Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces
A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, includ...
Uložené v:
| Vydané v: | Nature communications Ročník 13; číslo 1; s. 5815 - 12 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
03.10.2022
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm
2
) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject’s mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system’s reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%).
Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate. |
|---|---|
| AbstractList | A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm
2
) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject’s mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system’s reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%). A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm2) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject's mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system's reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%).A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm2) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject's mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system's reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%). Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate. A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm2) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject’s mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system’s reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%).Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate. A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm2) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject’s mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system’s reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%). Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate. A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference. Hence, here, we present a novel SSI by utilizing crystalline-silicon-based strain sensors combined with a 3D convolutional deep learning algorithm. Two perpendicularly placed strain gauges with minimized cell dimension (<0.1 mm 2 ) could effectively capture the biaxial strain information with high reliability. We attached four strain sensors near the subject’s mouths and collected strain data of unprecedently large wordsets (100 words), which our SSI can classify at a high accuracy rate (87.53%). Several analysis methods were demonstrated to verify the system’s reliability, as well as the performance comparison with another SSI using sEMG electrodes with the same dimension, which exhibited a relatively low accuracy rate (42.60%). Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate. |
| ArticleNumber | 5815 |
| Author | Shin, Yejee Kim, Kiho Kim, Kyubeen Byeon, Yunsu Hong, Seokjun Kim, Gwanho Kim, Taeseong Cho, Myeongki Son, Byung Gwan Choi, Heekyeong Kim, Jihyun Lee, Jinyoung Hwang, Dosik Shin, Jongwoon Gao, Yuyan Kang, Hong-Goo Lee, Jeong Ryong Suh, Jungmin Kim, Hwayeon Cheng, Huanyu Sang, Mingyu Jun, Yohan Son, Geonhui Kim, Taemin Kang, Kyowon Yu, Ki Jun Kwon, Yoohwan Um, Seyun |
| Author_xml | – sequence: 1 givenname: Taemin orcidid: 0000-0002-5405-6603 surname: Kim fullname: Kim, Taemin organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 2 givenname: Yejee surname: Shin fullname: Shin, Yejee organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 3 givenname: Kyowon surname: Kang fullname: Kang, Kyowon organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 4 givenname: Kiho surname: Kim fullname: Kim, Kiho organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 5 givenname: Gwanho surname: Kim fullname: Kim, Gwanho organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 6 givenname: Yunsu surname: Byeon fullname: Byeon, Yunsu organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 7 givenname: Hwayeon surname: Kim fullname: Kim, Hwayeon organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 8 givenname: Yuyan surname: Gao fullname: Gao, Yuyan organization: Department of Engineering Science and Mechanics, The Pennsylvania State University – sequence: 9 givenname: Jeong Ryong surname: Lee fullname: Lee, Jeong Ryong organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 10 givenname: Geonhui surname: Son fullname: Son, Geonhui organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 11 givenname: Taeseong surname: Kim fullname: Kim, Taeseong organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 12 givenname: Yohan surname: Jun fullname: Jun, Yohan organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School – sequence: 13 givenname: Jihyun surname: Kim fullname: Kim, Jihyun organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 14 givenname: Jinyoung surname: Lee fullname: Lee, Jinyoung organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 15 givenname: Seyun surname: Um fullname: Um, Seyun organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 16 givenname: Yoohwan surname: Kwon fullname: Kwon, Yoohwan organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 17 givenname: Byung Gwan surname: Son fullname: Son, Byung Gwan organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 18 givenname: Myeongki surname: Cho fullname: Cho, Myeongki organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 19 givenname: Mingyu surname: Sang fullname: Sang, Mingyu organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 20 givenname: Jongwoon surname: Shin fullname: Shin, Jongwoon organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 21 givenname: Kyubeen surname: Kim fullname: Kim, Kyubeen organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 22 givenname: Jungmin surname: Suh fullname: Suh, Jungmin organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 23 givenname: Heekyeong orcidid: 0000-0002-8753-7833 surname: Choi fullname: Choi, Heekyeong organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 24 givenname: Seokjun surname: Hong fullname: Hong, Seokjun organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 25 givenname: Huanyu orcidid: 0000-0001-6075-4208 surname: Cheng fullname: Cheng, Huanyu organization: Department of Engineering Science and Mechanics, The Pennsylvania State University – sequence: 26 givenname: Hong-Goo surname: Kang fullname: Kang, Hong-Goo email: hgkang@yonsei.ac.kr organization: Digital Signal Processing & Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University – sequence: 27 givenname: Dosik surname: Hwang fullname: Hwang, Dosik email: dosik.hwang@yonsei.ac.kr organization: Medical Artificial Intelligence Lab, School of Electrical and Electronic Engineering, Yonsei University, Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University – sequence: 28 givenname: Ki Jun orcidid: 0000-0002-2922-2702 surname: Yu fullname: Yu, Ki Jun email: kijunyu@yonsei.ac.kr organization: Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University |
| BookMark | eNp9kk1vFSEUhompsbX2D7iaxI2bUT4HZmNiGj-aNHFj1wSYM3O54cIVuJr--3I7NdouygZyeN73cMj7Gp3EFAGhtwR_IJipj4UTPsgeU9ozxoXsxxfojGJOeiIpO_nvfIouStnitthIFOev0CkbyEg5Zmco3ISaTd342Ll8W6oJwUfoiw_epdhbU2DqSkMasJjDAqX74-ummwD2XQCTo49LZ8KScivvSjen3DU1xNqVPYDbdD5WyLNxUN6gl7MJBS4e9nN08_XLz8vv_fWPb1eXn697J4isPQxEjE4qZq2kThplZj4NwglHLbdMwuwEd3zmdhKEUUq4U6J9ASZiGAwGdo6uVt8pma3eZ78z-VYn4_V9IeVFm1y9C6DFJOikrMJSCD5YZieuAOQwE7BqHmnz-rR67Q92B5Nrg2UTHpk-vol-o5f0W4-CYcJUM3j_YJDTrwOUqne-OAjBREiHoqmkhA6Y8GOvd0_QbTrk2L7qSGGJKRtlo9RKuZxKyTBr56upPh37-6AJ1seE6DUhuiVE3ydEj01Kn0j_zvGsiK2i0uC4QP73qmdUd7nq0C8 |
| CitedBy_id | crossref_primary_10_1002_smtd_202401796 crossref_primary_10_1002_adfm_202502191 crossref_primary_10_1021_acsami_4c21754 crossref_primary_10_3390_s25082548 crossref_primary_10_1016_j_bspc_2024_106052 crossref_primary_10_1016_j_nanoen_2024_110118 crossref_primary_10_1016_j_bios_2023_115756 crossref_primary_10_1039_D5MH00451A crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1002_adfm_202406035 crossref_primary_10_1016_j_bios_2025_117220 crossref_primary_10_1109_TIM_2023_3277930 crossref_primary_10_1007_s42765_023_00348_7 crossref_primary_10_1002_admt_202400990 crossref_primary_10_1088_2631_7990_ad492e crossref_primary_10_1016_j_sna_2023_114571 crossref_primary_10_1038_s41467_025_57629_5 crossref_primary_10_1002_aisy_202400909 crossref_primary_10_1002_adma_202300855 crossref_primary_10_1002_advs_202408653 crossref_primary_10_1109_TIM_2025_3583386 crossref_primary_10_1016_j_ceramint_2025_06_183 crossref_primary_10_1016_j_cej_2024_158933 crossref_primary_10_3390_s25051615 crossref_primary_10_1016_j_nanoen_2023_108446 crossref_primary_10_1002_adhm_202502901 crossref_primary_10_1039_D3MH01062G crossref_primary_10_1039_D3RA05932D crossref_primary_10_1088_2631_7990_ada8e6 crossref_primary_10_1016_j_matdes_2025_114191 crossref_primary_10_1002_adfm_202313728 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_1016_j_bios_2024_116472 crossref_primary_10_1016_j_snb_2024_136351 crossref_primary_10_1007_s40820_024_01605_z crossref_primary_10_1002_smll_202205316 crossref_primary_10_1002_admt_202400254 crossref_primary_10_1038_s41528_024_00315_1 crossref_primary_10_1038_s41467_023_44064_7 crossref_primary_10_1088_2631_7990_add7a4 crossref_primary_10_1002_admt_202400059 crossref_primary_10_1002_adfm_202309781 crossref_primary_10_1109_JSEN_2023_3303014 crossref_primary_10_1016_j_pmatsci_2025_101491 crossref_primary_10_1002_adfm_202213335 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1038_s41467_024_55649_1 crossref_primary_10_1007_s40820_025_01890_2 crossref_primary_10_1038_s41467_024_51572_7 crossref_primary_10_1109_JSEN_2024_3373635 crossref_primary_10_1007_s40820_024_01545_8 crossref_primary_10_1016_j_carbon_2025_120720 crossref_primary_10_1080_19475411_2025_2519578 crossref_primary_10_1016_j_nanoen_2024_109532 |
| Cites_doi | 10.1371/journal.pone.0008218 10.1038/s41598-019-39364-2 10.1038/s41467-021-27725-3 10.1038/s41528-021-00119-7 10.1126/science.1206157 10.1126/sciadv.aav9653 10.1038/nature25494 10.1109/TED.2011.2164923 10.1038/nmat3755 10.1126/sciadv.aaz8693 10.1088/1741-2560/8/4/046028 10.1007/s00421-014-3041-4 10.1016/j.jelekin.2012.04.009 10.1038/s41467-022-29083-0 10.1038/s41928-020-00510-8 10.1038/s41928-020-0428-6 10.1038/nature16521 10.1038/nnano.2017.125 10.1007/BF02344216 10.1038/s41598-022-08801-0 10.1038/s41528-017-0019-4 10.1016/j.jbiomech.2011.11.010 10.1038/s41378-019-0127-5 10.1021/acsnano.1c00259 10.1038/s41586-019-1119-1 10.3389/fnins.2015.00217 10.1088/1741-2552/ab0c59 10.1038/s41598-022-07842-9 10.1126/sciadv.abb7043 10.1038/s41467-020-17288-0 10.1038/s42256-019-0091-7 10.1034/j.1600-0846.2003.00358.x 10.1088/1741-2552/aac965 10.1038/s41467-021-25637-w 10.1038/ncomms6747 10.1038/s41528-018-0029-x 10.1021/acsnano.7b02767 10.1016/0038-1101(78)90296-4 10.1038/srep25803 10.1088/1741-2552/aa8235 10.1109/FG.2019.8756608 10.1109/FLEPS51544.2021.9469728 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-022-33457-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_5d52d8b8075546b3bd48ee76f1eb8f92 PMC9530138 10_1038_s41467_022_33457_9 |
| GrantInformation_xml | – fundername: Samsung funderid: https://doi.org/10.13039/100004358 – fundername: This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1901-08. – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-e6159c783bb72c7a8af4d65c5c2b4b37efc54c4f4bd5132214c8545701566a0e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 80 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865250300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:02:14 EDT 2025 Tue Nov 04 02:08:30 EST 2025 Fri Sep 05 07:20:42 EDT 2025 Tue Oct 07 07:34:14 EDT 2025 Sat Nov 29 02:11:21 EST 2025 Tue Nov 18 20:37:50 EST 2025 Fri Feb 21 02:38:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-e6159c783bb72c7a8af4d65c5c2b4b37efc54c4f4bd5132214c8545701566a0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6075-4208 0000-0002-5405-6603 0000-0002-8753-7833 0000-0002-2922-2702 |
| OpenAccessLink | https://doaj.org/article/5d52d8b8075546b3bd48ee76f1eb8f92 |
| PMID | 36192403 |
| PQID | 2720702397 |
| PQPubID | 546298 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5d52d8b8075546b3bd48ee76f1eb8f92 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9530138 proquest_miscellaneous_2721260142 proquest_journals_2720702397 crossref_citationtrail_10_1038_s41467_022_33457_9 crossref_primary_10_1038_s41467_022_33457_9 springer_journals_10_1038_s41467_022_33457_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-03 |
| PublicationDateYYYYMMDD | 2022-10-03 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Guenther (CR33) 2009; 4 Meltzner (CR30) 2018; 15 CR39 Van der Maaten, Hinton (CR53) 2008; 9 Takamatsu (CR42) 2019; 9 Huigen, Peper, Grimbergen (CR34) 2002; 40 Miyamoto (CR22) 2017; 12 Wen, Zhang, He, Lee (CR3) 2021; 12 Sim (CR19) 2019; 5 Rodriguez-Falces, Neyroud, Place (CR36) 2015; 115 Han (CR38) 2018; 2 Proix (CR26) 2022; 13 Moin (CR2) 2021; 4 CR6 Lu (CR4) 2022; 13 CR8 CR7 CR9 CR49 CR48 Herff (CR24) 2015; 9 Pei, Barbour, Leuthardt, Schalk (CR29) 2011; 8 Wang (CR12) 2021; 5 Wang (CR47) 2018; 2 Kim (CR43) 2014; 5 Won (CR45) 2011; 58 Webb (CR46) 2013; 12 Anumanchipalli, Chartier, Chang (CR11) 2019; 568 Wang (CR13) 2020; 6 Wagner (CR14) 2022; 12 Kim (CR17) 2011; 333 Martin (CR27) 2016; 6 De Luca, Kuznetsov, Gilmore, Roy (CR35) 2012; 45 CR16 CR15 Zhou (CR1) 2020; 3 CR10 CR52 Abdoli-Eramaki, Damecour, Christenson, Stevenson (CR37) 2012; 22 CR51 Kwon (CR20) 2020; 11 Norton, Brandt (CR44) 1978; 21 Mahmood (CR32) 2019; 1 Zhao (CR5) 2017; 11 Silver, Siperko, Seehra (CR50) 2003; 9 Gao (CR18) 2016; 529 Nguyen, Karavas, Artemiadis (CR25) 2017; 15 Zhu (CR21) 2020; 6 Liu (CR31) 2020; 6 Iqra, Anwar, Jan, Mohammad (CR41) 2022; 12 Angrick (CR28) 2019; 16 Wang (CR23) 2018; 555 Wang (CR40) 2021; 15 M Mahmood (33457_CR32) 2019; 1 33457_CR49 33457_CR48 P Norton (33457_CR44) 1978; 21 SM Won (33457_CR45) 2011; 58 33457_CR8 33457_CR9 S Martin (33457_CR27) 2016; 6 A Moin (33457_CR2) 2021; 4 J Rodriguez-Falces (33457_CR36) 2015; 115 A Miyamoto (33457_CR22) 2017; 12 Z Zhou (33457_CR1) 2020; 3 E Huigen (33457_CR34) 2002; 40 C Herff (33457_CR24) 2015; 9 S Han (33457_CR38) 2018; 2 S Takamatsu (33457_CR42) 2019; 9 33457_CR16 33457_CR15 Y-T Kwon (33457_CR20) 2020; 11 33457_CR10 M Abdoli-Eramaki (33457_CR37) 2012; 22 33457_CR52 33457_CR51 J Zhao (33457_CR5) 2017; 11 T Proix (33457_CR26) 2022; 13 W Gao (33457_CR18) 2016; 529 C Wagner (33457_CR14) 2022; 12 33457_CR6 33457_CR7 M Angrick (33457_CR28) 2019; 16 X Pei (33457_CR29) 2011; 8 FH Silver (33457_CR50) 2003; 9 L Van der Maaten (33457_CR53) 2008; 9 H Liu (33457_CR31) 2020; 6 F Wen (33457_CR3) 2021; 12 M Zhu (33457_CR21) 2020; 6 GK Anumanchipalli (33457_CR11) 2019; 568 GS Meltzner (33457_CR30) 2018; 15 D-H Kim (33457_CR17) 2011; 333 J Kim (33457_CR43) 2014; 5 K Sim (33457_CR19) 2019; 5 33457_CR39 RC Webb (33457_CR46) 2013; 12 Y Wang (33457_CR13) 2020; 6 FH Guenther (33457_CR33) 2009; 4 M Iqra (33457_CR41) 2022; 12 Y Lu (33457_CR4) 2022; 13 CH Nguyen (33457_CR25) 2017; 15 CJ De Luca (33457_CR35) 2012; 45 S Wang (33457_CR23) 2018; 555 H Wang (33457_CR40) 2021; 15 Y Wang (33457_CR47) 2018; 2 Y Wang (33457_CR12) 2021; 5 |
| References_xml | – ident: CR49 – volume: 4 start-page: e8218 year: 2009 ident: CR33 article-title: A wireless brain-machine interface for real-time speech synthesis publication-title: PloS one doi: 10.1371/journal.pone.0008218 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR8 – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: CR42 article-title: Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter publication-title: Sci. Rep. doi: 10.1038/s41598-019-39364-2 – volume: 13 start-page: 1 year: 2022 end-page: 14 ident: CR26 article-title: Imagined speech can be decoded from low-and cross-frequency intracranial EEG features publication-title: Nat. Commun. doi: 10.1038/s41467-021-27725-3 – volume: 5 start-page: 1 year: 2021 end-page: 9 ident: CR12 article-title: All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics publication-title: npj Flex. Electron. doi: 10.1038/s41528-021-00119-7 – volume: 333 start-page: 838 year: 2011 end-page: 843 ident: CR17 article-title: Epidermal electronics publication-title: Science doi: 10.1126/science.1206157 – ident: CR15 – volume: 5 start-page: eaav9653 year: 2019 ident: CR19 article-title: Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9653 – volume: 555 start-page: 83 year: 2018 end-page: 88 ident: CR23 article-title: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array publication-title: Nature doi: 10.1038/nature25494 – volume: 58 start-page: 4074 year: 2011 end-page: 4078 ident: CR45 article-title: Piezoresistive strain sensors and multiplexed arrays using assemblies of single-crystalline silicon nanoribbons on plastic substrates publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2164923 – volume: 12 start-page: 938 year: 2013 end-page: 944 ident: CR46 article-title: Ultrathin conformal devices for precise and continuous thermal characterization of human skin publication-title: Nat. Mater. doi: 10.1038/nmat3755 – ident: CR9 – volume: 6 start-page: eaaz8693 year: 2020 ident: CR21 article-title: Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 8 start-page: 046028 year: 2011 ident: CR29 article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028 – volume: 115 start-page: 627 year: 2015 end-page: 638 ident: CR36 article-title: Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-014-3041-4 – volume: 22 start-page: 908 year: 2012 end-page: 913 ident: CR37 article-title: The effect of perspiration on the sEMG amplitude and power spectrum publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2012.04.009 – volume: 13 year: 2022 ident: CR4 article-title: Decoding lip language using triboelectric sensors with deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-022-29083-0 – volume: 4 start-page: 54 year: 2021 end-page: 63 ident: CR2 article-title: A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition publication-title: Nat. Electron. doi: 10.1038/s41928-020-00510-8 – volume: 3 start-page: 571 year: 2020 end-page: 578 ident: CR1 article-title: Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays publication-title: Nat. Electron. doi: 10.1038/s41928-020-0428-6 – volume: 529 start-page: 509 year: 2016 end-page: 514 ident: CR18 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature doi: 10.1038/nature16521 – volume: 12 start-page: 907 year: 2017 end-page: 913 ident: CR22 article-title: Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.125 – volume: 40 start-page: 332 year: 2002 end-page: 338 ident: CR34 article-title: Investigation into the origin of the noise of surface electrodes publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344216 – volume: 12 start-page: 1 year: 2022 end-page: 11 ident: CR41 article-title: A flexible piezoresistive strain sensor based on laser scribed graphene oxide on polydimethylsiloxane publication-title: Sci. Rep. doi: 10.1038/s41598-022-08801-0 – ident: CR10 – volume: 2 start-page: 1 year: 2018 end-page: 7 ident: CR47 article-title: Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts publication-title: npj Flex. Electron. doi: 10.1038/s41528-017-0019-4 – ident: CR6 – volume: 45 start-page: 555 year: 2012 end-page: 561 ident: CR35 article-title: Inter-electrode spacing of surface EMG sensors: reduction of crosstalk contamination during voluntary contractions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.010 – volume: 6 start-page: 1 year: 2020 end-page: 13 ident: CR31 article-title: An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0127-5 – volume: 15 start-page: 9690 year: 2021 end-page: 9700 ident: CR40 article-title: High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti3C2T x MXene for the Monitoring of Human Activities publication-title: ACS Nano doi: 10.1021/acsnano.1c00259 – volume: 568 start-page: 493 year: 2019 end-page: 498 ident: CR11 article-title: Speech synthesis from neural decoding of spoken sentences publication-title: Nature doi: 10.1038/s41586-019-1119-1 – volume: 9 start-page: 217 year: 2015 ident: CR24 article-title: Brain-to-text: decoding spoken phrases from phone representations in the brain publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00217 – volume: 16 start-page: 036019 year: 2019 ident: CR28 article-title: Speech synthesis from ECoG using densely connected 3D convolutional neural networks publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0c59 – volume: 12 start-page: 1 year: 2022 end-page: 12 ident: CR14 article-title: Silent speech command word recognition using stepped frequency continuous wave radar publication-title: Sci. Rep. doi: 10.1038/s41598-022-07842-9 – volume: 6 start-page: eabb7043 year: 2020 ident: CR13 article-title: A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7043 – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: CR20 article-title: All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-020-17288-0 – volume: 1 start-page: 412 year: 2019 end-page: 422 ident: CR32 article-title: Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0091-7 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR53 article-title: Visualizing data using t-SNE publication-title: J. Machine Learning Res. – ident: CR48 – volume: 9 start-page: 3 year: 2003 end-page: 23 ident: CR50 article-title: Mechanobiology of force transduction in dermal tissue publication-title: Ski. Res. Technol. doi: 10.1034/j.1600-0846.2003.00358.x – volume: 15 start-page: 046031 year: 2018 ident: CR30 article-title: Development of sEMG sensors and algorithms for silent speech recognition publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aac965 – ident: CR52 – volume: 12 year: 2021 ident: CR3 article-title: AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove publication-title: Nat. Commun. doi: 10.1038/s41467-021-25637-w – volume: 5 start-page: 1 year: 2014 end-page: 11 ident: CR43 article-title: Stretchable silicon nanoribbon electronics for skin prosthesis publication-title: Nat. Commun. doi: 10.1038/ncomms6747 – volume: 2 start-page: 1 year: 2018 end-page: 10 ident: CR38 article-title: Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0029-x – volume: 11 start-page: 8590 year: 2017 end-page: 8599 ident: CR5 article-title: Passive and Space-Discriminative Ionic Sensors Based on Durable Nanocomposite Electrodes toward Sign Language Recognition publication-title: ACS Nano. doi: 10.1021/acsnano.7b02767 – ident: CR7 – volume: 21 start-page: 969 year: 1978 end-page: 974 ident: CR44 article-title: Temperature coefficient of resistance for p-and n-type silicon publication-title: Solid-state Electron. doi: 10.1016/0038-1101(78)90296-4 – volume: 6 start-page: 1 year: 2016 end-page: 12 ident: CR27 article-title: Word pair classification during imagined speech using direct brain recordings publication-title: Sci. Rep. doi: 10.1038/srep25803 – volume: 15 start-page: 016002 year: 2017 ident: CR25 article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features publication-title: J. neural Eng. doi: 10.1088/1741-2552/aa8235 – ident: 33457_CR51 – ident: 33457_CR6 – volume: 16 start-page: 036019 year: 2019 ident: 33457_CR28 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0c59 – volume: 13 year: 2022 ident: 33457_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29083-0 – volume: 15 start-page: 046031 year: 2018 ident: 33457_CR30 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aac965 – ident: 33457_CR16 – volume: 12 start-page: 938 year: 2013 ident: 33457_CR46 publication-title: Nat. Mater. doi: 10.1038/nmat3755 – volume: 6 start-page: 1 year: 2020 ident: 33457_CR31 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0127-5 – volume: 11 start-page: 8590 year: 2017 ident: 33457_CR5 publication-title: ACS Nano. doi: 10.1021/acsnano.7b02767 – volume: 9 start-page: 2579 year: 2008 ident: 33457_CR53 publication-title: J. Machine Learning Res. – ident: 33457_CR49 – volume: 333 start-page: 838 year: 2011 ident: 33457_CR17 publication-title: Science doi: 10.1126/science.1206157 – volume: 21 start-page: 969 year: 1978 ident: 33457_CR44 publication-title: Solid-state Electron. doi: 10.1016/0038-1101(78)90296-4 – volume: 6 start-page: 1 year: 2016 ident: 33457_CR27 publication-title: Sci. Rep. doi: 10.1038/srep25803 – ident: 33457_CR52 – volume: 529 start-page: 509 year: 2016 ident: 33457_CR18 publication-title: Nature doi: 10.1038/nature16521 – volume: 8 start-page: 046028 year: 2011 ident: 33457_CR29 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028 – volume: 4 start-page: e8218 year: 2009 ident: 33457_CR33 publication-title: PloS one doi: 10.1371/journal.pone.0008218 – volume: 40 start-page: 332 year: 2002 ident: 33457_CR34 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344216 – ident: 33457_CR9 – ident: 33457_CR10 – volume: 13 start-page: 1 year: 2022 ident: 33457_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27725-3 – volume: 15 start-page: 016002 year: 2017 ident: 33457_CR25 publication-title: J. neural Eng. doi: 10.1088/1741-2552/aa8235 – volume: 9 start-page: 217 year: 2015 ident: 33457_CR24 publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00217 – ident: 33457_CR15 – volume: 568 start-page: 493 year: 2019 ident: 33457_CR11 publication-title: Nature doi: 10.1038/s41586-019-1119-1 – volume: 22 start-page: 908 year: 2012 ident: 33457_CR37 publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2012.04.009 – volume: 12 start-page: 1 year: 2022 ident: 33457_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-022-08801-0 – ident: 33457_CR48 doi: 10.1109/FG.2019.8756608 – volume: 115 start-page: 627 year: 2015 ident: 33457_CR36 publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-014-3041-4 – ident: 33457_CR8 – volume: 15 start-page: 9690 year: 2021 ident: 33457_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.1c00259 – volume: 4 start-page: 54 year: 2021 ident: 33457_CR2 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00510-8 – volume: 555 start-page: 83 year: 2018 ident: 33457_CR23 publication-title: Nature doi: 10.1038/nature25494 – volume: 45 start-page: 555 year: 2012 ident: 33457_CR35 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.010 – volume: 6 start-page: eabb7043 year: 2020 ident: 33457_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7043 – volume: 2 start-page: 1 year: 2018 ident: 33457_CR38 publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0029-x – volume: 12 year: 2021 ident: 33457_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25637-w – volume: 9 start-page: 1 year: 2019 ident: 33457_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-019-39364-2 – volume: 12 start-page: 907 year: 2017 ident: 33457_CR22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.125 – volume: 12 start-page: 1 year: 2022 ident: 33457_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-022-07842-9 – ident: 33457_CR7 – ident: 33457_CR39 doi: 10.1109/FLEPS51544.2021.9469728 – volume: 58 start-page: 4074 year: 2011 ident: 33457_CR45 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2164923 – volume: 9 start-page: 3 year: 2003 ident: 33457_CR50 publication-title: Ski. Res. Technol. doi: 10.1034/j.1600-0846.2003.00358.x – volume: 5 start-page: 1 year: 2021 ident: 33457_CR12 publication-title: npj Flex. Electron. doi: 10.1038/s41528-021-00119-7 – volume: 2 start-page: 1 year: 2018 ident: 33457_CR47 publication-title: npj Flex. Electron. doi: 10.1038/s41528-017-0019-4 – volume: 6 start-page: eaaz8693 year: 2020 ident: 33457_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 5 start-page: 1 year: 2014 ident: 33457_CR43 publication-title: Nat. Commun. doi: 10.1038/ncomms6747 – volume: 3 start-page: 571 year: 2020 ident: 33457_CR1 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0428-6 – volume: 11 start-page: 1 year: 2020 ident: 33457_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17288-0 – volume: 1 start-page: 412 year: 2019 ident: 33457_CR32 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0091-7 – volume: 5 start-page: eaav9653 year: 2019 ident: 33457_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9653 |
| SSID | ssj0000391844 |
| Score | 2.6216888 |
| Snippet | A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology... Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5815 |
| SubjectTerms | 142/126 639/166/985 639/166/987 639/925/350/59 639/925/927/59 Accuracy Algorithms Classification Crystal structure Crystallinity Deep learning Electromyography Gauges Humanities and Social Sciences Interfaces Machine learning multidisciplinary Reliability analysis Science Science (multidisciplinary) Sensors Signal quality Signal to noise ratio Silicon Speech Strain gauges Verbal communication Vocalization behavior Words (language) |
| SummonAdditionalLinks | – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNyJQkJG4gdVNbMfOCQGi4lT1QKXeLMeeZFcK2SXZReq_x-N4t0oleuGQS2zHtmbGnszjG0I-5NIq73XJ6gWm5Njcs6BlAFMeal1YZcViKjahzs705WV1ngxuYwqr3J-J8aD2a4c28hP0FyrMxFSfN78ZVo1C72oqoXGX3EOUBB5D984PNhZEP9dCpFyZBdcno4gnQwxh50IqVs3uowjbP9M1b0ZK3nCXxlvo9PH_rv8JeZT0T_plYpin5A70z8iDqSLl1XPSXXQIV7tc9dQNV0FzRMhuYOOqCxzTM7zzPB1jXQna2l0LI0VLLvUAG5oqULTUdm2Yerv8NdKgE9MwOmyMjhsAt6QIUDE0GAn2glycfv_57QdLBRmYk7naMgjqT-WU5nWtCqesto3wpXTSFbWouYLGSeFEI2ov8S83F04HDU1hunZpF8BfkqN-3cMrQkvwQqiCgyi9qLS0gBGiyoVHVlVjM5LvyWJcQivHzXUmes25NhMpTSCliaQ0VUY-HsZsJqyOW3t_RWofeiLOdnyxHlqTxNZILwuva0RslqKsee2FBlBlkwdWbqoiI8d7apsk_KO5JnVG3h-ag9iiL8b2sN7FPjmiuYnwCTXjsdmC5i39ahkBwCvJ0cGckU97brye_N8bfn37Wt-QhwXKBQZH8GNytB128Jbcd3-2q3F4FwXrL2CfLDM priority: 102 providerName: ProQuest |
| Title | Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces |
| URI | https://link.springer.com/article/10.1038/s41467-022-33457-9 https://www.proquest.com/docview/2720702397 https://www.proquest.com/docview/2721260142 https://pubmed.ncbi.nlm.nih.gov/PMC9530138 https://doaj.org/article/5d52d8b8075546b3bd48ee76f1eb8f92 |
| Volume | 13 |
| WOSCitedRecordID | wos000865250300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4imyLJWRuEG0TWzH9pFFu4IDVYRYqXCx_EpbKaRV0iLtv1-Pk5bNSsCFQ3yIH7E9Y3ucmfkGobcZ09w5UaRmCi45OnNpkDJ8yp03Itdc02kfbILPZmI-l-WNUF9gE9bDA_cTd8ocy50wgJnLaGGIcVR4z4sqC41VMu6-Qeq5cZmKezCR4epCBy-ZKRGnHY17QjReJ5TxVI5OogjYP5Iyb9tI3lKUxvPn4jF6NAiO-EPf4Sfojm-eogd9KMmrZ6i-rAFndrlqsG2vgsgHWNs-7VZ1IHWTwmHlcBcDQuCF3i18h-EXLHbeb_AQOmKBdb1Yt-H1zw4HYRaH2qFfuNt4b5cYkCXaCky4nqPLi_NvHz-lQySF1LKMb1Mf5BZpuSDG8NxyLXRFXcEss7mhhnBfWUYtrahxDK6nGbUiiFYc_KwLPfXkBTpq1o1_iXDhHaU8J54WjkrBtAfTTm7Dw6SsdIKy_awqO8CMw-BqFdXdRKieEipQQkVKKJmgd4c6mx5k46-lz4BYh5IAkB1fBLZRA9uof7FNgk72pFbDqu0U6KQ5ePvyBL05ZIf1BkoU3fj1LpbJAIaNhib4iEVGHRrnNKtlRO6WjIBmOEHv98z0--N_HvDx_xjwK_QwB-YH2wdygo627c6_Rvftr-2qayfoLp_zmIoJund2Piu_TuKKmoAxbBnSkv0IOeXnL-X3az5iJXM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHQgufKMVBhgJThCtSezYOSDE17RqW9XDJo2T59hOWqmkXdOC-k_xN-LnJJ06id124JBL4jhx8nvPz37v_R7A25ApboxIgqyHKTkqNIGzMmzAjc1EpLiivbrYBB8MxNlZOtyCP20uDIZVtjrRK2oz1bhHvof-Qo6ZmPzT7CLAqlHoXW1LaNSwOLSr327JVn3sf3P_910U7X8_-XoQNFUFAs1Cvgism8NTzUWcZTzSXAmVU5MwzXSU0SzmNteMaprTzDBcqoVUC2dmcMw5TlTPxq7fW7BNHdhFB7aH_ePhj_WuDvKtC0qb7JxeLPYq6nWRD5qPXTdBujED-kIBG9bt1djMKw5aP-_tP_jfvthDuN9Y2ORzLRKPYMuWj-FOXXNz9QQmpxMk5B2NS6LnK2cbIym5DarxxMlEGeCsbkjlK2eQQi0LWxHcqybG2hlpamwURE0KN9TF6GdFnNVP3N3uQ5JqZq0eEaTgmOcY6_YUTm9kqM-gU05LuwMksYZSHsWWJoamgimLMbBcu4Olaa66ELYwkLrhY8fBTaSPC4iFrKEjHXSkh45Mu_B-fc-sZiO5tvUXRNe6JTKJ-xPTeSEbxSSZYZERGXJSM5pkcWaosJYneeiENU-jLuy26JKNeqvkJbS68GZ92Skm9Dap0k6Xvk2IfHXUdcE3ML3xQptXyvHIU5ynLEYXehc-tOi_fPi_B_z8-nd9DXcPTo6P5FF_cPgC7kUokxgKEu9CZzFf2pdwW_9ajKv5q0asCZzftFz8BeX4ibU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceC4isICR4ARRm8SOnQNCwFKxWlT1wEp7M47ttJVCWpIW1L_Gr8PjJF11Jfa2Bw65JI4TJzPjseebbwBeRUxxY0Qa5kNMyVGRCZ2XYUNubC5ixRUdtsUm-Hgszs6yyR786XNhEFbZ20RvqM1C4x75AOOFHDMx-aDoYBGTo9H75c8QK0hhpLUvp9GKyInd_HbLt-bd8ZH716_jePT526cvYVdhINQs4qvQuvk801wkec5jzZVQBTUp00zHOc0TbgvNqKYFzQ3DZVtEtXAuB8f841QNbeL6vQbXOZKWe9jgZLu_g8zrgtIuT2eYiEFDvVXy8PnEdRJmO3OhLxmw4-deRGleCNX6GXB093_-dvfgTud3kw-totyHPVs9gJttJc7NQyhPS6Tpnc0rouuN85iRqtyGzbx0mlKFONcb0vh6GmSq1lPbENzBJsbaJekqb0yJKqduqKvZj4a4tQBxd7uPSpqltXpGkJijLhABdwCnVzLUR7BfLSr7GEhqDaU8TixNDc0EUxaRsVy7g2VZoQKIepGQumNpx8GV0qMFEiFbMZJOjKQXI5kF8GZ7z7LlKLm09UeUtG1L5Bf3Jxb1VHbmSjLDYiNyZKpmNM2T3FBhLU-LyKlwkcUBHPaSJjuj18hzMQvg5fayM1cYg1KVXax9mwhZ7Kjrgu_I984L7V6p5jNPfJ6xBAPrAbztNeH84f8e8JPL3_UF3HLKIL8ej0-ewu0Y1RPxIckh7K_qtX0GN_Sv1bypn3v9JvD9qpXiL4YDkPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+crystalline-silicon-based+strain+gauges+with+deep+learning+algorithms+for+silent+speech+interfaces&rft.jtitle=Nature+communications&rft.au=Kim%2C+Taemin&rft.au=Shin%2C+Yejee&rft.au=Kang%2C+Kyowon&rft.au=Kim%2C+Kiho&rft.date=2022-10-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-33457-9&rft_id=info%3Apmid%2F36192403&rft.externalDocID=PMC9530138 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |