Strengthening convex relaxations of 0/1-sets using Boolean formulas

In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popul...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 190; číslo 1-2; s. 467 - 482
Hlavní autori: Fiorini, Samuel, Huynh, Tony, Weltge, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set S ⊆ { 0 , 1 } n by exploiting certain additional information about S . Namely, the required extra information will be in the form of a Boolean formula ϕ defining the target set S . The new relaxation is obtained by “feeding” the convex set into the formula ϕ . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
AbstractList In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set S ⊆ { 0 , 1 } n by exploiting certain additional information about S. Namely, the required extra information will be in the form of a Boolean formula ϕ defining the target set S. The new relaxation is obtained by "feeding" the convex set into the formula ϕ . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set S ⊆ { 0 , 1 } n by exploiting certain additional information about S. Namely, the required extra information will be in the form of a Boolean formula ϕ defining the target set S. The new relaxation is obtained by "feeding" the convex set into the formula ϕ . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set $$ S \subseteq \{0,1\}^n $$ S⊆0,1n by exploiting certain additional information about S. Namely, the required extra information will be in the form of a Boolean formula $$\phi $$ ϕ defining the target set S. The new relaxation is obtained by “feeding” the convex set into the formula $$\phi $$ ϕ. We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set S⊆{0,1}n by exploiting certain additional information about S. Namely, the required extra information will be in the form of a Boolean formula ϕ defining the target set S. The new relaxation is obtained by “feeding” the convex set into the formula ϕ. We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set S ⊆ { 0 , 1 } n by exploiting certain additional information about S . Namely, the required extra information will be in the form of a Boolean formula ϕ defining the target set S . The new relaxation is obtained by “feeding” the convex set into the formula ϕ . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist several general-purpose methods that strengthen relaxations without specific knowledge of the set S of feasible integer points, such as popular linear programming or semi-definite programming hierarchies. On the other hand, various methods have been designed for obtaining strengthened relaxations for very specific sets S that arise in combinatorial optimization. We propose a new efficient method that interpolates between these two approaches. Our procedure strengthens any convex set containing a set $$ S \subseteq \{0,1\}^n $$ S ⊆ { 0 , 1 } n by exploiting certain additional information about S . Namely, the required extra information will be in the form of a Boolean formula $$\phi $$ ϕ defining the target set S . The new relaxation is obtained by “feeding” the convex set into the formula $$\phi $$ ϕ . We analyze various aspects regarding the strength of our procedure. As one application, interpreting an iterated application of our procedure as a hierarchy, our findings simplify, improve, and extend previous results by Bienstock and Zuckerberg on covering problems.
Author Huynh, Tony
Fiorini, Samuel
Weltge, Stefan
Author_xml – sequence: 1
  givenname: Samuel
  surname: Fiorini
  fullname: Fiorini, Samuel
  organization: Université libre de Bruxelles
– sequence: 2
  givenname: Tony
  surname: Huynh
  fullname: Huynh, Tony
  organization: Monash University
– sequence: 3
  givenname: Stefan
  surname: Weltge
  fullname: Weltge, Stefan
  email: weltge@tum.de
  organization: Technical University of Munich
