident: BFonc2016502_CR208 publication-title: Nat Cell Biol doi: 10.1038/ncb1730 – volume: 33 start-page: 3959 year: 2014 ident: BFonc2016502_CR119 publication-title: Oncogene doi: 10.1038/onc.2013.378 – volume: 268 start-page: 7923 year: 1993 ident: BFonc2016502_CR76 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)53046-5 – volume: 155 start-page: 207 year: 2001 ident: BFonc2016502_CR184 publication-title: J Cell Biol doi: 10.1083/jcb.200105137 – volume: 13 start-page: 3037 year: 2014 ident: BFonc2016502_CR53 publication-title: Cell Cycle doi: 10.4161/15384101.2014.949083 – volume: 276 start-page: 1998 year: 2001 ident: BFonc2016502_CR98 publication-title: J Biol Chem doi: 10.1074/jbc.M005101200 – volume: 14 start-page: R32 year: 2013 ident: BFonc2016502_CR215 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r32 – volume: 69 start-page: 8761 year: 2009 ident: BFonc2016502_CR248 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-2280 – volume: 15 start-page: 6785 year: 1995 ident: BFonc2016502_CR169 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.12.6785 – volume: 104 start-page: 1841 year: 2007 ident: BFonc2016502_CR250 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605562104 – volume: 282 start-page: 207 year: 2002 ident: BFonc2016502_CR36 publication-title: Gene doi: 10.1016/S0378-1119(01)00825-3 – volume: 53 start-page: 1226 year: 2011 ident: BFonc2016502_CR108 publication-title: Hepatology doi: 10.1002/hep.24174 – volume: 95 start-page: 11307 year: 1998 ident: BFonc2016502_CR241 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.19.11307 – volume: 15 start-page: 4694 year: 1995 ident: BFonc2016502_CR161 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.9.4694 – volume: 544 start-page: 112 year: 2003 ident: BFonc2016502_CR168 publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00485-X – volume: 102 start-page: 8204 year: 2005 ident: BFonc2016502_CR210 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502857102 – volume: 276 start-page: 27716 year: 2001 ident: BFonc2016502_CR82 publication-title: J Biol Chem doi: 10.1074/jbc.C100121200 – volume: 5 start-page: 336 year: 2011 ident: BFonc2016502_CR160 publication-title: Mol Oncol doi: 10.1016/j.molonc.2011.06.004 – volume: 14 start-page: 482 year: 1996 ident: BFonc2016502_CR155 publication-title: Nat Genet doi: 10.1038/ng1296-482 – volume: 16 start-page: 725 year: 2004 ident: BFonc2016502_CR275 publication-title: Mol Cell doi: 10.1016/j.molcel.2004.11.002 – volume: 6 start-page: 41402 year: 2015 ident: BFonc2016502_CR112 publication-title: Oncotarget doi: 10.18632/oncotarget.6356 – volume: 129 start-page: 665 year: 2007 ident: BFonc2016502_CR167 publication-title: Cell doi: 10.1016/j.cell.2007.05.003 – volume: 1 start-page: E1 issue: 1 year: 2005 ident: BFonc2016502_CR93 publication-title: Molecular Systems Biology doi: 10.1038/msb4100030 – volume: 19 start-page: 1735 year: 2000 ident: BFonc2016502_CR38 publication-title: Oncogene doi: 10.1038/sj.onc.1203489 – volume: 82 start-page: 675 year: 1995 ident: BFonc2016502_CR148 publication-title: Cell doi: 10.1016/0092-8674(95)90039-X – volume: 9 start-page: 486 year: 2008 ident: BFonc2016502_CR240 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-486 – volume: 21 start-page: 521 year: 2014 ident: BFonc2016502_CR29 publication-title: Cell Death Differ doi: 10.1038/cdd.2013.132 – volume: 89 start-page: 9210 year: 1992 ident: BFonc2016502_CR143 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.19.9210 – volume: 61 start-page: 6660 year: 2001 ident: BFonc2016502_CR183 publication-title: Cancer Res – volume: 134 start-page: 451 year: 2008 ident: BFonc2016502_CR211 publication-title: Cell doi: 10.1016/j.cell.2008.06.028 – volume: 69 start-page: 1368 year: 2009 ident: BFonc2016502_CR245 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2742 – volume: 96 start-page: 3706 year: 1999 ident: BFonc2016502_CR156 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.3706 – volume: 24 start-page: 2899 year: 2005 ident: BFonc2016502_CR216 publication-title: Oncogene doi: 10.1038/sj.onc.1208615 – volume: 14 start-page: R104 year: 2013 ident: BFonc2016502_CR127 publication-title: Genome Biol doi: 10.1186/gb-2013-14-9-r104 – volume: 97 start-page: 4291 year: 2000 ident: BFonc2016502_CR153 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.8.4291 – volume: 297 start-page: 1302 year: 2002 ident: BFonc2016502_CR249 publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(02)02382-3 – volume: 280 start-page: 11851 year: 2004 ident: BFonc2016502_CR182 publication-title: J Biol Chem doi: 10.1074/jbc.M408679200 – volume: 24 start-page: 1738 year: 2005 ident: BFonc2016502_CR87 publication-title: Oncogene doi: 10.1038/sj.onc.1208380 – volume: 12 start-page: 1015 year: 2003 ident: BFonc2016502_CR60 publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00359-9 – volume: 8 start-page: 3411 year: 1993 ident: BFonc2016502_CR15 publication-title: Oncogene – volume: 43 start-page: 4447 year: 2015 ident: BFonc2016502_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv284 – volume: 9 start-page: 749 year: 2009 ident: BFonc2016502_CR2 publication-title: Nat Rev Cancer doi: 10.1038/nrc2723 – volume: 27 start-page: 1016 year: 2013 ident: BFonc2016502_CR89 publication-title: Genes Dev doi: 10.1101/gad.212282.112 – volume: 188 start-page: 2033 year: 1998 ident: BFonc2016502_CR47 publication-title: J Exp Med doi: 10.1084/jem.188.11.2033 – volume: 278 start-page: 32507 year: 2003 ident: BFonc2016502_CR92 publication-title: J Biol Chem doi: 10.1074/jbc.M212517200 – volume: 6 start-page: 95 year: 2007 ident: BFonc2016502_CR259 publication-title: Cell Cycle doi: 10.4161/cc.6.1.3665 – ident: BFonc2016502_CR114 doi: 10.18632/oncotarget.10888 – volume: 493 start-page: 689 year: 2013 ident: BFonc2016502_CR80 publication-title: Nature doi: 10.1038/nature11776 – volume: 21 start-page: 1469 year: 2002 ident: BFonc2016502_CR185 publication-title: Oncogene doi: 10.1038/sj.onc.1205218 – volume: 21 start-page: 1066 year: 2001 ident: BFonc2016502_CR103 publication-title: Mol Cell Biol doi: 10.1128/MCB.21.4.1066-1076.2001 – volume: 520 start-page: 57 year: 2015 ident: BFonc2016502_CR81 publication-title: Nature doi: 10.1038/nature14344 – volume: 26 start-page: 539 year: 2007 ident: BFonc2016502_CR104 publication-title: Mol Cell doi: 10.1016/j.molcel.2007.04.015 – volume: 56 start-page: 656 year: 2012 ident: BFonc2016502_CR255 publication-title: J Hepatol doi: 10.1016/j.jhep.2011.08.022 – volume: 9 start-page: 724 year: 2009 ident: BFonc2016502_CR55 publication-title: Nat Rev Cancer doi: 10.1038/nrc2730 – volume: 13 start-page: 1003 year: 2006 ident: BFonc2016502_CR163 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401903 – volume: 275 start-page: 6051 year: 2000 ident: BFonc2016502_CR235 publication-title: J Biol Chem doi: 10.1074/jbc.275.9.6051 – volume: 54 start-page: 777 year: 2014 ident: BFonc2016502_CR129 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.04.025 – volume: 25 start-page: 3737 year: 2005 ident: BFonc2016502_CR86 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.9.3737-3751.2005 – volume: 23 start-page: 1 year: 2015 ident: BFonc2016502_CR135 publication-title: Cell Death Differ – volume: 39 start-page: 440 year: 2011 ident: BFonc2016502_CR199 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq796 – volume: 50 start-page: 528 year: 2009 ident: BFonc2016502_CR281 publication-title: J Hepatol doi: 10.1016/j.jhep.2008.10.025 – volume: 51 start-page: 6304 year: 1991 ident: BFonc2016502_CR142 publication-title: Cancer Res – volume: 1 start-page: 59 year: 2002 ident: BFonc2016502_CR97 publication-title: Cell Cycle doi: 10.4161/cc.1.1.101 – volume: 26 start-page: 1306 year: 2007 ident: BFonc2016502_CR4 publication-title: Oncogene doi: 10.1038/sj.onc.1210263 – volume: 23 start-page: 2584 year: 1995 ident: BFonc2016502_CR68 publication-title: Nucleic Acids Res doi: 10.1093/nar/23.14.2584 – volume: 101 start-page: 3510 year: 2004 ident: BFonc2016502_CR228 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0400177101 – volume: 26 start-page: 2501 year: 2006 ident: BFonc2016502_CR101 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.7.2501-2510.2006 – volume: 15 start-page: 2852 year: 2016 ident: BFonc2016502_CR116 publication-title: Cell Cycle doi: 10.1080/15384101.2016.1205393 – volume: 116 start-page: 4077 year: 2003 ident: BFonc2016502_CR176 publication-title: J Cell Sci doi: 10.1242/jcs.00739 – volume: 20 start-page: 5930 year: 2000 ident: BFonc2016502_CR213 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.16.5930-5938.2000 – volume: 64 start-page: 2627 year: 2004 ident: BFonc2016502_CR207 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-0846 – volume: 8 start-page: e1002797 year: 2012 ident: BFonc2016502_CR128 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002797 – volume: 25 start-page: 10148 year: 2005 ident: BFonc2016502_CR239 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.22.10148-10158.2005 – volume: 2011 start-page: 464916 year: 2011 ident: BFonc2016502_CR72 publication-title: J Biomed Biotechnol doi: 10.1155/2011/464916 – volume: 22 start-page: 3247 year: 2002 ident: BFonc2016502_CR165 publication-title: Mol Cell Biol doi: 10.1128/MCB.22.10.3247-3254.2002 – volume: 7 start-page: 683 year: 2001 ident: BFonc2016502_CR181 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00214-3 – volume: 23 start-page: 5556 year: 2003 ident: BFonc2016502_CR45 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.16.5556-5571.2003 – volume: 134 start-page: 62 year: 2008 ident: BFonc2016502_CR83 publication-title: Cell doi: 10.1016/j.cell.2008.06.006 – volume: 282 start-page: 1497 year: 1998 ident: BFonc2016502_CR149 publication-title: Science doi: 10.1126/science.282.5393.1497 – volume: 104 start-page: 487 year: 2001 ident: BFonc2016502_CR178 publication-title: Cell doi: 10.1016/S0092-8674(01)00237-9 – volume: 45 start-page: 222 year: 2012 ident: BFonc2016502_CR214 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.11.022 – volume: 8 start-page: 699 year: 1997 ident: BFonc2016502_CR91 publication-title: Cell Growth Differ – volume: 86 start-page: 41 year: 2008 ident: BFonc2016502_CR188 publication-title: Prostaglandins Other Lipid Mediat doi: 10.1016/j.prostaglandins.2008.02.004 – volume: 279 start-page: 50976 year: 2004 ident: BFonc2016502_CR99 publication-title: J Biol Chem doi: 10.1074/jbc.M402502200 – volume: 44 start-page: 491 year: 2011 ident: BFonc2016502_CR204 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.08.038 – volume: 9 start-page: 870 year: 2010 ident: BFonc2016502_CR70 publication-title: Cell Cycle doi: 10.4161/cc.9.5.10825 – volume: 7 start-page: 1 year: 2014 ident: BFonc2016502_CR28 publication-title: Sci Signal doi: 10.1126/scisignal.2005032 – volume: 7 start-page: e1001360 year: 2011 ident: BFonc2016502_CR136 publication-title: PLos Genet doi: 10.1371/journal.pgen.1001360 – volume: 26 start-page: 1398 year: 2006 ident: BFonc2016502_CR170 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.4.1398-1413.2006 – volume: 24 start-page: 1193 year: 2010 ident: BFonc2016502_CR33 publication-title: Oncol Rep – volume: 18 start-page: 1119 year: 1999 ident: BFonc2016502_CR212 publication-title: Oncogene doi: 10.1038/sj.onc.1202402 – volume: 26 start-page: 3410 year: 2007 ident: BFonc2016502_CR242 publication-title: EMBO J doi: 10.1038/sj.emboj.7601779 – volume: 278 start-page: 37439 year: 2003 ident: BFonc2016502_CR282 publication-title: J Biol Chem doi: 10.1074/jbc.M307185200 – volume: 389 start-page: 300 year: 1997 ident: BFonc2016502_CR251 publication-title: Nature doi: 10.1038/38525 – volume: 64 start-page: 7226 year: 2004 ident: BFonc2016502_CR230 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-2601 – volume: 137 start-page: 413 year: 2009 ident: BFonc2016502_CR231 publication-title: Cell doi: 10.1016/j.cell.2009.04.037 – volume: 2 start-page: a000935 year: 2010 ident: BFonc2016502_CR6 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000935 – volume: 9 start-page: 761 year: 2002 ident: BFonc2016502_CR218 publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00504-X – volume: 16 start-page: 393 year: 2015 ident: BFonc2016502_CR195 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm4007 – volume: 65 start-page: 7666 year: 2005 ident: BFonc2016502_CR35 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1039 – volume: 450 start-page: 721 year: 2007 ident: BFonc2016502_CR260 publication-title: Nature doi: 10.1038/nature05993 – volume: 6 start-page: 1903 year: 2007 ident: BFonc2016502_CR105 publication-title: Cell Cycle doi: 10.4161/cc.6.15.4512 – volume: 505 start-page: 495 year: 2014 ident: BFonc2016502_CR3 publication-title: Nature doi: 10.1038/nature12912 – volume: 30 start-page: 277 year: 2008 ident: BFonc2016502_CR57 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.03.016 – volume: 9 start-page: 738 year: 2009 ident: BFonc2016502_CR225 publication-title: Nat Rev Cancer doi: 10.1038/nrc2718 – volume: 19 start-page: 701 year: 2011 ident: BFonc2016502_CR102 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.04.017 – volume: 106 start-page: dju053 year: 2014 ident: BFonc2016502_CR34 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/dju053 – volume: 108 start-page: 16259 year: 2011 ident: BFonc2016502_CR133 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113884108 – volume: 13 start-page: 585 year: 2013 ident: BFonc2016502_CR106 publication-title: Nat Rev Cancer doi: 10.1038/nrc3556 – volume: 106 start-page: 11667 year: 2009 ident: BFonc2016502_CR122 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0904715106 – volume: 155 start-page: 410 year: 2013 ident: BFonc2016502_CR50 publication-title: Cell doi: 10.1016/j.cell.2013.09.017 – volume: 31 start-page: 1679 year: 2011 ident: BFonc2016502_CR236 publication-title: Mol Cell Biol doi: 10.1128/MCB.01072-10 – volume: 93 start-page: 895 year: 1996 ident: BFonc2016502_CR285 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.2.895 – volume: 408 start-page: 307 year: 2000 ident: BFonc2016502_CR1 publication-title: Nature doi: 10.1038/35042675 – volume: 1678 start-page: 111 year: 2004 ident: BFonc2016502_CR290 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbaexp.2004.03.002 – volume: 9 start-page: 402 year: 2008 ident: BFonc2016502_CR5 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2395 – volume: 71 start-page: 587 year: 1992 ident: BFonc2016502_CR13 publication-title: Cell doi: 10.1016/0092-8674(92)90593-2 – volume: 44 start-page: 164 year: 2016 ident: BFonc2016502_CR113 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv927 – volume: 20 start-page: 659 year: 2013 ident: BFonc2016502_CR205 publication-title: Cell Death Differ doi: 10.1038/cdd.2012.168 – volume: 377 start-page: 552 year: 1995 ident: BFonc2016502_CR147 publication-title: Nature doi: 10.1038/377552a0 – volume: 20 start-page: 240 year: 2001 ident: BFonc2016502_CR191 publication-title: Oncogene doi: 10.1038/sj.onc.1204067 – volume: 30 start-page: 2282 year: 2011 ident: BFonc2016502_CR274 publication-title: Oncogene doi: 10.1038/onc.2010.588 – volume: 234 start-page: 57 year: 1997 ident: BFonc2016502_CR42 publication-title: Exp Cell Res doi: 10.1006/excr.1997.3604 – volume: 21 start-page: 6017 year: 2002 ident: BFonc2016502_CR52 publication-title: Oncogene doi: 10.1038/sj.onc.1205877 – volume: 6 start-page: 6520 year: 2015 ident: BFonc2016502_CR66 publication-title: Nat Commun doi: 10.1038/ncomms7520 – volume: 60 start-page: 3655 year: 2000 ident: BFonc2016502_CR78 publication-title: Cancer Res – volume: 1859 start-page: 200 year: 2016 ident: BFonc2016502_CR121 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2015.07.011 – volume: 37 start-page: 2688 year: 2009 ident: BFonc2016502_CR273 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp110 – volume: 97 start-page: 109 year: 2000 ident: BFonc2016502_CR32 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.1.109 – volume: 278 start-page: 36435 year: 2003 ident: BFonc2016502_CR179 publication-title: J Biol Chem doi: 10.1074/jbc.M303191200 – volume: 42 start-page: 6270 year: 2014 ident: BFonc2016502_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku299 – volume: 281 start-page: 25134 year: 2006 ident: BFonc2016502_CR115 publication-title: J Biol Chem doi: 10.1074/jbc.M513901200 – volume: 92 start-page: 8493 year: 1995 ident: BFonc2016502_CR144 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.18.8493 – volume: 28 start-page: 2046 year: 2009 ident: BFonc2016502_CR267 publication-title: Oncogene doi: 10.1038/onc.2009.62 – volume: 8 start-page: 83 year: 2008 ident: BFonc2016502_CR158 publication-title: Nat Rev Cancer doi: 10.1038/nrc2290 – volume: 28 start-page: 3081 year: 2009 ident: BFonc2016502_CR256 publication-title: Oncogene doi: 10.1038/onc.2009.154 – volume: 103 start-page: 2115 year: 2006 ident: BFonc2016502_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0511130103 – volume: 401 start-page: 616 year: 1999 ident: BFonc2016502_CR157 publication-title: Nature doi: 10.1038/44188 – volume: 26 start-page: 1533 year: 2012 ident: BFonc2016502_CR117 publication-title: Genes Dev doi: 10.1101/gad.184911.111 – volume: 13 start-page: 2140 year: 2006 ident: BFonc2016502_CR193 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401965 – volume: 274 start-page: 15237 year: 1999 ident: BFonc2016502_CR190 publication-title: J Biol Chem doi: 10.1074/jbc.274.21.15237 – volume: 46 start-page: 30 year: 2012 ident: BFonc2016502_CR17 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.01.020 – volume: 1 start-page: 3 year: 1997 ident: BFonc2016502_CR51 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80002-7 – volume: 312 start-page: 1650 year: 2006 ident: BFonc2016502_CR203 publication-title: Science doi: 10.1126/science.1126863 – volume: 462 start-page: 925 year: 2009 ident: BFonc2016502_CR227 publication-title: Nature doi: 10.1038/nature08544 – volume: 69 start-page: 6049 year: 2009 ident: BFonc2016502_CR247 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-0621 – volume: 8 start-page: 85 year: 2001 ident: BFonc2016502_CR254 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00284-2 – volume: 29 start-page: 1090 year: 2011 ident: BFonc2016502_CR280 publication-title: Stem Cells doi: 10.1002/stem.660 – volume: 69 start-page: 4073 year: 2009 ident: BFonc2016502_CR107 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4156 – volume: 126 start-page: 121 year: 2006 ident: BFonc2016502_CR209 publication-title: Cell doi: 10.1016/j.cell.2006.05.034 – volume: 9 start-page: e1003726 year: 2013 ident: BFonc2016502_CR23 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003726 – volume: 24 start-page: 175 year: 2016 ident: BFonc2016502_CR141 publication-title: Chromosom Res doi: 10.1007/s10577-015-9509-1 – volume: 27 start-page: 1562 year: 2008 ident: BFonc2016502_CR96 publication-title: Oncogene doi: 10.1038/sj.onc.1210799 – volume: 26 start-page: 882 year: 2016 ident: BFonc2016502_CR19 publication-title: Genome Res doi: 10.1101/gr.204149.116 – volume: 27 start-page: 3797 year: 2008 ident: BFonc2016502_CR44 publication-title: Oncogene doi: 10.1038/onc.2008.32 – volume: 329 start-page: 713 year: 2005 ident: BFonc2016502_CR270 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.02.028 – volume: 10 start-page: e1003731 year: 2014 ident: BFonc2016502_CR25 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003731 – volume: 43 start-page: 621 year: 2011 ident: BFonc2016502_CR126 publication-title: Nat Genet doi: 10.1038/ng.848 – volume: 38 start-page: 626 year: 2006 ident: BFonc2016502_CR64 publication-title: Nat Genet doi: 10.1038/ng1789 – volume: 20 start-page: 1797 year: 2000 ident: BFonc2016502_CR154 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.5.1797-1815.2000 – volume: 95 start-page: 11945 year: 1998 ident: BFonc2016502_CR152 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.20.11945 – volume: 19 start-page: 1992 year: 2012 ident: BFonc2016502_CR21 publication-title: Cell Death Differ doi: 10.1038/cdd.2012.89 – volume: 107 start-page: 7455 year: 2010 ident: BFonc2016502_CR198 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1001006107 – volume: 28 start-page: 6557 year: 2008 ident: BFonc2016502_CR237 publication-title: Mol Cell Biol doi: 10.1128/MCB.01202-08 – volume: 3 start-page: e02200 year: 2014 ident: BFonc2016502_CR24 publication-title: Elife doi: 10.7554/eLife.02200 – volume: 6 start-page: 3 year: 2015 ident: BFonc2016502_CR232 publication-title: Oncotarget doi: 10.18632/oncotarget.3032 – volume: 21 start-page: 990 year: 2002 ident: BFonc2016502_CR43 publication-title: Oncogene doi: 10.1038/sj.onc.1205069 – volume: 443 start-page: 214 year: 2006 ident: BFonc2016502_CR164 publication-title: Nature doi: 10.1038/nature05077 – volume: 136 start-page: 535 year: 2009 ident: BFonc2016502_CR233 publication-title: Cell doi: 10.1016/j.cell.2008.12.002 – volume: 275 start-page: 3867 year: 2000 ident: BFonc2016502_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.275.6.3867 – volume: 102 start-page: 1000 year: 2005 ident: BFonc2016502_CR265 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407729102 – volume: 7 start-page: 11091 year: 2016 ident: BFonc2016502_CR174 publication-title: Nat Commun doi: 10.1038/ncomms11091 – volume: 404 start-page: 42 year: 2000 ident: BFonc2016502_CR31 publication-title: Nature doi: 10.1038/35003506 – volume: 363 start-page: 281 year: 1993 ident: BFonc2016502_CR73 publication-title: Nature doi: 10.1038/363281a0 – volume: 12 start-page: 613 year: 2012 ident: BFonc2016502_CR120 publication-title: Nat Rev Cancer doi: 10.1038/nrc3318 – volume: 106 start-page: 14373 year: 2009 ident: BFonc2016502_CR85 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903284106 – volume: 387 start-page: 399 year: 2009 ident: BFonc2016502_CR49 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.07.063 – volume: 29 start-page: 194 year: 2008 ident: BFonc2016502_CR266 publication-title: Carcinogenesis doi: 10.1093/carcin/bgm219 – volume: 291 start-page: 16586 year: 2016 ident: BFonc2016502_CR187 publication-title: J Biol Chem doi: 10.1074/jbc.M116.716902 – volume: 4 start-page: 842 year: 2002 ident: BFonc2016502_CR192 publication-title: Nat Cell Biol doi: 10.1038/ncb866 – volume: 21 start-page: 344 year: 2011 ident: BFonc2016502_CR71 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2011.04.002 – volume: 9 start-page: 691 year: 2009 ident: BFonc2016502_CR194 publication-title: Nat Rev Cancer doi: 10.1038/nrc2715 – volume: 36 start-page: 7168 year: 2008 ident: BFonc2016502_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn888 – volume: 259 start-page: 1769 year: 1993 ident: BFonc2016502_CR186 publication-title: Science doi: 10.1126/science.8456305 – volume: 387 start-page: 296 year: 1997 ident: BFonc2016502_CR217 publication-title: Nature doi: 10.1038/387296a0 – volume: 276 start-page: 4819 year: 2001 ident: BFonc2016502_CR261 publication-title: J Biol Chem doi: 10.1074/jbc.M008495200 – volume: 35 start-page: 495 year: 2007 ident: BFonc2016502_CR177 publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 45 start-page: 1270 issue: 3 year: 2016 ident: BFonc2016502_CR171 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1196 – volume: 8 start-page: 1161 year: 1997 ident: BFonc2016502_CR90 publication-title: Cell Growth Differ – volume: 30 start-page: 3397 year: 2011 ident: BFonc2016502_CR269 publication-title: EMBO J doi: 10.1038/emboj.2011.248 – volume: 6 start-page: 44 year: 2005 ident: BFonc2016502_CR162 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1546 – volume: 281 start-page: 24161 year: 2006 ident: BFonc2016502_CR276 publication-title: J Biol Chem doi: 10.1074/jbc.M603724200 – volume: 49 start-page: 524 year: 2013 ident: BFonc2016502_CR65 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.11.021 – volume: 276 start-page: 27363 year: 2001 ident: BFonc2016502_CR172 publication-title: J Biol Chem doi: 10.1074/jbc.M103088200 – volume: 9 start-page: 4200 year: 2010 ident: BFonc2016502_CR286 publication-title: Cell Cycle doi: 10.4161/cc.9.20.13532 – volume: 80 start-page: 293 year: 1995 ident: BFonc2016502_CR41 publication-title: Cell doi: 10.1016/0092-8674(95)90412-3 – volume: 16 start-page: 464 year: 2015 ident: BFonc2016502_CR56 publication-title: BMC Genomics doi: 10.1186/s12864-015-1643-9 – volume: 41 start-page: 7286 year: 2013 ident: BFonc2016502_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt504 – volume: 24 start-page: 135 year: 2010 ident: BFonc2016502_CR61 publication-title: Genes Dev doi: 10.1101/gad.1856710 – volume: 11 start-page: 4661 year: 2012 ident: BFonc2016502_CR109 publication-title: Cell Cycle doi: 10.4161/cc.22917 – volume: 288 start-page: 35940 year: 2013 ident: BFonc2016502_CR283 publication-title: J Biol Chem doi: 10.1074/jbc.M113.523837 – volume: 2 start-page: 0696 year: 2005 ident: BFonc2016502_CR138 publication-title: PLoS Med – volume: 447 start-page: 1130 year: 2007 ident: BFonc2016502_CR124 publication-title: Nature doi: 10.1038/nature05939 – volume: 28 start-page: 3196 year: 2009 ident: BFonc2016502_CR221 publication-title: EMBO J doi: 10.1038/emboj.2009.246 – volume: 5 start-page: 1102 year: 2006 ident: BFonc2016502_CR277 publication-title: Cell Cycle doi: 10.4161/cc.5.10.2777 – volume: 8 start-page: e74297 year: 2013 ident: BFonc2016502_CR244 publication-title: PLoS One doi: 10.1371/journal.pone.0074297 – volume: 259 start-page: 84 year: 1993 ident: BFonc2016502_CR75 publication-title: Science doi: 10.1126/science.8418500 – volume: 107 start-page: 7461 year: 2010 ident: BFonc2016502_CR197 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1002459107 – volume: 27 start-page: 2583 year: 2008 ident: BFonc2016502_CR95 publication-title: Oncogene doi: 10.1038/sj.onc.1210898 – volume: 276 start-page: 29729 year: 2001 ident: BFonc2016502_CR288 publication-title: J Biol Chem doi: 10.1074/jbc.M101167200 – volume: 30 start-page: 315 year: 2002 ident: BFonc2016502_CR252 publication-title: Nat Genet doi: 10.1038/ng836 – volume: 5 start-page: 5535 year: 2014 ident: BFonc2016502_CR257 publication-title: Oncotarget doi: 10.18632/oncotarget.2137 – volume: 22 start-page: 741 year: 2006 ident: BFonc2016502_CR9 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.015 – volume: 8 start-page: 1183 year: 1993 ident: BFonc2016502_CR74 publication-title: Oncogene – volume: 432 start-page: 775 year: 2004 ident: BFonc2016502_CR159 publication-title: Nature doi: 10.1038/nature03155 – volume: 19 start-page: 1162 year: 2005 ident: BFonc2016502_CR220 publication-title: Genes Dev doi: 10.1101/gad.1291305 – volume: 283 start-page: F727 year: 2002 ident: BFonc2016502_CR284 publication-title: Am JPhysiol Ren Physiol doi: 10.1152/ajprenal.00114.2002 – volume: 6 start-page: e1909 year: 2015 ident: BFonc2016502_CR132 publication-title: Cell Death Dis doi: 10.1038/cddis.2015.279 – volume: 374 start-page: 386 year: 1995 ident: BFonc2016502_CR151 publication-title: Nature doi: 10.1038/374386a0 – volume: 118 start-page: 1821 year: 2005 ident: BFonc2016502_CR263 publication-title: J Cell Sci doi: 10.1242/jcs.02307 – volume: 6 start-page: e26156 year: 2011 ident: BFonc2016502_CR278 publication-title: PLoS One doi: 10.1371/journal.pone.0026156 – volume: 17 start-page: 3342 year: 1998 ident: BFonc2016502_CR8 publication-title: EMBO J doi: 10.1093/emboj/17.12.3342 – volume: 124 start-page: 207 year: 2006 ident: BFonc2016502_CR16 publication-title: Cell doi: 10.1016/j.cell.2005.10.043 – volume: 18 start-page: 1598 year: 2011 ident: BFonc2016502_CR137 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.33 – volume: 8 start-page: 514 year: 2014 ident: BFonc2016502_CR27 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.06.030 – volume: 69 start-page: 3405 year: 2009 ident: BFonc2016502_CR131 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3628 – volume: 44 start-page: 6070 year: 2016 ident: BFonc2016502_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw523 – volume: 4 start-page: e1000104 year: 2008 ident: BFonc2016502_CR54 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000104 – volume: 6 start-page: 21240 year: 2015 ident: BFonc2016502_CR291 publication-title: Oncotarget doi: 10.18632/oncotarget.4067 – volume: 38 start-page: 356 year: 2010 ident: BFonc2016502_CR59 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.02.037 – volume: 40 start-page: 3511 year: 2012 ident: BFonc2016502_CR118 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1203 – volume: 5 start-page: 1450 year: 2006 ident: BFonc2016502_CR238 publication-title: Cancer Biol Ther doi: 10.4161/cbt.5.11.3271 – volume: 23 start-page: 9336 year: 2004 ident: BFonc2016502_CR289 publication-title: Oncogene doi: 10.1038/sj.onc.1208114 – volume: 23 start-page: 4050 year: 2004 ident: BFonc2016502_CR223 publication-title: Oncogene doi: 10.1038/sj.onc.1207524 – volume: 18 start-page: 91 year: 2011 ident: BFonc2016502_CR84 publication-title: Nat Med doi: 10.1038/nm.2546 – volume: 64 start-page: 5078 year: 2004 ident: BFonc2016502_CR39 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1195 – volume: 4 start-page: 769 year: 2006 ident: BFonc2016502_CR258 publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-06-0178 – volume: 66 start-page: 6271 year: 2006 ident: BFonc2016502_CR279 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-0121 – volume: 75 start-page: 817 year: 1993 ident: BFonc2016502_CR11 publication-title: Cell doi: 10.1016/0092-8674(93)90500-P – volume: 20 start-page: 4210 year: 2000 ident: BFonc2016502_CR100 publication-title: Mol Cell Biol doi: 10.1128/MCB.20.12.4210-4223.2000 – volume: 6 start-page: e17574 year: 2011 ident: BFonc2016502_CR20 publication-title: PLoS One doi: 10.1371/journal.pone.0017574 – volume: 55 start-page: 2910 year: 1995 ident: BFonc2016502_CR12 publication-title: Cancer Res – volume: 142 start-page: 409 year: 2010 ident: BFonc2016502_CR125 publication-title: Cell doi: 10.1016/j.cell.2010.06.040 – volume: 13 start-page: 523 year: 2004 ident: BFonc2016502_CR222 publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00062-0 – volume: 126 start-page: 107 year: 2006 ident: BFonc2016502_CR37 publication-title: Cell doi: 10.1016/j.cell.2006.05.036 – volume: 375 start-page: 159 year: 1995 ident: BFonc2016502_CR150 publication-title: Nature doi: 10.1038/375159a0 – volume: 12 start-page: 753 year: 2013 ident: BFonc2016502_CR200 publication-title: Cell Cycle doi: 10.4161/cc.23597 – volume: 10 start-page: 611 year: 2008 ident: BFonc2016502_CR206 publication-title: Nat Cell Biol doi: 10.1038/ncb1724 – volume: 484 start-page: 251 year: 2012 ident: BFonc2016502_CR139 publication-title: Nature doi: 10.1038/nature10985 – volume: 6 start-page: 597 year: 2004 ident: BFonc2016502_CR130 publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.10.012 – volume: 319 start-page: 3104 year: 2013 ident: BFonc2016502_CR287 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2013.09.012 – volume: 10 start-page: 404 year: 2003 ident: BFonc2016502_CR69 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401191 – volume: 67 start-page: 3043 year: 2007 ident: BFonc2016502_CR201 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-4149 – volume: 524 start-page: 69 year: 2002 ident: BFonc2016502_CR243 publication-title: FEBS Lett doi: 10.1016/S0014-5793(02)03004-1 – volume: 55 start-page: 5187 year: 1995 ident: BFonc2016502_CR146 publication-title: Cancer Res – volume: 21 start-page: 2613 year: 2002 ident: BFonc2016502_CR268 publication-title: Oncogene doi: 10.1038/sj.onc.1205353 – volume: 128 start-page: 853 year: 2007 ident: BFonc2016502_CR134 publication-title: Cell doi: 10.1016/j.cell.2006.12.045 – volume: 12 start-page: 1279 year: 2013 ident: BFonc2016502_CR253 publication-title: Cell Cycle doi: 10.4161/cc.24364 – volume: 21 start-page: 1493 year: 2014 ident: BFonc2016502_CR88 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.69 – volume: 9 start-page: 887 year: 1998 ident: BFonc2016502_CR94 publication-title: Cell Growth Differ – volume: 9 start-page: 400 year: 2009 ident: BFonc2016502_CR145 publication-title: Nat Rev Cancer doi: 10.1038/nrc2657 – volume: 336 start-page: 1440 year: 2012 ident: BFonc2016502_CR63 publication-title: Science doi: 10.1126/science.1218351 – volume: 8 start-page: e63187 year: 2013 ident: BFonc2016502_CR110 publication-title: PLoS One doi: 10.1371/journal.pone.0063187 – volume: 65 start-page: 1197 year: 2005 ident: BFonc2016502_CR189 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-3339 – volume: 8 start-page: 1739 year: 1994 ident: BFonc2016502_CR67 publication-title: Genes Dev doi: 10.1101/gad.8.15.1739 – volume: 18 start-page: 127 year: 1999 ident: BFonc2016502_CR46 publication-title: Oncogene doi: 10.1038/sj.onc.1202274 – volume: 28 start-page: 545 year: 2009 ident: BFonc2016502_CR234 publication-title: Oncogene doi: 10.1038/onc.2008.409 – volume: 22 start-page: 3645 year: 2003 ident: BFonc2016502_CR262 publication-title: Oncogene doi: 10.1038/sj.onc.1206477 – volume: 7 start-page: 1126 year: 1993 ident: BFonc2016502_CR14 publication-title: Genes Dev doi: 10.1101/gad.7.7a.1126 – volume: 152 start-page: 1021 year: 2013 ident: BFonc2016502_CR62 publication-title: Cell doi: 10.1016/j.cell.2013.01.052 – volume: 158 start-page: 579 year: 2014 ident: BFonc2016502_CR79 publication-title: Cell doi: 10.1016/j.cell.2014.05.051 – volume: 1825 start-page: 131 year: 2012 ident: BFonc2016502_CR77 publication-title: Biochim Biophys Acta – volume: 7 start-page: 219 year: 2006 ident: BFonc2016502_CR173 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400587 – volume: 42 start-page: 163 year: 2014 ident: BFonc2016502_CR111 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt849 – volume: 1 start-page: 1048 year: 2003 ident: BFonc2016502_CR180 publication-title: Mol Cancer Res – volume: 112 start-page: 779 year: 2003 ident: BFonc2016502_CR229 publication-title: Cell doi: 10.1016/S0092-8674(03)00193-4 – volume: 1 start-page: 45 year: 1992 ident: BFonc2016502_CR7 publication-title: Nat Genet doi: 10.1038/ng0492-45 – volume: 99 start-page: 12985 year: 2002 ident: BFonc2016502_CR166 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.202485699 – volume: 15 start-page: 2299 year: 2016 ident: BFonc2016502_CR196 publication-title: Cell Cycle doi: 10.1080/15384101.2016.1191714 – volume: 395 start-page: 124 year: 1998 ident: BFonc2016502_CR226 publication-title: Nature doi: 10.1038/25867 – volume: 13 start-page: 4816 year: 1994 ident: BFonc2016502_CR219 publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06807.x – volume: 102 start-page: 4813 year: 2005 ident: BFonc2016502_CR175 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407069102 – volume: 6 start-page: 19174 year: 2016 ident: BFonc2016502_CR246 publication-title: Sci Rep doi: 10.1038/srep19174 – volume: 7 start-page: e42615 year: 2012 ident: BFonc2016502_CR271 publication-title: PLoS One doi: 10.1371/journal.pone.0042615 – volume: 277 start-page: 3247 year: 2002 ident: BFonc2016502_CR264 publication-title: J Biol Chem doi: 10.1074/jbc.M106643200 – volume: 21 start-page: 7195 year: 2002 ident: BFonc2016502_CR202 publication-title: Oncogene doi: 10.1038/sj.onc.1205862 – volume: 342 start-page: 369 year: 2013 ident: BFonc2016502_CR140 publication-title: Science doi: 10.1126/science.1242369 – volume: 145 start-page: 571 year: 2011 ident: BFonc2016502_CR58 publication-title: Cell doi: 10.1016/j.cell.2011.03.035 – volume: 5 start-page: e1243 year: 2014 ident: BFonc2016502_CR123 publication-title: Cell Death Dis doi: 10.1038/cddis.2014.201 – volume: 35 start-page: 5577 year: 2016 ident: BFonc2016502_CR224 publication-title: Oncogene doi: 10.1038/onc.2016.33 – volume: 8 start-page: e72849 year: 2013 ident: BFonc2016502_CR272 publication-title: PLoS One doi: 10.1371/journal.pone.0072849 |
| SSID | ssj0007902 |
| Score | 2.687671 |
| SecondaryResourceType | review_article |
| Snippet | The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the
TP53
gene alters its response pathway, and is central to the... The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3943 |
| SubjectTerms | 38/47 45/47 631/337/572 631/80/82 Analysis Animals Apoptosis Cancer Cell Biology Cell cycle Census Data processing DNA repair Feedback Gene Expression Profiling - statistics & numerical data Gene Expression Regulation Gene regulation Gene targeting Genes Genetic Association Studies - statistics & numerical data Genetic regulation GTP-binding protein Health aspects High-Throughput Screening Assays - statistics & numerical data Human Genetics Humans Internal Medicine Medicine Medicine & Public Health Meta-Analysis as Topic Mutation Oncology p53 Protein Phagocytosis Promoters (Genetics) Properties Review Transcription factors Tumor suppressor genes Tumor Suppressor Protein p53 - physiology |
| Title | Census and evaluation of p53 target genes |
| URI | https://link.springer.com/article/10.1038/onc.2016.502 https://www.ncbi.nlm.nih.gov/pubmed/28288132 https://www.proquest.com/docview/1918399775 https://www.proquest.com/docview/1877527182 https://pubmed.ncbi.nlm.nih.gov/PMC5511239 |
| Volume | 36 |
| WOSCitedRecordID | wos000405379900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-5594 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: M7P dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-5594 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-5594 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1476-5594 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-5594 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: 8C1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFgoXHqGAoURG4iGETO19eNcnVKJWXBoiBFJulr0PqISc0KRI_Htm7HXSRMCFy0rWjq3xzs5jd2e_AXjOcy18zXjiDaqbsKxItJU-cWklasGtcNa2xSbUeKyn02ISNtwWIa2yt4mtobYzQ3vkR7iuQF-O0Yp8N_-RUNUoOl0NJTR2YC9jqSDF1KN1iofqcg4xikgTDGRYSHxPuT6aNYRfmOVvZdhQ6V3StmG-4pm2sya3jk5bj3R653__5S7cDrFofNxNnntwzTUDuNFVp_w1gJujvhjcAPbPwhn8fXg9ouoYi7hqbLzGCo9nPp5LHneZ5fFXMqEH8OX05PPoQxIKLiRGZmqZOM2N1za3vvbc87TSxslcOJZrVthM2bTGiMkbFGCqWGUyl3q0ECjU2qTG5PwB7Dazxj2CWEmXK1bnLaKXwZjJuUIIZStReLqvHcGbfsxLE9DIqSjG97I9Fee6RAmVJKESJRTBixX1vEPh-AvdKxJfScqJXzNVuGOAPBHMVXksCs1zqYSM4HCDEofTbHb3kiuDUi_KtdgieLbqpjcpUa1xs0uk0djN0OEjLw-7-bLimFa3Glf_EaiNmbQiIKjvzZ7m_FsL-S0pLuZFBC_7OXeFrT8MxON_8_8EbjEKTwgglB_C7vLi0j2F6-bn8nxxMYQdNVVtq4etQg1h7_3JePIJn87YR2rV5DfwuSeV |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8igXHssrUCBIFIRQaNaP2DkgVC1UrdquOBRpbyHxAyqhZOluQf1T_EZm8mp3Bdx64DwTa-R8nhnb428AnvNEC18wHnmDy01YlkbaSh-5OBeF4FY4a-tmE2o81pNJ-nEFfnVvYaissvOJtaO2laEz8k3cV2Asx2xFvpt-j6hrFN2udi00GljsudOfuGWbvd19j_93g7HtD4ejnajtKhAZOVTzyGluvLaJ9YXnnse5Nk4mwrFEs9QOlY0LTAu8QStjxXIzdLHHZYCWFyY2JuE47iW4jH5cUQmZmvQbvFg1NY6YtcQRJk6sLbSPud6sSuJLHCZvZHuA04XA5UBwLhIuV2kuXdXWEXD75v82d7fgRptrh1vN4rgNK64cwNWm--bpANZGXbO7AVw7aGsM7sCrEXX_mIV5acMzLvSw8uFU8rCpnA-_UIi4C58uxPx7sFpWpXsAoZIuUaxIasYygzmhc6kQyuYi9fQePYDX3T_OTMu2Tk0_vmX1rT_XGSIiI0RkiIgANnrtacMy8he9lwSXjJwPjmby9g0F2kQ0XtmWSDVPpBIygPUFTZxOsyjukJK1TmuWncEkgGe9mL6kQrzSVSeoo1HMMKFBW-43-Owtpt27HnKUqAXk9gpEZb4oKY--1pTmkvJ-ngbwosP4ObP-MBEP_23_U1jbOTzYz_Z3x3uP4DqjVIzIUPk6rM6PT9xjuGJ-zI9mx0_qBRzC54tG_W-zf4HR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgoXHssrUCBIFFShsIkfsXNAqGy7oiqsVgik3tLED6iEkqW7BfWv8esYJ862uwJuPXCeiTVxvvF8dsYzAM9oKpktCY2sQndjmmSR1NxGJi5YyahmRuum2YQYjeTBQTZegV_dXRiXVtmtic1CrWvlzsj7uK_AWI5shfetT4sY7wzfTL5HroOU-9PatdNoIbJvTn_i9m36em8Hv_UmIcPdT4N3ke8wECmeiFlkJFVW6lTb0lJL40Iqw1NmSCpJphOh4xIpglVocSxIoRITW3QJfItSxUqlFMe9BGsCSQZ619rb3dH44zwOiDbjETlMHCGNIj7tPqayX1euemKSvuL-OKcLiMth4VxcXM7ZXPpx28TD4Y3_eSZvwnXPwsPt1m1uwYqpenCl7ct52oOrg64NXg_WP_jsg9uwNXB9QaZhUenwrEp6WNtwwmnY5tSHX1zwuAOfL8T8u7Ba1ZW5D6HgJhWkTJtaZgrZojEZY0IXLLPupnoAL7vvnStfh921A_mWN_kAVOaIjtyhI0d0BLA515609Uf-ovfCQSd3yxKOpgp_uwJtcgW-8m2WSZpywXgAGwuaOJ1qUdyhJvfL2TQ_g0wAT-di96RL0atMfYI6EsUEqQ7acq_F6txit6-XCUWJWEDxXMEVOV-UVEdfm2Ln3O0IaBbA8w7v58z6w0Q8-Lf9T2AdwZ6_3xvtP4RrxHE0VyWVbsDq7PjEPILL6sfsaHr82HtzCIcXDfvfLy2L8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Census+and+evaluation+of+p53+target+genes&rft.jtitle=Oncogene&rft.au=Fischer%2C+M&rft.date=2017-07-13&rft.eissn=1476-5594&rft.volume=36&rft.issue=28&rft.spage=3943&rft_id=info:doi/10.1038%2Fonc.2016.502&rft_id=info%3Apmid%2F28288132&rft.externalDocID=28288132 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-9232&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-9232&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-9232&client=summon |