More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells

The genus comprises 65 species, among which is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encodin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 116; H. 6; S. 2265
Hauptverfasser: Gomez-Valero, Laura, Rusniok, Christophe, Carson, Danielle, Mondino, Sonia, Pérez-Cobas, Ana Elena, Rolando, Monica, Pasricha, Shivani, Reuter, Sandra, Demirtas, Jasmin, Crumbach, Johannes, Descorps-Declere, Stephane, Hartland, Elizabeth L, Jarraud, Sophie, Dougan, Gordon, Schroeder, Gunnar N, Frankel, Gad, Buchrieser, Carmen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 05.02.2019
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The genus comprises 65 species, among which is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.
AbstractList The genus comprises 65 species, among which is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.
The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.
Author Demirtas, Jasmin
Rusniok, Christophe
Pasricha, Shivani
Pérez-Cobas, Ana Elena
Crumbach, Johannes
Mondino, Sonia
Dougan, Gordon
Carson, Danielle
Schroeder, Gunnar N
Rolando, Monica
Buchrieser, Carmen
Reuter, Sandra
Jarraud, Sophie
Hartland, Elizabeth L
Gomez-Valero, Laura
Descorps-Declere, Stephane
Frankel, Gad
Author_xml – sequence: 1
  givenname: Laura
  surname: Gomez-Valero
  fullname: Gomez-Valero, Laura
  email: lgomez@pasteur.fr, cbuch@pasteur.fr
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 2
  givenname: Christophe
  surname: Rusniok
  fullname: Rusniok, Christophe
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 3
  givenname: Danielle
  surname: Carson
  fullname: Carson, Danielle
  organization: Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
– sequence: 4
  givenname: Sonia
  surname: Mondino
  fullname: Mondino, Sonia
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 5
  givenname: Ana Elena
  surname: Pérez-Cobas
  fullname: Pérez-Cobas, Ana Elena
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 6
  givenname: Monica
  orcidid: 0000-0002-3710-0115
  surname: Rolando
  fullname: Rolando, Monica
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 7
  givenname: Shivani
  surname: Pasricha
  fullname: Pasricha, Shivani
  organization: Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
– sequence: 8
  givenname: Sandra
  surname: Reuter
  fullname: Reuter, Sandra
  organization: Pathogen Genomics, Wellcome Trust Sanger Institute, CB10 1SA Cambridge, United Kingdom
– sequence: 9
  givenname: Jasmin
  surname: Demirtas
  fullname: Demirtas, Jasmin
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 10
  givenname: Johannes
  surname: Crumbach
  fullname: Crumbach, Johannes
  organization: CNRS UMR 3525, 75724 Paris, France
– sequence: 11
  givenname: Stephane
  surname: Descorps-Declere
  fullname: Descorps-Declere, Stephane
  organization: Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology, 75724 Paris, France
– sequence: 12
  givenname: Elizabeth L
  surname: Hartland
  fullname: Hartland, Elizabeth L
  organization: Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
– sequence: 13
  givenname: Sophie
  surname: Jarraud
  fullname: Jarraud, Sophie
  organization: National Reference Centre of Legionella, Hospices Civils de Lyon, 69317 Lyon, France
– sequence: 14
  givenname: Gordon
  surname: Dougan
  fullname: Dougan, Gordon
  organization: Pathogen Genomics, Wellcome Trust Sanger Institute, CB10 1SA Cambridge, United Kingdom
– sequence: 15
  givenname: Gunnar N
  surname: Schroeder
  fullname: Schroeder, Gunnar N
  organization: Centre for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
– sequence: 16
  givenname: Gad
  surname: Frankel
  fullname: Frankel, Gad
  organization: Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
– sequence: 17
  givenname: Carmen
  surname: Buchrieser
  fullname: Buchrieser, Carmen
  email: lgomez@pasteur.fr, cbuch@pasteur.fr
  organization: CNRS UMR 3525, 75724 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30659146$$D View this record in MEDLINE/PubMed
BookMark eNpNUDtPwzAQtlARpYWZDXlkaIsf8SMjqnhJRSwwR45zbo0SJ8QJEjN_HBeKxHJ3uvteuhmahDYAQheUrChR_LoLJq6oJppQSak8QqeU5HQps5xM_s1TNIvxjRCSC01O0JQTKXKayVP09dT2gIedCZjqRUJgcA7s0PYR-5AOgDew9cm1rg3eQhjjvrYN4K5vP3wFuBnrwXc1LBKhgg5SCQO2bVP6YIZEjdi1Pe6hq739WeyVd2OTPG2SjWfo2Jk6wvmhz9Hr3e3L-mG5eb5_XN9sllZQNSxLUSotFSu1EbwsXZlXhoIBbYlQrlI2s1LxXHIBhjnmaEUsY5zzilCwJGdzdPWrm5K_jxCHovFxn8AEaMdYMKpyrgXLdIJeHqBj2UBVdL1vTP9Z_D2OfQOLgnO6
CitedBy_id crossref_primary_10_1093_jacamr_dlac040
crossref_primary_10_2478_ahem_2021_0034
crossref_primary_10_1186_s13613_024_01252_y
crossref_primary_10_3389_fcimb_2021_708228
crossref_primary_10_1038_s41564_019_0663_7
crossref_primary_10_1016_j_bbalip_2022_159138
crossref_primary_10_1038_s41467_021_23777_7
crossref_primary_10_7717_peerj_12000
crossref_primary_10_1128_iai_00072_23
crossref_primary_10_1371_journal_pone_0281587
crossref_primary_10_1016_j_mimet_2021_106242
crossref_primary_10_1111_1348_0421_12951
crossref_primary_10_1128_msystems_01004_24
crossref_primary_10_1371_journal_ppat_1012118
crossref_primary_10_1093_molbev_msaf161
crossref_primary_10_1128_iai_00441_22
crossref_primary_10_1093_molbev_msac037
crossref_primary_10_1007_s10123_021_00192_y
crossref_primary_10_1002_pro_4889
crossref_primary_10_1146_annurev_pathmechdis_012419_032742
crossref_primary_10_1038_s41467_024_54649_5
crossref_primary_10_1111_mmi_14770
crossref_primary_10_1128_msphere_00354_24
crossref_primary_10_3389_fcimb_2021_608860
crossref_primary_10_1038_s41467_020_15123_0
crossref_primary_10_1128_mbio_01268_25
crossref_primary_10_1186_s40168_024_01809_w
crossref_primary_10_1128_msphere_00552_22
crossref_primary_10_1111_febs_15794
crossref_primary_10_1042_BST20190712
crossref_primary_10_3390_microorganisms11010074
crossref_primary_10_1093_femsre_fuae021
crossref_primary_10_1107_S2059798321010469
crossref_primary_10_1038_s41467_022_28454_x
crossref_primary_10_1146_annurev_genet_111523_102030
crossref_primary_10_7717_peerj_17197
crossref_primary_10_1093_femspd_ftz065
crossref_primary_10_1111_mmi_15172
crossref_primary_10_1038_s41467_024_51273_1
crossref_primary_10_1111_mmi_15214
crossref_primary_10_1016_j_jbc_2021_101340
crossref_primary_10_1111_mmi_14760
crossref_primary_10_1073_pnas_2303942120
crossref_primary_10_3389_frwa_2022_891477
crossref_primary_10_1016_j_tim_2020_05_020
crossref_primary_10_1186_s40168_020_00926_6
crossref_primary_10_3389_fcimb_2020_599762
crossref_primary_10_1107_S2059798322007318
crossref_primary_10_1016_j_tim_2023_05_011
crossref_primary_10_1093_femsre_fuad040
crossref_primary_10_1099_mgen_0_000407
crossref_primary_10_1128_msphere_00891_24
crossref_primary_10_1128_Spectrum_00424_21
crossref_primary_10_1128_jb_00324_24
crossref_primary_10_1038_s41598_022_26109_x
crossref_primary_10_1093_bioinformatics_btaf398
crossref_primary_10_1038_s41467_021_27478_z
crossref_primary_10_15252_embr_202051163
crossref_primary_10_1099_ijsem_0_006813
crossref_primary_10_1111_cmi_13246
crossref_primary_10_1038_s41579_023_00974_3
crossref_primary_10_1111_mmi_15201
crossref_primary_10_1093_femsml_uqac014
crossref_primary_10_1128_IAI_00261_21
crossref_primary_10_1128_microbiolspec_PSIB_0027_2019
crossref_primary_10_1038_s41467_023_37885_z
crossref_primary_10_1016_j_tim_2020_09_012
crossref_primary_10_3390_microorganisms9020291
crossref_primary_10_1093_nar_gkaf652
crossref_primary_10_1016_j_jbc_2021_100301
crossref_primary_10_1038_s42003_021_01672_7
crossref_primary_10_1371_journal_ppat_1011473
crossref_primary_10_3389_fmicb_2021_695346
crossref_primary_10_1038_s41579_019_0155_z
crossref_primary_10_1128_msphere_01002_24
crossref_primary_10_1016_j_micinf_2019_06_012
crossref_primary_10_1038_s41396_023_01502_0
crossref_primary_10_1038_s41467_024_51272_2
crossref_primary_10_7717_peerj_7346
crossref_primary_10_3390_biom11121802
crossref_primary_10_1016_j_mib_2020_04_002
crossref_primary_10_1016_j_ijheh_2023_114117
crossref_primary_10_1371_journal_pone_0223033
crossref_primary_10_1128_IAI_00374_19
crossref_primary_10_1016_j_mib_2019_12_004
crossref_primary_10_1016_j_plaphy_2024_109411
crossref_primary_10_1007_s00018_025_05610_2
crossref_primary_10_3390_jcm11206126
crossref_primary_10_1093_femsre_fuac012
crossref_primary_10_1016_j_tim_2023_03_005
crossref_primary_10_7554_eLife_86903
crossref_primary_10_3390_membranes13030356
crossref_primary_10_24072_pcjournal_269
crossref_primary_10_1093_g3journal_jkae158
crossref_primary_10_1128_IAI_00153_19
crossref_primary_10_1111_cmi_13384
crossref_primary_10_1093_infdis_jiz340
crossref_primary_10_1038_s41467_019_13021_8
crossref_primary_10_1128_msphere_00454_22
crossref_primary_10_1111_febs_15627
crossref_primary_10_1093_femsle_fnad086
crossref_primary_10_1099_mgen_0_000273
crossref_primary_10_1016_j_heliyon_2019_e03149
crossref_primary_10_3389_fimmu_2020_00025
crossref_primary_10_1016_j_tim_2020_01_005
crossref_primary_10_1038_s44320_024_00076_z
crossref_primary_10_1128_spectrum_04179_22
crossref_primary_10_1007_s12275_024_00162_9
crossref_primary_10_1093_femsml_uqab013
crossref_primary_10_1111_1758_2229_70132
crossref_primary_10_1080_15548627_2022_2025572
crossref_primary_10_1038_s41467_020_16681_z
crossref_primary_10_3389_fcimb_2023_1140688
crossref_primary_10_3389_fmicb_2023_1113021
crossref_primary_10_1093_femsre_fuaf022
crossref_primary_10_1371_journal_ppat_1012534
crossref_primary_10_1128_mmbr_00097_23
crossref_primary_10_1099_mic_0_001551
crossref_primary_10_3389_fmicb_2021_613067
crossref_primary_10_3390_microorganisms9010174
crossref_primary_10_1128_MRA_01276_20
crossref_primary_10_3390_microorganisms10020255
crossref_primary_10_1038_s41435_019_0074_z
crossref_primary_10_1128_msphere_00352_25
crossref_primary_10_1128_msphere_00222_24
crossref_primary_10_1038_s41598_022_09721_9
crossref_primary_10_1371_journal_ppat_1012010
crossref_primary_10_7554_eLife_86903_3
crossref_primary_10_1111_tra_12860
crossref_primary_10_1016_j_mib_2020_01_008
crossref_primary_10_3390_toxins12040220
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1808016116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 30659146
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/P028225/1
– fundername: Medical Research Council
  grantid: G1001729
– fundername: Medical Research Council
  grantid: MR/L018225/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c517t-b5b78672b8a53bbfb9da1eae8c057fd7c4c6739635ea2f2f1d0c22333d01ec092
IEDL.DBID 7X8
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457731900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 09:35:46 EDT 2025
Sat May 31 02:14:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Legionella
human pathogen
horizontal gene transfer
coevolution
protozoa
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-b5b78672b8a53bbfb9da1eae8c057fd7c4c6739635ea2f2f1d0c22333d01ec092
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3710-0115
OpenAccessLink https://pasteur.hal.science/pasteur-02563435
PMID 30659146
PQID 2179385248
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2179385248
pubmed_primary_30659146
PublicationCentury 2000
PublicationDate 2019-02-05
PublicationDateYYYYMMDD 2019-02-05
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
SSID ssj0009580
Score 2.6342247
Snippet The genus comprises 65 species, among which is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental...
The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2265
SubjectTerms Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Secretion Systems - genetics
Computational Biology - methods
Evolution, Molecular
Genome, Bacterial
Genomics - methods
Humans
Intracellular Space - microbiology
Legionella - classification
Legionella - physiology
Legionellosis - microbiology
Phylogeny
Protein Domains
Title More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30659146
https://www.proquest.com/docview/2179385248
Volume 116
WOSCitedRecordID wos000457731900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSxAeZaXjMQAEobajmN7QgiBGNqKAaRule3YUgeS0hT-AH-ccx7AgoTE4iVKdHHunM93n79D6FRnIrXKaiIktyQJWhLNKSOUcuHjgYTUVZL5fTkcqtFIPzYJt7KhVbZrYrVQZ4WLOfIrFj1JCZao6-kriV2jYnW1aaGxiJY5QJlI6ZIj9UN0V9VqBJqSNNG9VtpH8qtpbspLGkUVAfLQ9Hd8Wf1n7tf_a-EGWmsQJr6pXaKDFny-iTpNDJf4rBGaPt9CH4Ni5nHMnWOqLuBNcM3uKGYlnuRwweO-j3zlyJDC4GlvZRyLF4-bA3y45SNe4MlXP905Bnthw13nAjGgYjzzX2Xy-OSqMSCONYNyGz3f3z3dPpCmKQNxgso5scJKlUpmlRHc2mB1Zqg3XjlAfiGTLnGp5BDWwhsWWKBZzwEE4TzrUe96mu2gpRwM30MYtn4BZosLanmUSdNGhKAdZZkxQjPbRSftRI_B6aNVJvfFWzn-nuou2q2_1nhaq3OMeawUw_q__4e7D9AqACBdsbDFIVoOEPL-CK249_mknB1X3gTj8HHwCcYz1Pg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+18%2C000+effectors+in+the+Legionella+genus+genome+provide+multiple%2C+independent+combinations+for+replication+in+human+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gomez-Valero%2C+Laura&rft.au=Rusniok%2C+Christophe&rft.au=Carson%2C+Danielle&rft.au=Mondino%2C+Sonia&rft.date=2019-02-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=6&rft.spage=2265&rft_id=info:doi/10.1073%2Fpnas.1808016116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon