Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature
CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailore...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 12; H. 1; S. 6022 - 9 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
15.10.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | CO
2
hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C
3
N
4
-supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N
4
and Cu–N
3
, can serve as highly selective and active catalysts for CO
2
hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N
4
favors CO
2
hydrogenation to form CH
3
OH via the formate pathway, while Cu–N
3
tends to catalyze CO
2
hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH
3
OH productivity and selectivity reach 4.2 mmol g
–1
h
–1
and 95.5%, respectively, for Cu–N
4
single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.
CO
2
hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C
3
N
4
serve as highly selective catalysts for CO
2
hydrogenation. |
|---|---|
| AbstractList | CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N4 and Cu–N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu–N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g–1 h–1 and 95.5%, respectively, for Cu–N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C3N4 serve as highly selective catalysts for CO2 hydrogenation. CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO 2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C 3 N 4 serve as highly selective catalysts for CO 2 hydrogenation. CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C3N4 serve as highly selective catalysts for CO2 hydrogenation. CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu-N4 and Cu-N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu-N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu-N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g-1 h-1 and 95.5%, respectively, for Cu-N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu-N4 and Cu-N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu-N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu-N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g-1 h-1 and 95.5%, respectively, for Cu-N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. |
| ArticleNumber | 6022 |
| Author | Yang, Tang Pao, Chih-Wen Xu, Yong Mao, Xinnan Wang, Lu Chu, Mingyu Zhang, Ying Huang, Xiaoqing Yang, Shize Wu, Xiaoping |
| Author_xml | – sequence: 1 givenname: Tang surname: Yang fullname: Yang, Tang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: Xinnan surname: Mao fullname: Mao, Xinnan organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 4 givenname: Xiaoping surname: Wu fullname: Wu, Xiaoping organization: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology – sequence: 5 givenname: Lu orcidid: 0000-0003-0552-1385 surname: Wang fullname: Wang, Lu email: lwang@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 6 givenname: Mingyu surname: Chu fullname: Chu, Mingyu organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology – sequence: 7 givenname: Chih-Wen surname: Pao fullname: Pao, Chih-Wen organization: National Synchrotron Radiation Research Center – sequence: 8 givenname: Shize orcidid: 0000-0002-0421-006X surname: Yang fullname: Yang, Shize organization: Eyring Materials Center, Arizona State University – sequence: 9 givenname: Yong orcidid: 0000-0002-2525-7086 surname: Xu fullname: Xu, Yong email: yongxu@gdut.edu.cn organization: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology – sequence: 10 givenname: Xiaoqing orcidid: 0000-0003-3219-4316 surname: Huang fullname: Huang, Xiaoqing email: hxq006@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University |
| BookMark | eNp9UstuFDEQtFAQCUt-gNNIXLgM-G3vBQmNeESKyAXOlmfcs_HKO15sT1D4erw7KyA5xJe2uqtK1Xa9RGdTnACh1wS_I5jp95kTLlWLKWmpZES28hm6oJiTlijKzv67n6PLnLe4HrYmmvMX6JxxKbim9AL5Lsbk_GSLj1NTrA8x-WnTxLHp5ibXa4BaCuSmzjv2jTcJbPC_ayNDgKH4O2i6G9rc3rsUN3BSsqUJ8VdTYLeHZMuc4BV6PtqQ4fJUV-jH50_fu6_t9c2Xq-7jdTsIokrbu5ErDb0GbB0WmAnCGSGM1a0ljGsxjJSpftQWLNW253oYlR6FdJXklGMrdLXoumi3Zp_8zqZ7E603x0ZMG2NT8UMAo2VfKVgoInvec7m2TIyYC8ydpliqqvVh0drP_Q7cAFNJNjwQfTiZ_K3ZxDujBVmvq-MVensSSPHnDLmYnc8DhGAniHM2VGiqD9vRCn3zCLqNc5rqUx1RVCmKSUXRBTWkmHOC8a8Zgs0hGGYJhqnBMMdgGFlJ-hFp8OX4T9W0D09T2ULN-0MuIP1z9QTrD1F0zVI |
| CitedBy_id | crossref_primary_10_1002_aenm_202301852 crossref_primary_10_1038_s41467_025_63059_0 crossref_primary_10_1016_j_cej_2025_164589 crossref_primary_10_1002_anie_202423438 crossref_primary_10_1021_acscatal_5c03655 crossref_primary_10_1002_advs_202201520 crossref_primary_10_1016_j_apsusc_2023_158290 crossref_primary_10_1021_acs_jpcc_4c08400 crossref_primary_10_1002_anie_202424098 crossref_primary_10_1016_j_apcatb_2025_125531 crossref_primary_10_3390_catal13010172 crossref_primary_10_1016_j_apsusc_2023_157774 crossref_primary_10_1016_j_cej_2023_144289 crossref_primary_10_1016_j_jece_2025_116421 crossref_primary_10_1016_j_jcis_2025_03_025 crossref_primary_10_1016_j_surfin_2024_104346 crossref_primary_10_1016_j_apsusc_2023_159155 crossref_primary_10_1021_jacs_3c06090 crossref_primary_10_1002_EXP_20230011 crossref_primary_10_1016_j_est_2025_116418 crossref_primary_10_1002_cey2_362 crossref_primary_10_1016_j_cej_2024_156439 crossref_primary_10_1016_j_envres_2023_117715 crossref_primary_10_1016_j_mtnano_2025_100658 crossref_primary_10_1016_j_jece_2024_113320 crossref_primary_10_1016_j_ijhydene_2022_08_026 crossref_primary_10_1016_j_jcis_2024_01_168 crossref_primary_10_1002_anie_202412408 crossref_primary_10_1016_j_ccst_2022_100081 crossref_primary_10_1016_j_jiec_2024_04_026 crossref_primary_10_1002_ange_202210991 crossref_primary_10_1016_j_jcis_2025_02_014 crossref_primary_10_3390_molecules28155693 crossref_primary_10_1016_j_enchem_2023_100108 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1016_j_cej_2025_167156 crossref_primary_10_1039_D4NR01926A crossref_primary_10_1007_s12598_023_02485_9 crossref_primary_10_1016_j_snb_2023_134220 crossref_primary_10_1016_j_fuel_2025_134924 crossref_primary_10_1016_j_jpowsour_2022_232492 crossref_primary_10_1039_D4EE02449D crossref_primary_10_1002_smtd_202201524 crossref_primary_10_1016_j_cclet_2023_108568 crossref_primary_10_1039_D5QM00296F crossref_primary_10_1016_j_apcatb_2023_123228 crossref_primary_10_1080_10643389_2023_2284646 crossref_primary_10_1016_j_jhazmat_2025_138416 crossref_primary_10_1002_sus2_229 crossref_primary_10_1016_j_surfin_2025_107097 crossref_primary_10_1021_prechem_3c00022 crossref_primary_10_1002_smll_202504632 crossref_primary_10_1016_j_nanoen_2025_110955 crossref_primary_10_1016_S1872_5813_24_60450_0 crossref_primary_10_1080_10643389_2023_2274259 crossref_primary_10_1002_adma_202204638 crossref_primary_10_1016_j_jechem_2024_08_069 crossref_primary_10_1002_ange_202314384 crossref_primary_10_3390_catal15090861 crossref_primary_10_1002_anie_202508497 crossref_primary_10_1002_sstr_202200059 crossref_primary_10_1002_adfm_202302651 crossref_primary_10_1002_ange_202412408 crossref_primary_10_1002_anie_202505301 crossref_primary_10_1016_j_diamond_2024_110898 crossref_primary_10_1016_j_jpcs_2023_111664 crossref_primary_10_1016_j_checat_2025_101290 crossref_primary_10_1016_j_decarb_2025_100111 crossref_primary_10_1016_j_apsusc_2025_163050 crossref_primary_10_1021_jacs_3c09299 crossref_primary_10_1073_pnas_2311585120 crossref_primary_10_1002_cctc_202500506 crossref_primary_10_1016_j_jece_2023_110521 crossref_primary_10_1016_j_mtener_2024_101750 crossref_primary_10_1016_j_apcatb_2024_123948 crossref_primary_10_1016_j_cplett_2025_142337 crossref_primary_10_1016_j_cej_2024_148587 crossref_primary_10_1016_j_apcatb_2023_123683 crossref_primary_10_1016_j_jcou_2024_102973 crossref_primary_10_1038_s41467_025_61851_6 crossref_primary_10_1016_j_apsusc_2023_158594 crossref_primary_10_1016_j_ccr_2025_217144 crossref_primary_10_1016_j_seppur_2024_130405 crossref_primary_10_1515_revce_2025_0003 crossref_primary_10_1016_j_apsusc_2024_161492 crossref_primary_10_1021_acscatal_5c04456 crossref_primary_10_1002_anie_202314384 crossref_primary_10_1039_D2QM01352E crossref_primary_10_1016_j_apcatb_2024_123737 crossref_primary_10_1002_adts_202200081 crossref_primary_10_1002_smll_202306621 crossref_primary_10_1016_j_colsurfa_2024_133676 crossref_primary_10_1016_j_snb_2025_137563 crossref_primary_10_1038_s41467_025_62062_9 crossref_primary_10_1016_j_apcatb_2024_123730 crossref_primary_10_1016_j_ijhydene_2024_10_201 crossref_primary_10_1016_j_jece_2024_113751 crossref_primary_10_1002_adma_202403153 crossref_primary_10_1021_jacs_4c08523 crossref_primary_10_1021_jacs_4c09611 crossref_primary_10_1016_j_ces_2022_118166 crossref_primary_10_1016_j_cclet_2025_111859 crossref_primary_10_1021_jacs_4c16377 crossref_primary_10_1016_j_ijhydene_2022_12_126 crossref_primary_10_1016_j_fuel_2024_131039 crossref_primary_10_1007_s10853_024_10537_3 crossref_primary_10_1016_j_cej_2025_166394 crossref_primary_10_1007_s12274_022_5187_4 crossref_primary_10_1016_j_seppur_2024_127347 crossref_primary_10_1039_D5EE02702K crossref_primary_10_1021_jacs_2c04670 crossref_primary_10_1021_jacs_2c10435 crossref_primary_10_1016_j_cej_2022_140808 crossref_primary_10_1038_s41467_025_57463_9 crossref_primary_10_1002_sstr_202400384 crossref_primary_10_1039_D3QM00384A crossref_primary_10_1021_acssensors_5c01181 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1016_j_apsusc_2025_163134 crossref_primary_10_1002_agt2_70052 crossref_primary_10_1016_j_apcatb_2022_121612 crossref_primary_10_1016_j_snb_2025_138430 crossref_primary_10_1002_anie_202509385 crossref_primary_10_1016_j_ccr_2024_215777 crossref_primary_10_1016_j_ccr_2024_215775 crossref_primary_10_1016_j_snb_2023_133671 crossref_primary_10_1016_j_apsusc_2023_158463 crossref_primary_10_1016_j_jallcom_2025_181072 crossref_primary_10_1002_adma_202209561 crossref_primary_10_1002_sstr_202200248 crossref_primary_10_1016_j_cherd_2023_08_018 crossref_primary_10_1093_nsr_nwae114 crossref_primary_10_1002_anie_202210991 crossref_primary_10_1063_5_0288228 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1002_adfm_202419328 crossref_primary_10_1016_j_cej_2022_139833 crossref_primary_10_1007_s41061_023_00434_9 crossref_primary_10_1002_ange_202508497 crossref_primary_10_1002_smtd_202500655 crossref_primary_10_1038_s41467_025_63286_5 crossref_primary_10_1002_ange_202505301 crossref_primary_10_1038_s41565_025_01892_6 crossref_primary_10_1007_s12274_023_5661_7 crossref_primary_10_1002_smll_202503843 crossref_primary_10_1002_adma_202417747 crossref_primary_10_1002_ange_202424098 crossref_primary_10_1016_j_cclet_2024_109557 crossref_primary_10_1016_j_enchem_2024_100141 crossref_primary_10_1016_j_jpowsour_2025_237592 crossref_primary_10_1016_j_jcou_2025_103158 crossref_primary_10_3390_catal15020103 crossref_primary_10_1038_s41467_025_63191_x crossref_primary_10_1016_j_cclet_2024_110656 crossref_primary_10_1002_anie_202505444 crossref_primary_10_1002_adfm_202417732 crossref_primary_10_1002_cctc_202400715 crossref_primary_10_1002_anie_202425439 crossref_primary_10_1002_advs_202304349 crossref_primary_10_3390_catal12090963 crossref_primary_10_1007_s10562_022_04089_x crossref_primary_10_1016_j_apsusc_2023_157359 crossref_primary_10_1002_tcr_202100328 crossref_primary_10_1016_j_apcatb_2023_123180 crossref_primary_10_1002_ange_202423438 crossref_primary_10_1002_celc_202400476 crossref_primary_10_1002_solr_202301009 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1007_s12274_024_6513_9 crossref_primary_10_1021_acs_jpcc_5c04853 crossref_primary_10_1007_s11426_024_2553_7 crossref_primary_10_1016_j_seppur_2025_134809 crossref_primary_10_1016_j_jechem_2023_07_032 crossref_primary_10_1002_adma_202405659 crossref_primary_10_1007_s42114_025_01315_z crossref_primary_10_1002_ange_202505444 crossref_primary_10_1016_j_rser_2023_114086 crossref_primary_10_1016_j_fuel_2023_129840 crossref_primary_10_1016_j_scib_2024_04_057 crossref_primary_10_1021_acs_inorgchem_5c01194 crossref_primary_10_1016_j_cej_2023_148330 crossref_primary_10_1039_D2QI01155G crossref_primary_10_1039_D4SC02469A crossref_primary_10_1002_ange_202425439 crossref_primary_10_1007_s11705_024_2434_0 crossref_primary_10_1016_j_nantod_2025_102836 crossref_primary_10_1002_marc_202500050 crossref_primary_10_1039_D5TA01126D crossref_primary_10_1016_j_apcatb_2022_122339 crossref_primary_10_1016_j_apsusc_2022_153589 crossref_primary_10_1002_cey2_70024 crossref_primary_10_1002_ange_202509385 crossref_primary_10_1016_j_cej_2023_146014 crossref_primary_10_1016_j_cej_2025_166786 crossref_primary_10_1016_j_jcis_2024_05_186 crossref_primary_10_1016_j_cclet_2024_109630 crossref_primary_10_1002_adfm_202214215 crossref_primary_10_1016_j_cej_2025_159210 crossref_primary_10_1016_j_pmatsci_2025_101525 crossref_primary_10_1016_j_cclet_2024_110611 crossref_primary_10_1002_smll_202308767 crossref_primary_10_1016_j_cej_2022_140198 crossref_primary_10_1016_j_isci_2025_112306 crossref_primary_10_1007_s12274_023_5734_7 crossref_primary_10_1016_j_chemosphere_2024_142106 crossref_primary_10_1002_adma_202208132 crossref_primary_10_1002_smll_202408286 crossref_primary_10_1016_j_ccr_2022_214743 crossref_primary_10_1016_j_talanta_2025_127905 crossref_primary_10_1002_aenm_202501001 crossref_primary_10_1016_j_talanta_2025_128446 crossref_primary_10_1039_D4NR01610F crossref_primary_10_1039_D4SC01735H crossref_primary_10_1016_j_checat_2022_100492 crossref_primary_10_1016_j_cjsc_2023_100089 crossref_primary_10_1016_j_seppur_2023_123525 |
| Cites_doi | 10.1038/nchem.1095 10.1039/C4CS00470A 10.1021/jacs.7b00058 10.1016/0927-0256(96)00008-0 10.1063/1.3382344 10.1016/j.chempr.2018.01.019 10.1038/s41929-019-0308-5 10.1016/S0926-860X(98)00298-1 10.1021/acs.nanolett.6b03637 10.1038/s41467-019-09918-z 10.1103/PhysRevB.50.17953 10.1021/cr000018s 10.1039/C6RA06425F 10.1107/S0909049505012719 10.1021/jacs.0c08607 10.1039/C9EE00162J 10.1103/PhysRevB.65.075103 10.1002/anie.201706846 10.1038/s41565-018-0089-z 10.1126/science.aal3573 10.1103/PhysRevB.54.11169 10.1016/j.cej.2018.12.142 10.1039/c0ee00071j 10.1088/0953-8984/21/34/345501 10.1126/science.1219831 10.1002/anie.201610166 10.1021/acscatal.7b01910 10.1038/nenergy.2016.34 10.1021/jacs.6b02692 10.1021/acs.chemrev.8b00705 10.1021/jacs.6b05791 10.1016/j.chempr.2018.12.014 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.47.558 10.1021/jacs.6b05349 10.1016/j.elecom.2019.03.013 10.1021/jacs.7b05362 10.1039/c3cp54333a 10.1016/S0926-860X(97)00221-4 10.1038/s41570-018-0010-1 10.1103/PhysRevB.45.13244 10.1016/j.cattod.2019.04.021 10.1021/acsnano.0c00659 10.1038/ncomms14542 10.1126/science.aaf5251 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-26316-6 |
| DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_86bbd705716b4b469a35f04504d82067 PMC8519910 10_1038_s41467_021_26316_6 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51802206; 22025108 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2021B1515020081 funderid: https://doi.org/10.13039/501100003453 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20180846 funderid: https://doi.org/10.13039/501100004608 – fundername: ; grantid: 2021B1515020081 – fundername: ; grantid: BK20180846 – fundername: ; grantid: 51802206; 22025108 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-bdf478eb8e0ad0503514311331036ef95cf237bf8aea28ab48cf78f56d8ebd7d3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707661200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:42:41 EDT 2025 Tue Nov 04 02:04:26 EST 2025 Thu Sep 04 19:41:59 EDT 2025 Tue Oct 07 07:15:31 EDT 2025 Sat Nov 29 06:29:33 EST 2025 Tue Nov 18 22:43:10 EST 2025 Fri Feb 21 02:39:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-bdf478eb8e0ad0503514311331036ef95cf237bf8aea28ab48cf78f56d8ebd7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2525-7086 0000-0003-3219-4316 0000-0002-0421-006X 0000-0003-0552-1385 |
| OpenAccessLink | https://www.proquest.com/docview/2582277201?pq-origsite=%requestingapplication% |
| PMID | 34654822 |
| PQID | 2582277201 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_86bbd705716b4b469a35f04504d82067 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8519910 proquest_miscellaneous_2582811332 proquest_journals_2582277201 crossref_primary_10_1038_s41467_021_26316_6 crossref_citationtrail_10_1038_s41467_021_26316_6 springer_journals_10_1038_s41467_021_26316_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-15 |
| PublicationDateYYYYMMDD | 2021-10-15 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Ye (CR31) 2020; 142 Blöchl (CR42) 1994; 50 Qiao (CR24) 2011; 3 Grimme, Antony, Ehrlich, Krieg (CR43) 2010; 132 Arakawa (CR3) 2001; 101 Zhang (CR29) 2017; 8 Schoedel, Ji, Yaghi (CR1) 2016; 1 Zhang (CR26) 2019; 12 Peng (CR21) 2018; 4 Jiao, Zheng, Jaroniec, Qiao (CR2) 2015; 44 Shao (CR32) 2019; 5 Chen (CR22) 2019; 10 Behrens (CR10) 2012; 336 Yong (CR28) 2020; 33 Peppley (CR9) 1999; 179 Wu, Liu, Zhao (CR35) 2014; 16 Trimpalis (CR8) 2019; 355 Kong (CR33) 2020; 14 Perdew, Burke, Ernzerhof (CR38) 1996; 77 An (CR30) 2019; 2 Liu (CR25) 2016; 352 Li (CR27) 2018; 13 Mei (CR5) 2017; 56 Gao, Jiao, Waclawik, Du (CR36) 2016; 138 Ravel, Newville (CR47) 2005; 12 Perdew, Wang (CR37) 1992; 45 Zall, Linehan, Appel (CR18) 2016; 138 Kresse, Furthmüller (CR39) 1996; 54 Bunau, Joly (CR45) 2009; 21 Rungtaweevoranit (CR15) 2016; 16 Kresse, Furthmüller (CR40) 1996; 6 Haisch (CR6) 2019; 102 An (CR14) 2017; 139 Kattel, Yan, Yang, Chen, Liu (CR19) 2016; 138 Wang, Li, Zhang (CR23) 2018; 2 Bando (CR17) 1997; 165 Behrens (CR11) 2012; 336 Kattel (CR13) 2017; 355 Schnell, Czycholl, Albers (CR46) 2002; 65 Ji (CR34) 2016; 6 Kresse, Hafner (CR41) 1993; 47 Wu, Yang (CR12) 2017; 7 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR44) 2010; 3 Kattel, Liu, Chen (CR20) 2017; 139 Larmier (CR16) 2017; 56 Nitopi (CR4) 2019; 119 Raun (CR7) 2019; 361 T Haisch (26316_CR6) 2019; 102 H Arakawa (26316_CR3) 2001; 101 Y Jiao (26316_CR2) 2015; 44 JP Perdew (26316_CR38) 1996; 77 KK Bando (26316_CR17) 1997; 165 X Ye (26316_CR31) 2020; 142 B Rungtaweevoranit (26316_CR15) 2016; 16 S Nitopi (26316_CR4) 2019; 119 S Kattel (26316_CR19) 2016; 138 P Liu (26316_CR25) 2016; 352 KV Raun (26316_CR7) 2019; 361 Q Mei (26316_CR5) 2017; 56 M Behrens (26316_CR10) 2012; 336 BA Peppley (26316_CR9) 1999; 179 P Wu (26316_CR12) 2017; 7 S Kattel (26316_CR20) 2017; 139 X Zhang (26316_CR29) 2017; 8 A Schoedel (26316_CR1) 2016; 1 N Kong (26316_CR33) 2020; 14 XZ Shao (26316_CR32) 2019; 5 AA Peterson (26316_CR44) 2010; 3 H Li (26316_CR27) 2018; 13 G Kresse (26316_CR39) 1996; 54 I Schnell (26316_CR46) 2002; 65 M Behrens (26316_CR11) 2012; 336 Y Ji (26316_CR34) 2016; 6 Y Chen (26316_CR22) 2019; 10 X Yong (26316_CR28) 2020; 33 O Bunau (26316_CR45) 2009; 21 B An (26316_CR14) 2017; 139 G Zhang (26316_CR26) 2019; 12 G Gao (26316_CR36) 2016; 138 PE Blöchl (26316_CR42) 1994; 50 CM Zall (26316_CR18) 2016; 138 B Qiao (26316_CR24) 2011; 3 S Kattel (26316_CR13) 2017; 355 A Trimpalis (26316_CR8) 2019; 355 B Ravel (26316_CR47) 2005; 12 Y Peng (26316_CR21) 2018; 4 G Kresse (26316_CR40) 1996; 6 JP Perdew (26316_CR37) 1992; 45 G Kresse (26316_CR41) 1993; 47 B An (26316_CR30) 2019; 2 K Larmier (26316_CR16) 2017; 56 S Grimme (26316_CR43) 2010; 132 HZ Wu (26316_CR35) 2014; 16 A Wang (26316_CR23) 2018; 2 |
| References_xml | – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR24 article-title: Single atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: CR2 article-title: Design of electrocatalysts for oxygen and hydrogen involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 139 start-page: 3834 year: 2017 end-page: 3840 ident: CR14 article-title: Confinement of ultrasmall Cu/ZnO nanoparticles in metal organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00058 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR40 article-title: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 132 start-page: 154104 year: 2010 ident: CR43 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT D) for the 94 elements H Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 4 start-page: 613 year: 2018 end-page: 625 ident: CR21 article-title: Molecular level insight into how hydroxyl groups boost catalytic activity in CO hydrogenation into methanol publication-title: Chem doi: 10.1016/j.chempr.2018.01.019 – volume: 2 start-page: 709 year: 2019 end-page: 717 ident: CR30 article-title: Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol publication-title: Nat. Catal. doi: 10.1038/s41929-019-0308-5 – volume: 33 start-page: 6865 year: 2020 end-page: 6872 ident: CR28 article-title: Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom publication-title: Nano Lett – volume: 179 start-page: 21 year: 1999 end-page: 29 ident: CR9 article-title: Methanol-steam reforming on Cu/ZnO/Al O . Part 1: the reaction network publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(98)00298-1 – volume: 16 start-page: 7645 year: 2016 end-page: 7649 ident: CR15 article-title: Copper nanocrystals encapsulated in Zr based metal organic frameworks for highly selective CO hydrogenation to methanol publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03637 – volume: 10 year: 2019 ident: CR22 article-title: Optimizing reaction paths for methanol synthesis from CO hydrogenation via metal ligand cooperativity publication-title: Nat. Commun. doi: 10.1038/s41467-019-09918-z – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR42 article-title: Projector augmented wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 101 start-page: 953 year: 2001 end-page: 996 ident: CR3 article-title: Catalysis research of relevance to carbon management? Progress, challenges, and opportunities publication-title: Chem. Rev. doi: 10.1021/cr000018s – volume: 6 start-page: 52377 year: 2016 end-page: 52383 ident: CR34 article-title: Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane publication-title: RSC Adv. doi: 10.1039/C6RA06425F – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR47 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 142 start-page: 19001 year: 2020 end-page: 19005 ident: CR31 article-title: Highly selective hydrogenation of CO to ethanol via designed bifunctional Ir –In O single-atom catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08607 – volume: 12 start-page: 1317 year: 2019 end-page: 1325 ident: CR26 article-title: A general route via formamide condensation to prepare atomically dispersed metal nitrogen carbon electrocatalysts for energy technologies publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – volume: 65 start-page: 075103 year: 2002 ident: CR46 article-title: Hubbard-Ucalculations for Cu from first-principle Wannier functions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.075103 – volume: 56 start-page: 14868 year: 2017 end-page: 14872 ident: CR5 article-title: Selective utilization of methoxyl group in lignin to produce acetic acid publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706846 – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: CR27 article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 355 start-page: 1296 year: 2017 end-page: 1299 ident: CR13 article-title: Active sites for CO hydrogenation to methanol on Cu/ZnO catalysts publication-title: Science doi: 10.1126/science.aal3573 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR39 article-title: Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 361 start-page: 1285 year: 2019 end-page: 1295 ident: CR7 article-title: Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehyde publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.142 – volume: 3 start-page: 1311 year: 2010 ident: CR44 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 21 start-page: 345501 year: 2009 ident: CR45 article-title: Self-consistent aspects of x-ray absorption calculations publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/34/345501 – volume: 336 start-page: 893 year: 2012 end-page: 897 ident: CR11 article-title: Methanol synthesis over Cu/ZnO/Al O : the active site in industrial catalysis publication-title: Science doi: 10.1126/science.1219831 – volume: 56 start-page: 2318 year: 2017 end-page: 2323 ident: CR16 article-title: CO to methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal support interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610166 – volume: 7 start-page: 7187 year: 2017 end-page: 7195 ident: CR12 article-title: Significance of surface formate coverage on the reaction kinetics of methanol synthesis from CO hydrogenation over Cu publication-title: ACS Catal. doi: 10.1021/acscatal.7b01910 – volume: 1 start-page: 16034 year: 2016 ident: CR1 article-title: The role of metal organic frameworks in a carbon neutral energy cycle publication-title: Nat. Energy doi: 10.1038/nenergy.2016.34 – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: CR36 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 119 start-page: 7610 year: 2019 end-page: 7672 ident: CR4 article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 138 start-page: 12440 year: 2016 end-page: 12450 ident: CR19 article-title: Optimizing binding energies of key intermediates for CO hydrogenation to methanol over oxide supported copper publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05791 – volume: 5 start-page: 693 year: 2019 end-page: 705 ident: CR32 article-title: Iridium single atom catalyst performing a quasi homogeneous hydrogenation transformation of CO to formate publication-title: Chem doi: 10.1016/j.chempr.2018.12.014 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR38 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR41 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 138 start-page: 9968 year: 2016 end-page: 9977 ident: CR18 article-title: Triphosphine-ligated copper hydrides for CO hydrogenation: structure, reactivity, and thermodynamic studies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05349 – volume: 102 start-page: 57 year: 2019 end-page: 62 ident: CR6 article-title: Quantification of formaldehyde production during alkaline methanol electrooxidation publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.03.013 – volume: 139 start-page: 9739 year: 2017 end-page: 9754 ident: CR20 article-title: Tuning selectivity of CO hydrogenation reactions at the metal/oxide interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 16 start-page: 3299 year: 2014 ident: CR35 article-title: The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54333a – volume: 165 start-page: 391 year: 1997 end-page: 409 ident: CR17 article-title: In situ FT IR study on CO hydrogenation over Cu catalysts supported on SiO , Al O , and TiO publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(97)00221-4 – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR23 article-title: Heterogeneous single atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 45 start-page: 13244 year: 1992 end-page: 13249 ident: CR37 article-title: Accurate and simple analytic representation of the electron-gas correlation energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 355 start-page: 804 year: 2019 end-page: 814 ident: CR8 article-title: NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate publication-title: Catal. Today doi: 10.1016/j.cattod.2019.04.021 – volume: 336 start-page: 893 year: 2012 end-page: 897 ident: CR10 article-title: The active site of methanol synthesis over Cu/ZnO/Al O industrial catalysts publication-title: Science doi: 10.1126/science.1219831 – volume: 14 start-page: 5772 year: 2020 end-page: 5779 ident: CR33 article-title: Single vanadium atoms anchored on graphitic carbon nitride as a high performance catalyst for non-oxidative propane dehydrogenation publication-title: ACS Nano doi: 10.1021/acsnano.0c00659 – volume: 8 year: 2017 ident: CR29 article-title: Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation publication-title: Nat. Commun. doi: 10.1038/ncomms14542 – volume: 352 start-page: 797 year: 2016 end-page: 800 ident: CR25 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science doi: 10.1126/science.aaf5251 – volume: 56 start-page: 14868 year: 2017 ident: 26316_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706846 – volume: 50 start-page: 17953 year: 1994 ident: 26316_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 355 start-page: 804 year: 2019 ident: 26316_CR8 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.04.021 – volume: 5 start-page: 693 year: 2019 ident: 26316_CR32 publication-title: Chem doi: 10.1016/j.chempr.2018.12.014 – volume: 138 start-page: 6292 year: 2016 ident: 26316_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 355 start-page: 1296 year: 2017 ident: 26316_CR13 publication-title: Science doi: 10.1126/science.aal3573 – volume: 139 start-page: 3834 year: 2017 ident: 26316_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00058 – volume: 47 start-page: 558 year: 1993 ident: 26316_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 142 start-page: 19001 year: 2020 ident: 26316_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08607 – volume: 56 start-page: 2318 year: 2017 ident: 26316_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610166 – volume: 132 start-page: 154104 year: 2010 ident: 26316_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 336 start-page: 893 year: 2012 ident: 26316_CR11 publication-title: Science doi: 10.1126/science.1219831 – volume: 8 year: 2017 ident: 26316_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms14542 – volume: 54 start-page: 11169 year: 1996 ident: 26316_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 3 start-page: 1311 year: 2010 ident: 26316_CR44 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 3 start-page: 634 year: 2011 ident: 26316_CR24 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 6 start-page: 15 year: 1996 ident: 26316_CR40 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 352 start-page: 797 year: 2016 ident: 26316_CR25 publication-title: Science doi: 10.1126/science.aaf5251 – volume: 179 start-page: 21 year: 1999 ident: 26316_CR9 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(98)00298-1 – volume: 45 start-page: 13244 year: 1992 ident: 26316_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 138 start-page: 12440 year: 2016 ident: 26316_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05791 – volume: 13 start-page: 411 year: 2018 ident: 26316_CR27 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 139 start-page: 9739 year: 2017 ident: 26316_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 2 start-page: 65 year: 2018 ident: 26316_CR23 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 6 start-page: 52377 year: 2016 ident: 26316_CR34 publication-title: RSC Adv. doi: 10.1039/C6RA06425F – volume: 12 start-page: 537 year: 2005 ident: 26316_CR47 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 138 start-page: 9968 year: 2016 ident: 26316_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05349 – volume: 10 year: 2019 ident: 26316_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09918-z – volume: 1 start-page: 16034 year: 2016 ident: 26316_CR1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.34 – volume: 44 start-page: 2060 year: 2015 ident: 26316_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 12 start-page: 1317 year: 2019 ident: 26316_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – volume: 77 start-page: 3865 year: 1996 ident: 26316_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 65 start-page: 075103 year: 2002 ident: 26316_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.075103 – volume: 33 start-page: 6865 year: 2020 ident: 26316_CR28 publication-title: Nano Lett – volume: 336 start-page: 893 year: 2012 ident: 26316_CR10 publication-title: Science doi: 10.1126/science.1219831 – volume: 16 start-page: 7645 year: 2016 ident: 26316_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03637 – volume: 102 start-page: 57 year: 2019 ident: 26316_CR6 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.03.013 – volume: 21 start-page: 345501 year: 2009 ident: 26316_CR45 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/34/345501 – volume: 101 start-page: 953 year: 2001 ident: 26316_CR3 publication-title: Chem. Rev. doi: 10.1021/cr000018s – volume: 361 start-page: 1285 year: 2019 ident: 26316_CR7 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.142 – volume: 165 start-page: 391 year: 1997 ident: 26316_CR17 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(97)00221-4 – volume: 16 start-page: 3299 year: 2014 ident: 26316_CR35 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54333a – volume: 2 start-page: 709 year: 2019 ident: 26316_CR30 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0308-5 – volume: 14 start-page: 5772 year: 2020 ident: 26316_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.0c00659 – volume: 119 start-page: 7610 year: 2019 ident: 26316_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 7 start-page: 7187 year: 2017 ident: 26316_CR12 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01910 – volume: 4 start-page: 613 year: 2018 ident: 26316_CR21 publication-title: Chem doi: 10.1016/j.chempr.2018.01.019 |
| SSID | ssj0000391844 |
| Score | 2.699309 |
| Snippet | CO
2
hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low... CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low... CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6022 |
| SubjectTerms | 119/118 140/146 147/137 639/301/299 639/638/675 639/638/77/887 Carbon dioxide Carbon nitride Catalysts Coordination Humanities and Social Sciences Hydrogenation Low temperature multidisciplinary Science Science (multidisciplinary) Selectivity Single atom catalysts |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj9QgFCdmo4kX42esrgYTb9osBQr0uNu48WBGD2r2RqBAtsmkNdMZzfrX-4DOuN1EvXjpgY8WeA_6e_D4PYReR98FSiXM76bzJQ-2Kw0X8CC1U8R4otL9iq8f5GqlLi6aT9dCfUWfsEwPnAfuRAlrnQRUUQnLLRhzhtUBcAjhLlGPx9UXUM81YyqtwawB04XPt2QIUycTT2tC9EigglWiFIs_USLsX6DMmz6SNw5K0__n_D66NwNHfJob_ADd8sNDdCeHkrx6hPp2BDOyz3t7OLqFJs86PAbc7nDcEFh7HE-KJwz5LVtxDHBx3f-EhCnFwoFlD7cfKb68cpsR1Cq_yWzxevyBI4PVTL_8GH05f_e5fV_OYRTKrq7ktrQucKm8VZ4YF-lfIkaqwDaFcRE-NHUXKJM2KOMNVcZy1QWpQi0cVHLSsSfoaBgH_xRhbiDTEUeCqrgnnamUtaoBEOA7Rk1ToGo_pLqbOcZjqIu1TmfdTOksBg1i0EkMWhTozaHOt8yw8dfSZ1FSh5KRHTslgM7oWWf0v3SmQMd7Oet5yk6a1oCVwNYgVYFeHbJhssUTFDP4cZfLqDh0tEByoR-LBi1zhv4y0XYDtgUwTgr0dq9Jvz_-5w4_-x8dfo7u0qj50ROnPkZH283Ov0C3u-_bftq8TFPnF_oIGkU priority: 102 providerName: Directory of Open Access Journals |
| Title | Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature |
| URI | https://link.springer.com/article/10.1038/s41467-021-26316-6 https://www.proquest.com/docview/2582277201 https://www.proquest.com/docview/2582811332 https://pubmed.ncbi.nlm.nih.gov/PMC8519910 https://doaj.org/article/86bbd705716b4b469a35f04504d82067 |
| Volume | 12 |
| WOSCitedRecordID | wos000707661200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fj5QwEJ54d5r44vnrInqSmvim5AoUKE_mjtxFE12JUbP6QgotHskGzmVXc_71zhR2L1zivfjCA9NC6XTar9PhG4CXFLsQBAnad1oZT9Rl5SkR44VHWnJluLT_V3x9n8xmcj5P89Hh1o9hlZs50U7UuqvIR34URLiUIRTk_puLnx5ljaLT1TGFxg7sEUsCGWYefd_6WIj9XAox_ivDQ3nUCzszUFxCEId-7MWT9cjS9k-w5vVIyWvHpXYVOtv_3_bfh3sj_mTHw4B5ALdM-xDuDBkpLx9Bk3W4G20GFyGj6FIboMe6mmVrRn6FhWH0yJ6hPAtngiHqXDR_8EZvU-rg7MmyjwE7v9TLDkfn8CS1YovuNyMirJHF-TF8OTv9nL31xmwMXhX5ycordS0SaUppuNLEIkNQy8ctLnZsbOo0quogTMpaKqMCqUohqzqRdRRrrKQTHR7Abtu15gkwoVCouea19IXhlfJlWcoUsYSpwkClDvgbnRTVSFVOGTMWhT0yD2Ux6LFAPRZWj0XswKttnYuBqOPG0iek6m1JItm2N7rlj2K02ULGJTYcAa0fl6IUcarCqEYIzIW2rPcOHG5UXYyW3xdXenbgxVaMNksHMao13XooI6nrAgeSyQCbNGgqaZtzy_6NEBkxPXfg9WYoXr383x_89Oa2PoO7ARkFhepEh7C7Wq7Nc7hd_Vo1_dKFnWSe2Kt0Ye_kdJZ_cq3zwqVQ2dy1VoeS_N2H_NtfTeowzQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwQXfqMFBhgJThDNcZzYOSAEhWnTSuEwUG-eEzssUtVsTctU_ij-Rp6dpFMnsdsOXHqIndROvvf8bH_-HsArx11gTKB9Z4UNeZkXoeYp_tDESKotlf58xY-hGI3keJx924A__VkYR6vsfaJ31KYu3Br5DktwKMNQkEbvT05DlzXK7a72KTRaWBzY5RlO2Zp3-5_w-75mbPfz4WAv7LIKhEUSiXmYm5ILaXNpqTZODcWFDBFO1SJ05rbMkqJkschLqa1mUudcFqWQZZIavMkIE-Nzr8F19OPCUcjEWKzWdJzauuS8O5tDY7nTcO-JHA-CpXGUhuna-OfTBKzFtheZmRe2Z_2ot3v3f3tf9-BOF1-TD61B3IcNO30AN9uMm8uHUA1qbErVLoESx571BERSl2SwIG7dZGKJ60JDsHwQjzjBqHpS_cYLjU8ZhKMDGXxl5HhpZjVaX_skPSeT-ow4oa9OpfoRfL-Sfj6GzWk9tVtAuMZCQw0tZcQtLXQk81xmGCvZImY6CyDqMaCKTordZQSZKE8JiKVqcaMQN8rjRqUBvFndc9IKkVxa-6OD1qqmExH3F-rZT9X5JCXTHBuOAXuU5jznaabjpMQQn3LjVf0D2O6hpTrP1qhzXAXwclWMPsltNOmprRdtHeleHQtArAF6rUHrJdPq2Kub4xQA5yw0gLc99M___N8dfnJ5W1_Arb3DL0M13B8dPIXbzBmkoyUl27A5ny3sM7hR_JpXzey5t2gCR1dtEn8BW-WH_w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3ohAASPBCaJ1HCfxHhCClBVVq2UPgCourhPbNNJqUza7VMtP49cxdpKtthK99cAlh9hJbOeb8Yw9_gbgpYtdYCxD-R6WJuS2KEPFU7zQRAuqDBX-fMW3g2w8FoeHw8kW_OnPwriwyl4nekWt69KtkQ9YglMZmoI0GtguLGKyO3p38jN0GaTcTmufTqOFyL5ZnaL71rzd28V__Yqx0ccv-aewyzAQlkmULcJCW54JUwhDlXbMKM58iNBti1CxGztMSsvirLBCGcWEKrgobSZskmp8SGc6xvdegasZ-pjO8Zsk39frO455XXDendOhsRg03GslFxPB0jhKw3RjLvQpAzbs3PNRmue2av0MOLr9P4_dHbjV2d3kfSsod2HLzO7B9TYT5-o-VHmNTanapVHiomp9YCKpLcmXxK2nTA1xXWgIlufxmBO0tqfVb7zR-FRCOGuQ_DMjxys9r1Eq2zepBZnWp8QRgHXs1Q_g66X08yFsz-qZeQSEKyzUVFMrIm5oqSJRFGKINpQpY6aGAUQ9HmTZUbS7TCFT6UMFYiFbDEnEkPQYkmkAr9fPnLQEJRfW_uBgtq7pyMX9jXr-Q3a6Soq0wIajIR-lBS8Q2ypOLJr-lGvP9h_ATg8z2Wm8Rp5hLIAX62LUVW4DSs1MvWzrCDd0LIBsA9wbDdosmVXHnvUcXQP0ZWgAb3oxOPv4vzv8-OK2PocbKAnyYG-8_wRuMiebLlop2YHtxXxpnsK18teiaubPvHATOLpsifgLTNaQ8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+tailoring+of+Cu+single+sites+on+C3N4+realizes+selective+CO2+hydrogenation+at+low+temperature&rft.jtitle=Nature+communications&rft.au=Tang%2C+Yang&rft.au=Mao+Xinnan&rft.au=Zhang%2C+Ying&rft.au=Wu%2C+Xiaoping&rft.date=2021-10-15&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26316-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |