Causal connections between socioeconomic disparities and COVID-19 in the USA
With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game the...
Uložené v:
| Vydané v: | Scientific reports Ročník 12; číslo 1; s. 15827 - 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
22.09.2022
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with
do
calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model. |
|---|---|
| AbstractList | Abstract With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model. With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model. With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model. With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model.With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model. |
| ArticleNumber | 15827 |
| Author | Banerjee, Tannista Strümke, Inga Paul, Ayan Srikanth, Vishak |
| Author_xml | – sequence: 1 givenname: Tannista surname: Banerjee fullname: Banerjee, Tannista organization: Department of Economics, Auburn University – sequence: 2 givenname: Ayan surname: Paul fullname: Paul, Ayan email: ayan.paul@desy.de organization: DESY, Institut für Physik, Humboldt-Universität zu Berlin – sequence: 3 givenname: Vishak surname: Srikanth fullname: Srikanth, Vishak organization: BASIS Independent Silicon Valley, Stanford Online High School – sequence: 4 givenname: Inga surname: Strümke fullname: Strümke, Inga organization: Department of Engineering Cybernetics, NTNU, Department of Holistic Systems, SimulaMet |
| BookMark | eNp9kktv1DAUhS1UREvpH2AViQ2bgN-xN0jV8BpppC4obC3Hvpl6lLEHOyni3-NpiqBd1Bu_vnOuH-clOokpAkKvCX5HMFPvCydCqxZT2hLVUdHyZ-iMYi5ayig9-W98ii5K2eHaBNWc6BfolEnCFMHyDG1Wdi52bFyKEdwUUixND9MvgNiU5EKCupP2wTU-lIPNYQpQGht9s7r6sf7YEt2E2Ew30Hz_dvkKPR_sWODivj9H158_Xa--tpurL-vV5aZ1gnRTy6lQknWsGyzzfecpJlgoUN5a5rDUvcDALFbc9z0ZvBs8tl7SOgOoMnaO1outT3ZnDjnsbf5tkg3mbiHlrbF5Cm4EQ60XciBdPyjJtdVq8FxKL7BynhBsq9eHxesw93vwDuKU7fjA9OFODDdmm26N5lprRqvB23uDnH7OUCazD8XBONoIaS6GdqSTqhOSV_TNI3SX5hzrSx0pqbDmQlVKLZTLqZQMg3FhssefqfXDaAg2xwCYJQCmBsDcBcAcC9BH0r_3eFLEFlGpcNxC_neqJ1R_AIX3wsM |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2025_109345 crossref_primary_10_3390_machines11020199 crossref_primary_10_1016_j_comcom_2023_04_026 crossref_primary_10_1186_s12982_024_00242_6 crossref_primary_10_3390_life14070783 crossref_primary_10_1177_14738716241277559 crossref_primary_10_3390_app13042038 crossref_primary_10_1007_s43762_025_00172_2 crossref_primary_10_1371_journal_pdig_0000327 |
| Cites_doi | 10.1111/irel.12018 10.1016/j.healthplace.2016.09.004 10.3201/eid0204.960402 10.1088/2632-072X/ac0fc7 10.1016/S1473-3099(20)30120-1 10.1111/j.0034-6586.2004.00112.x 10.1016/j.jpubeco.2007.10.005 10.1086/700896 10.1111/j.1540-6237.2010.00724.x 10.1016/j.annepidem.2020.05.003 10.1111/0735-2166.00002 10.1016/j.annepidem.2020.08.012 10.1111/0002-9092.00159 10.1006/juec.1997.2070 10.1007/BF01769885 10.1080/10511482.1993.9521135 10.1007/s00148-020-00778-2 10.1214/12-EJS710 10.1001/jama.2020.11374 10.1001/jama.2020.6548 10.1080/13557858.2020.1853067 10.1371/journal.pone.0237277 10.1073/pnas.2009412117 10.5034/inquiryjrnl_38.1.6 10.1111/rsp3.12087 10.1093/biomet/82.4.669 10.1056/NEJMp2021971 10.1016/j.artint.2021.103502 10.1111/j.1468-2257.1997.tb00768.x 10.1371/journal.pone.0012763 10.1016/S0140-6736(20)30922-3 10.1089/bsp.2014.0032 10.1038/s42256-019-0138-9 10.1007/s40615-020-00756-0 10.2307/2657450 10.1109/SP.2016.42 10.17226/12875 10.1145/2939672.2939778 10.4324/9781351045957 10.25336/P69S3V 10.15585/mmwr.mm6929a1 10.1515/9781400881970-018 10.1001/jama.1990.03440170066038 10.1542/peds.2020-009951 10.15585/mmwr.mm6933e1 10.1101/2020.04.15.20066068 10.2139/ssrn.3573637 10.1145/2939672.2939785 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-18725-4 |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_2ad56f17bf8649a98fd466d508cd110a PMC9499932 10_1038_s41598_022_18725_4 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Volkswagen Foundation grantid: 99091 funderid: http://dx.doi.org/10.13039/501100001663 – fundername: Deutsches Elektronen-Synchrotron (DESY) (4201) – fundername: ; – fundername: ; grantid: 99091 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c517t-425863737fa3db7d201058e8daa3c069b50e3a084dbb1fdcfd0ad62dbbee3733 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859183800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:35:23 EST 2025 Tue Nov 04 02:07:09 EST 2025 Sun Nov 09 14:44:11 EST 2025 Tue Oct 07 07:44:04 EDT 2025 Tue Nov 18 20:58:51 EST 2025 Sat Nov 29 02:07:11 EST 2025 Fri Feb 21 02:36:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-425863737fa3db7d201058e8daa3c069b50e3a084dbb1fdcfd0ad62dbbee3733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/2ad56f17bf8649a98fd466d508cd110a |
| PMID | 36138106 |
| PQID | 2716809458 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2ad56f17bf8649a98fd466d508cd110a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9499932 proquest_miscellaneous_2717687564 proquest_journals_2716809458 crossref_citationtrail_10_1038_s41598_022_18725_4 crossref_primary_10_1038_s41598_022_18725_4 springer_journals_10_1038_s41598_022_18725_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-22 |
| PublicationDateYYYYMMDD | 2022-09-22 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Quinn, Kumar (CR18) 2014; 12 Paul, Englert, Varga (CR23) 2021 Dong, Du, Gardner (CR47) 2020; 20 Adelman, Jaret (CR40) 1999; 21 Aas, Jullum, Løland (CR26) 2021; 298 Steiger, Mussgnug, Kroll (CR30) 2021; 16 Khanijahani (CR7) 2021; 26 CR31 Qiu, Chen, Shi (CR13) 2020; 33 Ransome, Kawachi, Braunstein, Nash (CR15) 2016; 42 Young (CR50) 1985; 14 Farmer (CR16) 1996; 2 Chastain (CR3) 2020; 383 CR4 Levernier, Partridge, Rickman (CR38) 1998; 44 Huettner, Sunder (CR51) 2012; 6 Mills, Hazarika (CR32) 2001; 83 Pearl (CR57) 1995; 82 CR49 Charles, Hurst, Schwartz (CR33) 2019; 33 CR48 CR45 Levinson, Kumar (CR44) 1997; 28 CR43 Mahalanobis (CR54) 1936; 2 Weill, Stigler, Deschenes, Springborn (CR12) 2020; 117 Lambert, Mattson, Dorriere (CR34) 2017; 9 Nielsen, Alderson (CR39) 1997; 62 CR19 Kasarda (CR42) 1993; 4 CR59 CR14 CR58 CR56 DiMaggio, Klein, Berry, Frangos (CR6) 2020; 51 CR11 CR55 CR10 CR53 CR52 Martinez (CR5) 2020; 324 Ono, Sullivan (CR46) 2013; 52 Rothwell, Massey (CR41) 2010; 91 Finkelstein, McKnight (CR36) 2008; 92 DeFina (CR35) 2004; 50 Yancy (CR2) 2020; 323 Laurencin, McClinton (CR9) 2020; 7 CR29 CR28 CR27 CR25 CR24 Pareek (CR8) 2020; 395 CR22 CR21 CR20 CR60 Lundberg (CR61) 2020; 2 Hosseini, Sokolow, Vandegrift, Kilpatrick, Daszak (CR17) 2010; 5 Cunningham, Ginsburg (CR37) 2001; 38 Millett (CR1) 2020; 47 GA Millett (18725_CR1) 2020; 47 F Nielsen (18725_CR39) 1997; 62 18725_CR43 DM Levinson (18725_CR44) 1997; 28 A Khanijahani (18725_CR7) 2021; 26 18725_CR48 HP Young (18725_CR50) 1985; 14 18725_CR45 C DiMaggio (18725_CR6) 2020; 51 Y Qiu (18725_CR13) 2020; 33 RM Adelman (18725_CR40) 1999; 21 18725_CR4 Y Ono (18725_CR46) 2013; 52 W Levernier (18725_CR38) 1998; 44 Y Ransome (18725_CR15) 2016; 42 KK Charles (18725_CR33) 2019; 33 18725_CR29 CW Yancy (18725_CR2) 2020; 323 18725_CR27 PJ Cunningham (18725_CR37) 2001; 38 18725_CR28 A Paul (18725_CR23) 2021 SM Lundberg (18725_CR61) 2020; 2 18725_CR31 B Mills (18725_CR32) 2001; 83 JD Kasarda (18725_CR42) 1993; 4 JA Weill (18725_CR12) 2020; 117 E Steiger (18725_CR30) 2021; 16 M Pareek (18725_CR8) 2020; 395 JT Rothwell (18725_CR41) 2010; 91 18725_CR19 CT Laurencin (18725_CR9) 2020; 7 18725_CR21 18725_CR22 J Pearl (18725_CR57) 1995; 82 18725_CR20 18725_CR25 RH DeFina (18725_CR35) 2004; 50 18725_CR24 K Aas (18725_CR26) 2021; 298 TE Lambert (18725_CR34) 2017; 9 18725_CR60 P Hosseini (18725_CR17) 2010; 5 DB Chastain (18725_CR3) 2020; 383 18725_CR49 DA Martinez (18725_CR5) 2020; 324 A Finkelstein (18725_CR36) 2008; 92 18725_CR10 18725_CR11 E Dong (18725_CR47) 2020; 20 18725_CR55 18725_CR52 18725_CR53 18725_CR14 18725_CR58 18725_CR59 18725_CR56 P Farmer (18725_CR16) 1996; 2 PC Mahalanobis (18725_CR54) 1936; 2 F Huettner (18725_CR51) 2012; 6 SC Quinn (18725_CR18) 2014; 12 |
| References_xml | – ident: CR45 – volume: 52 start-page: 419 year: 2013 end-page: 443 ident: CR46 article-title: Manufacturing Plants’ Use of Temporary Workers: An Analysis Using Census Microdata publication-title: Ind. Relat. J. Econ. Soc. doi: 10.1111/irel.12018 – ident: CR22 – volume: 42 start-page: 148 year: 2016 end-page: 158 ident: CR15 article-title: Structural inequalities drive late HIV diagnosis: The role of black racial concentration, income inequality, socioeconomic deprivation, and HIV testing publication-title: Health Place doi: 10.1016/j.healthplace.2016.09.004 – ident: CR49 – volume: 2 start-page: 259 year: 1996 end-page: 269 ident: CR16 article-title: Social inequalities and emerging infectious diseases publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0204.960402 – ident: CR4 – year: 2021 ident: CR23 article-title: Socio-economic disparities and COVID-19 in the USA publication-title: J. Phys. Complex. doi: 10.1088/2632-072X/ac0fc7 – volume: 20 start-page: 533 year: 2020 end-page: 534 ident: CR47 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – volume: 50 start-page: 69 year: 2004 end-page: 85 ident: CR35 article-title: The impacts of unemployment on alternative poverty rates publication-title: Rev. Income Wealth doi: 10.1111/j.0034-6586.2004.00112.x – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: CR54 article-title: On the generalized distance in statistics publication-title: Proc. Natl. Inst. Sci. (Calcutta) – ident: CR29 – volume: 92 start-page: 1644 year: 2008 end-page: 1668 ident: CR36 article-title: What did Medicare do? The initial impact of Medicare on mortality and out of pocket medical spending publication-title: J. Public Econ. doi: 10.1016/j.jpubeco.2007.10.005 – ident: CR58 – ident: CR25 – volume: 33 start-page: 307 year: 2019 end-page: 372 ident: CR33 article-title: The transformation of manufacturing and the decline in US employment publication-title: NBER Macroecon. Annu. doi: 10.1086/700896 – volume: 91 start-page: 1123 year: 2010 end-page: 1143 ident: CR41 article-title: Density zoning and class segregation in U.S. metropolitan areas publication-title: Soc. Sci. Q. doi: 10.1111/j.1540-6237.2010.00724.x – volume: 47 start-page: 37 year: 2020 end-page: 44 ident: CR1 article-title: Assessing differential impacts of COVID-19 on black communities publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2020.05.003 – ident: CR21 – ident: CR19 – volume: 21 start-page: 35 year: 1999 end-page: 56 ident: CR40 article-title: Poverty, race, and US metropolitan social and economic structure publication-title: J. Urban Affairs doi: 10.1111/0735-2166.00002 – ident: CR11 – ident: CR60 – volume: 51 start-page: 7 year: 2020 end-page: 13 ident: CR6 article-title: Black/African American communities are at highest risk of COVID-19: Spatial modeling of New York City ZIP Code-level testing results publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2020.08.012 – volume: 83 start-page: 329 year: 2001 end-page: 340 ident: CR32 article-title: The migration of young adults from non-metropolitan counties publication-title: Am. J. Agric. Econ. doi: 10.1111/0002-9092.00159 – volume: 44 start-page: 272 year: 1998 end-page: 290 ident: CR38 article-title: Differences in metropolitan and nonmetropolitan U.S. family income inequality: A cross-county comparison publication-title: J. Urban Econ. doi: 10.1006/juec.1997.2070 – volume: 14 start-page: 65 year: 1985 end-page: 72 ident: CR50 article-title: Monotonic solutions of cooperative games publication-title: Int. J. Game Theory doi: 10.1007/BF01769885 – volume: 4 start-page: 253 year: 1993 end-page: 302 ident: CR42 article-title: Inner-city concentrated poverty and neighborhood distress: 1970 to 1990 publication-title: Housing Policy Debate doi: 10.1080/10511482.1993.9521135 – volume: 33 start-page: 1127 year: 2020 end-page: 1172 ident: CR13 article-title: Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China publication-title: J. Popul. Econ. doi: 10.1007/s00148-020-00778-2 – volume: 6 start-page: 1239 year: 2012 end-page: 1250 ident: CR51 article-title: Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values publication-title: Electron. J. Stat. doi: 10.1214/12-EJS710 – volume: 324 start-page: 392 year: 2020 end-page: 395 ident: CR5 article-title: SARS-CoV-2 positivity rate for Latinos in the Baltimore-Washington, DC Region publication-title: JAMA doi: 10.1001/jama.2020.11374 – ident: CR43 – volume: 323 start-page: 1891 year: 2020 end-page: 1892 ident: CR2 article-title: COVID-19 and African Americans publication-title: JAMA doi: 10.1001/jama.2020.6548 – volume: 26 start-page: 22 year: 2021 end-page: 35 ident: CR7 article-title: Racial, ethnic, and socioeconomic disparities in confirmed COVID-19 cases and deaths in the United States: A county-level analysis as of November 2020 publication-title: Ethnic. Health doi: 10.1080/13557858.2020.1853067 – volume: 16 start-page: 1 year: 2021 end-page: 22 ident: CR30 article-title: Causal graph analysis of COVID-19 observational data in German districts reveals effects of determining factors on reported case numbers publication-title: PLOS ONE doi: 10.1371/journal.pone.0237277 – volume: 117 start-page: 19658 year: 2020 end-page: 19660 ident: CR12 article-title: Social distancing responses to COVID-19 emergency declarations strongly differentiated by income publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2009412117 – ident: CR14 – ident: CR53 – volume: 38 start-page: 6 year: 2001 end-page: 21 ident: CR37 article-title: What accounts for differences in uninsurance rates across communities? publication-title: INQUIRY J. Health Care Organ. Provis. Financ. doi: 10.5034/inquiryjrnl_38.1.6 – ident: CR10 – ident: CR56 – ident: CR27 – volume: 9 start-page: 25 year: 2017 end-page: 37 ident: CR34 article-title: The impact of growth and innovation clusters on unemployment in US metro regions publication-title: Region. Sci. Policy Pract. doi: 10.1111/rsp3.12087 – volume: 82 start-page: 669 year: 1995 end-page: 688 ident: CR57 article-title: Causal diagrams for empirical research publication-title: Biometrika doi: 10.1093/biomet/82.4.669 – volume: 383 start-page: e59 year: 2020 ident: CR3 article-title: Racial disproportionality in Covid clinical trials publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp2021971 – volume: 298 start-page: 103502 year: 2021 ident: CR26 article-title: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103502 – volume: 28 start-page: 147 year: 1997 end-page: 172 ident: CR44 article-title: Density and the journey to work publication-title: Growth Change doi: 10.1111/j.1468-2257.1997.tb00768.x – ident: CR48 – volume: 5 start-page: 1 year: 2010 end-page: 8 ident: CR17 article-title: Predictive power of air travel and socio-economic data for early pandemic spread publication-title: PLOS ONE doi: 10.1371/journal.pone.0012763 – volume: 395 start-page: 1421 year: 2020 end-page: 1422 ident: CR8 article-title: Ethnicity and COVID-19: An urgent public health research priority publication-title: Lancet doi: 10.1016/S0140-6736(20)30922-3 – ident: CR52 – ident: CR31 – volume: 12 start-page: 263 year: 2014 end-page: 273 ident: CR18 article-title: Health inequalities and infectious disease epidemics: A challenge for global health security publication-title: Biosecur. Bioterror. Biodefense Strategy Pract. Sci. doi: 10.1089/bsp.2014.0032 – ident: CR55 – ident: CR59 – ident: CR28 – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: CR61 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 7 start-page: 398 year: 2020 end-page: 402 ident: CR9 article-title: The COVID-19 pandemic: A call to action to identify and address racial and ethnic disparities publication-title: J. Racial Ethnic Health Disparities doi: 10.1007/s40615-020-00756-0 – ident: CR24 – ident: CR20 – volume: 62 start-page: 12 year: 1997 ident: CR39 article-title: The Kuznets curve and the great U-turn: Income inequality in U.S. counties, 1970 to 1990 publication-title: Am. Sociol. Rev. doi: 10.2307/2657450 – ident: 18725_CR59 doi: 10.1109/SP.2016.42 – volume: 91 start-page: 1123 year: 2010 ident: 18725_CR41 publication-title: Soc. Sci. Q. doi: 10.1111/j.1540-6237.2010.00724.x – volume: 7 start-page: 398 year: 2020 ident: 18725_CR9 publication-title: J. Racial Ethnic Health Disparities doi: 10.1007/s40615-020-00756-0 – ident: 18725_CR55 – ident: 18725_CR19 doi: 10.17226/12875 – ident: 18725_CR52 doi: 10.1145/2939672.2939778 – ident: 18725_CR31 doi: 10.4324/9781351045957 – volume: 51 start-page: 7 year: 2020 ident: 18725_CR6 publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2020.08.012 – volume: 6 start-page: 1239 year: 2012 ident: 18725_CR51 publication-title: Electron. J. Stat. doi: 10.1214/12-EJS710 – volume: 21 start-page: 35 year: 1999 ident: 18725_CR40 publication-title: J. Urban Affairs doi: 10.1111/0735-2166.00002 – ident: 18725_CR22 – volume: 52 start-page: 419 year: 2013 ident: 18725_CR46 publication-title: Ind. Relat. J. Econ. Soc. doi: 10.1111/irel.12018 – volume: 83 start-page: 329 year: 2001 ident: 18725_CR32 publication-title: Am. J. Agric. Econ. doi: 10.1111/0002-9092.00159 – ident: 18725_CR60 – volume: 323 start-page: 1891 year: 2020 ident: 18725_CR2 publication-title: JAMA doi: 10.1001/jama.2020.6548 – volume: 2 start-page: 49 year: 1936 ident: 18725_CR54 publication-title: Proc. Natl. Inst. Sci. (Calcutta) – volume: 28 start-page: 147 year: 1997 ident: 18725_CR44 publication-title: Growth Change doi: 10.1111/j.1468-2257.1997.tb00768.x – volume: 117 start-page: 19658 year: 2020 ident: 18725_CR12 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2009412117 – ident: 18725_CR25 – volume: 2 start-page: 56 year: 2020 ident: 18725_CR61 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – ident: 18725_CR29 – ident: 18725_CR45 doi: 10.25336/P69S3V – ident: 18725_CR56 – volume: 9 start-page: 25 year: 2017 ident: 18725_CR34 publication-title: Region. Sci. Policy Pract. doi: 10.1111/rsp3.12087 – volume: 5 start-page: 1 year: 2010 ident: 18725_CR17 publication-title: PLOS ONE doi: 10.1371/journal.pone.0012763 – ident: 18725_CR48 doi: 10.15585/mmwr.mm6929a1 – volume: 33 start-page: 307 year: 2019 ident: 18725_CR33 publication-title: NBER Macroecon. Annu. doi: 10.1086/700896 – volume: 2 start-page: 259 year: 1996 ident: 18725_CR16 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0204.960402 – volume: 383 start-page: e59 year: 2020 ident: 18725_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp2021971 – ident: 18725_CR21 – ident: 18725_CR24 doi: 10.1515/9781400881970-018 – ident: 18725_CR20 doi: 10.1001/jama.1990.03440170066038 – ident: 18725_CR28 – ident: 18725_CR53 – volume: 44 start-page: 272 year: 1998 ident: 18725_CR38 publication-title: J. Urban Econ. doi: 10.1006/juec.1997.2070 – ident: 18725_CR10 doi: 10.1542/peds.2020-009951 – volume: 82 start-page: 669 year: 1995 ident: 18725_CR57 publication-title: Biometrika doi: 10.1093/biomet/82.4.669 – ident: 18725_CR4 doi: 10.15585/mmwr.mm6933e1 – year: 2021 ident: 18725_CR23 publication-title: J. Phys. Complex. doi: 10.1088/2632-072X/ac0fc7 – volume: 47 start-page: 37 year: 2020 ident: 18725_CR1 publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2020.05.003 – volume: 12 start-page: 263 year: 2014 ident: 18725_CR18 publication-title: Biosecur. Bioterror. Biodefense Strategy Pract. Sci. doi: 10.1089/bsp.2014.0032 – volume: 298 start-page: 103502 year: 2021 ident: 18725_CR26 publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103502 – ident: 18725_CR43 – volume: 26 start-page: 22 year: 2021 ident: 18725_CR7 publication-title: Ethnic. Health doi: 10.1080/13557858.2020.1853067 – volume: 33 start-page: 1127 year: 2020 ident: 18725_CR13 publication-title: J. Popul. Econ. doi: 10.1007/s00148-020-00778-2 – volume: 50 start-page: 69 year: 2004 ident: 18725_CR35 publication-title: Rev. Income Wealth doi: 10.1111/j.0034-6586.2004.00112.x – volume: 14 start-page: 65 year: 1985 ident: 18725_CR50 publication-title: Int. J. Game Theory doi: 10.1007/BF01769885 – volume: 92 start-page: 1644 year: 2008 ident: 18725_CR36 publication-title: J. Public Econ. doi: 10.1016/j.jpubeco.2007.10.005 – ident: 18725_CR27 – volume: 4 start-page: 253 year: 1993 ident: 18725_CR42 publication-title: Housing Policy Debate doi: 10.1080/10511482.1993.9521135 – volume: 38 start-page: 6 year: 2001 ident: 18725_CR37 publication-title: INQUIRY J. Health Care Organ. Provis. Financ. doi: 10.5034/inquiryjrnl_38.1.6 – volume: 42 start-page: 148 year: 2016 ident: 18725_CR15 publication-title: Health Place doi: 10.1016/j.healthplace.2016.09.004 – ident: 18725_CR14 doi: 10.1101/2020.04.15.20066068 – ident: 18725_CR11 doi: 10.2139/ssrn.3573637 – volume: 62 start-page: 12 year: 1997 ident: 18725_CR39 publication-title: Am. Sociol. Rev. doi: 10.2307/2657450 – ident: 18725_CR49 doi: 10.1145/2939672.2939785 – volume: 16 start-page: 1 year: 2021 ident: 18725_CR30 publication-title: PLOS ONE doi: 10.1371/journal.pone.0237277 – ident: 18725_CR58 – volume: 324 start-page: 392 year: 2020 ident: 18725_CR5 publication-title: JAMA doi: 10.1001/jama.2020.11374 – volume: 20 start-page: 533 year: 2020 ident: 18725_CR47 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – volume: 395 start-page: 1421 year: 2020 ident: 18725_CR8 publication-title: Lancet doi: 10.1016/S0140-6736(20)30922-3 |
| SSID | ssj0000529419 |
| Score | 2.4296381 |
| Snippet | With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding... Abstract With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15827 |
| SubjectTerms | 639/705/1041 692/699/255/2514 Computer applications Coronaviruses COVID-19 Disease spread Game theory Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Multivariate analysis Science Science (multidisciplinary) Socioeconomics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgC1IvvBGBgozEDaLG8TMn1C6tQEJLBQX1ZvmVshJK2s0uEv8ej9e7VSrRC8fEtmJnPPY3nvE3CL1hvLa0akmpHFcl41aURjgTrVZqYYOOumlSsgk5m6mzs-YkH7gNOaxysyamhdr3Ds7I9-sI7FW0Rbh6f3FZQtYo8K7mFBq30Q4wlbEJ2jk8mp183Z6ygB-LkSbflqmo2h_ijgW3yqINRpSseclGO1Ii7h-hzeuxktccpmkfOr7_vyN4gO5lBIoP1lPmIboVukfo7jon5Z_H6PPUrIZY7iACJl16GHAO5sIgyT7kq8zYzwdIYQiMrNh0Hk-__Pj0oSQNnnc4wkr8_dvBE3R6fHQ6_VjmlAul40Quy6jBSlBJZWuAeNmDr5yroLwx1FWisbwK1FSKeWtJ613rK-NFHZ9CiM3oUzTp-i48Q1hQR1wNgNITFo0aKytppIsQwbrAWlsgsvnr2mU6csiK8UsntzhVei0pHSWlk6Q0K9DbbZuLNRnHjbUPQZjbmkCknV70i3Od9VLXxnPREmlbJVhjGtV6JoSPsNX5iIxMgfY2wtRZuwd9JckCvd4WR70EZ4vpQr9KdaIlJ7mI_ZCjKTTq0Likm_9MDN_AGBSBdYHebSbb1cf_PeDnN_f1BdqtYdqDS63eQ5PlYhVeojvu93I-LF5lzfkLjCwf1w priority: 102 providerName: ProQuest |
| Title | Causal connections between socioeconomic disparities and COVID-19 in the USA |
| URI | https://link.springer.com/article/10.1038/s41598-022-18725-4 https://www.proquest.com/docview/2716809458 https://www.proquest.com/docview/2717687564 https://pubmed.ncbi.nlm.nih.gov/PMC9499932 https://doaj.org/article/2ad56f17bf8649a98fd466d508cd110a |
| Volume | 12 |
| WOSCitedRecordID | wos000859183800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96p-CL-InVc4ngm5ZrvtPHu_UOD7y16CnrU8hXcUG6ct0V_O-dpN319kB98SXQJqXJZIaZYWZ-g9BLLqhjVUtK7YUuuXCytNJb8FqZSwoaZNPmZhNqNtPzed1cafWVcsIGeOCBcIfUBiFbolyrJa9trdvApQxgV_gAqiubRmD1XHGmBlRvWnNSj1UyFdOHPWiqVE0GvhfRioqS72iiDNi_Y2Vez5G8FijN-uf0Hro7Go74aNjwfXQjdg_Q7aGV5M-H6N3UrnuY9ylxJdcq9HjMwcLpApZxrEDGYdGnzoMJSBXbLuDp-89nb0pS40WHwRrEnz4ePUIXpycX07fl2Cmh9IKoVQmCpyVTTLU24SWHFOIWOupgLfOVrJ2oIrOV5sE50gbfhsoGSeEpRviMPUZ73bKLTxCWzBNPkx0YCAdfxKlKWeVBszsfeesKRDZEM35EEU_NLL6ZHM1m2gyENkBokwlteIFebb_5PmBo_HX1cbqL7cqEf51fAFeYkSvMv7iiQAebmzSjUPaGgm-owZ0VukAvttMgTilGYru4XOc14IApIWEfaocDdja0O9MtvmZg7gT0A_ZwgV5veOX3z_984Kf_48DP0B2aeDvFy-gB2ltdruNzdMv_WC36ywm6qeYqj3qC9o9PZs2HSRYYGM9pk0YF435zdt58-QXGbhd_ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILzyIWChgJThA1T9s5IFS2VF11WZBY0N4sx3ZgJZQtm11QfxT_kRkn2SqV6K0HjontxE6-Gc94XgAv0iwukrCMAmkyGaRZwQPNjUatNSlog0ba1L7YhJhM5GyWf9qCP10sDLlVdjzRM2q7MHRGvhejYC9RF8nk25OfAVWNIutqV0KjgcWxO_2NKlv9ZnSA__dlHB--nw6PgraqQGCySKwCBKnkiUhEqSm3sCVzcCadtFonJuR5kYUu0aFMbVFEpTWlDbXlMV45h8MSfOwVuIpsXJAHmZiJzZEOGc3SKG9Dc8JE7tW4PVIIGyp8kRRxFqS97c9XCeiJtucdM89ZZ_2md3j7P_tcd-BWK12z_YYc7sKWq-7B9abe5ul9GA_1usZ2Q949PqCjZq2jGiOULlwbps3svKbyjJRtlunKsuHHr6ODIMrZvGIoMrMvn_d3YHoZK3kA29Wicg-B8cREJiZh2UYpKmyFCIUWBsWfwri0LAYQdT9ZmTbVOlX8-KG8yT-RqgGGQmAoDwyVDuDVZsxJk2jkwt7vCDubnpQk3N9YLL-plueoWNuMl5EoSsnTXOeytCnnFkVyY1Hq0wPY7bCjWs5VqzPgDOD5phl5DhmSdOUWa98HtVSRcZyH6CG2N6F-SzX_7rOXUzYkVBoG8LrD9tnL_73gRxfP9RncOJp-GKvxaHL8GG7GRHFkOox3YXu1XLsncM38Ws3r5VNPsgzUJWP-L_qlfHA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXrkMUBhgJniBq4viWB4RGy0S1USox0N4sx3agEkpH04L20_h3nOMmnTqJve2Bx8R2YiffOT7H50bICy5YmadVlmgndMJFKRMrnQWtNS9xgwbatLHYhBqP9fFxMdkif7pYGHSr7HhiZNR-5vCMvM9AsNegiwjdr1q3iMlw_-3JzwQrSKGltSunsYLIQTj9Depb82Y0hH_9krH990eDD0lbYSBxIlOLBACrZa5yVVnMM-zRNCx00N7a3KWyKEUacptq7ssyq7yrfGq9ZHAVAgzL4bFXyFXFhUDi-sgm6-MdNKDxrGjDdNJc9xvYKjGcDZS_TCsmEr6xFcaKARti7nknzXOW2rgB7t_-jz_dHXKrlbrp3opM7pKtUN8j11d1OE_vk8OBXTbQ7tDrJwZ6NLR1YKOI3llow7epnzZYthGz0FJbezr49HU0TLKCTmsKojT98nlvhxxdxkoekO16VoeHhMrcZY6hEO0zDopcqVJllQOxqHSBV2WPZN0PN65NwY6VQH6Y6AqQa7MCiQGQmAgSw3vk1XrMySoByYW93yGO1j0xeXi8MZt_My0vMsx6IatMlZWWvLCFrjyX0oOo7jxIg7ZHdjscmZajNeYMRD3yfN0MvAgNTLYOs2XsA9qrEhLmoTbQuzGhzZZ6-j1mNccsSaBM9MjrDudnL__3gh9dPNdn5AZA3RyOxgePyU2GxIcWRbZLthfzZXhCrrlfi2kzfxqplxJzyZD_C2G8hT0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+connections+between+socioeconomic+disparities+and+COVID-19+in+the+USA&rft.jtitle=Scientific+reports&rft.au=Banerjee%2C+Tannista&rft.au=Paul%2C+Ayan&rft.au=Srikanth%2C+Vishak&rft.au=Str%C3%BCmke%2C+Inga&rft.date=2022-09-22&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-18725-4&rft_id=info%3Apmid%2F36138106&rft.externalDocID=PMC9499932 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |