Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation
Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that...
Uložené v:
| Vydané v: | Nature communications Ročník 13; číslo 1; s. 324 - 11 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
14.01.2022
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C
2+
hydrocarbons. The C
2+
selectivity increases to 39% (yielding 104 mmol h
−1
g
cat
−1
C
2+
hydrocarbons) upon co-feeding CO and CO
2
at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts.
Catalytic conversion of CO
2
into valuable hydrocarbons is a promising way to mitigate climate change. This work uncovers that cobalt oxide nanoparticles on a titania carrier produce more C
2+
hydrocarbons than their metallic cobalt counterpart by following a different reaction mechanism. |
|---|---|
| AbstractList | Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h−1 gcat−1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts. Catalytic conversion of CO2 into valuable hydrocarbons is a promising way to mitigate climate change. This work uncovers that cobalt oxide nanoparticles on a titania carrier produce more C2+ hydrocarbons than their metallic cobalt counterpart by following a different reaction mechanism. Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C 2+ hydrocarbons. The C 2+ selectivity increases to 39% (yielding 104 mmol h −1 g cat −1 C 2+ hydrocarbons) upon co-feeding CO and CO 2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts. Catalytic conversion of CO 2 into valuable hydrocarbons is a promising way to mitigate climate change. This work uncovers that cobalt oxide nanoparticles on a titania carrier produce more C 2+ hydrocarbons than their metallic cobalt counterpart by following a different reaction mechanism. Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h-1 gcat-1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts.Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h-1 gcat-1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts. Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C 2+ hydrocarbons. The C 2+ selectivity increases to 39% (yielding 104 mmol h −1 g cat −1 C 2+ hydrocarbons) upon co-feeding CO and CO 2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts. Catalytic conversion of CO2 into valuable hydrocarbons is a promising way to mitigate climate change. This work uncovers that cobalt oxide nanoparticles on a titania carrier produce more C2+ hydrocarbons than their metallic cobalt counterpart by following a different reaction mechanism. |
| ArticleNumber | 324 |
| Author | Monai, Matteo Kromwijk, Josepha J. G. Ferri, Davide Have, Iris C. ten Weckhuysen, Bert M. Meirer, Florian Sterk, Ellen B. |
| Author_xml | – sequence: 1 givenname: Iris C. ten orcidid: 0000-0001-7863-6197 surname: Have fullname: Have, Iris C. ten organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 2 givenname: Josepha J. G. surname: Kromwijk fullname: Kromwijk, Josepha J. G. organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 3 givenname: Matteo orcidid: 0000-0001-6945-4391 surname: Monai fullname: Monai, Matteo organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 4 givenname: Davide orcidid: 0000-0002-9354-5231 surname: Ferri fullname: Ferri, Davide organization: Paul Scherrer Institute – sequence: 5 givenname: Ellen B. surname: Sterk fullname: Sterk, Ellen B. organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 6 givenname: Florian orcidid: 0000-0001-5581-5790 surname: Meirer fullname: Meirer, Florian email: f.meirer@uu.nl organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University – sequence: 7 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. email: b.m.weckhuysen@uu.nl organization: Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University |
| BookMark | eNp9ks1q3DAUhUVJaNI0L5CVoJtu3OrPkr0plCFtA4GB0KyFLF-PNdjSRPIMydtXHqe0ySLaSOie80n3cj6gEx88IHRFyRdKePU1CSqkKghjBVN1RYvHd-icEUELqhg_-e98hi5T2pK8eE0rId6jM14STiUtz9HdvbfhANH5DZ56wBGMnVzweATbG-_SiBvonW_xKqyxSXguHwDvepMAdyHi1Zrh_qmNYQPezNaP6LQzQ4LL5_0C3f-4_r36Vdyuf96svt8WtqRqKiQYBbK1shGMtJxYsB2hjFHDWSlb00hgYEhVEasEqWtrO94w2ZGaktJk1QW6WbhtMFu9i2408UkH4_TxIsSNNnFydgDNuSCtkl3Dm1bwsqlBUWmt6spaSlAys74trN2-GaG14KdohhfQlxXver0JB10pSZhQGfD5GRDDwx7SpEeXLAyD8RD2STPJSO5FiTpLP72SbsM--jyqrKK1pKRSM7BaVDaGlCJ02rrpON_8vhs0JXrOgV5yoHMO9DEH-jFb2Svr3z7eNPHFlHZzGCD--9Ubrj91ecYo |
| CitedBy_id | crossref_primary_10_1002_cctc_202301218 crossref_primary_10_1016_j_jcis_2025_138996 crossref_primary_10_1039_D4NR05471G crossref_primary_10_1016_j_cej_2023_144459 crossref_primary_10_1016_j_ijhydene_2023_03_264 crossref_primary_10_1002_anie_202400160 crossref_primary_10_3390_catal13121514 crossref_primary_10_1515_zpch_2022_0075 crossref_primary_10_1016_j_cej_2024_158467 crossref_primary_10_1016_j_ces_2024_120405 crossref_primary_10_1021_acscatal_5c03024 crossref_primary_10_1007_s12274_022_4489_x crossref_primary_10_1016_j_cej_2024_152923 crossref_primary_10_1016_j_fuproc_2022_107489 crossref_primary_10_1016_j_cej_2025_166365 crossref_primary_10_1002_aic_18437 crossref_primary_10_1016_j_cej_2025_166135 crossref_primary_10_1016_j_cej_2023_144606 crossref_primary_10_1016_j_cej_2024_151673 crossref_primary_10_18412_1816_0387_2025_4_11_18 crossref_primary_10_1021_acscatal_5c05789 crossref_primary_10_1016_j_apcata_2024_119898 crossref_primary_10_1021_prechem_5c00010 crossref_primary_10_3390_catal14010038 crossref_primary_10_1093_mam_ozae044_793 crossref_primary_10_1016_j_apcata_2025_120496 crossref_primary_10_1016_j_cej_2024_153204 crossref_primary_10_1002_advs_202406828 crossref_primary_10_1016_j_cattod_2024_115166 crossref_primary_10_1002_adsu_202300348 crossref_primary_10_1016_j_apcatb_2025_125389 crossref_primary_10_1016_j_apsusc_2023_157923 crossref_primary_10_1021_jacs_4c03789 crossref_primary_10_1002_aenm_202405320 crossref_primary_10_1016_j_fuel_2024_133366 crossref_primary_10_3390_catal14010047 crossref_primary_10_1007_s11705_024_2448_7 crossref_primary_10_1002_ppap_202300069 crossref_primary_10_1016_j_cej_2023_145646 crossref_primary_10_1016_j_chempr_2024_02_017 crossref_primary_10_26599_NR_2025_94907282 crossref_primary_10_1017_S1431927622007395 crossref_primary_10_1016_j_apcata_2023_119549 crossref_primary_10_1016_j_cattod_2025_115431 crossref_primary_10_3389_fceng_2023_1160254 crossref_primary_10_1016_j_cattod_2023_114301 crossref_primary_10_1007_s11144_024_02644_8 crossref_primary_10_1021_jacs_3c02483 crossref_primary_10_1016_j_ijhydene_2022_11_011 crossref_primary_10_1016_j_rser_2024_115027 crossref_primary_10_1002_ange_202500262 crossref_primary_10_1039_D5TA01560J crossref_primary_10_1002_adma_202404046 crossref_primary_10_1016_j_mtchem_2025_102770 crossref_primary_10_1016_S1872_2067_24_60068_9 crossref_primary_10_1039_D5EY00101C crossref_primary_10_1021_acs_nanolett_5c00472 crossref_primary_10_1016_j_jcis_2024_09_235 crossref_primary_10_1016_j_jechem_2025_05_004 crossref_primary_10_1016_j_apcatb_2023_123507 crossref_primary_10_1016_j_jes_2024_01_047 crossref_primary_10_1039_D4RA02355B crossref_primary_10_1002_anie_202500262 crossref_primary_10_1021_acsanm_5c00722 crossref_primary_10_1016_j_apcatb_2022_121529 crossref_primary_10_1021_jacs_5c04901 crossref_primary_10_1021_jacs_3c01336 crossref_primary_10_1021_jacs_3c12984 crossref_primary_10_1002_adsu_202200416 crossref_primary_10_1007_s11814_025_00454_9 crossref_primary_10_1016_j_apcata_2024_119845 crossref_primary_10_1016_j_apsusc_2025_162756 crossref_primary_10_1038_s41467_025_56161_w crossref_primary_10_1002_anie_202216527 crossref_primary_10_1016_j_fuel_2023_127943 crossref_primary_10_1016_j_apcata_2024_119720 crossref_primary_10_1007_s11426_024_2398_3 crossref_primary_10_1016_j_jcou_2022_102322 crossref_primary_10_1016_j_apcatb_2023_123550 crossref_primary_10_1039_D3CY00213F crossref_primary_10_1002_cctc_202400285 crossref_primary_10_1002_adfm_202505432 crossref_primary_10_1002_admi_202202516 crossref_primary_10_1002_adfm_202300589 crossref_primary_10_1016_j_jechem_2024_10_044 crossref_primary_10_1038_s41467_023_42577_9 crossref_primary_10_1016_j_jcat_2023_115202 crossref_primary_10_1021_jacs_5c04698 crossref_primary_10_1002_ange_202400160 crossref_primary_10_1038_s41929_022_00874_4 crossref_primary_10_1016_j_apcatb_2022_122298 crossref_primary_10_1021_jacs_5c07878 crossref_primary_10_1016_j_cej_2022_137217 crossref_primary_10_1016_j_fuel_2023_128748 crossref_primary_10_1039_D5GC03160E crossref_primary_10_1002_sstr_202200285 crossref_primary_10_1021_jacs_2c08845 crossref_primary_10_1021_acsanm_5c03215 crossref_primary_10_1021_jacs_4c17075 crossref_primary_10_1016_j_matchemphys_2022_126367 crossref_primary_10_3390_ma17030697 crossref_primary_10_1016_j_jechem_2025_06_073 crossref_primary_10_1038_s41467_025_59124_3 crossref_primary_10_1016_j_jechem_2023_12_027 crossref_primary_10_1016_j_apcatb_2024_124304 crossref_primary_10_1002_cctc_202200577 crossref_primary_10_1016_j_fuel_2023_130853 crossref_primary_10_1016_j_jcou_2023_102582 crossref_primary_10_1039_D5CY00017C crossref_primary_10_1016_j_apcatb_2025_125876 crossref_primary_10_1016_j_cej_2023_146375 crossref_primary_10_3390_catal14090560 crossref_primary_10_1016_j_apcata_2024_119916 crossref_primary_10_1080_00986445_2023_2240709 crossref_primary_10_1002_ange_202314274 crossref_primary_10_26599_JAC_2023_9220791 crossref_primary_10_1016_j_mtener_2022_101051 crossref_primary_10_1007_s12274_022_4576_z crossref_primary_10_1016_j_cej_2022_138967 crossref_primary_10_1002_anie_202314274 crossref_primary_10_1016_j_apcata_2024_120051 crossref_primary_10_1002_smll_202505276 crossref_primary_10_1016_j_cattod_2022_08_005 crossref_primary_10_1063_5_0237462 crossref_primary_10_1016_j_jcat_2022_05_001 crossref_primary_10_1021_acscatal_5c02380 crossref_primary_10_1002_ange_202216527 crossref_primary_10_3390_nano12152523 |
| Cites_doi | 10.1016/j.egypro.2017.03.577 10.1016/j.jcat.2006.11.014 10.1021/acscatal.0c04695 10.1007/s11244-013-0206-z 10.1002/adma.201400087 10.1016/j.jcat.2009.06.001 10.1002/cssc.201900915 10.1007/s11244-011-9727-5 10.1021/acs.iecr.6b04855 10.1021/jp0359889 10.1016/j.jcat.2019.05.023 10.1038/s41929-017-0016-y 10.1039/c1cs15008a 10.1073/pnas.1618935114 10.1039/C6CS00324A 10.1038/s41929-019-0235-5 10.1016/j.jcat.2018.07.002 10.1021/acscatal.7b02144 10.1021/acs.chemrev.6b00816 10.1021/acscatal.9b01968 10.1039/c001514h 10.1021/ef900275m 10.1016/j.jcou.2021.101506 10.3390/catal9100807 10.1021/acs.chemrev.0c00396 10.1126/science.aas9100 10.1016/j.cattod.2020.01.007 10.1039/C9RE00011A 10.1021/acscatal.9b04187 10.1021/acscatal.1c01549 10.1016/j.jcou.2016.06.009 10.1021/cs400931z 10.1039/c3cc46791k 10.1021/jp0255987 10.1016/j.jcou.2013.10.002 10.1021/nl300973b 10.1038/ncomms7538 10.3390/catal10040455 10.1021/acs.chemrev.8b00705 10.1038/s41929-019-0244-4 10.1021/ie100414y 10.1002/ange.201800729 10.1038/s41929-019-0352-1 10.1002/anie.201603204 10.1006/jcat.1999.2757 10.1039/C5GC00119F 10.1039/C4CP00616J 10.1021/acs.analchem.6b04939 10.1016/j.catcom.2013.07.033 10.1016/j.jcat.2018.02.008 10.1021/acscatal.9b00967 10.1038/s41467-020-20214-z 10.1063/1.1400152 10.1016/j.apcata.2017.09.006 10.1038/s41467-019-13638-9 10.1021/acscatal.9b04309 10.1073/pnas.1821231116 10.1021/ja058282w 10.1039/C7RA13546G 10.1016/j.cattod.2017.09.053 10.1021/ja412447q 10.1038/s41467-019-12858-3 10.1016/0920-5861(95)00161-1 10.1038/nature20782 10.1016/j.cattod.2012.08.020 10.1016/j.joule.2017.09.003 10.1038/s41467-020-14817-9 10.1063/1.4890668 10.1021/la1045207 10.1038/s41929-020-0459-4 10.1016/j.rser.2017.05.204 10.1016/j.apcatb.2016.09.072 10.1021/acscatal.7b04469 10.1021/jp0403846 10.1007/978-3-319-14409-2 10.1002/anie.201806354 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-022-27981-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_3340d76fb3bd435b9e716cc7f5966e76 PMC8760247 10_1038_s41467_022_27981_x |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) grantid: Gravitation Program MCEC funderid: https://doi.org/10.13039/501100003246 – fundername: ; grantid: Gravitation Program MCEC |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-6ea7e6dc6b420d30cecf01221a3256dab6e2ea0880c74099ccf3b26f09105a1a3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742728600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:42:31 EDT 2025 Tue Nov 04 01:47:00 EST 2025 Fri Sep 05 11:57:28 EDT 2025 Tue Oct 07 07:22:21 EDT 2025 Tue Nov 18 21:18:14 EST 2025 Sat Nov 29 06:29:40 EST 2025 Fri Feb 21 02:38:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-6ea7e6dc6b420d30cecf01221a3256dab6e2ea0880c74099ccf3b26f09105a1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6945-4391 0000-0001-5245-1426 0000-0002-9354-5231 0000-0001-5581-5790 0000-0001-7863-6197 |
| OpenAccessLink | https://www.proquest.com/docview/2619610877?pq-origsite=%requestingapplication% |
| PMID | 35031615 |
| PQID | 2619610877 |
| PQPubID | 546298 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3340d76fb3bd435b9e716cc7f5966e76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8760247 proquest_miscellaneous_2620088749 proquest_journals_2619610877 crossref_citationtrail_10_1038_s41467_022_27981_x crossref_primary_10_1038_s41467_022_27981_x springer_journals_10_1038_s41467_022_27981_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-14 |
| PublicationDateYYYYMMDD | 2022-01-14 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Karim (CR47) 2017; 541 Dorner, Hardy, Williams, Davis, Willauer (CR65) 2009; 23 Urakawa, Wirz, Bu, Baiker (CR44) 2003; 107 Li (CR33) 2015; 6 Bezemer (CR26) 2006; 128 Wang (CR40) 2019; 9 Ronda-Lloret, Rothenberg, Shiju (CR2) 2019; 12 Dorner, Hardy, Williams, Willauer (CR13) 2010; 3 Lu (CR74) 2014; 4 Prieto, Martínez, Concepción, Moreno-Tost (CR28) 2009; 266 Stangeland, Kalai, Li, Yu (CR22) 2017; 105 Chiarello, Nachtegaal, Marchionni, Quaroni, Ferri (CR77) 2014; 85 Wang, Wang, Ma, Gong (CR5) 2011; 40 Yao (CR15) 2020; 11 CR30 Martin (CR8) 2016; 55 Wang (CR35) 2018; 130 Vogt (CR23) 2019; 10 Melaet, Lindeman, Somorjai (CR27) 2014; 57 Kantcheva, Kucukkal, Suzer (CR50) 2000; 190 Vogt, Monai, Kramer, Weckhuysen (CR20) 2019; 2 van de Loosdrecht (CR25) 2013; 7 Melaet (CR32) 2014; 136 Owen (CR63) 2016; 16 Li (CR75) 2017; 7 Vogt (CR21) 2018; 1 Iablokov (CR29) 2012; 12 Hermans (CR42) 2017; 56 CR4 Choi (CR66) 2017; 202 Ye (CR14) 2019; 10 Baurecht, Fringeli (CR78) 2001; 72 Li, Wang (CR53) 2018; 365 Guo (CR55) 2018; 8 Nitopi (CR10) 2019; 119 Bushuyev (CR24) 2018; 2 Li (CR6) 2018; 8 Szanyi, Kwak (CR46) 2014; 16 Tu, Zhou, Zou (CR9) 2014; 26 Hartman, Geitenbeek, Whiting, Weckhuysen (CR48) 2019; 2 Luk, Mondelli, Ferre, Stewart, Pe (CR7) 2016; 46 Numpilai (CR70) 2017; 547 Hahn (CR18) 2017; 114 Wang (CR36) 2020; 11 Dinh (CR19) 2018; 360 Morales, de Smit, de Groot, Visser, Weckhuysen (CR59) 2007; 246 Owen (CR62) 2013; 49 Lavalley (CR45) 1996; 27 Parastaev (CR37) 2020; 3 Iloy, Jalama (CR67) 2019; 9 Ojelade, Zaman (CR39) 2021; 47 Morales, Weckhuysen (CR57) 2006; 19 Ferri, Newton, Nachtegaal (CR41) 2011; 54 Yao, Hildebrandt, Glasser, Liu (CR69) 2010; 49 Srinivasan, Patil, Zhu, Bravo-Suárez (CR49) 2019; 4 Vrijburg (CR52) 2019; 9 Shi (CR68) 2018; 311 Zhao (CR61) 2018; 361 van Ravenhorst (CR31) 2021; 11 Álvarez (CR17) 2017; 117 Stavitski (CR3) 2011; 27 He (CR34) 2020; 356 Díaz, de la Osa, Sánchez, Romero, Valverde (CR73) 2014; 44 Bürgi, Baiker (CR43) 2002; 106 Marchionni, Ferri, Kröcher, Wokaun (CR54) 2017; 89 Luna (CR16) 2021; 11 Mutschler, Moioli, Züttel (CR56) 2019; 375 Morales (CR60) 2004; 108 Timoshenko, Roldan Cuenya (CR11) 2021; 121 Aguirre, Collins (CR51) 2013; 205 Aziz, Jalil, Triwahyono, Ahmad (CR1) 2015; 17 Gao, Arán-Ais, Jeon, Roldan Cuenya (CR12) 2019; 2 Saeidi (CR38) 2017; 80 Satthawong, Koizumi, Song, Prasassarakich (CR72) 2013; 3-4 Athariboroujeny (CR58) 2019; 9 Zhou (CR76) 2020; 10 He (CR64) 2019; 116 Dong, Zhao, Tian, Zhang, Wu (CR71) 2020; 10 J van de Loosdrecht (27981_CR25) 2013; 7 Z Zhao (27981_CR61) 2018; 361 M Athariboroujeny (27981_CR58) 2019; 9 Z Shi (27981_CR68) 2018; 311 J Szanyi (27981_CR46) 2014; 16 C Zhou (27981_CR76) 2020; 10 D Gao (27981_CR12) 2019; 2 L Wang (27981_CR36) 2020; 11 D Baurecht (27981_CR78) 2001; 72 A Aguirre (27981_CR51) 2013; 205 K Stangeland (27981_CR22) 2017; 105 RE Owen (27981_CR63) 2016; 16 D Ferri (27981_CR41) 2011; 54 C Hahn (27981_CR18) 2017; 114 Y Guo (27981_CR55) 2018; 8 RP Ye (27981_CR14) 2019; 10 GL Chiarello (27981_CR77) 2014; 85 27981_CR4 Z Dong (27981_CR71) 2020; 10 ZH He (27981_CR34) 2020; 356 L Wang (27981_CR35) 2018; 130 Y Yao (27981_CR69) 2010; 49 A Álvarez (27981_CR17) 2017; 117 G Prieto (27981_CR28) 2009; 266 A Parastaev (27981_CR37) 2020; 3 RA Iloy (27981_CR67) 2019; 9 M Kantcheva (27981_CR50) 2000; 190 ML Luna (27981_CR16) 2021; 11 I Hermans (27981_CR42) 2017; 56 MR Li (27981_CR53) 2018; 365 OA Ojelade (27981_CR39) 2021; 47 J Timoshenko (27981_CR11) 2021; 121 O Martin (27981_CR8) 2016; 55 T Numpilai (27981_CR70) 2017; 547 YH Choi (27981_CR66) 2017; 202 F Morales (27981_CR59) 2007; 246 C Vogt (27981_CR23) 2019; 10 W Wang (27981_CR5) 2011; 40 W Li (27981_CR6) 2018; 8 B Yao (27981_CR15) 2020; 11 L Wang (27981_CR40) 2019; 9 V Marchionni (27981_CR54) 2017; 89 C Vogt (27981_CR20) 2019; 2 G Melaet (27981_CR32) 2014; 136 A Urakawa (27981_CR44) 2003; 107 IK van Ravenhorst (27981_CR31) 2021; 11 F Morales (27981_CR57) 2006; 19 E Stavitski (27981_CR3) 2011; 27 M Ronda-Lloret (27981_CR2) 2019; 12 WL Vrijburg (27981_CR52) 2019; 9 F Morales (27981_CR60) 2004; 108 Z Li (27981_CR75) 2017; 7 RW Dorner (27981_CR13) 2010; 3 PD Srinivasan (27981_CR49) 2019; 4 HT Luk (27981_CR7) 2016; 46 Z He (27981_CR64) 2019; 116 RE Owen (27981_CR62) 2013; 49 C Vogt (27981_CR21) 2018; 1 JC Lavalley (27981_CR45) 1996; 27 W Tu (27981_CR9) 2014; 26 MAA Aziz (27981_CR1) 2015; 17 G Melaet (27981_CR27) 2014; 57 S Saeidi (27981_CR38) 2017; 80 CS Li (27981_CR33) 2015; 6 OS Bushuyev (27981_CR24) 2018; 2 J Lu (27981_CR74) 2014; 4 GL Bezemer (27981_CR26) 2006; 128 CT Dinh (27981_CR19) 2018; 360 S Nitopi (27981_CR10) 2019; 119 R Satthawong (27981_CR72) 2013; 3-4 R Mutschler (27981_CR56) 2019; 375 T Bürgi (27981_CR43) 2002; 106 W Karim (27981_CR47) 2017; 541 T Hartman (27981_CR48) 2019; 2 V Iablokov (27981_CR29) 2012; 12 RW Dorner (27981_CR65) 2009; 23 27981_CR30 JA Díaz (27981_CR73) 2014; 44 |
| References_xml | – volume: 105 start-page: 2022 year: 2017 end-page: 2027 ident: CR22 article-title: CO methanation: the effect of catalysts and reaction conditions publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.577 – volume: 246 start-page: 91 year: 2007 end-page: 99 ident: CR59 article-title: Effects of manganese oxide promoter on the CO and H adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2006.11.014 – volume: 11 start-page: 2956 year: 2021 end-page: 2967 ident: CR31 article-title: On the cobalt carbide formation in a Co/TiO Fischer−Tropsch synthesis catalyst as studied by high-pressure, long-term operando X‑ray absorption and diffraction publication-title: ACS Catal. doi: 10.1021/acscatal.0c04695 – volume: 57 start-page: 500 year: 2014 end-page: 507 ident: CR27 article-title: Cobalt particle size effects in the Fischer-Tropsch synthesis and in the hydrogenation of CO studied with nanoparticle model catalysts on silica publication-title: Top. Catal. doi: 10.1007/s11244-013-0206-z – volume: 26 start-page: 4607 year: 2014 end-page: 4626 ident: CR9 article-title: Photocatalytic conversion of CO into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects publication-title: Adv. Mater. doi: 10.1002/adma.201400087 – volume: 266 start-page: 129 year: 2009 end-page: 144 ident: CR28 article-title: Cobalt particle size effects in Fischer-Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2009.06.001 – ident: CR4 – volume: 12 start-page: 3896 year: 2019 end-page: 3914 ident: CR2 article-title: A critical look at direct catalytic hydrogenation of carbon dioxide to olefins publication-title: ChemSusChem doi: 10.1002/cssc.201900915 – volume: 54 start-page: 1070 year: 2011 end-page: 1078 ident: CR41 article-title: Modulation excitation X-Ray absorption spectroscopy to probe surface species on heterogeneous catalysts publication-title: Top. Catal. doi: 10.1007/s11244-011-9727-5 – volume: 56 start-page: 1123 year: 2017 end-page: 1136 ident: CR42 article-title: Applications of modulation excitation spectroscopy in heterogeneous catalysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04855 – volume: 107 start-page: 13061 year: 2003 end-page: 13068 ident: CR44 article-title: ATR-IR flow-through cell for concentration modulation excitation spectroscopy: diffusion experiments and simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp0359889 – volume: 375 start-page: 193 year: 2019 end-page: 201 ident: CR56 article-title: Modelling the CO hydrogenation reaction over Co, Ni and Ru/Al O publication-title: J. Catal. doi: 10.1016/j.jcat.2019.05.023 – volume: 1 start-page: 127 year: 2018 end-page: 134 ident: CR21 article-title: Unravelling structure sensitivity in CO hydrogenation over nickel publication-title: Nat. Catal. doi: 10.1038/s41929-017-0016-y – volume: 40 start-page: 3703 year: 2011 end-page: 3727 ident: CR5 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 114 start-page: 5918 year: 2017 end-page: 5923 ident: CR18 article-title: Engineering Cu surfaces for the electrocatalytic conversion of CO : controlling selectivity toward oxygenates and hydrocarbons publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1618935114 – volume: 46 start-page: 1358 year: 2016 end-page: 1426 ident: CR7 article-title: Status and prospects in higher alcohols synthesis from syngas publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00324A – volume: 2 start-page: 198 year: 2019 end-page: 210 ident: CR12 article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 365 start-page: 391 year: 2018 end-page: 404 ident: CR53 article-title: The mechanism of ethanol steam reforming on the Co and Co sites: a DFT study publication-title: J. Catal. doi: 10.1016/j.jcat.2018.07.002 – volume: 7 start-page: 8023 year: 2017 end-page: 8032 ident: CR75 article-title: Mechanism of the Mn promoter via CoMn spinel for morphology control: formation of Co C nanoprisms for Fischer-Tropsch to olefins reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b02144 – volume: 117 start-page: 9804 year: 2017 end-page: 9838 ident: CR17 article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO hydrogenation processes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 9 start-page: 7823 year: 2019 end-page: 7839 ident: CR52 article-title: Efficient base-metal NiMn/TiO catalyst for CO methanation publication-title: ACS Catal. doi: 10.1021/acscatal.9b01968 – volume: 3 start-page: 884 year: 2010 end-page: 890 ident: CR13 article-title: Heterogeneous catalytic CO conversion to value-added hydrocarbons publication-title: Energy Environ. Sci. doi: 10.1039/c001514h – volume: 23 start-page: 4190 year: 2009 end-page: 4195 ident: CR65 article-title: Influence of gas feed composition and pressure on the catalytic conversion of CO to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst publication-title: Energy Fuels doi: 10.1021/ef900275m – volume: 47 start-page: 101506 year: 2021 ident: CR39 article-title: A review on CO hydrogenation to lower olefins: understanding the structure-property relationships in heterogeneous catalytic systems publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101506 – volume: 9 start-page: 807 year: 2019 ident: CR67 article-title: Effect of operating temperature, pressure and silica-supported cobalt catalyst in CO hydrogenation to hydrocarbon fuel publication-title: Catalysts doi: 10.3390/catal9100807 – volume: 121 start-page: 882 year: 2021 end-page: 961 ident: CR11 article-title: In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00396 – volume: 360 start-page: 783 year: 2018 end-page: 787 ident: CR19 article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface publication-title: Science doi: 10.1126/science.aas9100 – volume: 356 start-page: 579 year: 2020 end-page: 588 ident: CR34 article-title: Photothermal CO hydrogenation to methanol over a CoO/Co/TiO catalyst in aqueous media under atmospheric pressure publication-title: Catal. Today doi: 10.1016/j.cattod.2020.01.007 – volume: 4 start-page: 862 year: 2019 end-page: 883 ident: CR49 article-title: Application of modulation excitation-phase sensitive detection-DRIFTS for: In situ /operando characterization of heterogeneous catalysts publication-title: React. Chem. Eng. doi: 10.1039/C9RE00011A – volume: 9 start-page: 11335 year: 2019 end-page: 11340 ident: CR40 article-title: Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol publication-title: ACS Catal. doi: 10.1021/acscatal.9b04187 – volume: 11 start-page: 6175 year: 2021 end-page: 6185 ident: CR16 article-title: Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO publication-title: ACS Catal. doi: 10.1021/acscatal.1c01549 – volume: 16 start-page: 97 year: 2016 end-page: 103 ident: CR63 article-title: Effect of support of Co-Na-Mo catalysts on the direct conversion of CO to hydrocarbons publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.06.009 – volume: 4 start-page: 613 year: 2014 end-page: 621 ident: CR74 article-title: Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins publication-title: ACS Catal. doi: 10.1021/cs400931z – volume: 49 start-page: 11683 year: 2013 end-page: 11685 ident: CR62 article-title: Cobalt catalysts for the conversion of CO to light hydrocarbons at atmospheric pressure publication-title: Chem. Commun. doi: 10.1039/c3cc46791k – volume: 106 start-page: 10649 year: 2002 end-page: 10658 ident: CR43 article-title: In situ infrared spectroscopy of catalytic solid-liquid interfaces using phase-sensitive detection: enantioselective hydrogenation of a pyrone over Pd/TiO publication-title: J. Phys. Chem. B doi: 10.1021/jp0255987 – volume: 3-4 start-page: 102 year: 2013 end-page: 106 ident: CR72 article-title: Bimetallic Fe-Co catalysts for CO hydrogenation to higher hydrocarbons publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2013.10.002 – volume: 12 start-page: 3091 year: 2012 end-page: 3096 ident: CR29 article-title: Size-controlled model Co nanoparticle catalysts for CO hydrogenation: synthesis, characterization, and catalytic reactions publication-title: Nano Lett. doi: 10.1021/nl300973b – volume: 6 year: 2015 ident: CR33 article-title: High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis publication-title: Nat. Commun. doi: 10.1038/ncomms7538 – volume: 10 start-page: 455 year: 2020 ident: CR71 article-title: Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO hydrogenation to light olefins publication-title: Catalysts doi: 10.3390/catal10040455 – volume: 119 start-page: 7610 year: 2019 end-page: 7672 ident: CR10 article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 2 start-page: 188 year: 2019 end-page: 197 ident: CR20 article-title: The renaissance of the Sabatier reaction and its applications on Earth and in space publication-title: Nat. Catal. doi: 10.1038/s41929-019-0244-4 – volume: 49 start-page: 11061 year: 2010 end-page: 11066 ident: CR69 article-title: Fischer-Tropsch synthesis using H /CO/CO syngas mixtures over a cobalt catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100414y – volume: 130 start-page: 6212 year: 2018 end-page: 6216 ident: CR35 article-title: Selective hydrogenation of CO into ethanol over cobalt catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201800729 – volume: 2 start-page: 986 year: 2019 end-page: 996 ident: CR48 article-title: Operando monitoring of temperature and active species at the single catalyst particle level publication-title: Nat. Catal. doi: 10.1038/s41929-019-0352-1 – volume: 55 start-page: 11031 year: 2016 end-page: 11036 ident: CR8 article-title: Heterogeneous catalysis operando synchrotron X-ray powder diffraction and modulated- excitation infrared spectroscopy elucidate the CO promotion on a commercial methanol synthesis catalyst angewandte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603204 – volume: 190 start-page: 144 year: 2000 end-page: 156 ident: CR50 article-title: Spectroscopic investigation of species arising from CO chemisorption on titania-supported manganese publication-title: J. Catal. doi: 10.1006/jcat.1999.2757 – volume: 19 start-page: 1 year: 2006 end-page: 40 ident: CR57 article-title: Promotion effects in Co-based Fischer–Tropsch publication-title: Catal. Catal. – volume: 17 start-page: 2647 year: 2015 end-page: 2663 ident: CR1 article-title: CO methanation over heterogeneous catalysts: recent progress and future prospects publication-title: Green. Chem. doi: 10.1039/C5GC00119F – volume: 16 start-page: 15117 year: 2014 end-page: 15125 ident: CR46 article-title: Dissecting the steps of CO reduction: 1. The interaction of CO and CO with γ-Al O : an in situ FTIR study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00616J – ident: CR30 – volume: 89 start-page: 5801 year: 2017 end-page: 5809 ident: CR54 article-title: Increasing the sensitivity to short-lived species in a modulated excitation experiment publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04939 – volume: 44 start-page: 57 year: 2014 end-page: 61 ident: CR73 article-title: Influence of CO co-feeding on Fischer-Tropsch fuels production over carbon nanofibers supported cobalt catalyst publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.07.033 – volume: 361 start-page: 156 year: 2018 end-page: 167 ident: CR61 article-title: Tuning the Fischer–Tropsch reaction over Co Mn La/AC catalysts toward alcohols: effects of La promotion publication-title: J. Catal. doi: 10.1016/j.jcat.2018.02.008 – volume: 9 start-page: 5603 year: 2019 end-page: 5612 ident: CR58 article-title: Competing mechanisms in CO hydrogenation over Co-MnO catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.9b00967 – volume: 11 year: 2020 ident: CR15 article-title: Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-020-20214-z – volume: 72 start-page: 3782 year: 2001 end-page: 3792 ident: CR78 article-title: Quantitative modulated excitation Fourier transform infrared spectroscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1400152 – volume: 547 start-page: 219 year: 2017 end-page: 229 ident: CR70 article-title: Structure–activity relationships of Fe-Co/K-Al O catalysts calcined at different temperatures for CO hydrogenation to light olefins publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.09.006 – volume: 10 year: 2019 ident: CR14 article-title: CO hydrogenation to high-value products via heterogeneous catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13638-9 – volume: 7 start-page: 525 year: 2013 end-page: 557 ident: CR25 article-title: Fischer-Tropsch synthesis: catalysts and chemistry publication-title: Compreh. Inorg. Chem. II – volume: 10 start-page: 302 year: 2020 end-page: 310 ident: CR76 article-title: Highly active ZnO-ZrO aerogels integrated with H‑ZSM‑5 for aromatics synthesis from carbon dioxide publication-title: ACS Catal. doi: 10.1021/acscatal.9b04309 – volume: 116 start-page: 12654 year: 2019 end-page: 12659 ident: CR64 article-title: Synthesis of liquid fuel via direct hydrogenation of CO publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821231116 – volume: 128 start-page: 3956 year: 2006 end-page: 3964 ident: CR26 article-title: Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058282w – volume: 8 start-page: 7651 year: 2018 end-page: 7669 ident: CR6 article-title: A short review of recent advances in CO hydrogenation to hydrocarbons over heterogeneous catalysts publication-title: RSC Adv. doi: 10.1039/C7RA13546G – volume: 311 start-page: 65 year: 2018 end-page: 73 ident: CR68 article-title: Direct conversion of CO to long-chain hydrocarbon fuels over K-promoted CoCu/TiO catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2017.09.053 – volume: 136 start-page: 2260 year: 2014 end-page: 2263 ident: CR32 article-title: Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO hydrogenation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412447q – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: CR23 article-title: Understanding carbon dioxide activation and carbon–carbon coupling over nickel publication-title: Nat. Commun. doi: 10.1038/s41467-019-12858-3 – volume: 27 start-page: 377 year: 1996 end-page: 401 ident: CR45 article-title: Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules publication-title: Catal. Today doi: 10.1016/0920-5861(95)00161-1 – volume: 541 start-page: 68 year: 2017 end-page: 71 ident: CR47 article-title: Catalyst support effects on hydrogen spillover publication-title: Nature doi: 10.1038/nature20782 – volume: 205 start-page: 34 year: 2013 end-page: 40 ident: CR51 article-title: Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy publication-title: Catal. Today doi: 10.1016/j.cattod.2012.08.020 – volume: 2 start-page: 825 year: 2018 end-page: 832 ident: CR24 article-title: What should we make with CO and how can we make it? publication-title: Joule doi: 10.1016/j.joule.2017.09.003 – volume: 11 year: 2020 ident: CR36 article-title: Silica accelerates the selective hydrogenation of CO to methanol on cobalt catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-020-14817-9 – volume: 85 start-page: 074102 year: 2014 ident: CR77 article-title: Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890668 – volume: 27 start-page: 3970 year: 2011 end-page: 3976 ident: CR3 article-title: Complexity behind CO capture on NH -MIL-53(Al) publication-title: Langmuir doi: 10.1021/la1045207 – volume: 3 start-page: 526 year: 2020 end-page: 533 ident: CR37 article-title: Boosting CO hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-020-0459-4 – volume: 80 start-page: 1292 year: 2017 end-page: 1311 ident: CR38 article-title: Mechanisms and kinetics of CO hydrogenation to value-added products: a detailed review on current status and future trends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.204 – volume: 202 start-page: 605 year: 2017 end-page: 610 ident: CR66 article-title: Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.072 – volume: 8 start-page: 6203 year: 2018 end-page: 6215 ident: CR55 article-title: Low-temperature CO methanation over CeO -supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect publication-title: ACS Catal. doi: 10.1021/acscatal.7b04469 – volume: 108 start-page: 16201 year: 2004 end-page: 16207 ident: CR60 article-title: In situ X-ray absorption of Co/Mn/TiO catalysts for Fischer–Tropsch Synthesis publication-title: J. Phys. Chem. B doi: 10.1021/jp0403846 – volume: 9 start-page: 11335 year: 2019 ident: 27981_CR40 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04187 – volume: 57 start-page: 500 year: 2014 ident: 27981_CR27 publication-title: Top. Catal. doi: 10.1007/s11244-013-0206-z – volume: 541 start-page: 68 year: 2017 ident: 27981_CR47 publication-title: Nature doi: 10.1038/nature20782 – volume: 89 start-page: 5801 year: 2017 ident: 27981_CR54 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04939 – volume: 202 start-page: 605 year: 2017 ident: 27981_CR66 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.072 – volume: 72 start-page: 3782 year: 2001 ident: 27981_CR78 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1400152 – volume: 44 start-page: 57 year: 2014 ident: 27981_CR73 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.07.033 – volume: 108 start-page: 16201 year: 2004 ident: 27981_CR60 publication-title: J. Phys. Chem. B doi: 10.1021/jp0403846 – volume: 3-4 start-page: 102 year: 2013 ident: 27981_CR72 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2013.10.002 – volume: 9 start-page: 5603 year: 2019 ident: 27981_CR58 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00967 – volume: 128 start-page: 3956 year: 2006 ident: 27981_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058282w – volume: 114 start-page: 5918 year: 2017 ident: 27981_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1618935114 – volume: 375 start-page: 193 year: 2019 ident: 27981_CR56 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.05.023 – volume: 46 start-page: 1358 year: 2016 ident: 27981_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00324A – volume: 27 start-page: 3970 year: 2011 ident: 27981_CR3 publication-title: Langmuir doi: 10.1021/la1045207 – volume: 6 year: 2015 ident: 27981_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms7538 – volume: 116 start-page: 12654 year: 2019 ident: 27981_CR64 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821231116 – volume: 54 start-page: 1070 year: 2011 ident: 27981_CR41 publication-title: Top. Catal. doi: 10.1007/s11244-011-9727-5 – volume: 107 start-page: 13061 year: 2003 ident: 27981_CR44 publication-title: J. Phys. Chem. B doi: 10.1021/jp0359889 – volume: 3 start-page: 884 year: 2010 ident: 27981_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/c001514h – volume: 105 start-page: 2022 year: 2017 ident: 27981_CR22 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.577 – volume: 2 start-page: 825 year: 2018 ident: 27981_CR24 publication-title: Joule doi: 10.1016/j.joule.2017.09.003 – volume: 136 start-page: 2260 year: 2014 ident: 27981_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412447q – volume: 16 start-page: 97 year: 2016 ident: 27981_CR63 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.06.009 – volume: 19 start-page: 1 year: 2006 ident: 27981_CR57 publication-title: Catal. Catal. – volume: 8 start-page: 7651 year: 2018 ident: 27981_CR6 publication-title: RSC Adv. doi: 10.1039/C7RA13546G – volume: 205 start-page: 34 year: 2013 ident: 27981_CR51 publication-title: Catal. Today doi: 10.1016/j.cattod.2012.08.020 – volume: 11 start-page: 2956 year: 2021 ident: 27981_CR31 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04695 – volume: 7 start-page: 525 year: 2013 ident: 27981_CR25 publication-title: Compreh. Inorg. Chem. II – volume: 12 start-page: 3091 year: 2012 ident: 27981_CR29 publication-title: Nano Lett. doi: 10.1021/nl300973b – volume: 11 year: 2020 ident: 27981_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20214-z – volume: 106 start-page: 10649 year: 2002 ident: 27981_CR43 publication-title: J. Phys. Chem. B doi: 10.1021/jp0255987 – volume: 17 start-page: 2647 year: 2015 ident: 27981_CR1 publication-title: Green. Chem. doi: 10.1039/C5GC00119F – volume: 2 start-page: 188 year: 2019 ident: 27981_CR20 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0244-4 – volume: 365 start-page: 391 year: 2018 ident: 27981_CR53 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.07.002 – volume: 361 start-page: 156 year: 2018 ident: 27981_CR61 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.02.008 – volume: 23 start-page: 4190 year: 2009 ident: 27981_CR65 publication-title: Energy Fuels doi: 10.1021/ef900275m – volume: 11 start-page: 6175 year: 2021 ident: 27981_CR16 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01549 – volume: 56 start-page: 1123 year: 2017 ident: 27981_CR42 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04855 – volume: 10 year: 2019 ident: 27981_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13638-9 – ident: 27981_CR4 doi: 10.1007/978-3-319-14409-2 – volume: 9 start-page: 7823 year: 2019 ident: 27981_CR52 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01968 – volume: 1 start-page: 127 year: 2018 ident: 27981_CR21 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0016-y – volume: 547 start-page: 219 year: 2017 ident: 27981_CR70 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.09.006 – volume: 55 start-page: 11031 year: 2016 ident: 27981_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603204 – volume: 2 start-page: 198 year: 2019 ident: 27981_CR12 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 130 start-page: 6212 year: 2018 ident: 27981_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201800729 – volume: 311 start-page: 65 year: 2018 ident: 27981_CR68 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.09.053 – volume: 49 start-page: 11683 year: 2013 ident: 27981_CR62 publication-title: Chem. Commun. doi: 10.1039/c3cc46791k – volume: 121 start-page: 882 year: 2021 ident: 27981_CR11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00396 – volume: 12 start-page: 3896 year: 2019 ident: 27981_CR2 publication-title: ChemSusChem doi: 10.1002/cssc.201900915 – volume: 360 start-page: 783 year: 2018 ident: 27981_CR19 publication-title: Science doi: 10.1126/science.aas9100 – volume: 117 start-page: 9804 year: 2017 ident: 27981_CR17 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 47 start-page: 101506 year: 2021 ident: 27981_CR39 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101506 – volume: 246 start-page: 91 year: 2007 ident: 27981_CR59 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.11.014 – volume: 49 start-page: 11061 year: 2010 ident: 27981_CR69 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100414y – volume: 4 start-page: 613 year: 2014 ident: 27981_CR74 publication-title: ACS Catal. doi: 10.1021/cs400931z – volume: 10 start-page: 1 year: 2019 ident: 27981_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12858-3 – volume: 10 start-page: 302 year: 2020 ident: 27981_CR76 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04309 – volume: 27 start-page: 377 year: 1996 ident: 27981_CR45 publication-title: Catal. Today doi: 10.1016/0920-5861(95)00161-1 – volume: 16 start-page: 15117 year: 2014 ident: 27981_CR46 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00616J – volume: 190 start-page: 144 year: 2000 ident: 27981_CR50 publication-title: J. Catal. doi: 10.1006/jcat.1999.2757 – volume: 266 start-page: 129 year: 2009 ident: 27981_CR28 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.06.001 – volume: 2 start-page: 986 year: 2019 ident: 27981_CR48 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0352-1 – volume: 10 start-page: 455 year: 2020 ident: 27981_CR71 publication-title: Catalysts doi: 10.3390/catal10040455 – volume: 26 start-page: 4607 year: 2014 ident: 27981_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201400087 – volume: 7 start-page: 8023 year: 2017 ident: 27981_CR75 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02144 – volume: 8 start-page: 6203 year: 2018 ident: 27981_CR55 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04469 – volume: 356 start-page: 579 year: 2020 ident: 27981_CR34 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.01.007 – volume: 80 start-page: 1292 year: 2017 ident: 27981_CR38 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.204 – volume: 40 start-page: 3703 year: 2011 ident: 27981_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – ident: 27981_CR30 doi: 10.1002/anie.201806354 – volume: 11 year: 2020 ident: 27981_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14817-9 – volume: 3 start-page: 526 year: 2020 ident: 27981_CR37 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0459-4 – volume: 4 start-page: 862 year: 2019 ident: 27981_CR49 publication-title: React. Chem. Eng. doi: 10.1039/C9RE00011A – volume: 119 start-page: 7610 year: 2019 ident: 27981_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 9 start-page: 807 year: 2019 ident: 27981_CR67 publication-title: Catalysts doi: 10.3390/catal9100807 – volume: 85 start-page: 074102 year: 2014 ident: 27981_CR77 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890668 |
| SSID | ssj0000391844 |
| Score | 2.675521 |
| Snippet | Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts... Catalytic conversion of CO2 into valuable hydrocarbons is a promising way to mitigate climate change. This work uncovers that cobalt oxide nanoparticles on a... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 324 |
| SubjectTerms | 119/118 140/146 639/638/77/885 639/638/77/887 704/172/169/896 Carbon dioxide Catalysts Catalytic converters Climate change Climate change mitigation Cobalt Cobalt oxides Fourier transforms Humanities and Social Sciences Hydrocarbons multidisciplinary Nanoparticles Oxidation Reaction mechanisms Science Science (multidisciplinary) Selectivity Titanium dioxide Valence |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9EFPpSrLZ01ZYU-tYGd5PdZPPYHhWftBQF30K-ljuoe3J7iv73TrJ7pyvUvvi6mWSTySTzG2YyA_CV143zUhgqGstpWTFHrWgq6lLxoqLyVvXFJuTpaX15qX4_KfUVY8L69MA94444L3McDEeyHlW7VQERvnOyqRCoB5mSbedSPTGm0h3MFZou5fBKJuf1UVemOyEGrzOp6oLejTRRStg_QpnPYySfOUqT_jnegbcDcCQ_-gm_g43Q7sJ2X0ryfg_-XLQuRmNiX4KYjiAWTC8WyFWIb3tn3RWxYYoGOJnMz4jpiEkXHbmeohojiFzJ5IyR6b1fzFGk0na9h4vjX-eTEzrUS6CuKuSSimBkEN4JW7Lc89wF10TPWWE4AhtvrAgsGLxWcifRrFPONdwy0UTIUBmk-gCb7bwNH4FEs9EEb4VkDVqYyrBaWFkhIfK-8GUGxYp32g3JxGNNi786ObV5rXt-a-S3TvzWdxl8W_e57lNpvEj9M27JmjKmwU4fUDj0IBz6f8KRweFqQ_VwNjsdbUYEjbWUGXxZN-Opiq4S04b5TaSJcSG1LFUGciQIowmNW9rZNOXnRgWDyAdH_74Smcef_3vB-6-x4AN4w6KI5wUtykPYXC5uwifYcrfLWbf4nM7IA2zcFLc priority: 102 providerName: Directory of Open Access Journals |
| Title | Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation |
| URI | https://link.springer.com/article/10.1038/s41467-022-27981-x https://www.proquest.com/docview/2619610877 https://www.proquest.com/docview/2620088749 https://pubmed.ncbi.nlm.nih.gov/PMC8760247 https://doaj.org/article/3340d76fb3bd435b9e716cc7f5966e76 |
| Volume | 13 |
| WOSCitedRecordID | wos000742728600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-EYURmUk3sBaPm3nCbFqEzzQRROTCi-Wv7JWYklpOrT995ydtFMmsRde8hBfE6d3vvud73wH8D4VlbGcKcoqndIsTwzVrMqpCc2L4tzqoms2wadTMZsVZb_h1vZplRudGBS1bYzfIz_wSB9NveD80_I39V2jfHS1b6GxA3u-SkISUvfK7R6Lr34usqw_KxOl4qDNgmbwKewJL0RMrwb2KJTtH2DN25mSt8KlwQodP_7f-T-BRz3-JJ87gXkK91z9DB50HSmvn8PpWW18Uie-nCA0JAgpw8EHcuH8EeFFe0G0m6MfTybNCVEtUUFfkuUcrSFBAEwmJwmZX9tVg5IZuP4Czo6Pvk--0L7tAjV5zNeUOcUds4bpLIlsGhlnKh-Ai1WK-MgqzVziFGqnyHD0DgtjqlQnrPLII1dI9RJ266Z2r4B471M5qxlPKnRUC5UIpnmOhMyY2GYjiDd_vjR9TXLfGuOXDLHxVMiOYRIZJgPD5NUIPmx_s-wqctxJfeh5uqX01bTDjWZ1LvvFKdM0i1BgUVq1RfioC4depDG8ytEZdJyNYH_DU9kv8VbeMHQE77bDuDh9xEXVrrn0ND69RPCsGAEfSNJgQsORejEPZb7RTiGAwqd_3Mjczcv__cGv757rG3iYeOmPYhpn-7C7Xl26t3Df_Fkv2tUYdviMh6sYw97h0bQ8HYddinFYWHgt8584Un79Vv74C2ReKgg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvBELBYwEJ4iaOImdHBCChaqrttsKtVI5Gb_CrkSTZbOF7p_iNzJ2kq22Er31wDWZOHbyzcszngF4FWeFNpzJgBUqDpKU6kCxIg20b14UpUblTbMJPhplx8f5wRr86c7CuLTKTiZ6QW0q7fbIN52lj6o-4_z99Gfguka56GrXQqOBxY5d_EaXrX43_IT_9zWlW58PB9tB21Ug0GnE5wGzkltmNFMJDU0caqsLF1-KZIzq30jFLLUSmS_UHJ2fXOsiVpQVTrGmEqlw3Guwnjiw92D9YLh38HW5q-PqrWdJ0p7OCeNss068LHJJ85TnWRScrWhA3yhgxbq9mJt5IUDr9d7Wnf_ti92F262FTT40LHEP1mx5H240PTcXD-DLUald2ioulqDxS9Bo9kc7yIl1h6An9QlRdjwpDRlU-0TWRHqNQKZj1PcETXwy2KdkvDCzCnnP4_ohHF3Jgh5Br6xK-xiI86-lNYpxWqArnkuaMcVTJGRaRybpQ9T9bKHbquuu-ccP4aP_cSYagAgEiPAAEWd9eLN8ZtrUHLmU-qPD0JLS1Qv3F6rZd9GKHxHHSYgsifyoDBrIKrfoJ2vNixTdXctZHzY6DIlWiNXiHEB9eLm8jeLHxZRkaatTR-MSaDKe5H3gK8hdmdDqnXIy9oXMUROjiYijv-0wfv7yfy_4yeVzfQE3tw_3dsXucLTzFG5Rx3lhFETJBvTms1P7DK7rX_NJPXveMi-Bb1eN_r8u-oHB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3qiBAosEJ7Bir-1d-4AQpERURWmEqFRx2e7LJFJrhziF5q_x65hd26lSid564GqPH2t_M_PN7uwMwKs4K7ThTAasUHGQpFQHihVpoH3zoig1Km-aTfDRKDs8zMcb8KfbC-PSKjub6A21qbSbI-87po-uPuO8X7RpEeOd4fvZz8B1kHIrrV07jQYie3b5G8O3-t3uDv7r15QOP30bfA7aDgOBTiO-CJiV3DKjmUpoaOJQW124taZIxkgFjFTMUitREUPNMRDKtS5iRVnhnGwqUQrvew2uc4wxXTrhOP2-mt9xldezJGn36YRx1q8Tb5Vc-jzleRYFZ2u-0LcMWOO5F7M0LyzVeg84vPs_f7t7cKfl3eRDoyj3YcOWD-Bm04lz-RC-HpTaJbPiwAlSYoJU2m_4ICfWbY2e1idE2cm0NGRQ7RNZE-n9BJlNkAUQJP5ksE_JZGnmFWqkR_sjOLiSAT2GzbIq7RYQF3VLaxTjtMAAPZc0Y4qnKMi0jkzSg6j78UK3tdhdS5Bj4XMC4kw0YBEIFuHBIs568GZ1zaypRHKp9EeHp5WkqyLuD1TzH6I1SiKOkxAVFbVUGaTNKrcYPWvNixSDYMtZD7Y7PInWtNXiHEw9eLk6jUbJrTTJ0lanTsal1WQ8yXvA11C89kLrZ8rpxJc3R_-MxBHv_rbD-_nD_z3gJ5e_6wu4hZAXX3ZHe0_hNnVKGEZBlGzD5mJ-ap_BDf1rMa3nz70WEzi6auj_BZE7iSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+reaction+mechanism+behind+CoO+as+active+phase+for+CO2+hydrogenation&rft.jtitle=Nature+communications&rft.au=Have+Iris+C+ten&rft.au=Kromwijk%2C+Josepha+J&rft.au=Monai+Matteo&rft.au=Ferri+Davide&rft.date=2022-01-14&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-27981-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |