Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature

CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 12; H. 1; S. 6022 - 9
Hauptverfasser: Yang, Tang, Mao, Xinnan, Zhang, Ying, Wu, Xiaoping, Wang, Lu, Chu, Mingyu, Pao, Chih-Wen, Yang, Shize, Xu, Yong, Huang, Xiaoqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 15.10.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO 2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C 3 N 4 serve as highly selective catalysts for CO 2 hydrogenation.
AbstractList CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N4 and Cu–N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu–N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g–1 h–1 and 95.5%, respectively, for Cu–N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C3N4 serve as highly selective catalysts for CO2 hydrogenation.
CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO 2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C 3 N 4 serve as highly selective catalysts for CO 2 hydrogenation.
CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.
CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C3N4 serve as highly selective catalysts for CO2 hydrogenation.
CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu-N4 and Cu-N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu-N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu-N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g-1 h-1 and 95.5%, respectively, for Cu-N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu-N4 and Cu-N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu-N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu-N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g-1 h-1 and 95.5%, respectively, for Cu-N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.
ArticleNumber 6022
Author Yang, Tang
Pao, Chih-Wen
Xu, Yong
Mao, Xinnan
Wang, Lu
Chu, Mingyu
Zhang, Ying
Huang, Xiaoqing
Yang, Shize
Wu, Xiaoping
Author_xml – sequence: 1
  givenname: Tang
  surname: Yang
  fullname: Yang, Tang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 2
  givenname: Xinnan
  surname: Mao
  fullname: Mao, Xinnan
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 4
  givenname: Xiaoping
  surname: Wu
  fullname: Wu, Xiaoping
  organization: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology
– sequence: 5
  givenname: Lu
  orcidid: 0000-0003-0552-1385
  surname: Wang
  fullname: Wang, Lu
  email: lwang@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 6
  givenname: Mingyu
  surname: Chu
  fullname: Chu, Mingyu
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology
– sequence: 7
  givenname: Chih-Wen
  surname: Pao
  fullname: Pao, Chih-Wen
  organization: National Synchrotron Radiation Research Center
– sequence: 8
  givenname: Shize
  orcidid: 0000-0002-0421-006X
  surname: Yang
  fullname: Yang, Shize
  organization: Eyring Materials Center, Arizona State University
– sequence: 9
  givenname: Yong
  orcidid: 0000-0002-2525-7086
  surname: Xu
  fullname: Xu, Yong
  email: yongxu@gdut.edu.cn
  organization: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology
– sequence: 10
  givenname: Xiaoqing
  orcidid: 0000-0003-3219-4316
  surname: Huang
  fullname: Huang, Xiaoqing
  email: hxq006@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University
BookMark eNp9UstuFDEQtFAQCUt-gNNIXLgM-G3vBQmNeESKyAXOlmfcs_HKO15sT1D4erw7KyA5xJe2uqtK1Xa9RGdTnACh1wS_I5jp95kTLlWLKWmpZES28hm6oJiTlijKzv67n6PLnLe4HrYmmvMX6JxxKbim9AL5Lsbk_GSLj1NTrA8x-WnTxLHp5ibXa4BaCuSmzjv2jTcJbPC_ayNDgKH4O2i6G9rc3rsUN3BSsqUJ8VdTYLeHZMuc4BV6PtqQ4fJUV-jH50_fu6_t9c2Xq-7jdTsIokrbu5ErDb0GbB0WmAnCGSGM1a0ljGsxjJSpftQWLNW253oYlR6FdJXklGMrdLXoumi3Zp_8zqZ7E603x0ZMG2NT8UMAo2VfKVgoInvec7m2TIyYC8ydpliqqvVh0drP_Q7cAFNJNjwQfTiZ_K3ZxDujBVmvq-MVensSSPHnDLmYnc8DhGAniHM2VGiqD9vRCn3zCLqNc5rqUx1RVCmKSUXRBTWkmHOC8a8Zgs0hGGYJhqnBMMdgGFlJ-hFp8OX4T9W0D09T2ULN-0MuIP1z9QTrD1F0zVI
CitedBy_id crossref_primary_10_1002_aenm_202301852
crossref_primary_10_1038_s41467_025_63059_0
crossref_primary_10_1016_j_cej_2025_164589
crossref_primary_10_1002_anie_202423438
crossref_primary_10_1021_acscatal_5c03655
crossref_primary_10_1002_advs_202201520
crossref_primary_10_1016_j_apsusc_2023_158290
crossref_primary_10_1021_acs_jpcc_4c08400
crossref_primary_10_1002_anie_202424098
crossref_primary_10_1016_j_apcatb_2025_125531
crossref_primary_10_3390_catal13010172
crossref_primary_10_1016_j_apsusc_2023_157774
crossref_primary_10_1016_j_cej_2023_144289
crossref_primary_10_1016_j_jece_2025_116421
crossref_primary_10_1016_j_jcis_2025_03_025
crossref_primary_10_1016_j_surfin_2024_104346
crossref_primary_10_1016_j_apsusc_2023_159155
crossref_primary_10_1021_jacs_3c06090
crossref_primary_10_1002_EXP_20230011
crossref_primary_10_1016_j_est_2025_116418
crossref_primary_10_1002_cey2_362
crossref_primary_10_1016_j_cej_2024_156439
crossref_primary_10_1016_j_envres_2023_117715
crossref_primary_10_1016_j_mtnano_2025_100658
crossref_primary_10_1016_j_jece_2024_113320
crossref_primary_10_1016_j_ijhydene_2022_08_026
crossref_primary_10_1016_j_jcis_2024_01_168
crossref_primary_10_1002_anie_202412408
crossref_primary_10_1016_j_ccst_2022_100081
crossref_primary_10_1016_j_jiec_2024_04_026
crossref_primary_10_1002_ange_202210991
crossref_primary_10_1016_j_jcis_2025_02_014
crossref_primary_10_3390_molecules28155693
crossref_primary_10_1016_j_enchem_2023_100108
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1016_j_cej_2025_167156
crossref_primary_10_1039_D4NR01926A
crossref_primary_10_1007_s12598_023_02485_9
crossref_primary_10_1016_j_snb_2023_134220
crossref_primary_10_1016_j_fuel_2025_134924
crossref_primary_10_1016_j_jpowsour_2022_232492
crossref_primary_10_1039_D4EE02449D
crossref_primary_10_1002_smtd_202201524
crossref_primary_10_1016_j_cclet_2023_108568
crossref_primary_10_1039_D5QM00296F
crossref_primary_10_1016_j_apcatb_2023_123228
crossref_primary_10_1080_10643389_2023_2284646
crossref_primary_10_1016_j_jhazmat_2025_138416
crossref_primary_10_1002_sus2_229
crossref_primary_10_1016_j_surfin_2025_107097
crossref_primary_10_1021_prechem_3c00022
crossref_primary_10_1002_smll_202504632
crossref_primary_10_1016_j_nanoen_2025_110955
crossref_primary_10_1016_S1872_5813_24_60450_0
crossref_primary_10_1080_10643389_2023_2274259
crossref_primary_10_1002_adma_202204638
crossref_primary_10_1016_j_jechem_2024_08_069
crossref_primary_10_1002_ange_202314384
crossref_primary_10_3390_catal15090861
crossref_primary_10_1002_anie_202508497
crossref_primary_10_1002_sstr_202200059
crossref_primary_10_1002_adfm_202302651
crossref_primary_10_1002_ange_202412408
crossref_primary_10_1002_anie_202505301
crossref_primary_10_1016_j_diamond_2024_110898
crossref_primary_10_1016_j_jpcs_2023_111664
crossref_primary_10_1016_j_checat_2025_101290
crossref_primary_10_1016_j_decarb_2025_100111
crossref_primary_10_1016_j_apsusc_2025_163050
crossref_primary_10_1021_jacs_3c09299
crossref_primary_10_1073_pnas_2311585120
crossref_primary_10_1002_cctc_202500506
crossref_primary_10_1016_j_jece_2023_110521
crossref_primary_10_1016_j_mtener_2024_101750
crossref_primary_10_1016_j_apcatb_2024_123948
crossref_primary_10_1016_j_cplett_2025_142337
crossref_primary_10_1016_j_cej_2024_148587
crossref_primary_10_1016_j_apcatb_2023_123683
crossref_primary_10_1016_j_jcou_2024_102973
crossref_primary_10_1038_s41467_025_61851_6
crossref_primary_10_1016_j_apsusc_2023_158594
crossref_primary_10_1016_j_ccr_2025_217144
crossref_primary_10_1016_j_seppur_2024_130405
crossref_primary_10_1515_revce_2025_0003
crossref_primary_10_1016_j_apsusc_2024_161492
crossref_primary_10_1021_acscatal_5c04456
crossref_primary_10_1002_anie_202314384
crossref_primary_10_1039_D2QM01352E
crossref_primary_10_1016_j_apcatb_2024_123737
crossref_primary_10_1002_adts_202200081
crossref_primary_10_1002_smll_202306621
crossref_primary_10_1016_j_colsurfa_2024_133676
crossref_primary_10_1016_j_snb_2025_137563
crossref_primary_10_1038_s41467_025_62062_9
crossref_primary_10_1016_j_apcatb_2024_123730
crossref_primary_10_1016_j_ijhydene_2024_10_201
crossref_primary_10_1016_j_jece_2024_113751
crossref_primary_10_1002_adma_202403153
crossref_primary_10_1021_jacs_4c08523
crossref_primary_10_1021_jacs_4c09611
crossref_primary_10_1016_j_ces_2022_118166
crossref_primary_10_1016_j_cclet_2025_111859
crossref_primary_10_1021_jacs_4c16377
crossref_primary_10_1016_j_ijhydene_2022_12_126
crossref_primary_10_1016_j_fuel_2024_131039
crossref_primary_10_1007_s10853_024_10537_3
crossref_primary_10_1016_j_cej_2025_166394
crossref_primary_10_1007_s12274_022_5187_4
crossref_primary_10_1016_j_seppur_2024_127347
crossref_primary_10_1039_D5EE02702K
crossref_primary_10_1021_jacs_2c04670
crossref_primary_10_1021_jacs_2c10435
crossref_primary_10_1016_j_cej_2022_140808
crossref_primary_10_1038_s41467_025_57463_9
crossref_primary_10_1002_sstr_202400384
crossref_primary_10_1039_D3QM00384A
crossref_primary_10_1021_acssensors_5c01181
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1016_j_apsusc_2025_163134
crossref_primary_10_1002_agt2_70052
crossref_primary_10_1016_j_apcatb_2022_121612
crossref_primary_10_1016_j_snb_2025_138430
crossref_primary_10_1002_anie_202509385
crossref_primary_10_1016_j_ccr_2024_215777
crossref_primary_10_1016_j_ccr_2024_215775
crossref_primary_10_1016_j_snb_2023_133671
crossref_primary_10_1016_j_apsusc_2023_158463
crossref_primary_10_1016_j_jallcom_2025_181072
crossref_primary_10_1002_adma_202209561
crossref_primary_10_1002_sstr_202200248
crossref_primary_10_1016_j_cherd_2023_08_018
crossref_primary_10_1093_nsr_nwae114
crossref_primary_10_1002_anie_202210991
crossref_primary_10_1063_5_0288228
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1002_adfm_202419328
crossref_primary_10_1016_j_cej_2022_139833
crossref_primary_10_1007_s41061_023_00434_9
crossref_primary_10_1002_ange_202508497
crossref_primary_10_1002_smtd_202500655
crossref_primary_10_1038_s41467_025_63286_5
crossref_primary_10_1002_ange_202505301
crossref_primary_10_1038_s41565_025_01892_6
crossref_primary_10_1007_s12274_023_5661_7
crossref_primary_10_1002_smll_202503843
crossref_primary_10_1002_adma_202417747
crossref_primary_10_1002_ange_202424098
crossref_primary_10_1016_j_cclet_2024_109557
crossref_primary_10_1016_j_enchem_2024_100141
crossref_primary_10_1016_j_jpowsour_2025_237592
crossref_primary_10_1016_j_jcou_2025_103158
crossref_primary_10_3390_catal15020103
crossref_primary_10_1038_s41467_025_63191_x
crossref_primary_10_1016_j_cclet_2024_110656
crossref_primary_10_1002_anie_202505444
crossref_primary_10_1002_adfm_202417732
crossref_primary_10_1002_cctc_202400715
crossref_primary_10_1002_anie_202425439
crossref_primary_10_1002_advs_202304349
crossref_primary_10_3390_catal12090963
crossref_primary_10_1007_s10562_022_04089_x
crossref_primary_10_1016_j_apsusc_2023_157359
crossref_primary_10_1002_tcr_202100328
crossref_primary_10_1016_j_apcatb_2023_123180
crossref_primary_10_1002_ange_202423438
crossref_primary_10_1002_celc_202400476
crossref_primary_10_1002_solr_202301009
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1007_s12274_024_6513_9
crossref_primary_10_1021_acs_jpcc_5c04853
crossref_primary_10_1007_s11426_024_2553_7
crossref_primary_10_1016_j_seppur_2025_134809
crossref_primary_10_1016_j_jechem_2023_07_032
crossref_primary_10_1002_adma_202405659
crossref_primary_10_1007_s42114_025_01315_z
crossref_primary_10_1002_ange_202505444
crossref_primary_10_1016_j_rser_2023_114086
crossref_primary_10_1016_j_fuel_2023_129840
crossref_primary_10_1016_j_scib_2024_04_057
crossref_primary_10_1021_acs_inorgchem_5c01194
crossref_primary_10_1016_j_cej_2023_148330
crossref_primary_10_1039_D2QI01155G
crossref_primary_10_1039_D4SC02469A
crossref_primary_10_1002_ange_202425439
crossref_primary_10_1007_s11705_024_2434_0
crossref_primary_10_1016_j_nantod_2025_102836
crossref_primary_10_1002_marc_202500050
crossref_primary_10_1039_D5TA01126D
crossref_primary_10_1016_j_apcatb_2022_122339
crossref_primary_10_1016_j_apsusc_2022_153589
crossref_primary_10_1002_cey2_70024
crossref_primary_10_1002_ange_202509385
crossref_primary_10_1016_j_cej_2023_146014
crossref_primary_10_1016_j_cej_2025_166786
crossref_primary_10_1016_j_jcis_2024_05_186
crossref_primary_10_1016_j_cclet_2024_109630
crossref_primary_10_1002_adfm_202214215
crossref_primary_10_1016_j_cej_2025_159210
crossref_primary_10_1016_j_pmatsci_2025_101525
crossref_primary_10_1016_j_cclet_2024_110611
crossref_primary_10_1002_smll_202308767
crossref_primary_10_1016_j_cej_2022_140198
crossref_primary_10_1016_j_isci_2025_112306
crossref_primary_10_1007_s12274_023_5734_7
crossref_primary_10_1016_j_chemosphere_2024_142106
crossref_primary_10_1002_adma_202208132
crossref_primary_10_1002_smll_202408286
crossref_primary_10_1016_j_ccr_2022_214743
crossref_primary_10_1016_j_talanta_2025_127905
crossref_primary_10_1002_aenm_202501001
crossref_primary_10_1016_j_talanta_2025_128446
crossref_primary_10_1039_D4NR01610F
crossref_primary_10_1039_D4SC01735H
crossref_primary_10_1016_j_checat_2022_100492
crossref_primary_10_1016_j_cjsc_2023_100089
crossref_primary_10_1016_j_seppur_2023_123525
Cites_doi 10.1038/nchem.1095
10.1039/C4CS00470A
10.1021/jacs.7b00058
10.1016/0927-0256(96)00008-0
10.1063/1.3382344
10.1016/j.chempr.2018.01.019
10.1038/s41929-019-0308-5
10.1016/S0926-860X(98)00298-1
10.1021/acs.nanolett.6b03637
10.1038/s41467-019-09918-z
10.1103/PhysRevB.50.17953
10.1021/cr000018s
10.1039/C6RA06425F
10.1107/S0909049505012719
10.1021/jacs.0c08607
10.1039/C9EE00162J
10.1103/PhysRevB.65.075103
10.1002/anie.201706846
10.1038/s41565-018-0089-z
10.1126/science.aal3573
10.1103/PhysRevB.54.11169
10.1016/j.cej.2018.12.142
10.1039/c0ee00071j
10.1088/0953-8984/21/34/345501
10.1126/science.1219831
10.1002/anie.201610166
10.1021/acscatal.7b01910
10.1038/nenergy.2016.34
10.1021/jacs.6b02692
10.1021/acs.chemrev.8b00705
10.1021/jacs.6b05791
10.1016/j.chempr.2018.12.014
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.47.558
10.1021/jacs.6b05349
10.1016/j.elecom.2019.03.013
10.1021/jacs.7b05362
10.1039/c3cp54333a
10.1016/S0926-860X(97)00221-4
10.1038/s41570-018-0010-1
10.1103/PhysRevB.45.13244
10.1016/j.cattod.2019.04.021
10.1021/acsnano.0c00659
10.1038/ncomms14542
10.1126/science.aaf5251
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-26316-6
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_86bbd705716b4b469a35f04504d82067
PMC8519910
10_1038_s41467_021_26316_6
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51802206; 22025108
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2021B1515020081
  funderid: https://doi.org/10.13039/501100003453
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20180846
  funderid: https://doi.org/10.13039/501100004608
– fundername: ;
  grantid: 2021B1515020081
– fundername: ;
  grantid: BK20180846
– fundername: ;
  grantid: 51802206; 22025108
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-bdf478eb8e0ad0503514311331036ef95cf237bf8aea28ab48cf78f56d8ebd7d3
IEDL.DBID P5Z
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707661200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:42:41 EDT 2025
Tue Nov 04 02:04:26 EST 2025
Thu Sep 04 19:41:59 EDT 2025
Tue Oct 07 07:15:31 EDT 2025
Sat Nov 29 06:29:33 EST 2025
Tue Nov 18 22:43:10 EST 2025
Fri Feb 21 02:39:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-bdf478eb8e0ad0503514311331036ef95cf237bf8aea28ab48cf78f56d8ebd7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2525-7086
0000-0003-3219-4316
0000-0002-0421-006X
0000-0003-0552-1385
OpenAccessLink https://www.proquest.com/docview/2582277201?pq-origsite=%requestingapplication%
PMID 34654822
PQID 2582277201
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_86bbd705716b4b469a35f04504d82067
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8519910
proquest_miscellaneous_2582811332
proquest_journals_2582277201
crossref_primary_10_1038_s41467_021_26316_6
crossref_citationtrail_10_1038_s41467_021_26316_6
springer_journals_10_1038_s41467_021_26316_6
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ye (CR31) 2020; 142
Blöchl (CR42) 1994; 50
Qiao (CR24) 2011; 3
Grimme, Antony, Ehrlich, Krieg (CR43) 2010; 132
Arakawa (CR3) 2001; 101
Zhang (CR29) 2017; 8
Schoedel, Ji, Yaghi (CR1) 2016; 1
Zhang (CR26) 2019; 12
Peng (CR21) 2018; 4
Jiao, Zheng, Jaroniec, Qiao (CR2) 2015; 44
Shao (CR32) 2019; 5
Chen (CR22) 2019; 10
Behrens (CR10) 2012; 336
Yong (CR28) 2020; 33
Peppley (CR9) 1999; 179
Wu, Liu, Zhao (CR35) 2014; 16
Trimpalis (CR8) 2019; 355
Kong (CR33) 2020; 14
Perdew, Burke, Ernzerhof (CR38) 1996; 77
An (CR30) 2019; 2
Liu (CR25) 2016; 352
Li (CR27) 2018; 13
Mei (CR5) 2017; 56
Gao, Jiao, Waclawik, Du (CR36) 2016; 138
Ravel, Newville (CR47) 2005; 12
Perdew, Wang (CR37) 1992; 45
Zall, Linehan, Appel (CR18) 2016; 138
Kresse, Furthmüller (CR39) 1996; 54
Bunau, Joly (CR45) 2009; 21
Rungtaweevoranit (CR15) 2016; 16
Kresse, Furthmüller (CR40) 1996; 6
Haisch (CR6) 2019; 102
An (CR14) 2017; 139
Kattel, Yan, Yang, Chen, Liu (CR19) 2016; 138
Wang, Li, Zhang (CR23) 2018; 2
Bando (CR17) 1997; 165
Behrens (CR11) 2012; 336
Kattel (CR13) 2017; 355
Schnell, Czycholl, Albers (CR46) 2002; 65
Ji (CR34) 2016; 6
Kresse, Hafner (CR41) 1993; 47
Wu, Yang (CR12) 2017; 7
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR44) 2010; 3
Kattel, Liu, Chen (CR20) 2017; 139
Larmier (CR16) 2017; 56
Nitopi (CR4) 2019; 119
Raun (CR7) 2019; 361
T Haisch (26316_CR6) 2019; 102
H Arakawa (26316_CR3) 2001; 101
Y Jiao (26316_CR2) 2015; 44
JP Perdew (26316_CR38) 1996; 77
KK Bando (26316_CR17) 1997; 165
X Ye (26316_CR31) 2020; 142
B Rungtaweevoranit (26316_CR15) 2016; 16
S Nitopi (26316_CR4) 2019; 119
S Kattel (26316_CR19) 2016; 138
P Liu (26316_CR25) 2016; 352
KV Raun (26316_CR7) 2019; 361
Q Mei (26316_CR5) 2017; 56
M Behrens (26316_CR10) 2012; 336
BA Peppley (26316_CR9) 1999; 179
P Wu (26316_CR12) 2017; 7
S Kattel (26316_CR20) 2017; 139
X Zhang (26316_CR29) 2017; 8
A Schoedel (26316_CR1) 2016; 1
N Kong (26316_CR33) 2020; 14
XZ Shao (26316_CR32) 2019; 5
AA Peterson (26316_CR44) 2010; 3
H Li (26316_CR27) 2018; 13
G Kresse (26316_CR39) 1996; 54
I Schnell (26316_CR46) 2002; 65
M Behrens (26316_CR11) 2012; 336
Y Ji (26316_CR34) 2016; 6
Y Chen (26316_CR22) 2019; 10
X Yong (26316_CR28) 2020; 33
O Bunau (26316_CR45) 2009; 21
B An (26316_CR14) 2017; 139
G Zhang (26316_CR26) 2019; 12
G Gao (26316_CR36) 2016; 138
PE Blöchl (26316_CR42) 1994; 50
CM Zall (26316_CR18) 2016; 138
B Qiao (26316_CR24) 2011; 3
S Kattel (26316_CR13) 2017; 355
A Trimpalis (26316_CR8) 2019; 355
B Ravel (26316_CR47) 2005; 12
Y Peng (26316_CR21) 2018; 4
G Kresse (26316_CR40) 1996; 6
JP Perdew (26316_CR37) 1992; 45
G Kresse (26316_CR41) 1993; 47
B An (26316_CR30) 2019; 2
K Larmier (26316_CR16) 2017; 56
S Grimme (26316_CR43) 2010; 132
HZ Wu (26316_CR35) 2014; 16
A Wang (26316_CR23) 2018; 2
References_xml – volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR24
  article-title: Single atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: CR2
  article-title: Design of electrocatalysts for oxygen and hydrogen involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 139
  start-page: 3834
  year: 2017
  end-page: 3840
  ident: CR14
  article-title: Confinement of ultrasmall Cu/ZnO nanoparticles in metal organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00058
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR40
  article-title: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR43
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT D) for the 94 elements H Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 4
  start-page: 613
  year: 2018
  end-page: 625
  ident: CR21
  article-title: Molecular level insight into how hydroxyl groups boost catalytic activity in CO hydrogenation into methanol
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.019
– volume: 2
  start-page: 709
  year: 2019
  end-page: 717
  ident: CR30
  article-title: Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0308-5
– volume: 33
  start-page: 6865
  year: 2020
  end-page: 6872
  ident: CR28
  article-title: Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom
  publication-title: Nano Lett
– volume: 179
  start-page: 21
  year: 1999
  end-page: 29
  ident: CR9
  article-title: Methanol-steam reforming on Cu/ZnO/Al O . Part 1: the reaction network
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(98)00298-1
– volume: 16
  start-page: 7645
  year: 2016
  end-page: 7649
  ident: CR15
  article-title: Copper nanocrystals encapsulated in Zr based metal organic frameworks for highly selective CO hydrogenation to methanol
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03637
– volume: 10
  year: 2019
  ident: CR22
  article-title: Optimizing reaction paths for methanol synthesis from CO hydrogenation via metal ligand cooperativity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09918-z
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR42
  article-title: Projector augmented wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 101
  start-page: 953
  year: 2001
  end-page: 996
  ident: CR3
  article-title: Catalysis research of relevance to carbon management? Progress, challenges, and opportunities
  publication-title: Chem. Rev.
  doi: 10.1021/cr000018s
– volume: 6
  start-page: 52377
  year: 2016
  end-page: 52383
  ident: CR34
  article-title: Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06425F
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR47
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 142
  start-page: 19001
  year: 2020
  end-page: 19005
  ident: CR31
  article-title: Highly selective hydrogenation of CO to ethanol via designed bifunctional Ir –In O single-atom catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08607
– volume: 12
  start-page: 1317
  year: 2019
  end-page: 1325
  ident: CR26
  article-title: A general route via formamide condensation to prepare atomically dispersed metal nitrogen carbon electrocatalysts for energy technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– volume: 65
  start-page: 075103
  year: 2002
  ident: CR46
  article-title: Hubbard-Ucalculations for Cu from first-principle Wannier functions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.075103
– volume: 56
  start-page: 14868
  year: 2017
  end-page: 14872
  ident: CR5
  article-title: Selective utilization of methoxyl group in lignin to produce acetic acid
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706846
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: CR27
  article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 355
  start-page: 1296
  year: 2017
  end-page: 1299
  ident: CR13
  article-title: Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts
  publication-title: Science
  doi: 10.1126/science.aal3573
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR39
  article-title: Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 361
  start-page: 1285
  year: 2019
  end-page: 1295
  ident: CR7
  article-title: Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehyde
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.142
– volume: 3
  start-page: 1311
  year: 2010
  ident: CR44
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 21
  start-page: 345501
  year: 2009
  ident: CR45
  article-title: Self-consistent aspects of x-ray absorption calculations
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/34/345501
– volume: 336
  start-page: 893
  year: 2012
  end-page: 897
  ident: CR11
  article-title: Methanol synthesis over Cu/ZnO/Al O : the active site in industrial catalysis
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 56
  start-page: 2318
  year: 2017
  end-page: 2323
  ident: CR16
  article-title: CO to methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal support interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610166
– volume: 7
  start-page: 7187
  year: 2017
  end-page: 7195
  ident: CR12
  article-title: Significance of surface formate coverage on the reaction kinetics of methanol synthesis from CO hydrogenation over Cu
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01910
– volume: 1
  start-page: 16034
  year: 2016
  ident: CR1
  article-title: The role of metal organic frameworks in a carbon neutral energy cycle
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.34
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: CR36
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  ident: CR4
  article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 138
  start-page: 12440
  year: 2016
  end-page: 12450
  ident: CR19
  article-title: Optimizing binding energies of key intermediates for CO hydrogenation to methanol over oxide supported copper
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05791
– volume: 5
  start-page: 693
  year: 2019
  end-page: 705
  ident: CR32
  article-title: Iridium single atom catalyst performing a quasi homogeneous hydrogenation transformation of CO to formate
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.014
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR38
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: CR41
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 138
  start-page: 9968
  year: 2016
  end-page: 9977
  ident: CR18
  article-title: Triphosphine-ligated copper hydrides for CO hydrogenation: structure, reactivity, and thermodynamic studies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05349
– volume: 102
  start-page: 57
  year: 2019
  end-page: 62
  ident: CR6
  article-title: Quantification of formaldehyde production during alkaline methanol electrooxidation
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.03.013
– volume: 139
  start-page: 9739
  year: 2017
  end-page: 9754
  ident: CR20
  article-title: Tuning selectivity of CO hydrogenation reactions at the metal/oxide interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 16
  start-page: 3299
  year: 2014
  ident: CR35
  article-title: The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54333a
– volume: 165
  start-page: 391
  year: 1997
  end-page: 409
  ident: CR17
  article-title: In situ FT IR study on CO hydrogenation over Cu catalysts supported on SiO , Al O , and TiO
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(97)00221-4
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: CR23
  article-title: Heterogeneous single atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 45
  start-page: 13244
  year: 1992
  end-page: 13249
  ident: CR37
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 355
  start-page: 804
  year: 2019
  end-page: 814
  ident: CR8
  article-title: NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.04.021
– volume: 336
  start-page: 893
  year: 2012
  end-page: 897
  ident: CR10
  article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 14
  start-page: 5772
  year: 2020
  end-page: 5779
  ident: CR33
  article-title: Single vanadium atoms anchored on graphitic carbon nitride as a high performance catalyst for non-oxidative propane dehydrogenation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00659
– volume: 8
  year: 2017
  ident: CR29
  article-title: Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14542
– volume: 352
  start-page: 797
  year: 2016
  end-page: 800
  ident: CR25
  article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 56
  start-page: 14868
  year: 2017
  ident: 26316_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706846
– volume: 50
  start-page: 17953
  year: 1994
  ident: 26316_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 355
  start-page: 804
  year: 2019
  ident: 26316_CR8
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.04.021
– volume: 5
  start-page: 693
  year: 2019
  ident: 26316_CR32
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.014
– volume: 138
  start-page: 6292
  year: 2016
  ident: 26316_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 355
  start-page: 1296
  year: 2017
  ident: 26316_CR13
  publication-title: Science
  doi: 10.1126/science.aal3573
– volume: 139
  start-page: 3834
  year: 2017
  ident: 26316_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00058
– volume: 47
  start-page: 558
  year: 1993
  ident: 26316_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 142
  start-page: 19001
  year: 2020
  ident: 26316_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08607
– volume: 56
  start-page: 2318
  year: 2017
  ident: 26316_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610166
– volume: 132
  start-page: 154104
  year: 2010
  ident: 26316_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 336
  start-page: 893
  year: 2012
  ident: 26316_CR11
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 8
  year: 2017
  ident: 26316_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14542
– volume: 54
  start-page: 11169
  year: 1996
  ident: 26316_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 3
  start-page: 1311
  year: 2010
  ident: 26316_CR44
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 3
  start-page: 634
  year: 2011
  ident: 26316_CR24
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 6
  start-page: 15
  year: 1996
  ident: 26316_CR40
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 352
  start-page: 797
  year: 2016
  ident: 26316_CR25
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 179
  start-page: 21
  year: 1999
  ident: 26316_CR9
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(98)00298-1
– volume: 45
  start-page: 13244
  year: 1992
  ident: 26316_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 138
  start-page: 12440
  year: 2016
  ident: 26316_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05791
– volume: 13
  start-page: 411
  year: 2018
  ident: 26316_CR27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 139
  start-page: 9739
  year: 2017
  ident: 26316_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 2
  start-page: 65
  year: 2018
  ident: 26316_CR23
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 6
  start-page: 52377
  year: 2016
  ident: 26316_CR34
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06425F
– volume: 12
  start-page: 537
  year: 2005
  ident: 26316_CR47
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 138
  start-page: 9968
  year: 2016
  ident: 26316_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05349
– volume: 10
  year: 2019
  ident: 26316_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09918-z
– volume: 1
  start-page: 16034
  year: 2016
  ident: 26316_CR1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.34
– volume: 44
  start-page: 2060
  year: 2015
  ident: 26316_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 12
  start-page: 1317
  year: 2019
  ident: 26316_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– volume: 77
  start-page: 3865
  year: 1996
  ident: 26316_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 65
  start-page: 075103
  year: 2002
  ident: 26316_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.075103
– volume: 33
  start-page: 6865
  year: 2020
  ident: 26316_CR28
  publication-title: Nano Lett
– volume: 336
  start-page: 893
  year: 2012
  ident: 26316_CR10
  publication-title: Science
  doi: 10.1126/science.1219831
– volume: 16
  start-page: 7645
  year: 2016
  ident: 26316_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03637
– volume: 102
  start-page: 57
  year: 2019
  ident: 26316_CR6
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.03.013
– volume: 21
  start-page: 345501
  year: 2009
  ident: 26316_CR45
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/34/345501
– volume: 101
  start-page: 953
  year: 2001
  ident: 26316_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr000018s
– volume: 361
  start-page: 1285
  year: 2019
  ident: 26316_CR7
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.142
– volume: 165
  start-page: 391
  year: 1997
  ident: 26316_CR17
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(97)00221-4
– volume: 16
  start-page: 3299
  year: 2014
  ident: 26316_CR35
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54333a
– volume: 2
  start-page: 709
  year: 2019
  ident: 26316_CR30
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0308-5
– volume: 14
  start-page: 5772
  year: 2020
  ident: 26316_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00659
– volume: 119
  start-page: 7610
  year: 2019
  ident: 26316_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 7
  start-page: 7187
  year: 2017
  ident: 26316_CR12
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01910
– volume: 4
  start-page: 613
  year: 2018
  ident: 26316_CR21
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.019
SSID ssj0000391844
Score 2.699309
Snippet CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low...
CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low...
CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6022
SubjectTerms 119/118
140/146
147/137
639/301/299
639/638/675
639/638/77/887
Carbon dioxide
Carbon nitride
Catalysts
Coordination
Humanities and Social Sciences
Hydrogenation
Low temperature
multidisciplinary
Science
Science (multidisciplinary)
Selectivity
Single atom catalysts
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj9QgFCdmo4kX42esrgYTb9osBQr0uNu48WBGD2r2RqBAtsmkNdMZzfrX-4DOuN1EvXjpgY8WeA_6e_D4PYReR98FSiXM76bzJQ-2Kw0X8CC1U8R4otL9iq8f5GqlLi6aT9dCfUWfsEwPnAfuRAlrnQRUUQnLLRhzhtUBcAjhLlGPx9UXUM81YyqtwawB04XPt2QIUycTT2tC9EigglWiFIs_USLsX6DMmz6SNw5K0__n_D66NwNHfJob_ADd8sNDdCeHkrx6hPp2BDOyz3t7OLqFJs86PAbc7nDcEFh7HE-KJwz5LVtxDHBx3f-EhCnFwoFlD7cfKb68cpsR1Cq_yWzxevyBI4PVTL_8GH05f_e5fV_OYRTKrq7ktrQucKm8VZ4YF-lfIkaqwDaFcRE-NHUXKJM2KOMNVcZy1QWpQi0cVHLSsSfoaBgH_xRhbiDTEUeCqrgnnamUtaoBEOA7Rk1ToGo_pLqbOcZjqIu1TmfdTOksBg1i0EkMWhTozaHOt8yw8dfSZ1FSh5KRHTslgM7oWWf0v3SmQMd7Oet5yk6a1oCVwNYgVYFeHbJhssUTFDP4cZfLqDh0tEByoR-LBi1zhv4y0XYDtgUwTgr0dq9Jvz_-5w4_-x8dfo7u0qj50ROnPkZH283Ov0C3u-_bftq8TFPnF_oIGkU
  priority: 102
  providerName: Directory of Open Access Journals
Title Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature
URI https://link.springer.com/article/10.1038/s41467-021-26316-6
https://www.proquest.com/docview/2582277201
https://www.proquest.com/docview/2582811332
https://pubmed.ncbi.nlm.nih.gov/PMC8519910
https://doaj.org/article/86bbd705716b4b469a35f04504d82067
Volume 12
WOSCitedRecordID wos000707661200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fj5QwEJ54d5r44vnrInqSmvim5AoUKE_mjtxFE12JUbP6QgotHskGzmVXc_71zhR2L1zivfjCA9NC6XTar9PhG4CXFLsQBAnad1oZT9Rl5SkR44VHWnJluLT_V3x9n8xmcj5P89Hh1o9hlZs50U7UuqvIR34URLiUIRTk_puLnx5ljaLT1TGFxg7sEUsCGWYefd_6WIj9XAox_ivDQ3nUCzszUFxCEId-7MWT9cjS9k-w5vVIyWvHpXYVOtv_3_bfh3sj_mTHw4B5ALdM-xDuDBkpLx9Bk3W4G20GFyGj6FIboMe6mmVrRn6FhWH0yJ6hPAtngiHqXDR_8EZvU-rg7MmyjwE7v9TLDkfn8CS1YovuNyMirJHF-TF8OTv9nL31xmwMXhX5ycordS0SaUppuNLEIkNQy8ctLnZsbOo0quogTMpaKqMCqUohqzqRdRRrrKQTHR7Abtu15gkwoVCouea19IXhlfJlWcoUsYSpwkClDvgbnRTVSFVOGTMWhT0yD2Ux6LFAPRZWj0XswKttnYuBqOPG0iek6m1JItm2N7rlj2K02ULGJTYcAa0fl6IUcarCqEYIzIW2rPcOHG5UXYyW3xdXenbgxVaMNksHMao13XooI6nrAgeSyQCbNGgqaZtzy_6NEBkxPXfg9WYoXr383x_89Oa2PoO7ARkFhepEh7C7Wq7Nc7hd_Vo1_dKFnWSe2Kt0Ye_kdJZ_cq3zwqVQ2dy1VoeS_N2H_NtfTeowzQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwQXfqMFBhgJThDNcZzYOSAEhWnTSuEwUG-eEzssUtVsTctU_ij-Rp6dpFMnsdsOXHqIndROvvf8bH_-HsArx11gTKB9Z4UNeZkXoeYp_tDESKotlf58xY-hGI3keJx924A__VkYR6vsfaJ31KYu3Br5DktwKMNQkEbvT05DlzXK7a72KTRaWBzY5RlO2Zp3-5_w-75mbPfz4WAv7LIKhEUSiXmYm5ILaXNpqTZODcWFDBFO1SJ05rbMkqJkschLqa1mUudcFqWQZZIavMkIE-Nzr8F19OPCUcjEWKzWdJzauuS8O5tDY7nTcO-JHA-CpXGUhuna-OfTBKzFtheZmRe2Z_2ot3v3f3tf9-BOF1-TD61B3IcNO30AN9uMm8uHUA1qbErVLoESx571BERSl2SwIG7dZGKJ60JDsHwQjzjBqHpS_cYLjU8ZhKMDGXxl5HhpZjVaX_skPSeT-ow4oa9OpfoRfL-Sfj6GzWk9tVtAuMZCQw0tZcQtLXQk81xmGCvZImY6CyDqMaCKTordZQSZKE8JiKVqcaMQN8rjRqUBvFndc9IKkVxa-6OD1qqmExH3F-rZT9X5JCXTHBuOAXuU5jznaabjpMQQn3LjVf0D2O6hpTrP1qhzXAXwclWMPsltNOmprRdtHeleHQtArAF6rUHrJdPq2Kub4xQA5yw0gLc99M___N8dfnJ5W1_Arb3DL0M13B8dPIXbzBmkoyUl27A5ny3sM7hR_JpXzey5t2gCR1dtEn8BW-WH_w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3ohAASPBCaJ1HCfxHhCClBVVq2UPgCourhPbNNJqUza7VMtP49cxdpKtthK99cAlh9hJbOeb8Yw9_gbgpYtdYCxD-R6WJuS2KEPFU7zQRAuqDBX-fMW3g2w8FoeHw8kW_OnPwriwyl4nekWt69KtkQ9YglMZmoI0GtguLGKyO3p38jN0GaTcTmufTqOFyL5ZnaL71rzd28V__Yqx0ccv-aewyzAQlkmULcJCW54JUwhDlXbMKM58iNBti1CxGztMSsvirLBCGcWEKrgobSZskmp8SGc6xvdegasZ-pjO8Zsk39frO455XXDendOhsRg03GslFxPB0jhKw3RjLvQpAzbs3PNRmue2av0MOLr9P4_dHbjV2d3kfSsod2HLzO7B9TYT5-o-VHmNTanapVHiomp9YCKpLcmXxK2nTA1xXWgIlufxmBO0tqfVb7zR-FRCOGuQ_DMjxys9r1Eq2zepBZnWp8QRgHXs1Q_g66X08yFsz-qZeQSEKyzUVFMrIm5oqSJRFGKINpQpY6aGAUQ9HmTZUbS7TCFT6UMFYiFbDEnEkPQYkmkAr9fPnLQEJRfW_uBgtq7pyMX9jXr-Q3a6Soq0wIajIR-lBS8Q2ypOLJr-lGvP9h_ATg8z2Wm8Rp5hLIAX62LUVW4DSs1MvWzrCDd0LIBsA9wbDdosmVXHnvUcXQP0ZWgAb3oxOPv4vzv8-OK2PocbKAnyYG-8_wRuMiebLlop2YHtxXxpnsK18teiaubPvHATOLpsifgLTNaQ8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+tailoring+of+Cu+single+sites+on+C3N4+realizes+selective+CO2+hydrogenation+at+low+temperature&rft.jtitle=Nature+communications&rft.au=Tang%2C+Yang&rft.au=Mao+Xinnan&rft.au=Zhang%2C+Ying&rft.au=Wu%2C+Xiaoping&rft.date=2021-10-15&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26316-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon