Analyzing crowd behavior in naturalistic conditions: Identifying sources and sinks and characterizing main flows

Pedestrians, in videos taken from fixed cameras, tend to appear and disappear at precise locations such as doors, gateways or edges of the scene: we refer to locations where pedestrians appear as sources (potential origins) and the locations where they disappear as sinks (potential destinations). Th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing Ročník 177; s. 543 - 563
Hlavní autori: Khan, Sultan D., Bandini, Stefania, Basalamah, Saleh, Vizzari, Giuseppe
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 12.02.2016
Elsevier BV
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pedestrians, in videos taken from fixed cameras, tend to appear and disappear at precise locations such as doors, gateways or edges of the scene: we refer to locations where pedestrians appear as sources (potential origins) and the locations where they disappear as sinks (potential destinations). The detection of these points and the characterization of the flows connecting them represent a typical preliminary step in most pedestrian studies and it can be supported by computer vision approaches. In this paper we propose an algorithm in which a scene is overlaid by a grid of particles initializing a dynamical system defined by optical flow, a high level global motion information. Time integration of the dynamical system produces short particle trajectories (tracklets), representing dense but short motion patterns in segments of the scene; tracklets are then extended into longer tracks that are grouped using an unsupervised clustering algorithm, where the similarity is measured by the Longest Common Subsequence. The analysis of these clusters supports the identification of sources and sinks related to a single video segment. Local segment information is finally combined to achieve a global set of traces identifying sources and sinks, and characterizing the flow of pedestrians connecting them. The paper presents the defined technique and it discusses its application in a real-world scenario.
AbstractList Pedestrians, in videos taken from fixed cameras, tend to appear and disappear at precise locations such as doors, gateways or edges of the scene: we refer to locations where pedestrians appear as sources (potential origins) and the locations where they disappear as sinks (potential destinations). The detection of these points and the characterization of the flows connecting them represent a typical preliminary step in most pedestrian studies and it can be supported by computer vision approaches. In this paper we propose an algorithm in which a scene is overlaid by a grid of particles initializing a dynamical system defined by optical flow, a high level global motion information. Time integration of the dynamical system produces short particle trajectories (tracklets), representing dense but short motion patterns in segments of the scene; tracklets are then extended into longer tracks that are grouped using an unsupervised clustering algorithm, where the similarity is measured by the Longest Common Subsequence. The analysis of these clusters supports the identification of sources and sinks related to a single video segment. Local segment information is finally combined to achieve a global set of traces identifying sources and sinks, and characterizing the flow of pedestrians connecting them. The paper presents the defined technique and it discusses its application in a real-world scenario.
Author Basalamah, Saleh
Khan, Sultan D.
Bandini, Stefania
Vizzari, Giuseppe
Author_xml – sequence: 1
  givenname: Sultan D.
  surname: Khan
  fullname: Khan, Sultan D.
  email: sultan.khan@disco.unimib.it
  organization: Complex Systems and Artificial Intelligence Research Centre, Università degli Studi di Milano–Bicocca, Milano, Italy
– sequence: 2
  givenname: Stefania
  surname: Bandini
  fullname: Bandini, Stefania
  email: bandini@disco.unimib.it
  organization: Complex Systems and Artificial Intelligence Research Centre, Università degli Studi di Milano–Bicocca, Milano, Italy
– sequence: 3
  givenname: Saleh
  surname: Basalamah
  fullname: Basalamah, Saleh
  email: smbasalamah@uqu.edu.sa
  organization: Department of Computer Engineering, Umm Al Qura University, Makkah, Saudi Arabia
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0002-7916-6438
  surname: Vizzari
  fullname: Vizzari, Giuseppe
  email: vizzari@disco.unimib.it