BookMark eNp9kUtvFDEQhC0URDaBP8BpJC5cnLTf3gsSrIAgReJA7pbt6dlMNGsHeyaPf4-TjUDkkFMf_FV1ueuIHKSckJD3DE4YgDmtDBgYChwoMCU5vX1FVkwKTaWW-oCsALiiSjM4JEe1XgEAE9a-IYdCGqOVkCuy-TUXTNv5EtOYtl3M6QbvuoKTv_PzmFPt8tDBKaMV59ot9QH6kvOEPnVDLrtl8vUteT34qeK7p3lMLr59vdic0fOf339sPp_TqJiZqbSyH4LoAw5BCtMHjyoY1WsFEH3odbTaWIV8jaqP6EMYGFcoddQ8rpU4Jp_2ttdL2GEj0lz85K7LuPPl3mU_uv9f0njptvnGWaWgHaQZfHwyKPn3gnV2u7FGnCafMC_VcbU2ljMmTEM_PEOv8lJS-12jLAjJpOSN4nsqllxrweFvGAbuoSK3r8i1itxjRe62iewzURznx1u30OP0slTspbXtSVss_1K9oPoD-HSoRQ
CitedBy_id crossref_primary_10_1016_j_orl_2024_107156
crossref_primary_10_1109_LCSYS_2025_3585953
crossref_primary_10_1007_s10107_021_01705_3
Cites_doi 10.1007/978-3-319-33461-5_25
10.1007/978-3-319-59250-3_33
10.1287/moor.2017.0880
10.1016/j.ipl.2005.09.008
10.1109/FOCS.2015.73
10.1137/0403036
10.1137/0801013
10.1016/S0167-6377(98)00025-X
10.1007/978-3-642-15369-3_28
10.1007/11830924_38
10.1007/3-540-45535-3_23
10.1007/s10107-017-1134-7
10.1109/FOCS.2016.67
10.1145/3127497
10.1016/S0167-5060(08)70342-X
10.1016/0012-365X(73)90167-2
10.1007/s004930050057
10.1007/s10107-012-0574-3
10.1016/0020-0190(83)90011-X
10.1137/S1052623402420346
10.1145/2716307
10.1137/0403021
10.1137/1.9781611975031.53
10.1137/1.9781611974782.153
10.1145/146637.146684
10.1007/s10107-005-0598-z
10.1016/j.ipl.2012.02.009
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1007/s10107-020-01542-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Computer and Information Systems Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 482
ExternalDocumentID PMC8550646
10_1007_s10107_020_01542_w
GrantInformation_xml – fundername: European Research Council
  grantid: 615640-ForEFront
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: National Science Foundation
  grantid: CCF-1740425
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: ;
  grantid: 615640-ForEFront
– fundername: ;
  grantid: CCF-1740425
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c517t-484dfb3dbefb437dbae5b75d6500cabd6c86785e29e5dceabbf125e46c62c953
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548756000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Tue Nov 04 01:48:19 EST 2025
Fri Sep 05 07:25:49 EDT 2025
Thu Sep 25 00:52:26 EDT 2025
Sat Nov 29 03:34:02 EST 2025
Tue Nov 18 20:53:24 EST 2025
Fri Feb 21 02:47:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90Cxx
68Q06
52Bxx
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-484dfb3dbefb437dbae5b75d6500cabd6c86785e29e5dceabbf125e46c62c953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s10107-020-01542-w
PMID 34776534
PQID 2580341442
PQPubID 25307
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550646
proquest_miscellaneous_2597821137
proquest_journals_2580341442
crossref_primary_10_1007_s10107_020_01542_w
crossref_citationtrail_10_1007_s10107_020_01542_w
springer_journals_10_1007_s10107_020_01542_w
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BienstockDZuckerbergMSubset algebra lift operators for 0–1 integer programmingSIAM J. Optim.20041516395211297610.1137/S1052623402420346MR 2112976
Singh, M., Talwar, K.: Improving integrality gaps via Chvátal-Gomory rounding. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pp. 366–379 (2010)
WegenerIRelating monotone formula size and monotone depth of Boolean functionsInf. Process. Lett.1983161414269400810.1016/0020-0190(83)90011-X
Benchetrit, Y., Fiorini, S., Huynh, T., Weltge, S.: Characterizing Polytopes Contained in the 0/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0/1$$\end{document}-Cube with Bounded Chvátal-Gomory Rank. Mathematics of Operations Research (2018)
Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM 64, no. 6, Art. 41, 19 (2017). MR 3713797
Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. In: Proc. FOCS 2016, (2016)
Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree augmentation via Chvátal-Gomory cuts. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 817–831. SIAM, Philadelphia, PA (2018). MR 3775841
RazRWigdersonAviMonotone circuits for matching require linear depthJ. Assoc. Comput. Mach.1992393736744117796010.1145/146637.146684MR 1177960
Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority function. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and 10th International Workshop on Randomization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006, Proceedings, pp. 410–425 (2006)
Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003, Paths, flows, matchings, Chapters 1–38. MR 1956924 (2004b:90004a)
RothvoßTSome 0/1 polytopes need exponential size extended formulationsMath. Program. A2013142255268312707410.1007/s10107-012-0574-3
LovászLSchrijverACones of matrices and set-functions and 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document}-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} optimizationSIAM J. Optim.199112166190109842510.1137/0801013MR 1098425
Averkov, G., Kaibel, V., Weltge, S.: Maximum semidefinite and linear extension complexity of families of polytopes. Math. Program. 167(2), Ser. A, pp. 381–394 (2018). MR 3755737
Mastrolilli, M: High degree sum of squares proofs, Bienstock-Zuckerberg hierarchy and CG cuts. In: Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pp. 405–416 (2017)
Lasserre, J. B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. Integer programming and combinatorial optimization (Utrecht, 2001), Lecture Notes in Comput. Sci., vol. 2081, pp. 293–303. Springer, Berlin (2001). MR 2041934
Bazzi, A., Fiorini, S., Huang, S., Svensson, O.: Small extended formulation for knapsack cover inequalities from monotone circuits. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms 2017, (2017)
EisenbrandFOn the membership problem for the elementary closure of a polyhedronCombinatorica1999192297300172304510.1007/s004930050057
Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approximates vertex cover within a factor 2–e. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1123–1142 (2015)
Cornuéjols, G., Lee, D.: On some polytopes contained in the 0,1 hypercube that have a small Chvátal rank. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 300–311. Springer (2016)
SheraliHDAdamsWPA hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problemsSIAM J. Discrete Math.199033411430106198110.1137/0403036MR 1061981
KlabjanDNemhauserGLToveyCThe complexity of cover inequality separationOper. Res. Lett.1998233540166424110.1016/S0167-6377(98)00025-X
ChvátalVEdmonds polytopes and a hierarchy of combinatorial problemsDiscrete Math.1973430533731308010.1016/0012-365X(73)90167-2MR 0313080
Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979). Discrete optimization (Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications, Banff, Alta., 1977), II. MR 558566
HrubešPavelOn the nonnegative rank of distance matricesInf. Process. Lett.201211211457461290514810.1016/j.ipl.2012.02.009MR 2905148
KarchmerMWigdersonAMonotone circuits for connectivity require super-logarithmic depthSIAM J. Discrete Math.19903255265103929610.1137/0403021
Weltge, S.: Sizes of linear descriptions in combinatorial optimization. dissertation, Otto-von-Guericke-Universität Magdeburg, (2016)
BienstockDZuckerbergMApproximate fixed-rank closures of covering problemsMath. Program. Ser. A2006105927218592610.1007/s10107-005-0598-z
BeimelAWeinrebEMonotone circuits for monotone weighted threshold functionsInf. Process. Lett.20069711218218406710.1016/j.ipl.2005.09.008
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H. R., de Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62(2), 1–23 (2015)
Bienstock, D., Zuckerberg, M.: Simpler derivation of bounded pitch inequalities for set covering, and minimum knapsack sets, arXiv:1806.07435 (2018)
1542_CR20
1542_CR22
1542_CR25
F Eisenbrand (1542_CR12) 1999; 19
D Klabjan (1542_CR19) 1998; 23
T Rothvoß (1542_CR24) 2013; 142
Pavel Hrubeš (1542_CR17) 2012; 112
D Bienstock (1542_CR8) 2006; 105
1542_CR26
V Chvátal (1542_CR10) 1973; 4
1542_CR28
1542_CR9
1542_CR30
I Wegener (1542_CR29) 1983; 16
1542_CR4
1542_CR11
L Lovász (1542_CR21) 1991; 1
1542_CR6
1542_CR13
1542_CR14
R Raz (1542_CR23) 1992; 39
1542_CR1
1542_CR2
1542_CR3
A Beimel (1542_CR5) 2006; 97
D Bienstock (1542_CR7) 2004; 15
1542_CR15
1542_CR16
M Karchmer (1542_CR18) 1990; 3
HD Sherali (1542_CR27) 1990; 3
References_xml – reference: Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003, Paths, flows, matchings, Chapters 1–38. MR 1956924 (2004b:90004a)
– reference: SheraliHDAdamsWPA hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problemsSIAM J. Discrete Math.199033411430106198110.1137/0403036MR 1061981
– reference: KlabjanDNemhauserGLToveyCThe complexity of cover inequality separationOper. Res. Lett.1998233540166424110.1016/S0167-6377(98)00025-X
– reference: BeimelAWeinrebEMonotone circuits for monotone weighted threshold functionsInf. Process. Lett.20069711218218406710.1016/j.ipl.2005.09.008
– reference: Singh, M., Talwar, K.: Improving integrality gaps via Chvátal-Gomory rounding. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pp. 366–379 (2010)
– reference: ChvátalVEdmonds polytopes and a hierarchy of combinatorial problemsDiscrete Math.1973430533731308010.1016/0012-365X(73)90167-2MR 0313080
– reference: Mastrolilli, M: High degree sum of squares proofs, Bienstock-Zuckerberg hierarchy and CG cuts. In: Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pp. 405–416 (2017)
– reference: WegenerIRelating monotone formula size and monotone depth of Boolean functionsInf. Process. Lett.1983161414269400810.1016/0020-0190(83)90011-X
– reference: Weltge, S.: Sizes of linear descriptions in combinatorial optimization. dissertation, Otto-von-Guericke-Universität Magdeburg, (2016)
– reference: BienstockDZuckerbergMApproximate fixed-rank closures of covering problemsMath. Program. Ser. A2006105927218592610.1007/s10107-005-0598-z
– reference: EisenbrandFOn the membership problem for the elementary closure of a polyhedronCombinatorica1999192297300172304510.1007/s004930050057
– reference: Averkov, G., Kaibel, V., Weltge, S.: Maximum semidefinite and linear extension complexity of families of polytopes. Math. Program. 167(2), Ser. A, pp. 381–394 (2018). MR 3755737
– reference: Cornuéjols, G., Lee, D.: On some polytopes contained in the 0,1 hypercube that have a small Chvátal rank. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 300–311. Springer (2016)
– reference: Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979). Discrete optimization (Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications, Banff, Alta., 1977), II. MR 558566
– reference: Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree augmentation via Chvátal-Gomory cuts. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 817–831. SIAM, Philadelphia, PA (2018). MR 3775841
– reference: Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. In: Proc. FOCS 2016, (2016)
– reference: Bazzi, A., Fiorini, S., Huang, S., Svensson, O.: Small extended formulation for knapsack cover inequalities from monotone circuits. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms 2017, (2017)
– reference: BienstockDZuckerbergMSubset algebra lift operators for 0–1 integer programmingSIAM J. Optim.20041516395211297610.1137/S1052623402420346MR 2112976
– reference: Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approximates vertex cover within a factor 2–e. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1123–1142 (2015)
– reference: Bienstock, D., Zuckerberg, M.: Simpler derivation of bounded pitch inequalities for set covering, and minimum knapsack sets, arXiv:1806.07435 (2018)
– reference: RazRWigdersonAviMonotone circuits for matching require linear depthJ. Assoc. Comput. Mach.1992393736744117796010.1145/146637.146684MR 1177960
– reference: LovászLSchrijverACones of matrices and set-functions and 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document}-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} optimizationSIAM J. Optim.199112166190109842510.1137/0801013MR 1098425
– reference: KarchmerMWigdersonAMonotone circuits for connectivity require super-logarithmic depthSIAM J. Discrete Math.19903255265103929610.1137/0403021
– reference: Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority function. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and 10th International Workshop on Randomization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006, Proceedings, pp. 410–425 (2006)
– reference: Benchetrit, Y., Fiorini, S., Huynh, T., Weltge, S.: Characterizing Polytopes Contained in the 0/1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0/1$$\end{document}-Cube with Bounded Chvátal-Gomory Rank. Mathematics of Operations Research (2018)
– reference: Lasserre, J. B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. Integer programming and combinatorial optimization (Utrecht, 2001), Lecture Notes in Comput. Sci., vol. 2081, pp. 293–303. Springer, Berlin (2001). MR 2041934
– reference: HrubešPavelOn the nonnegative rank of distance matricesInf. Process. Lett.201211211457461290514810.1016/j.ipl.2012.02.009MR 2905148
– reference: Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM 64, no. 6, Art. 41, 19 (2017). MR 3713797
– reference: Fiorini, S., Massar, S., Pokutta, S., Tiwary, H. R., de Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62(2), 1–23 (2015)
– reference: RothvoßTSome 0/1 polytopes need exponential size extended formulationsMath. Program. A2013142255268312707410.1007/s10107-012-0574-3
– ident: 1542_CR11
  doi: 10.1007/978-3-319-33461-5_25
– ident: 1542_CR22
  doi: 10.1007/978-3-319-59250-3_33
– ident: 1542_CR6
  doi: 10.1287/moor.2017.0880
– ident: 1542_CR30
– volume: 97
  start-page: 12
  issue: 1
  year: 2006
  ident: 1542_CR5
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.09.008
– ident: 1542_CR4
  doi: 10.1109/FOCS.2015.73
– ident: 1542_CR9
– volume: 3
  start-page: 411
  issue: 3
  year: 1990
  ident: 1542_CR27
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403036
– volume: 1
  start-page: 166
  issue: 2
  year: 1991
  ident: 1542_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/0801013
– volume: 23
  start-page: 35
  year: 1998
  ident: 1542_CR19
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(98)00025-X
– ident: 1542_CR28
  doi: 10.1007/978-3-642-15369-3_28
– ident: 1542_CR16
  doi: 10.1007/11830924_38
– ident: 1542_CR20
  doi: 10.1007/3-540-45535-3_23
– ident: 1542_CR1
  doi: 10.1007/s10107-017-1134-7
– ident: 1542_CR15
  doi: 10.1109/FOCS.2016.67
– ident: 1542_CR25
  doi: 10.1145/3127497
– ident: 1542_CR2
  doi: 10.1016/S0167-5060(08)70342-X
– volume: 4
  start-page: 305
  year: 1973
  ident: 1542_CR10
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(73)90167-2
– volume: 19
  start-page: 297
  issue: 2
  year: 1999
  ident: 1542_CR12
  publication-title: Combinatorica
  doi: 10.1007/s004930050057
– volume: 142
  start-page: 255
  year: 2013
  ident: 1542_CR24
  publication-title: Math. Program. A
  doi: 10.1007/s10107-012-0574-3
– volume: 16
  start-page: 41
  issue: 1
  year: 1983
  ident: 1542_CR29
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(83)90011-X
– volume: 15
  start-page: 63
  issue: 1
  year: 2004
  ident: 1542_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402420346
– ident: 1542_CR14
  doi: 10.1145/2716307
– volume: 3
  start-page: 255
  year: 1990
  ident: 1542_CR18
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0403021
– ident: 1542_CR13
  doi: 10.1137/1.9781611975031.53
– ident: 1542_CR3
  doi: 10.1137/1.9781611974782.153
– volume: 39
  start-page: 736
  issue: 3
  year: 1992
  ident: 1542_CR23
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/146637.146684
– volume: 105
  start-page: 9
  year: 2006
  ident: 1542_CR8
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-005-0598-z
– volume: 112
  start-page: 457
  issue: 11
  year: 2012
  ident: 1542_CR17
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2012.02.009
– ident: 1542_CR26
SSID ssj0001388
Score 2.3844898
Snippet In convex integer programming, various procedures have been developed to strengthen convex relaxations of sets of integer points. On the one hand, there exist...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 467
SubjectTerms Boolean
Boolean algebra
Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Combinatorics
Full Length Paper
Hierarchies
Integer programming
Linear programming
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Theoretical
Title Strengthening convex relaxations of 0/1-sets using Boolean formulas
URI https://link.springer.com/article/10.1007/s10107-020-01542-w
https://www.proquest.com/docview/2580341442
https://www.proquest.com/docview/2597821137
https://pubmed.ncbi.nlm.nih.gov/PMC8550646
Volume 190
WOSCitedRecordID wos000548756000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6KE9UCitGrogI3GjUTeOHTvHdgXiAqrKCu0tchyHIqGk2mRZfj4z2SS7i0oleoz8isaP-eyZ-QbgJA_yWOUZ94dOCV8IS-dgKH2pXBzEmVBKL5JNqKsrPZnEP9ugsKrzdu9Mks1JvRLsFtCzGidHKim4P9-EbVR3mhI2_Lq-6c_fINS6S9RK6KANlfl7H-vqaIkxn3tIPjOTNtrn_P3__fcu7LRok31fLI892HDFB3i3wkGIX5c9cWu1DyOyUhe3RImApazxSX9kFPDyuHjaY2XOht8Cv3J1xchp_pb9KMt7ZwpG8HeGYPwjjM_PxqMLv82z4FsZqNoXWmR5Gmapy1MRqiw1TqZKZgjehtakWWQ1qjTpeOwkSsSkaY6wyInIRtzGMvwEW0VZuM_AlMnw_qWwldbCDJ3RIkbAYINcGI6dexB00k5sy0FOqTDukyV7MkkrQWkljbSSuQenfZs_CwaOf9YedJOYtLuxSrjE9Sfw6sg9OO6LcR-RccQUrpxRHbxP4204VB6otcnvRyUm7vWS4u53w8hNrHCRiDz42i2B5eAv_-vB66p_gbecHGqaQMgBbNXTmTuEN_ahvqumR7CpJvqo2QlPCncDjg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQGo58Cqo4VFcqbcSsXHs2DkCAlEBK9SuELfIcRxAQklFdgs_n5lskmURRSrHyK9o_JjPnplvAL7nQR6rPON-zynhC2HpHAylL5WLgzgTSulxsgnV7-urq_iiCQqrWm_31iRZn9TPgt0Celbj5EglBfcfPsCcQI1FjPm_fl92528Qat0maiV00ITKvN7HtDqaYMyXHpIvzKS19jleet9_L8NigzbZ_nh5rMCMK1Zh4RkHIX6dd8St1Wc4JCt1cU2UCFjKap_0R0YBL4_jpz1W5qy3F_iVG1aMnOav2UFZ3jlTMIK_IwTjazA4PhocnvhNngXfykANfaFFlqdhlro8FaHKUuNkqmSG4K1nTZpFVqNKk47HTqJETJrmCIuciGzEbSzDdZgtysJ9AaZMhvcvha20FqbnjBYxAgYb5MJw7NyDoJV2YhsOckqFcZdM2JNJWglKK6mllTx48KNr82fMwPFm7a12EpNmN1YJl7j-BF4duQffumLcR2QcMYUrR1QH79N4Gw6VB2pq8rtRiYl7uqS4vakZuYkVLhKRB7vtEpgM_u9_3fi_6jvw8WRwfpac_eyfbsInTs41dVDkFswO70duG-bt3-Ftdf-13g9PH0MFig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOvBGBAkbiBtFuHDt2jlBYgYBVJSrUW-T4USpVSdVkaX8-M3ntbgVIiGPkVzIZ2994Zj4DvApJyFVwPJ57JWIhLK2DqYyl8nmSO6GU7i-bUMulPjzM9zey-Lto99El2ec0EEtT1c5OXZhtJL4ldMTGKahKCh6fX4VrggLpyV7_9n1ai5NU6_HSVkIKQ9rM7_vY3prWePNytOQll2m3Ey3u_P833IXbAwplb3u1uQdXfHUfbm1wE-LT14nQtXkAe-S9ro6IKgFLWRerfsEoEeaiP_JjdWDzWRI3vm0YBdMfsXd1feJNxQgWrxCkP4SDxYeDvY_xcP9CbGWi2lho4UKZutKHUqTKlcbLUkmHoG5uTekyq3Grk57nXqJ0TFkGhEteZDbjNpfpI9ip6so_BqaMQ7tMYSuthZl7o0WOQMImQRiOnUeQjJIv7MBNTldknBRrVmWSVoHSKjppFecRvJ7anPbMHH-tvTv-0GKYpU3BJeqlQJOSR_ByKsb5RU4TU_l6RXXQzkYrOVURqC1FmEYlhu7tkur4R8fUTWxxmcgieDOqw3rwP7_rk3-r_gJu7L9fFF8-LT8_hZucYm66XMld2GnPVv4ZXLc_2-Pm7Hk3NX4BHDsObg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strengthening+convex+relaxations+of+0%2F1-sets+using+Boolean+formulas&rft.jtitle=Mathematical+programming&rft.au=Fiorini%2C+Samuel&rft.au=Huynh%2C+Tony&rft.au=Weltge%2C+Stefan&rft.date=2021-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=190&rft.issue=1-2&rft.spage=467&rft.epage=482&rft_id=info:doi/10.1007%2Fs10107-020-01542-w&rft.externalDocID=10_1007_s10107_020_01542_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon