Cross-modal semantic autoencoder with embedding consensus

Cross-modal retrieval has become a topic of popularity, since multi-data is heterogeneous and the similarities between different forms of information are worthy of attention. Traditional single-modal methods reconstruct the original information and lack of considering the semantic similarity between...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; pp. 20319 - 11
Main Authors: Sun, Shengzi, Guo, Binghui, Mi, Zhilong, Zheng, Zhiming
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13.10.2021
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cross-modal retrieval has become a topic of popularity, since multi-data is heterogeneous and the similarities between different forms of information are worthy of attention. Traditional single-modal methods reconstruct the original information and lack of considering the semantic similarity between different data. In this work, a cross-modal semantic autoencoder with embedding consensus (CSAEC) is proposed, mapping the original data to a low-dimensional shared space to retain semantic information. Considering the similarity between the modalities, an automatic encoder is utilized to associate the feature projection to the semantic code vector. In addition, regularization and sparse constraints are applied to low-dimensional matrices to balance reconstruction errors. The high dimensional data is transformed into semantic code vector. Different models are constrained by parameters to achieve denoising. The experiments on four multi-modal data sets show that the query results are improved and effective cross-modal retrieval is achieved. Further, CSAEC can also be applied to fields related to computer and network such as deep and subspace learning. The model breaks through the obstacles in traditional methods, using deep learning methods innovatively to convert multi-modal data into abstract expression, which can get better accuracy and achieve better results in recognition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-92750-7