  organization: Complex Systems and Artificial Intelligence Research Centre, Università degli Studi di Milano–Bicocca, Milano, Italy
BackLink https://cir.nii.ac.jp/crid/1871428068200411264$$DView record in CiNii
BookMark eNqFkUFv1DAQhS1UJLYL_4BDDlwTPF4ncXpAqioKlSpxgbPl2mM6S9aubG-r7a_HIZx6gItnRprvjd7zOTsLMSBj74F3wGH4uO8CHm08dIJD3wF0XE6v2AbUKFol1HDGNnwSfSt2IN6w85z3nMMIYtqwh8tg5tMzhZ-NTfHJNXd4bx4ppoZCE0w5JjNTLmQbG4OjQjHki-bGYSjkTwuW4zFZzI0JrskUfq2dvTfJ2IKJ_mgfTJXzc3zKb9lrb-aM7_7WLftx_fn71df29tuXm6vL29b2MJZ26nuJPeeD3DnDJymV8tZwwAGludtNdRiNn5QfnFOD75H3A0ccB4_CK-52WyZX3Wor54RePyQ6mHTSwPWSmt7rNTW9pKYBdE2tYhcvMEvFLLZLMjT_D_6wwoGocstb_wCkUHxQgnMJIKqhLfu0rmH1_0iYdLaEwaKjhLZoF-nfd34DZhma1A
CitedBy_id crossref_primary_10_1088_1742_5468_ac6255
crossref_primary_10_1109_ACCESS_2019_2918650
crossref_primary_10_1109_ACCESS_2020_3015375
crossref_primary_10_1016_j_patcog_2021_108037
crossref_primary_10_1038_s41598_025_02194_6
crossref_primary_10_3390_electronics12071618
crossref_primary_10_7717_peerj_cs_895
crossref_primary_10_3390_info15050275
crossref_primary_10_1109_ACCESS_2018_2878733
crossref_primary_10_1007_s00521_018_3527_9
crossref_primary_10_1016_j_kjs_2025_100470
crossref_primary_10_1016_j_engappai_2019_07_009
crossref_primary_10_1177_02783649231190428
crossref_primary_10_1109_TITS_2024_3520393
crossref_primary_10_1109_TCYB_2021_3126434
crossref_primary_10_1155_2020_8861296
crossref_primary_10_1007_s10462_023_10609_x
crossref_primary_10_1016_j_patcog_2025_112123
crossref_primary_10_3233_AIC_220317
crossref_primary_10_1038_s41598_025_85822_5
crossref_primary_10_3390_app10144781
crossref_primary_10_1007_s11760_025_04127_2
crossref_primary_10_1155_2022_1038225
crossref_primary_10_3390_s22197429
crossref_primary_10_1088_1361_6501_ade280
crossref_primary_10_3233_AIC_201640
crossref_primary_10_1038_s41598_025_01146_4
crossref_primary_10_1109_ACCESS_2020_2995764
crossref_primary_10_1016_j_neucom_2017_03_074
Cites_doi 10.1109/CVPRW.2003.10036
10.1109/JSTSP.2008.2001306
10.1007/978-3-540-24673-2_3
10.1109/TAES.2006.1603404
10.1007/978-3-642-15555-0_21
10.1109/CVPR.2004.1315192
10.1007/s11263-008-0136-6
10.1109/CVPR.2007.382977
10.1109/TPAMI.2012.123
10.18637/jss.v031.i10
10.1109/TPAMI.2013.103
10.1016/j.neucom.2012.01.036
10.1109/CC.2013.6506940
10.1109/AVSS.2010.41
10.1007/s11263-005-1838-7
10.1109/ICCV.2009.5459154
10.1109/ICDSC.2007.4357505
10.1023/A:1009745219419
10.1007/978-3-642-15549-9_42
10.1007/978-3-540-24673-2_23
10.1109/ICCVW.2009.5457659
10.1109/CVPR.1994.323794
10.1007/978-3-642-33709-3_25
10.1109/CVPR.2011.5995459
10.1109/AVSS.2010.79
10.1109/ICIAP.2007.4362878
10.1109/CVPR.2006.320
10.1109/ICPR.2006.392
10.1023/B:VISI.0000011205.11775.fd
10.1109/ICCV.2009.5459286
10.1109/ICPR.2010.862
10.1109/ICME.2010.5583046
10.1145/1247480.1247546
10.1007/978-3-642-17289-2_12
10.1109/ICCV.2009.5459301
10.1016/j.patrec.2013.10.003
10.1109/CVPRW.2009.5206721
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.neucom.2015.11.049
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 563
ExternalDocumentID 10_1016_j_neucom_2015_11_049
S0925231215018378
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFJKZ
AGQPQ
AIGII
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c517t-9554e500643da094488fca01e6e4ab39fca7af98f6dd86f5e0560ee76fe2f80d3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370085800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:16:28 EST 2025
Sat Nov 29 07:50:28 EST 2025
Mon Nov 10 09:11:45 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Crowd analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-9554e500643da094488fca01e6e4ab39fca7af98f6dd86f5e0560ee76fe2f80d3
ORCID 0000-0002-7916-6438
0000-0002-2276-8307
0000-0002-7056-0543
OpenAccessLink https://cir.nii.ac.jp/crid/1871428068200411264
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_neucom_2015_11_049
crossref_citationtrail_10_1016_j_neucom_2015_11_049
nii_cinii_1871428068200411264
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_11_049
PublicationCentury 2000
PublicationDate 2016-02-12
PublicationDateYYYYMMDD 2016-02-12
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-12
  day: 12
PublicationDecade 2010
PublicationTitle Neurocomputing
PublicationYear 2016
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Boltes, Seyfried (bib10) 2013; 100
Solmaz, Moore, Shah (bib3) 2012; 34
B. Zhou, X. Wang, X. Tang, Random field topic model for semantic region analysis in crowded scenes from tracklets, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3441–3448.
A.M. Cheriyadat, R.J. Radke, Automatically determining dominant motions in crowded scenes by clustering partial feature trajectories, in: Proceedings of the First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC׳07 2007, pp. 52–58.
J. Shi, C. Tomasi, Good features to track, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR׳94 1994, pp. 593–600.
Baker, Matthews (bib11) 2004; 56
J. Sun, Y. Mu, S. Yan, L.-F. Cheong, Activity recognition using dense long-duration trajectories, in: Proceedings of 2010 IEEE International Conference on Multimedia and Expo (ICME) 2010, pp. 322–327.
T. Brox, J. Malik, Object segmentation by long term analysis of point trajectories, in: Computer Vision–ECCV 2010, Springer, 2010, pp. 282–295.
Berens (bib40) 2009; 31
G. J. Brostow, R. Cipolla, Unsupervised bayesian detection of independent motion in crowds, in: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 2006, pp. 594–601.
S.D. Khan, G. Vizzari, S. Bandini, S. Basalamah, Detecting dominant motion flows and people counting in high density crowds.
Bandini, Gorrini, Vizzari (bib38) 2014; 44
Laptev (bib16) 2005; 64
Cheriyadat, Radke (bib27) 2008; 4
Milan, Roth, Schindler (bib45) 2014; 36
M. Raptis, S. Soatto, Tracklet descriptors for action modeling and video analysis, in: Computer Vision–ECCV 2010, Springer, 2010, pp. 577–590.
Sander, Ester, Kriegel, Xu (bib32) 1998; 2
S. Ali, M. Shah, A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis, in: CVPR, 2007.
Chongjing, Xu, Yi, Yuncai (bib28) 2013; 10
B. Zhou, X. Wang, X. Tang, Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents, in: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2871–2878.
R. Messing, C. Pal, H. Kautz, Activity recognition using the velocity histories of tracked keypoints, in: Proceedings of IEEE 12th International Conference on Computer Vision, 2009 2009, pp. 104–111.
Hue, Cadre, Perez (bib6) 2006; 42
Sand, Teller (bib14) 2008; 80
Junior, Musse, Jung (bib2) 2010; 27
R. Challenger, C.W. Clegg, M.A. Robinson, Understanding Crowd Behaviours: Supporting Evidence, Tech. Rep., University of Leeds, 2009.
A.R. Zamir, A. Dehghan, M. Shah, Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs, in: Computer Vision–ECCV 2012, Springer, 2012, pp. 343–356.
J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, J. Li, Hierarchical spatio-temporal context modeling for action recognition, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2004–2011.
D. Sugimura, K.M. Kitani, T. Okabe, Y. Sato, A. Sugimoto, Using individuality to track individuals: clustering individual trajectories in crowds using local appearance and frequency trait, in: Proceedings of 2009 12th IEEE International Conference on Computer Vision 2009, pp. 1467–1474.
O. Ozturk, T. Yamasaki, K. Aizawa, Detecting dominant motion flows in unstructured/structured crowd scenes, in: Proceedings of the 20th International Conference on Pattern Recognition (ICPR), 2010, pp. 3533–3536.
M. Rodriguez, S. Ali, T. Kanade, Tracking in unstructured crowded scenes, in: Proceedings of IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, 2009, pp. 1389–1396.
K. Sankaranarayanan, J.W. Davis, Learning directed intention-driven activities using co-clustering., in: AVSS, 2010, pp. 400–407.
T. Zhao, R. Nevatia, Tracking multiple humans in crowded environment, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004. IEEE, 2004, pp. II–406.
M.L. Federici, A. Gorrini, L. Manenti, G. Vizzari, Data collection for modeling and simulation: case study at the university of milan-bicocca, in: G. C. Sirakoulis, S. Bandini (Eds.), ACRI, vol. 7495 of Lecture Notes in Computer Science, Springer, 2012, pp. 699–708.
S. Battiato, G. Gallo, G. Puglisi, S. Scellato, Sift features tracking for video stabilization, in: Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, pp. 825–830.
Z. Zhang, K. Huang, T. Tan, Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes, in: Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3 2006, pp. 1135–1138.
C. Stauffer, Estimating tracking sources and sinks, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop, CVPRW׳03, vol. 4, 2003, pp. 35–35.
T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, in: Computer Vision-ECCV 2004, Springer, 2004, pp. 25–36.
J.-G. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, ACM, 2007, pp. 593–604.
Z. Khan, T. Balch, F. Dellaert, An mcmc-based particle filter for tracking multiple interacting targets, in: Computer Vision-ECCV 2004, Springer, 2004, pp. 279–290.
M. Nedrich, J.W. Davis, Learning scene entries and exits using coherent motion regions, in: Advances in Visual Computing, Springer, 2010, pp. 120–131.
P. Matikainen, M. Hebert, R. Sukthankar, Trajectons: action recognition through the motion analysis of tracked features, in: Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, pp. 514–521.
B.D. Lucas, T. Kanade, et al., An iterative image registration technique with an application to stereo vision., in: IJCAI, 81, 1981, pp. 674–679.
M. Vlachos, G. Kollios, D. Gunopulos, Discovering similar multidimensional trajectories, in: Proceedings of the 18th International Conference on Data Engineering, 2002 2002, pp. 673–684.
W.-C. Lu, Y.-C. Wang, C.-S. Chen, Learning dense optical-flow trajectory patterns for video object extraction, in: Proceedings of 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) 2010, pp. 315–322.
P. Berens, M.J. Velasco, The Circular Statistics Toolbox for Matlab, MPI Technical Report No. 184.
Bandini (10.1016/j.neucom.2015.11.049_bib38) 2014; 44
10.1016/j.neucom.2015.11.049_bib7
10.1016/j.neucom.2015.11.049_bib5
Chongjing (10.1016/j.neucom.2015.11.049_bib28) 2013; 10
10.1016/j.neucom.2015.11.049_bib4
Milan (10.1016/j.neucom.2015.11.049_bib45) 2014; 36
10.1016/j.neucom.2015.11.049_bib9
10.1016/j.neucom.2015.11.049_bib8
Junior (10.1016/j.neucom.2015.11.049_bib2) 2010; 27
10.1016/j.neucom.2015.11.049_bib19
10.1016/j.neucom.2015.11.049_bib15
10.1016/j.neucom.2015.11.049_bib37
10.1016/j.neucom.2015.11.049_bib1
10.1016/j.neucom.2015.11.049_bib18
Boltes (10.1016/j.neucom.2015.11.049_bib10) 2013; 100
Sand (10.1016/j.neucom.2015.11.049_bib14) 2008; 80
10.1016/j.neucom.2015.11.049_bib17
10.1016/j.neucom.2015.11.049_bib39
10.1016/j.neucom.2015.11.049_bib12
10.1016/j.neucom.2015.11.049_bib34
Hue (10.1016/j.neucom.2015.11.049_bib6) 2006; 42
Sander (10.1016/j.neucom.2015.11.049_bib32) 1998; 2
10.1016/j.neucom.2015.11.049_bib33
Laptev (10.1016/j.neucom.2015.11.049_bib16) 2005; 64
10.1016/j.neucom.2015.11.049_bib36
10.1016/j.neucom.2015.11.049_bib13
10.1016/j.neucom.2015.11.049_bib35
10.1016/j.neucom.2015.11.049_bib30
10.1016/j.neucom.2015.11.049_bib31
Baker (10.1016/j.neucom.2015.11.049_bib11) 2004; 56
Cheriyadat (10.1016/j.neucom.2015.11.049_bib27) 2008; 4
10.1016/j.neucom.2015.11.049_bib26
Solmaz (10.1016/j.neucom.2015.11.049_bib3) 2012; 34
10.1016/j.neucom.2015.11.049_bib29
10.1016/j.neucom.2015.11.049_bib23
10.1016/j.neucom.2015.11.049_bib22
10.1016/j.neucom.2015.11.049_bib44
10.1016/j.neucom.2015.11.049_bib25
10.1016/j.neucom.2015.11.049_bib24
Berens (10.1016/j.neucom.2015.11.049_bib40) 2009; 31
10.1016/j.neucom.2015.11.049_bib41
10.1016/j.neucom.2015.11.049_bib21
10.1016/j.neucom.2015.11.049_bib43
10.1016/j.neucom.2015.11.049_bib20
10.1016/j.neucom.2015.11.049_bib42
References_xml – reference: B. Zhou, X. Wang, X. Tang, Random field topic model for semantic region analysis in crowded scenes from tracklets, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3441–3448.
– reference: M. Raptis, S. Soatto, Tracklet descriptors for action modeling and video analysis, in: Computer Vision–ECCV 2010, Springer, 2010, pp. 577–590.
– reference: T. Brox, J. Malik, Object segmentation by long term analysis of point trajectories, in: Computer Vision–ECCV 2010, Springer, 2010, pp. 282–295.
– reference: K. Sankaranarayanan, J.W. Davis, Learning directed intention-driven activities using co-clustering., in: AVSS, 2010, pp. 400–407.
– volume: 27
  start-page: 66
  year: 2010
  end-page: 77
  ident: bib2
  article-title: Crowd analysis using computer vision techniques
  publication-title: IEEE Signal Process. Mag.
– reference: M. Nedrich, J.W. Davis, Learning scene entries and exits using coherent motion regions, in: Advances in Visual Computing, Springer, 2010, pp. 120–131.
– reference: J.-G. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, ACM, 2007, pp. 593–604.
– reference: A.M. Cheriyadat, R.J. Radke, Automatically determining dominant motions in crowded scenes by clustering partial feature trajectories, in: Proceedings of the First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC׳07 2007, pp. 52–58.
– reference: S.D. Khan, G. Vizzari, S. Bandini, S. Basalamah, Detecting dominant motion flows and people counting in high density crowds.
– reference: B.D. Lucas, T. Kanade, et al., An iterative image registration technique with an application to stereo vision., in: IJCAI, 81, 1981, pp. 674–679.
– reference: M. Vlachos, G. Kollios, D. Gunopulos, Discovering similar multidimensional trajectories, in: Proceedings of the 18th International Conference on Data Engineering, 2002 2002, pp. 673–684.
– reference: J. Sun, Y. Mu, S. Yan, L.-F. Cheong, Activity recognition using dense long-duration trajectories, in: Proceedings of 2010 IEEE International Conference on Multimedia and Expo (ICME) 2010, pp. 322–327.
– volume: 80
  start-page: 72
  year: 2008
  end-page: 91
  ident: bib14
  article-title: Particle video
  publication-title: Int. J. Comput. Vis.
– reference: P. Berens, M.J. Velasco, The Circular Statistics Toolbox for Matlab, MPI Technical Report No. 184.
– volume: 36
  start-page: 58
  year: 2014
  end-page: 72
  ident: bib45
  article-title: Continuous energy minimization for multitarget tracking
  publication-title: IEEE TPAMI
– reference: J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, J. Li, Hierarchical spatio-temporal context modeling for action recognition, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2004–2011.
– volume: 10
  start-page: 144
  year: 2013
  end-page: 154
  ident: bib28
  article-title: Analyzing motion patterns in crowded scenes via automatic tracklets clustering
  publication-title: Communications, China
– volume: 34
  start-page: 2064
  year: 2012
  end-page: 2070
  ident: bib3
  article-title: Identifying behaviors in crowd scenes using stability analysis for dynamical systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C. Stauffer, Estimating tracking sources and sinks, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop, CVPRW׳03, vol. 4, 2003, pp. 35–35.
– volume: 31
  start-page: 1
  year: 2009
  end-page: 21
  ident: bib40
  article-title: Circstat
  publication-title: J. Stat. Softw.
– reference: T. Zhao, R. Nevatia, Tracking multiple humans in crowded environment, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004. IEEE, 2004, pp. II–406.
– reference: B. Zhou, X. Wang, X. Tang, Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents, in: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2871–2878.
– reference: P. Matikainen, M. Hebert, R. Sukthankar, Trajectons: action recognition through the motion analysis of tracked features, in: Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, pp. 514–521.
– volume: 4
  start-page: 568
  year: 2008
  end-page: 581
  ident: bib27
  article-title: Detecting dominant motions in dense crowds
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 100
  start-page: 127
  year: 2013
  end-page: 133
  ident: bib10
  article-title: Collecting pedestrian trajectories
  publication-title: Neurocomputing
– reference: T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, in: Computer Vision-ECCV 2004, Springer, 2004, pp. 25–36.
– reference: M.L. Federici, A. Gorrini, L. Manenti, G. Vizzari, Data collection for modeling and simulation: case study at the university of milan-bicocca, in: G. C. Sirakoulis, S. Bandini (Eds.), ACRI, vol. 7495 of Lecture Notes in Computer Science, Springer, 2012, pp. 699–708.
– volume: 44
  start-page: 16
  year: 2014
  end-page: 29
  ident: bib38
  article-title: Towards an integrated approach to crowd analysis and crowd synthesis
  publication-title: Pattern Recognit. Lett.
– reference: W.-C. Lu, Y.-C. Wang, C.-S. Chen, Learning dense optical-flow trajectory patterns for video object extraction, in: Proceedings of 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) 2010, pp. 315–322.
– volume: 64
  start-page: 107
  year: 2005
  end-page: 123
  ident: bib16
  article-title: On space-time interest points
  publication-title: Int. J. Comput. Vis.
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: bib11
  article-title: Lucas-kanade 20 years on
  publication-title: Int. J. Comput. Vis.
– reference: M. Rodriguez, S. Ali, T. Kanade, Tracking in unstructured crowded scenes, in: Proceedings of IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, 2009, pp. 1389–1396.
– reference: D. Sugimura, K.M. Kitani, T. Okabe, Y. Sato, A. Sugimoto, Using individuality to track individuals: clustering individual trajectories in crowds using local appearance and frequency trait, in: Proceedings of 2009 12th IEEE International Conference on Computer Vision 2009, pp. 1467–1474.
– volume: 42
  start-page: 37
  year: 2006
  end-page: 49
  ident: bib6
  article-title: Posterior cramer-rao bounds for multi-target tracking
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– reference: S. Ali, M. Shah, A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis, in: CVPR, 2007.
– reference: J. Shi, C. Tomasi, Good features to track, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR׳94 1994, pp. 593–600.
– reference: G. J. Brostow, R. Cipolla, Unsupervised bayesian detection of independent motion in crowds, in: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 2006, pp. 594–601.
– volume: 2
  start-page: 169
  year: 1998
  end-page: 194
  ident: bib32
  article-title: Density-based clustering in spatial databases
  publication-title: Data Min. Knowl. Discov.
– reference: Z. Khan, T. Balch, F. Dellaert, An mcmc-based particle filter for tracking multiple interacting targets, in: Computer Vision-ECCV 2004, Springer, 2004, pp. 279–290.
– reference: R. Challenger, C.W. Clegg, M.A. Robinson, Understanding Crowd Behaviours: Supporting Evidence, Tech. Rep., University of Leeds, 2009.
– reference: Z. Zhang, K. Huang, T. Tan, Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes, in: Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3 2006, pp. 1135–1138.
– reference: O. Ozturk, T. Yamasaki, K. Aizawa, Detecting dominant motion flows in unstructured/structured crowd scenes, in: Proceedings of the 20th International Conference on Pattern Recognition (ICPR), 2010, pp. 3533–3536.
– reference: R. Messing, C. Pal, H. Kautz, Activity recognition using the velocity histories of tracked keypoints, in: Proceedings of IEEE 12th International Conference on Computer Vision, 2009 2009, pp. 104–111.
– reference: S. Battiato, G. Gallo, G. Puglisi, S. Scellato, Sift features tracking for video stabilization, in: Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, pp. 825–830.
– reference: A.R. Zamir, A. Dehghan, M. Shah, Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs, in: Computer Vision–ECCV 2012, Springer, 2012, pp. 343–356.
– ident: 10.1016/j.neucom.2015.11.049_bib12
  doi: 10.1109/CVPRW.2003.10036
– volume: 4
  start-page: 568
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2015.11.049_bib27
  article-title: Detecting dominant motions in dense crowds
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2001306
– ident: 10.1016/j.neucom.2015.11.049_bib29
  doi: 10.1007/978-3-540-24673-2_3
– volume: 42
  start-page: 37
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2015.11.049_bib6
  article-title: Posterior cramer-rao bounds for multi-target tracking
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2006.1603404
– ident: 10.1016/j.neucom.2015.11.049_bib23
  doi: 10.1007/978-3-642-15555-0_21
– ident: 10.1016/j.neucom.2015.11.049_bib22
– ident: 10.1016/j.neucom.2015.11.049_bib4
  doi: 10.1109/CVPR.2004.1315192
– volume: 80
  start-page: 72
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2015.11.049_bib14
  article-title: Particle video
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0136-6
– ident: 10.1016/j.neucom.2015.11.049_bib36
  doi: 10.1109/CVPR.2007.382977
– volume: 34
  start-page: 2064
  issue: 10
  year: 2012
  ident: 10.1016/j.neucom.2015.11.049_bib3
  article-title: Identifying behaviors in crowd scenes using stability analysis for dynamical systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.123
– volume: 31
  start-page: 1
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2015.11.049_bib40
  article-title: Circstat
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v031.i10
– volume: 36
  start-page: 58
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2015.11.049_bib45
  article-title: Continuous energy minimization for multitarget tracking
  publication-title: IEEE TPAMI
  doi: 10.1109/TPAMI.2013.103
– volume: 100
  start-page: 127
  issue: 0
  year: 2013
  ident: 10.1016/j.neucom.2015.11.049_bib10
  article-title: Collecting pedestrian trajectories
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.036
– ident: 10.1016/j.neucom.2015.11.049_bib26
– ident: 10.1016/j.neucom.2015.11.049_bib34
– volume: 10
  start-page: 144
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2015.11.049_bib28
  article-title: Analyzing motion patterns in crowded scenes via automatic tracklets clustering
  publication-title: Communications, China
  doi: 10.1109/CC.2013.6506940
– ident: 10.1016/j.neucom.2015.11.049_bib44
  doi: 10.1109/AVSS.2010.41
– volume: 64
  start-page: 107
  issue: 2–3
  year: 2005
  ident: 10.1016/j.neucom.2015.11.049_bib16
  article-title: On space-time interest points
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-1838-7
– ident: 10.1016/j.neucom.2015.11.049_bib30
– ident: 10.1016/j.neucom.2015.11.049_bib15
  doi: 10.1109/ICCV.2009.5459154
– ident: 10.1016/j.neucom.2015.11.049_bib35
  doi: 10.1109/ICDSC.2007.4357505
– volume: 2
  start-page: 169
  issue: 2
  year: 1998
  ident: 10.1016/j.neucom.2015.11.049_bib32
  article-title: Density-based clustering in spatial databases
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009745219419
– ident: 10.1016/j.neucom.2015.11.049_bib20
  doi: 10.1007/978-3-642-15549-9_42
– ident: 10.1016/j.neucom.2015.11.049_bib5
  doi: 10.1007/978-3-540-24673-2_23
– ident: 10.1016/j.neucom.2015.11.049_bib17
  doi: 10.1109/ICCVW.2009.5457659
– ident: 10.1016/j.neucom.2015.11.049_bib41
  doi: 10.1109/CVPR.1994.323794
– ident: 10.1016/j.neucom.2015.11.049_bib42
– ident: 10.1016/j.neucom.2015.11.049_bib9
  doi: 10.1007/978-3-642-33709-3_25
– ident: 10.1016/j.neucom.2015.11.049_bib21
  doi: 10.1109/CVPR.2011.5995459
– volume: 27
  start-page: 66
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2015.11.049_bib2
  article-title: Crowd analysis using computer vision techniques
  publication-title: IEEE Signal Process. Mag.
– ident: 10.1016/j.neucom.2015.11.049_bib24
  doi: 10.1109/AVSS.2010.79
– ident: 10.1016/j.neucom.2015.11.049_bib43
  doi: 10.1109/ICIAP.2007.4362878
– ident: 10.1016/j.neucom.2015.11.049_bib7
  doi: 10.1109/CVPR.2006.320
– ident: 10.1016/j.neucom.2015.11.049_bib33
  doi: 10.1109/ICPR.2006.392
– volume: 56
  start-page: 221
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2015.11.049_bib11
  article-title: Lucas-kanade 20 years on
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000011205.11775.fd
– ident: 10.1016/j.neucom.2015.11.049_bib8
  doi: 10.1109/ICCV.2009.5459286
– ident: 10.1016/j.neucom.2015.11.049_bib39
  doi: 10.1109/ICPR.2010.862
– ident: 10.1016/j.neucom.2015.11.049_bib19
  doi: 10.1109/ICME.2010.5583046
– ident: 10.1016/j.neucom.2015.11.049_bib31
  doi: 10.1145/1247480.1247546
– ident: 10.1016/j.neucom.2015.11.049_bib37
– ident: 10.1016/j.neucom.2015.11.049_bib13
  doi: 10.1007/978-3-642-17289-2_12
– ident: 10.1016/j.neucom.2015.11.049_bib25
  doi: 10.1109/ICCV.2009.5459301
– volume: 44
  start-page: 16
  year: 2014
  ident: 10.1016/j.neucom.2015.11.049_bib38
  article-title: Towards an integrated approach to crowd analysis and crowd synthesis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.10.003
– ident: 10.1016/j.neucom.2015.11.049_bib1
– ident: 10.1016/j.neucom.2015.11.049_bib18
  doi: 10.1109/CVPRW.2009.5206721
SSID ssj0017129
ssib006546013
ssib042110509
ssib008068503
ssib005901258
ssib002043121
Score 2.359722
Snippet Pedestrians, in videos taken from fixed cameras, tend to appear and disappear at precise locations such as doors, gateways or edges of the scene: we refer to...
SourceID crossref
nii
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 543
SubjectTerms Crowd analysis
Crowd analysis; Artificial Intelligence; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive Neuroscience
Title Analyzing crowd behavior in naturalistic conditions: Identifying sources and sinks and characterizing main flows
URI https://dx.doi.org/10.1016/j.neucom.2015.11.049
https://cir.nii.ac.jp/crid/1871428068200411264
Volume 177
WOSCitedRecordID wos000370085800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYxwMvfCM2GPIDbyhTksaJvbfAOhaEooq1U7WXyEkc0Wpk1dqiib-eO9v5qCZUeOAlSpPaSX2_2nfnu98R8l6BVl6WfuTk0lNIql04ksvSCfLAL8WwEG5Y6WITUZry2UyMbVjRSpcTiOqa392J5X8VNVwDYWPq7D-Iu-0ULsA5CB2OIHY4_pXgNc3IL51LCyZ22Sbio2dD03gi5SHStIIlXJqALXQLmIxdk_VkPPqGvXmFO7wm-63ldta9_5DQYXV9Y7XyRUMDtYElUZeKaBZFnM7PYx1OcDH9OonTD6fxtA00_hinp0ma6LuT0VmcJj3v6koCYOX3LRftZXJ1FX_TDT4n04vReDzquy48He3sdYZul1Nz2fdL-swBpXN7iralXswkywyxk12vmZkg7y0FxiuxOK7VBuOC4PnsGPlaA7FH9v2ICT4g-3Eymn3p1BVkGuqpM5iX6_d2jTHxq2-OcjfkrNvFDtCYZkiHZnexIs83XI_2JzWpmzq-8P57_Uk12qvn857SM3lKHltrhcYGZc_Ig4V8Tp40lUCoXRhekGULOqpBRxvQ0XlN-6CjHehOaA9y1EKOAtCohpw-24YcRchRDbmXZHo2mnw6d2wtD6dgXrR2BKitimkFuJSuCGDdqArpeipUgcyHAj5EshK8CsuShxVToJi7SkVhpfyKu-XwFRnUN7V6TSgbSlmhGZDzPAjzioesyEFvBdM7F5UID8iwGcassET3WG_lOmsiGheZGfwMBx9s4AwG_4A4baulIXrZ8f2okVBmlVWjhGYAwB0tj0Cg8Gp49HiEnIcAJJzDMJ8vONxx_w151P2Z3pLB-najjsjD4ud6vrp9ZzH9GyLHsi0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+crowd+behavior+in+naturalistic+conditions%3A+Identifying+sources+and+sinks+and+characterizing+main+flows&rft.jtitle=Neurocomputing&rft.au=KHAN%2C+SULTAN+DAUD&rft.au=BANDINI%2C+STEFANIA&rft.au=Basalamah%2C+S&rft.au=VIZZARI%2C+GIUSEPPE&rft.date=2016-02-12&rft.pub=Elsevier+BV&rft.issn=0925-2312&rft.volume=177&rft.spage=543&rft.epage=563&rft_id=info:doi/10.1016%2Fj.neucom.2015.11.049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon