Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a hu...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 11; H. 1; S. 10949 - 11 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
26.05.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features. |
|---|---|
| AbstractList | Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features. Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features.Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features. Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features. |
| ArticleNumber | 10949 |
| Author | Strümke, Inga Grarup, Niels Riegler, Michael A. Ghouse, Jonas Ahlberg, Gustav Halvorsen, Pål Maleckar, Mary M. Graff, Claus Holstein-Rathlou, Niels-Henrik Thambawita, Vajira Linneberg, Allan Hansen, Torben Hicks, Steven A. Kanters, Jørgen K. Olesen, Morten Salling Isaksen, Jonas L. Ellervik, Christina |
| Author_xml | – sequence: 1 givenname: Steven A. surname: Hicks fullname: Hicks, Steven A. email: steven@simula.no organization: SimulaMet, Oslo Metropolitan University – sequence: 2 givenname: Jonas L. surname: Isaksen fullname: Isaksen, Jonas L. organization: University of Copenhagen – sequence: 3 givenname: Vajira surname: Thambawita fullname: Thambawita, Vajira organization: SimulaMet, Oslo Metropolitan University – sequence: 4 givenname: Jonas surname: Ghouse fullname: Ghouse, Jonas organization: University of Copenhagen – sequence: 5 givenname: Gustav surname: Ahlberg fullname: Ahlberg, Gustav organization: University of Copenhagen – sequence: 6 givenname: Allan surname: Linneberg fullname: Linneberg, Allan organization: University of Copenhagen – sequence: 7 givenname: Niels surname: Grarup fullname: Grarup, Niels organization: University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research – sequence: 8 givenname: Inga surname: Strümke fullname: Strümke, Inga organization: SimulaMet – sequence: 9 givenname: Christina surname: Ellervik fullname: Ellervik, Christina organization: University of Copenhagen – sequence: 10 givenname: Morten Salling surname: Olesen fullname: Olesen, Morten Salling organization: University of Copenhagen – sequence: 11 givenname: Torben surname: Hansen fullname: Hansen, Torben organization: University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research – sequence: 12 givenname: Claus surname: Graff fullname: Graff, Claus organization: Aalborg University – sequence: 13 givenname: Niels-Henrik surname: Holstein-Rathlou fullname: Holstein-Rathlou, Niels-Henrik organization: University of Copenhagen – sequence: 14 givenname: Pål surname: Halvorsen fullname: Halvorsen, Pål organization: SimulaMet, Oslo Metropolitan University – sequence: 15 givenname: Mary M. surname: Maleckar fullname: Maleckar, Mary M. organization: Simula Research Laboratory – sequence: 16 givenname: Michael A. surname: Riegler fullname: Riegler, Michael A. organization: SimulaMet – sequence: 17 givenname: Jørgen K. surname: Kanters fullname: Kanters, Jørgen K. organization: University of Copenhagen |
| BookMark | eNp9Uk1v1DAUtFARLUv_AKdIXLgE_JnYFyRUFahUiQs9W479HLzN2oudtOy_x7tbBO2hvjzreWbe82heo5OYIiD0luAPBDP5sXAilGwxJa3CVIpWvEBnFHPRUkbpyX_3U3ReyhrXI6jiRL1Cp4xjjjFjZ-jm8vd2MiGGODYOYNtEWLKZapnvU74tjU-5uY3pfgI3QuNCsekO8q4JsYEJ7JyTNdmFNGazaUw0066E8ga99GYqcP5QV-jmy-WPi2_t9fevVxefr1srSD-30jlsBHceBqn6QXW4F53pjcJMDKIHSTrCwThPMQaOB-lFjwUjFvzQe0XYCl0ddV0ya73NYWPyTicT9KGR8qhNnoOdQHdeMsBgeTdYTnqhvJO9Z5g55z1QqFqfjlrbZdiAsxDnasQj0ccvMfzUY7rTkgiusKoC7x8Ecvq1QJn1proF02QipKVoKhhjpBNCVOi7J9B1WnI174CinBJWN1sheUTZnErJ4LUNs5lD2s8PkyZY76Ogj1HQNQr6EAW9H0CfUP_-41kSO5JKBccR8r-tnmH9AVhPyGQ |
| CitedBy_id | crossref_primary_10_1259_bjr_20220239 crossref_primary_10_3390_diagnostics13010111 crossref_primary_10_1016_j_bspc_2025_108153 crossref_primary_10_1038_s41598_022_15539_2 crossref_primary_10_1016_j_compbiomed_2024_108525 crossref_primary_10_1016_j_bspc_2022_103584 crossref_primary_10_1007_s00399_022_00839_x crossref_primary_10_1080_17434440_2025_2510537 crossref_primary_10_1007_s13534_025_00486_4 crossref_primary_10_1016_j_ijcha_2025_101783 crossref_primary_10_1016_j_neucom_2024_128920 crossref_primary_10_1093_jamia_ocae280 crossref_primary_10_3390_diagnostics13223413 crossref_primary_10_3390_diagnostics13142345 crossref_primary_10_1016_j_cvdhj_2021_12_003 crossref_primary_10_1016_j_cjca_2021_09_004 crossref_primary_10_1109_TBME_2023_3321792 crossref_primary_10_1016_j_eswa_2024_124775 crossref_primary_10_1109_TBME_2023_3348329 crossref_primary_10_1038_s41598_021_01295_2 crossref_primary_10_1016_j_jclinepi_2021_11_001 crossref_primary_10_1038_s41598_025_90152_7 crossref_primary_10_1016_j_oceaneng_2024_119263 crossref_primary_10_1109_TBME_2022_3221339 crossref_primary_10_1038_s43856_025_00814_w crossref_primary_10_3390_asi5040081 crossref_primary_10_1016_j_cmpb_2025_108798 crossref_primary_10_3389_frai_2022_786091 crossref_primary_10_1016_j_cmpb_2024_108537 crossref_primary_10_3390_jpm14111069 crossref_primary_10_1016_j_jelectrocard_2025_154123 crossref_primary_10_1093_ehjdh_ztaf020 crossref_primary_10_3389_fphys_2021_745349 crossref_primary_10_1016_j_artmed_2023_102690 crossref_primary_10_1016_j_cjca_2024_07_003 crossref_primary_10_1007_s13239_025_00797_8 |
| Cites_doi | 10.1016/j.ins.2017.04.012 10.1001/jama.2017.7797 10.1093/eurheartj/ehu081 10.1016/j.jelectrocard.2009.08.001 10.1038/s41746-019-0122-0 10.1038/s41591-020-0870-z 10.1111/bjd.15778 10.1186/s12916-019-1426-2 10.1016/j.ijcard.2020.12.016 10.1038/s41591-018-0268-3 10.3390/electronics8080832 10.1007/s40031-020-00488-z 10.1161/01.RES.9.6.1138 10.1109/78.668803 10.1038/nature21056 10.1177/0091270009344853 10.1016/j.jacc.2013.03.032 10.1016/S0933-3657(96)00367-3 10.1038/s41746-019-0105-1 10.1007/s11263-019-01228-7 10.1093/eurheartj/ehv297 10.1016/0002-9149(91)90099-7 10.1007/s11277-020-08017-3 10.1136/hrt.47.3.209 10.1109/CIC.2001.977609 10.1007/978-1-84882-046-3 10.1109/CVPR.2016.90 10.1109/ICHI.2015.26 10.1161/JAHA.119.015138 10.1145/2964284.2976760 10.1109/IMTC.2007.379244 10.1088/1361-6579/aaf34d 10.1145/2783258.2788613 10.1109/CBMS.2018.00070 10.1161/CIRCEP.119.007284 10.1371/journal.pmed.1002683 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-021-90285-5 |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_6f83e0ec46bc41759fd87f303ddffe2e PMC8154909 10_1038_s41598_021_90285_5 |
| GrantInformation_xml | – fundername: Novo Nordisk Foundation grantid: NNF18CC0034900 – fundername: ; grantid: NNF18CC0034900 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c517t-8dd0a54dfeb897b960756a7a9035b57e81614eadf200e40b8f570531cefb7f913 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659146000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:06:26 EDT 2025 Tue Nov 04 01:52:20 EST 2025 Sun Nov 09 12:13:33 EST 2025 Tue Oct 07 09:16:38 EDT 2025 Sat Nov 29 05:58:12 EST 2025 Tue Nov 18 20:02:33 EST 2025 Fri Feb 21 02:38:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-8dd0a54dfeb897b960756a7a9035b57e81614eadf200e40b8f570531cefb7f913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e |
| PMID | 34040033 |
| PQID | 2532421330 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6f83e0ec46bc41759fd87f303ddffe2e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154909 proquest_miscellaneous_2533316555 proquest_journals_2532421330 crossref_citationtrail_10_1038_s41598_021_90285_5 crossref_primary_10_1038_s41598_021_90285_5 springer_journals_10_1038_s41598_021_90285_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-26 |
| PublicationDateYYYYMMDD | 2021-05-26 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Carvalho, Pereira, Cardoso (CR12) 2019; 8 Nielsen (CR22) 2013; 61 CR39 CR38 CR15 CR37 CR36 CR13 CR35 CR10 CR32 Hannun (CR11) 2019; 25 Ghouse (CR30) 2015; 36 Badgeley (CR16) 2019; 2 Chen (CR18) 2019; 2 Cullen, Stenhouse, Wearne, Cumpston (CR19) 1982; 47 Nielsen (CR21) 2014; 35 Gupta, Mittal (CR1) 2020; 101 Graff (CR31) 2009; 49 Silipo, Marchesi (CR4) 1998; 46 Acharya (CR9) 2017; 405 Juhl, Miller, Jemec, Kanters, Ellervik (CR29) 2018; 178 Raghunath (CR41) 2020; 26 Cabitza, Rasoini, Gensini (CR25) 2017; 318 Stallmann, Pipberger (CR23) 1961; 9 CR3 Cooper (CR14) 1997; 9 Isaksen (CR34) 2021; 328 CR6 CR5 Haarmark (CR33) 2010; 43 CR7 CR28 CR27 CR24 Esteva (CR8) 2017; 542 CR40 Goldberg (CR20) 1991; 67 Selvaraju (CR26) 2020; 128 Gupta, Mittal, Mittal (CR2) 2021; 118 Kelly, Karthikesalingam, Suleyman, Corrado, King (CR17) 2019; 17 C Haarmark (90285_CR33) 2010; 43 90285_CR40 FW Stallmann (90285_CR23) 1961; 9 CJ Kelly (90285_CR17) 2019; 17 J Ghouse (90285_CR30) 2015; 36 90285_CR24 90285_CR27 90285_CR5 90285_CR28 90285_CR3 K Cullen (90285_CR19) 1982; 47 JL Isaksen (90285_CR34) 2021; 328 D Chen (90285_CR18) 2019; 2 V Gupta (90285_CR2) 2021; 118 AY Hannun (90285_CR11) 2019; 25 R Silipo (90285_CR4) 1998; 46 C Graff (90285_CR31) 2009; 49 JB Nielsen (90285_CR22) 2013; 61 90285_CR10 90285_CR32 90285_CR36 90285_CR13 90285_CR35 90285_CR38 90285_CR15 90285_CR37 90285_CR39 UR Acharya (90285_CR9) 2017; 405 F Cabitza (90285_CR25) 2017; 318 V Gupta (90285_CR1) 2020; 101 90285_CR7 RR Selvaraju (90285_CR26) 2020; 128 S Raghunath (90285_CR41) 2020; 26 90285_CR6 CR Juhl (90285_CR29) 2018; 178 DV Carvalho (90285_CR12) 2019; 8 GF Cooper (90285_CR14) 1997; 9 RJ Goldberg (90285_CR20) 1991; 67 A Esteva (90285_CR8) 2017; 542 MA Badgeley (90285_CR16) 2019; 2 JB Nielsen (90285_CR21) 2014; 35 |
| References_xml | – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: CR9 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 318 start-page: 517 year: 2017 end-page: 518 ident: CR25 article-title: Unintended consequences of machine learning in medicine publication-title: JAMA doi: 10.1001/jama.2017.7797 – ident: CR39 – ident: CR37 – volume: 35 start-page: 1335 year: 2014 end-page: 1344 ident: CR21 article-title: Risk prediction of cardiovascular death based on the QTc interval: evaluating age and gender differences in a large primary care population publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu081 – ident: CR10 – volume: 43 start-page: 31 year: 2010 end-page: 39 ident: CR33 article-title: Reference values of electrocardiogram repolarization variables in a healthy population publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2009.08.001 – volume: 2 start-page: 43 year: 2019 ident: CR18 article-title: Deep learning and alternative learning strategies for retrospective real-world clinical data publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0122-0 – ident: CR35 – volume: 26 start-page: 886 year: 2020 end-page: 891 ident: CR41 article-title: Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-020-0870-z – ident: CR6 – volume: 178 start-page: 222 year: 2018 end-page: 228 ident: CR29 article-title: Hidradenitis suppurativa and electrocardiographic changes: A cross-sectional population study publication-title: Br. J. Dermatol. doi: 10.1111/bjd.15778 – volume: 17 start-page: 195 year: 2019 ident: CR17 article-title: Key challenges for delivering clinical impact with artificial intelligence publication-title: BMC Med. doi: 10.1186/s12916-019-1426-2 – ident: CR40 – volume: 328 start-page: 199 year: 2021 end-page: 205 ident: CR34 article-title: Electrocardiographic T-wave morphology and risk of mortality publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2020.12.016 – ident: CR27 – volume: 25 start-page: 65 year: 2019 end-page: 69 ident: CR11 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 8 start-page: 832 year: 2019 ident: CR12 article-title: Machine learning interpretability: A survey on methods and metrics publication-title: Electronics doi: 10.3390/electronics8080832 – volume: 101 start-page: 451 year: 2020 end-page: 461 ident: CR1 article-title: Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis publication-title: J. Inst. Eng. India Ser. B doi: 10.1007/s40031-020-00488-z – volume: 9 start-page: 1138 year: 1961 end-page: 1143 ident: CR23 article-title: Automatic recognition of electrocardiographic waves by digital computer publication-title: Circ. Res. doi: 10.1161/01.RES.9.6.1138 – ident: CR3 – volume: 46 start-page: 1417 year: 1998 end-page: 1425 ident: CR4 article-title: Artificial neural networks for automatic ECG analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.668803 – ident: CR15 – ident: CR38 – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: CR8 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 49 start-page: 1331 year: 2009 end-page: 1342 ident: CR31 article-title: Quantitative analysis of T-wave morphology increases confidence in drug-induced cardiac repolarization abnormalities: Evidence from the investigational IKr inhibitor Lu 35–138 publication-title: J. Clin. Pharmacol. doi: 10.1177/0091270009344853 – ident: CR13 – volume: 61 start-page: 2557 year: 2013 end-page: 2564 ident: CR22 article-title: J-shaped association between QTc interval duration and the risk of atrial fibrillation: results from the Copenhagen ECG study publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.03.032 – volume: 9 start-page: 107 year: 1997 end-page: 138 ident: CR14 article-title: An evaluation of machine-learning methods for predicting pneumonia mortality publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(96)00367-3 – volume: 2 start-page: 31 year: 2019 ident: CR16 article-title: Deep learning predicts hip fracture using confounding patient and healthcare variables publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0105-1 – ident: CR32 – volume: 128 start-page: 336 year: 2020 end-page: 359 ident: CR26 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – volume: 36 start-page: 2523 year: 2015 end-page: 2529 ident: CR30 article-title: Rare genetic variants previously associated with congenital forms of long QT syndrome have little or no effect on the QT interval publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv297 – ident: CR36 – ident: CR5 – volume: 67 start-page: 55 year: 1991 end-page: 58 ident: CR20 article-title: Duration of the QT interval and total and cardiovascular mortality in healthy persons (The Framingham Heart Study experience) publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(91)90099-7 – ident: CR7 – volume: 118 start-page: 359 year: 2021 end-page: 381 ident: CR2 article-title: An efficient low computational cost method of R-peak detection publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-08017-3 – volume: 47 start-page: 209 year: 1982 end-page: 212 ident: CR19 article-title: Electrocardiograms and 13 year cardiovascular mortality in Busselton study publication-title: Br. Heart J. doi: 10.1136/hrt.47.3.209 – ident: CR28 – ident: CR24 – volume: 101 start-page: 451 year: 2020 ident: 90285_CR1 publication-title: J. Inst. Eng. India Ser. B doi: 10.1007/s40031-020-00488-z – ident: 90285_CR5 doi: 10.1109/CIC.2001.977609 – volume: 35 start-page: 1335 year: 2014 ident: 90285_CR21 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu081 – ident: 90285_CR27 doi: 10.1007/978-1-84882-046-3 – ident: 90285_CR37 doi: 10.1109/CVPR.2016.90 – ident: 90285_CR24 doi: 10.1109/ICHI.2015.26 – volume: 43 start-page: 31 year: 2010 ident: 90285_CR33 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2009.08.001 – ident: 90285_CR39 doi: 10.1161/JAHA.119.015138 – ident: 90285_CR28 – volume: 318 start-page: 517 year: 2017 ident: 90285_CR25 publication-title: JAMA doi: 10.1001/jama.2017.7797 – ident: 90285_CR15 doi: 10.1145/2964284.2976760 – volume: 9 start-page: 107 year: 1997 ident: 90285_CR14 publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(96)00367-3 – volume: 25 start-page: 65 year: 2019 ident: 90285_CR11 publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 17 start-page: 195 year: 2019 ident: 90285_CR17 publication-title: BMC Med. doi: 10.1186/s12916-019-1426-2 – volume: 36 start-page: 2523 year: 2015 ident: 90285_CR30 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv297 – ident: 90285_CR3 doi: 10.1109/IMTC.2007.379244 – ident: 90285_CR35 – ident: 90285_CR6 – volume: 328 start-page: 199 year: 2021 ident: 90285_CR34 publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2020.12.016 – volume: 178 start-page: 222 year: 2018 ident: 90285_CR29 publication-title: Br. J. Dermatol. doi: 10.1111/bjd.15778 – volume: 46 start-page: 1417 year: 1998 ident: 90285_CR4 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.668803 – ident: 90285_CR10 – volume: 67 start-page: 55 year: 1991 ident: 90285_CR20 publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(91)90099-7 – ident: 90285_CR40 doi: 10.1088/1361-6579/aaf34d – volume: 26 start-page: 886 year: 2020 ident: 90285_CR41 publication-title: Nat. Med. doi: 10.1038/s41591-020-0870-z – ident: 90285_CR13 doi: 10.1145/2783258.2788613 – volume: 47 start-page: 209 year: 1982 ident: 90285_CR19 publication-title: Br. Heart J. doi: 10.1136/hrt.47.3.209 – volume: 118 start-page: 359 year: 2021 ident: 90285_CR2 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-08017-3 – volume: 542 start-page: 115 year: 2017 ident: 90285_CR8 publication-title: Nature doi: 10.1038/nature21056 – volume: 8 start-page: 832 year: 2019 ident: 90285_CR12 publication-title: Electronics doi: 10.3390/electronics8080832 – volume: 61 start-page: 2557 year: 2013 ident: 90285_CR22 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.03.032 – volume: 49 start-page: 1331 year: 2009 ident: 90285_CR31 publication-title: J. Clin. Pharmacol. doi: 10.1177/0091270009344853 – volume: 2 start-page: 31 year: 2019 ident: 90285_CR16 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0105-1 – volume: 128 start-page: 336 year: 2020 ident: 90285_CR26 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – volume: 2 start-page: 43 year: 2019 ident: 90285_CR18 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0122-0 – volume: 405 start-page: 81 year: 2017 ident: 90285_CR9 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – ident: 90285_CR38 – ident: 90285_CR32 doi: 10.1109/CBMS.2018.00070 – ident: 90285_CR36 doi: 10.1161/CIRCEP.119.007284 – ident: 90285_CR7 doi: 10.1371/journal.pmed.1002683 – volume: 9 start-page: 1138 year: 1961 ident: 90285_CR23 publication-title: Circ. Res. doi: 10.1161/01.RES.9.6.1138 |
| SSID | ssj0000529419 |
| Score | 2.5596173 |
| Snippet | Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors... Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10949 |
| SubjectTerms | 631/114/1305 692/4019 Clinical decision making Decision making Deep learning EKG Electrocardiography Humanities and Social Sciences multidisciplinary Neural networks Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvBGBgozEDaI6cRzbJ0RRKw5oVSGKerPiF6yEsstmW6n_vh7Hu1Uq0QvX2FacjMcznvn8DcB7I1tBbcfLVjlTNtaosuOdKZHKyte1CjTRF__8JuZzeXamTnLAbciwyu2emDZqt7QYIz-oOZr-eKKin1Z_S6wahdnVXELjLuwhU1kzg73Do_nJ912UBfNYTaXybRnK5MEQLRbeKkvIhFrykk8sUiLun3ibN7GSNxKmyQ4dP_rfL3gMD7MHSj6PS-YJ3PH9U7g_1qS8fAaniMoby0YQ5_2KIONl7N-PePGBRC-X7CJxBG_1Igr0kix6kmvq2IRxRdgX6TLnyXM4PT768eVrmWsvlJZXYlNK52jHGxe8kUqYeM4RvO1Epyjjhgsvo6fYxFUYopb5hhoZuEB9tj4YEVTFXsCsX_b-JRAWnSha26ZyLY2HwS4OZ4I6I1kTWHQQCqi2_1_bTEyO9TH-6JQgZ1KPMtNRZjrJTPMCPuzGrEZajlt7H6JYdz2RUjs9WK5_6ayhug2Seept05o4V8FVcFKEaOGdC8HXvoD9rVh11vNBX8u0gHe75qihmHbper88T30Yq1rO4zzEZDFNJjRt6Re_E9e3RAo9qgr4uF121y__9we_un2ur-FBjQpAEeC4D7PN-ty_gXv2YrMY1m-zDl0B1QMlGQ priority: 102 providerName: ProQuest |
| Title | Explaining deep neural networks for knowledge discovery in electrocardiogram analysis |
| URI | https://link.springer.com/article/10.1038/s41598-021-90285-5 https://www.proquest.com/docview/2532421330 https://www.proquest.com/docview/2533316555 https://pubmed.ncbi.nlm.nih.gov/PMC8154909 https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e |
| Volume | 11 |
| WOSCitedRecordID | wos000659146000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCxIXxKcILSsjcYOoThzH9pGiViDRVYQoWk5WHNtiJZRW3S1S_31nnOzSVAIuXHxIbMUez3jG8fMbgDdO14p3rcxr411edc7krWxdTlRWoSxN5Im--NtnNZ_rxcI0N1J9ESZsoAceBHdQRy0CD11Vu65CX2ei1yriwut9jKEMtPpi1HNjMzWwepemKsx4S4YLfbBCT0W3yRIiodQylxNPlAj7J1HmbYzkrYPS5H-OH8HDMXBk74cOP4Y7oX8C94dUkldP4ZTAdEO2B-ZDOGdEVIn1-wHmvWIYnLLtDzRGl3EJvHnFlj0bU-F0CZpKaC3WjlQlz-D0-Ojrh4_5mDIh72Sh1rn2nrey8jE4bZTD7YmSdataw4V0UgWNAV6FyhPROELFnY5SkRl2IToVTSGew05_1ocXwATGPrxEmfua4x6uxeZCce-0qKJAv55BsRGf7UY-cUpr8dOmc22h7SByiyK3SeRWZvB22-Z8YNP4a-1DmpVtTWLCTg9QP-yoH_Zf-pHB_mZO7WieK1tKiiNxe84zeL19jYZFpyVtH84uUx0hilpK7Iea6MKkQ9M3_fJHoujWxHzHTQbvNlrz--N_HvDL_zHgPXhQkpZzQi_uw8764jK8gnvdr_VydTGDu2qhUqlnsHt4NG--zJLpYHlSNlQqLHebTyfN92tAQh48 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAoIL34iFAkaCE0R14jh2DgjxVbXqsuLQor2ZOLZhJZRddreg_VP8RmacZKutRG89cE3sxImfx2PP8xuA51YXiteVTIrS2SSvbZlUsrIJSVn5LCsDj_LFX4ZqNNLjcfl5C_70Z2GIVtnbxGio3bSmPfLdTNLUjysq_mb2M6GsURRd7VNotLA49KvfuGRbvD74gP37Isv2Ph6930-6rAJJLVO1TLRzvJK5C97qUln04JUsKlWVXEgrldfoA-X4fwPix-fc6iAVIbX2wapQpgKfewkuox1XRCFTY7Xe06GoWZ6W3dkcLvTuAudHOsMWeRCZloncmP9imoAN3_YsM_NMeDbOens3_7f_dQtudP41e9sOiNuw5Zs7cLXNuLm6C8fEOWyTYjDn_YyRnieWb1o2_IKhD8_W-4yMziwTx3XFJg3rMgbVkcFLpDZWdYou9-D4Qr7pPmw308Y_ACbQReRZnaeu4LjUrbC6UNxZLfIg0P0ZQNr3t6k72XXK_vHDxPC_0KbFiEGMmIgRIwfwcl1n1oqOnFv6HcFoXZIEw-OF6fyb6eyPKYIWnvs6Lyy2VckyOK0C-i_OheAzP4CdHkams2ILc4qhATxb30b7Q0GlqvHTk1hGiLSQEtuhNsC70aDNO83ke1Qy1yQQyMsBvOphfvryf3_ww_Pb-hSu7R99GprhwejwEVzPaPBxonLuwPZyfuIfw5X613KymD-Jo5fB14uG_1_pDYB3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3oiFAkaCE0TrxHHsHBACyoqqZdUDRb2ZOLZhJZRddreg_Wv8OmacZKutRG89cE3sxI_P47H9-RuA51YXiteVTIrS2SSvbZlUsrIJSVn5LCsDj_LFXw7UeKyPj8vDLfjT34UhWmVvE6OhdtOa9siHmaSpH1dUfBg6WsTh7ujN7GdCEaTopLUPp9FCZN-vfuPybfF6bxf7-kWWjT58fv8x6SIMJLVM1TLRzvFK5i54q0tl0ZtXsqhUVXIhrVReoz-UY1sHxJLPudVBKkJt7YNVoUwFfvcSXFa5lDS6PmWH6_0dOkHL07K7p8OFHi5wrqT7bJETkWmZyI25MIYM2PBzz7I0zxzVxhlwdPN_brtbcKPzu9nbdqDchi3f3IGrbSTO1V04Ii5iGyyDOe9njHQ-MX3TsuQXDH17tt5_ZHSXmbivKzZpWBdJqI7MXiK7sapTerkHRxdSp_uw3Uwb_wCYQNeRZ3WeuoLjErjC7EJxZ7XIg0C3aABp3_em7uTYKSrIDxNpAUKbFi8G8WIiXowcwMt1nlkrRnJu6ncEqXVKEhKPD6bzb6azS6YIWnju67ywWFYly-C0CujXOBeCz_wAdnpImc66LcwpngbwbP0a7RIdNlWNn57ENEKkhZRYDrUB5I0Cbb5pJt-jwrkm4UBeDuBVD_nTn_-7wg_PL-tTuIaoNwd74_1HcD2jcciJ4bkD28v5iX8MV-pfy8li_iQOZAZfLxr9fwHDkYlE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+deep+neural+networks+for+knowledge+discovery+in+electrocardiogram+analysis&rft.jtitle=Scientific+reports&rft.au=Steven+A.+Hicks&rft.au=Jonas+L.+Isaksen&rft.au=Vajira+Thambawita&rft.au=Jonas+Ghouse&rft.date=2021-05-26&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-021-90285-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f83e0ec46bc41759fd87f303ddffe2e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |