City-Scale Localization for Cameras with Known Vertical Direction

We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 39; číslo 7; s. 1455 - 1461
Hlavní autori: Svarm, Linus, Enqvist, Olof, Kahl, Fredrik, Oskarsson, Magnus
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.
AbstractList We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.
We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.
We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99% outlier correspondences in city-scale models with several millions of 3D points.
Author Enqvist, Olof
Kahl, Fredrik
Svarm, Linus
Oskarsson, Magnus
Author_xml – sequence: 1
  givenname: Linus
  surname: Svarm
  fullname: Svarm, Linus
  email: linus@maths.lth.se
  organization: Centre for Math. Sci., Lund Univ., Lund, Sweden
– sequence: 2
  givenname: Olof
  surname: Enqvist
  fullname: Enqvist, Olof
  email: olof.enqvist@chalmers.se
  organization: Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden
– sequence: 3
  givenname: Fredrik
  surname: Kahl
  fullname: Kahl, Fredrik
  email: fredrik@maths.lth.se
  organization: Centre for Math. Sci., Lund Univ., Lund, Sweden
– sequence: 4
  givenname: Magnus
  surname: Oskarsson
  fullname: Oskarsson, Magnus
  email: magnuso@maths.lth.se
  organization: Centre for Math. Sci., Lund Univ., Lund, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27514034$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/247055$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kluLFDEQhYOsuBf9AwrS4IsvPebaSR6H8bY4orCrryFJVzNZejpj0s2w_nrTO7MrLOhTBXLOVyeVOkcnQxwAoZcELwjB-t319-XXywXFpFlQoRVj5Ak6o6TBtaaanqCzckNrpag6Rec532BMuMDsGTqlUhCOGT9Dy1UYb-srb3uo1rGU8NuOIQ5VF1O1sltINlf7MG6qL0PcD9VPSGMosup9SOBn5XP0tLN9hhfHeoF-fPxwvfpcr799ulwt17UXRI61oqx1LbhOS6AaUw1etV0HTjYtlbbTVoNWxGNBdds0XlkniSWta4Rl5cQu0NWBm_ewm5zZpbC16dZEG0yCDDb5jfEb25fM2WQwDHtS3J0BT63hgIlRQnPjnFZcuabRXhSq_Sd1F9No-7_wfpqxRdWXCcxPz4YwybV1ypSwznCiCp600njRWQHMtUSR0uPtoccuxV8T5NFsQ_bQ93aAOBVIiSVJwykr0jePpDdxSkOZqyEaC4mlwjPw9VE1uS20D6Hvv7UI1EHgU8w5QWd8GO8ij8mG3hBs5g0ydxtk5g0yxw0qVvrIek__r-nVwRQA4MEgBeNKcPYHYwvRyw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s41095_020_0196_2
crossref_primary_10_1109_TCSVT_2024_3432510
crossref_primary_10_1109_TMECH_2022_3177237
crossref_primary_10_1007_s00138_021_01266_7
crossref_primary_10_1016_j_patrec_2023_03_030
crossref_primary_10_1109_TVCG_2022_3150495
crossref_primary_10_1109_TPAMI_2018_2848650
crossref_primary_10_1109_TPAMI_2024_3442234
crossref_primary_10_1016_j_isprsjprs_2020_12_013
crossref_primary_10_1016_j_patrec_2018_07_036
crossref_primary_10_1109_TIM_2023_3347802
crossref_primary_10_1109_TPAMI_2020_2963980
crossref_primary_10_1016_j_neucom_2024_129033
crossref_primary_10_1109_TIM_2023_3273650
crossref_primary_10_1155_2022_1243041
crossref_primary_10_1109_TGRS_2024_3352421
crossref_primary_10_32604_cmc_2023_034136
crossref_primary_10_1109_TNNLS_2022_3208837
crossref_primary_10_1109_TPAMI_2019_2952114
crossref_primary_10_1016_j_imavis_2019_06_014
crossref_primary_10_1109_TITS_2025_3558257
crossref_primary_10_1016_j_neucom_2023_127125
crossref_primary_10_1016_j_isprsjprs_2022_01_010
crossref_primary_10_1016_j_isprsjprs_2023_03_022
crossref_primary_10_1111_mice_12714
crossref_primary_10_1109_TITS_2021_3053574
crossref_primary_10_1109_ACCESS_2021_3061634
crossref_primary_10_1109_TPAMI_2020_3032010
crossref_primary_10_1109_TIP_2020_2992336
crossref_primary_10_1109_TIV_2024_3419114
crossref_primary_10_1088_1361_6501_adea13
crossref_primary_10_1109_TPAMI_2019_2941876
crossref_primary_10_1155_2021_3279059
crossref_primary_10_1109_TPAMI_2021_3070754
crossref_primary_10_1007_s00521_018_3665_0
crossref_primary_10_1007_s11263_023_01837_3
crossref_primary_10_1177_0278364920931151
crossref_primary_10_1109_TIP_2019_2910662
crossref_primary_10_3390_rs11243007
crossref_primary_10_1016_j_eswa_2022_116549
crossref_primary_10_1371_journal_pone_0311038
crossref_primary_10_1016_j_neucom_2020_09_071
crossref_primary_10_26599_JICV_2025_9210063
crossref_primary_10_1109_LRA_2024_3487503
crossref_primary_10_1109_TCSVT_2023_3264451
crossref_primary_10_1109_TPAMI_2022_3189702
crossref_primary_10_1109_ACCESS_2023_3272479
crossref_primary_10_3390_s24062014
crossref_primary_10_1016_j_engappai_2022_104793
crossref_primary_10_1186_s13634_021_00795_7
crossref_primary_10_1016_j_patcog_2021_108344
crossref_primary_10_1109_TIM_2025_3577836
crossref_primary_10_1109_LRA_2021_3087080
crossref_primary_10_3390_s18082692
crossref_primary_10_1016_j_isprsjprs_2019_02_020
crossref_primary_10_1007_s10851_024_01182_1
crossref_primary_10_3390_s23239580
crossref_primary_10_1007_s10851_017_0753_1
crossref_primary_10_1109_JSEN_2023_3324686
crossref_primary_10_1109_TIP_2022_3156375
crossref_primary_10_1109_TPAMI_2023_3324728
crossref_primary_10_1007_s11263_020_01399_8
crossref_primary_10_1145_3622788
Cites_doi 10.1109/CVPR.2007.383087
10.1109/CVPR.2008.4587784
10.1109/TPAMI.2007.70824
10.1017/CBO9780511811685
10.1016/S1077-3142(03)00026-2
10.5244/C.26.95
10.1109/ICCV.2003.1238341
10.1109/TPAMI.2007.1083
10.1007/s10851-013-0418-7
10.1109/ICCV.2015.310
10.1109/CVPR.2009.5206587
10.1109/IROS.2007.4399414
10.1109/CVPR.2010.5539800
10.1109/CVPR.2013.119
10.1007/978-3-642-19309-5_17
10.1007/s11263-014-0760-2
10.1007/978-3-642-33715-4_10
10.1109/CVPR.2007.383150
10.1007/978-3-319-16817-3_13
10.1109/21.44063
10.1109/ICCVW.2011.6130252
10.1007/s11263-009-0235-z
10.1109/CVPR.2009.5206696
10.1109/ICCV.2015.243
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
CorporateAuthor Matematik LTH
Research groups at the Centre for Mathematical Sciences
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Lund University
ELLIIT: the Linköping-Lund initiative on IT and mobile communication
Strategiska forskningsområden (SFO)
Centre for Mathematical Sciences
Forskargrupper vid Matematikcentrum
Mathematical Imaging Group
Strategic research areas (SRA)
Mathematics (Faculty of Engineering)
Matematikcentrum
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication
– name: Strategiska forskningsområden (SFO)
– name: Mathematics (Faculty of Engineering)
– name: Research groups at the Centre for Mathematical Sciences
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Matematik LTH
– name: Centre for Mathematical Sciences
– name: Profile areas and other strong research environments
– name: Forskargrupper vid Matematikcentrum
– name: Matematikcentrum
– name: Mathematical Imaging Group
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AOWAS
D95
F1S
DOI 10.1109/TPAMI.2016.2598331
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Lunds universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1461
ExternalDocumentID oai_research_chalmers_se_30c1b65f_ec2a_4e01_8594_bb9848b669c5
oai_portal_research_lu_se_publications_13749ab8_b71b_4184_b1d7_c5fa5e3bd181
27514034
10_1109_TPAMI_2016_2598331
7534854
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swedish Foundation for Strategic Research
  funderid: 10.13039/501100001729
– fundername: Semantic Mapping and Visual Navigation for Smart Robots
– fundername: Swedish Research Council
  grantid: 2012-4215
  funderid: 10.13039/501100004359
– fundername: ELLIIT
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AOWAS
D95
F1S
ID FETCH-LOGICAL-c517t-823dbdebf97e29029ec8dffeb76d27af9a9e981c0529d66c8ab71a1db65a371a3
IEDL.DBID RIE
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402744400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Nov 05 04:16:05 EST 2025
Tue Dec 02 03:10:38 EST 2025
Mon Sep 29 06:19:53 EDT 2025
Mon Jun 30 04:19:28 EDT 2025
Mon Jul 21 06:02:46 EDT 2025
Sat Nov 29 05:15:57 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-823dbdebf97e29029ec8dffeb76d27af9a9e981c0529d66c8ab71a1db65a371a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27514034
PQID 1905707801
PQPubID 85458
PageCount 7
ParticipantIDs proquest_journals_1905707801
pubmed_primary_27514034
crossref_citationtrail_10_1109_TPAMI_2016_2598331
swepub_primary_oai_portal_research_lu_se_publications_13749ab8_b71b_4184_b1d7_c5fa5e3bd181
proquest_miscellaneous_1859716423
crossref_primary_10_1109_TPAMI_2016_2598331
ieee_primary_7534854
swepub_primary_oai_research_chalmers_se_30c1b65f_ec2a_4e01_8594_bb9848b669c5
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
sv (ref7) 0
ref34
li (ref8) 0
ref37
ref15
ref36
ref14
ref31
li (ref27) 0
moulon (ref13) 0
ref2
fraundorfer (ref20) 0
ref1
ref39
ref38
ref16
(ref40) 2013
ref19
ref18
sim (ref17) 0
enqvist (ref28) 0
li (ref10) 0
ref24
ref23
ref25
cox (ref32) 2005; 185
ref22
li (ref26) 0
ref21
chum (ref12) 0
ref29
ref9
ref4
ref3
ref6
muja (ref33) 0
ask (ref30) 0
sattler (ref11) 0
li (ref5) 0
References_xml – start-page: 1074
  year: 0
  ident: ref27
  article-title: Consensus set maximization with guaranteed global optimality for robust geometry estimation
  publication-title: Proc IEEE Int Conf Comput Vis
– start-page: 427
  year: 0
  ident: ref5
  article-title: Modeling and recognition of landmark image collections using iconic scene graphs
  publication-title: Proc Eur Conf Comput Vis
– year: 2013
  ident: ref40
  publication-title: Lis331dlh Mems Motion Sensor
– ident: ref23
  doi: 10.1109/CVPR.2007.383087
– ident: ref3
  doi: 10.1109/CVPR.2008.4587784
– ident: ref15
  doi: 10.1109/TPAMI.2007.70824
– ident: ref2
  doi: 10.1017/CBO9780511811685
– ident: ref25
  doi: 10.1016/S1077-3142(03)00026-2
– ident: ref14
  doi: 10.5244/C.26.95
– start-page: 448
  year: 0
  ident: ref12
  article-title: Randomized RANSAC with $T_{d,d}$ test
  publication-title: Proc British Mach Vis Conf
– start-page: 791
  year: 0
  ident: ref8
  article-title: Location recognition using prioritized feature matching
  publication-title: Proc Eur Conf Comput Vis
– ident: ref39
  doi: 10.1109/ICCV.2003.1238341
– ident: ref16
  doi: 10.1109/TPAMI.2007.1083
– ident: ref19
  doi: 10.1007/s10851-013-0418-7
– ident: ref34
  doi: 10.1109/ICCV.2015.310
– start-page: 257
  year: 0
  ident: ref13
  article-title: Adaptive structure from motion with a contrario model estimation
  publication-title: Proc Asian Conf Comput Vis
– ident: ref6
  doi: 10.1109/CVPR.2009.5206587
– ident: ref24
  doi: 10.1109/IROS.2007.4399414
– start-page: 485
  year: 0
  ident: ref17
  article-title: Removing outliers using the $L_\infty$ -norm
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref18
  doi: 10.1109/CVPR.2010.5539800
– ident: ref36
  doi: 10.1109/CVPR.2013.119
– ident: ref21
  doi: 10.1007/978-3-642-19309-5_17
– ident: ref29
  doi: 10.1007/s11263-014-0760-2
– ident: ref9
  doi: 10.1007/978-3-642-33715-4_10
– volume: 185
  year: 2005
  ident: ref32
  publication-title: Using Algebraic Geometry
– ident: ref4
  doi: 10.1109/CVPR.2007.383150
– start-page: 752
  year: 0
  ident: ref11
  article-title: Improving image-based localization by active correspondence search
  publication-title: Proc Eur Conf Comput Vis
– ident: ref35
  doi: 10.1007/978-3-319-16817-3_13
– ident: ref1
  doi: 10.1109/21.44063
– ident: ref38
  doi: 10.1109/ICCVW.2011.6130252
– start-page: 1722
  year: 0
  ident: ref30
  article-title: Optimal geometric fitting under the truncated $l_2$ -norm
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– start-page: 331
  year: 0
  ident: ref33
  article-title: Fast approximate nearest neighbors with automatic algorithm configuration
  publication-title: Proc Int Conf Comput Vis Theory Appl
– start-page: 738
  year: 0
  ident: ref28
  article-title: Robust fitting for multiple view geometry
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1
  year: 0
  ident: ref26
  article-title: A practical algorithm for $L_\infty$ triangulation with outliers
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref31
  doi: 10.1007/s11263-009-0235-z
– start-page: 15
  year: 0
  ident: ref10
  article-title: Worldwide pose estimation using 3D point clouds
  publication-title: Proc Eur Conf Comput Vis
– ident: ref22
  doi: 10.1109/CVPR.2009.5206696
– start-page: 532
  year: 0
  ident: ref7
  article-title: Accurate localization and pose estimation for large 3D models
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– start-page: 269
  year: 0
  ident: ref20
  article-title: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles
  publication-title: Proc Eur Conf Comput Vis
– ident: ref37
  doi: 10.1109/ICCV.2015.243
SSID ssj0014503
Score 2.587124
Snippet We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1455
SubjectTerms Approximation
camera pose
Cameras
Computational modeling
Computer and Information Sciences
Computer graphics and computer vision
Data- och informationsvetenskap (Datateknik)
Datorgrafik och datorseende
Gravitation
Localization
Matematik
Mathematical Sciences
Natural Sciences
Naturvetenskap
Outliers (statistics)
Pose estimation
Position (location)
position retrieval
Robustness
Scale models
Searching
Sensors
Solid modeling
Solvers
Three dimensional models
Three-dimensional displays
Title City-Scale Localization for Cameras with Known Vertical Direction
URI https://ieeexplore.ieee.org/document/7534854
https://www.ncbi.nlm.nih.gov/pubmed/27514034
https://www.proquest.com/docview/1905707801
https://www.proquest.com/docview/1859716423
https://research.chalmers.se/publication/247055
Volume 39
WOSCitedRecordID wos000402744400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN7SNqkD7dpcKG31ollW5Z0XJaGFrYh0DQsvQg9SSF4S7yb39-RLJu0LIXeDJbGYkZjfdKMvgF4T2qGP37Di9b6EGbUvlBV2RTOCOGVVr6NCbLXC3ZxwZdLcbkDH6e7MM65mHzmTsNjjOXbldmEo7IzhNYNp80u7DLGhrtaU8SgobEKMiIY9HDcRowXZEpxdnU5-_olZHG1pwj2eV2H8jAVo4GqrvljPYoFVrZhzb-IROPic37wf8N-CvsJZOazYVY8gx3XHcLBWMAhT_58CE8esBEewWyOiLz4hkZz-SIscemKZo64Np-rcHrV5-HcNg-1srv8OqZk43fSb3PVPYfv55-u5p-LVGGhMJSwdcGr2mrrtBfMVaKshDPceu80a23FlBdKOMGJCeFA27aGK82IIla3VNX4VL-AvW7VuVeQM1EaVdqKGGfQ-ExoBFa1Ng1XaAPrMyCjnqVJ9OOhCsatjNuQUshoJhnMJJOZMvgw9fk1kG_8s_VR0P3UMqk9g-PRnDL5Zy8RBtHAc1Rir3fTa_SsEC5RnVttsA2ngV8L8WYGL4dpMMkeZ08GP4Z5Mb0JdN3DzkkmuqYbebuRPY7rwTmsRB9phNJcokK1bHCfLTWxTBrqFXW1toi8MlhsET5JNTexwk4fZNelIWgUL52plGxcSSSOHmVqwRuu21YY-nq7ft7A4ypAlZiCfAx767uNewuPzP36Z393gq625CfR1X4DrIgkfQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qFawPVtuqq1VX8E233ewmm-TxOCwtXo-CZym-hPykQtkrvTv_fifZvaXKIfi2sMlsmMlsvmQm3wB8JDXHH78VReNCDDOaUOiqpIW3UgZtdGhSguzlhE-n4upKXmzB5-EujPc-JZ_5o_iYYvlublfxqOwYoTUVjD6Ah4zSinS3tYaYAWWpDjJiGPRx3Eisr8iU8nh2MTo_i3lczRHCfVHXsUBMxVkkq6N_rEipxMomtPkXlWhafk52_2_gz-BpDzPzUTcvnsOWb_dgd13CIe89eg-e3OMj3IfRGDF58Q3N5vNJXOT6S5o5Itt8rOP51SKPJ7d5rJbd5pcpKRu_0_845-0BfD_5MhufFn2NhcIywpeFqGpnnDdBcl_JspLeCheCN7xxFddBaumlIDYGBF3TWKENJ5o40zBd41P9ArbbeetfQc5laXXpKmK9RfNzaRBa1cZSodEGLmRA1npWticgj3UwblTaiJRSJTOpaCbVmymDT0Of245-45-t96Puh5a92jM4XJtT9R66UAiEWGQ6KrHXh-E1-lYMmOjWz1fYRrDIsIWIM4OX3TQYZK9nTwY_unkxvImE3d3eSfWETdfqZqUWOK57J7EKvYRKbYRChRpFcaetDHFcWRY087VxiL0ymGwQPki116nGziLKrktL0ChBeVtpRX1JFI4eZRopqDBNIy17vVk_7-Hx6ex8oiZn069vYKeKwCUlJB_C9vJu5d_CI_tr-XNx9y453G8Wrybc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=City-Scale+Localization+for+Cameras+with+Known+Vertical+Direction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Svarm%2C+Linus&rft.au=Enqvist%2C+Olof&rft.au=Kahl%2C+Fredrik&rft.au=Oskarsson%2C+Magnus&rft.date=2017-07-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=39&rft.issue=7&rft.spage=1455&rft.epage=1461&rft_id=info:doi/10.1109%2FTPAMI.2016.2598331&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2016_2598331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon