Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774...

Full description

Saved in:
Bibliographic Details
Published in:Beilstein journal of nanotechnology Vol. 5; no. 1; pp. 1625 - 1636
Main Authors: Kuhn, Dagmar A, Vanhecke, Dimitri, Michen, Benjamin, Blank, Fabian, Gehr, Peter, Petri-Fink, Alke, Rothen-Rutishauser, Barbara
Format: Journal Article
Language:English
Published: Germany Beilstein-Institut 24.09.2014
Subjects:
ISSN:2190-4286, 2190-4286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
AbstractList Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
Author Vanhecke, Dimitri
Petri-Fink, Alke
Blank, Fabian
Rothen-Rutishauser, Barbara
Gehr, Peter
Kuhn, Dagmar A
Michen, Benjamin
AuthorAffiliation 3 Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
2 Respiratory Medicine, University Hospital of Bern, Murtenstrasse 50, 3008 Bern, Switzerland
1 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland, Phone +41 26 300 95 02
AuthorAffiliation_xml – name: 1 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland, Phone +41 26 300 95 02
– name: 3 Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
– name: 2 Respiratory Medicine, University Hospital of Bern, Murtenstrasse 50, 3008 Bern, Switzerland
Author_xml – sequence: 1
  givenname: Dagmar A
  surname: Kuhn
  fullname: Kuhn, Dagmar A
– sequence: 2
  givenname: Dimitri
  surname: Vanhecke
  fullname: Vanhecke, Dimitri
– sequence: 3
  givenname: Benjamin
  surname: Michen
  fullname: Michen, Benjamin
– sequence: 4
  givenname: Fabian
  surname: Blank
  fullname: Blank, Fabian
– sequence: 5
  givenname: Peter
  surname: Gehr
  fullname: Gehr, Peter
– sequence: 6
  givenname: Alke
  surname: Petri-Fink
  fullname: Petri-Fink, Alke
– sequence: 7
  givenname: Barbara
  surname: Rothen-Rutishauser
  fullname: Rothen-Rutishauser, Barbara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25383275$$D View this record in MEDLINE/PubMed
BookMark eNptks1vEzEQxS1UREvpjTPykQMJtuOP3QsSKgUqVeICR2TNeseJw6692JtK_e_rkFC1CF9sjX9-b_Q8L8lJTBEJec3ZcmW0eN9tI8S0VEtu5DNyJnjLFlI0-uTR-ZRclLJldUkmmrZ5QU6FWjUrYdQZ-fkpeI8Z40wx9sndzWkOju6mGX4hHdFtIIYyFupTpnuvCXIFBiw0RIpTmDc4BBiow2EoFGJPR3A5TRtYY3lFnnsYCl4c93Py4_PV98uvi5tvX64vP94snOJ6XnjmGfPgBWDbOVSOOSeY8ejkqmVKtap3zHDjOm9AOs2UlqbrmdHQtejZ6pxcH3T7BFs75TBCvrMJgv1TSHltj21b4bEVveoMd0Zq6VvUwDvnHesao1tetT4ctKZdN2LvajQZhieiT29i2Nh1urVSCCGVqAJvjwI5_d5hme0Yyj4eiJh2xXIthGplo0xF3zz2ejD5-z8VeHcAaqSlZPQPCGd2PwH2MAFW2ToBFRf_4C7MMIe07zQM_390D2gmuQ4
CitedBy_id crossref_primary_10_1016_j_cellsig_2019_03_022
crossref_primary_10_1039_D2RA06888E
crossref_primary_10_3389_fimmu_2021_651109
crossref_primary_10_1016_j_colsurfb_2019_06_024
crossref_primary_10_1016_j_vetimm_2025_110977
crossref_primary_10_1016_j_xphs_2019_08_029
crossref_primary_10_3389_fimmu_2019_02495
crossref_primary_10_3389_fnut_2023_1186724
crossref_primary_10_1016_j_scitotenv_2021_146523
crossref_primary_10_1016_j_jconrel_2021_10_017
crossref_primary_10_1002_adhm_202303480
crossref_primary_10_1007_s11095_023_03540_x
crossref_primary_10_1002_anie_201705422
crossref_primary_10_1002_jbm_a_35527
crossref_primary_10_1007_s13346_021_00976_9
crossref_primary_10_1111_cea_13178
crossref_primary_10_1080_17474124_2018_1399794
crossref_primary_10_1208_s12249_020_01873_z
crossref_primary_10_2147_IJN_S257269
crossref_primary_10_1007_s11051_017_3787_9
crossref_primary_10_2147_IJN_S497859
crossref_primary_10_1016_j_actbio_2023_03_043
crossref_primary_10_1080_15376516_2025_2500546
crossref_primary_10_2147_IJN_S494224
crossref_primary_10_3390_nano11020496
crossref_primary_10_2174_0929867326666191125092111
crossref_primary_10_1002_ppsc_201600043
crossref_primary_10_1016_j_jhazmat_2022_129515
crossref_primary_10_1080_10717544_2018_1466936
crossref_primary_10_1016_j_talanta_2015_07_081
crossref_primary_10_1016_j_envint_2022_107711
crossref_primary_10_1038_s41598_021_95073_9
crossref_primary_10_3389_fcimb_2024_1494651
crossref_primary_10_1021_acsnano_5c01981
crossref_primary_10_1080_10717544_2019_1606363
crossref_primary_10_3390_ijms241411379
crossref_primary_10_1016_j_ijpharm_2024_124914
crossref_primary_10_1016_j_scitotenv_2017_12_334
crossref_primary_10_3390_toxics12010092
crossref_primary_10_1039_D3EN00681F
crossref_primary_10_1080_17435889_2025_2478806
crossref_primary_10_1186_s12985_016_0506_6
crossref_primary_10_1016_j_mib_2019_05_007
crossref_primary_10_1021_acsabm_5c01187
crossref_primary_10_3390_nano13101621
crossref_primary_10_1016_j_cca_2018_10_004
crossref_primary_10_1080_10937404_2015_1126210
crossref_primary_10_1038_s41598_020_60684_1
crossref_primary_10_3390_ma12071026
crossref_primary_10_1039_D5MA00041F
crossref_primary_10_1007_s40123_021_00365_y
crossref_primary_10_1039_D2BM00181K
crossref_primary_10_1186_s12951_021_00774_y
crossref_primary_10_2217_nnm_2022_0320
crossref_primary_10_1016_j_chemosphere_2020_129235
crossref_primary_10_1016_j_chemphyslip_2023_105362
crossref_primary_10_1089_adt_2018_911
crossref_primary_10_3390_pharmaceutics14071447
crossref_primary_10_1002_mco2_327
crossref_primary_10_1016_j_mtbio_2025_102261
crossref_primary_10_1007_s12272_016_0847_0
crossref_primary_10_3389_fimmu_2017_00544
crossref_primary_10_3390_antib7010005
crossref_primary_10_2217_nnm_15_158
crossref_primary_10_1016_j_ejpb_2019_08_012
crossref_primary_10_1016_j_impact_2018_02_008
crossref_primary_10_3390_ijms23158788
crossref_primary_10_1039_C9NR09934D
crossref_primary_10_1016_j_bbrc_2025_151736
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_1002_mds_29939
crossref_primary_10_1016_j_carbpol_2019_04_056
crossref_primary_10_1016_j_biomaterials_2022_121762
crossref_primary_10_3389_fbioe_2019_00228
crossref_primary_10_1016_j_apradiso_2017_09_004
crossref_primary_10_1080_17425247_2021_1873272
crossref_primary_10_1016_j_taap_2017_01_012
crossref_primary_10_1007_s11064_018_2598_4
crossref_primary_10_1016_j_tips_2018_03_001
crossref_primary_10_1016_j_jtemb_2017_12_003
crossref_primary_10_1080_03639045_2020_1724134
crossref_primary_10_1080_17435390_2019_1698779
crossref_primary_10_1007_s11051_017_4004_6
crossref_primary_10_1016_j_aquatox_2017_09_008
crossref_primary_10_1016_j_ecoenv_2023_115749
crossref_primary_10_3390_ma14216390
crossref_primary_10_1016_j_ejpb_2019_09_020
crossref_primary_10_1186_s12989_024_00590_w
crossref_primary_10_1080_10937404_2024_2424156
crossref_primary_10_3390_nano6020034
crossref_primary_10_1016_j_colsurfb_2015_11_011
crossref_primary_10_1002_advs_202310314
crossref_primary_10_1016_j_biomaterials_2020_120587
crossref_primary_10_1038_s41598_020_76332_7
crossref_primary_10_3390_nano10010140
crossref_primary_10_1002_adfm_202109960
crossref_primary_10_1016_j_scitotenv_2019_134722
crossref_primary_10_1016_j_colsurfb_2016_09_046
crossref_primary_10_1007_s10565_020_09571_z
crossref_primary_10_1016_j_jconrel_2019_12_052
crossref_primary_10_1016_j_intimp_2023_110035
crossref_primary_10_1016_j_fct_2019_02_015
crossref_primary_10_1002_mabi_202000196
crossref_primary_10_1371_journal_pone_0218122
crossref_primary_10_1016_j_ijpharm_2025_126102
crossref_primary_10_1016_j_smim_2017_09_011
crossref_primary_10_1007_s12011_023_03739_4
crossref_primary_10_1039_D1NR05357D
crossref_primary_10_1016_j_snb_2020_128039
crossref_primary_10_1128_JVI_02255_16
crossref_primary_10_1186_s12989_024_00563_z
crossref_primary_10_3390_molecules26020260
crossref_primary_10_1080_10717544_2018_1556359
crossref_primary_10_1016_j_jconrel_2020_01_010
crossref_primary_10_1016_j_molliq_2021_118008
crossref_primary_10_3390_pharmaceutics15020432
crossref_primary_10_1007_s12015_025_10897_6
crossref_primary_10_2217_nnm_2020_0229
crossref_primary_10_1038_s41598_018_22166_3
crossref_primary_10_2174_1381612826666200317140600
crossref_primary_10_1016_j_ultrasmedbio_2024_06_016
crossref_primary_10_1080_17435390_2017_1287313
crossref_primary_10_1016_j_jmmm_2016_10_106
crossref_primary_10_1089_aivt_2020_0017
crossref_primary_10_1002_btpr_3501
crossref_primary_10_1016_j_biopha_2018_11_116
crossref_primary_10_1016_j_ejpb_2015_02_014
crossref_primary_10_1016_j_envpol_2016_06_071
crossref_primary_10_1002_anie_201906303
crossref_primary_10_1039_C8NR09599J
crossref_primary_10_1016_j_colsurfb_2022_112330
crossref_primary_10_1186_s12951_018_0343_4
crossref_primary_10_1007_s11010_017_3180_0
crossref_primary_10_1016_j_ijpharm_2024_124567
crossref_primary_10_3390_biology10111148
crossref_primary_10_3390_nano12030552
crossref_primary_10_1002_rmv_2403
crossref_primary_10_1038_srep40493
crossref_primary_10_2147_IJN_S491573
crossref_primary_10_3762_bjnano_11_25
crossref_primary_10_1021_acs_analchem_5c03585
crossref_primary_10_1128_spectrum_00645_24
crossref_primary_10_3762_bjnano_6_28
crossref_primary_10_1016_j_actbio_2016_11_066
crossref_primary_10_3390_ijms20205227
crossref_primary_10_3390_nano13192616
crossref_primary_10_1080_10408444_2020_1719974
crossref_primary_10_3390_toxics9090224
crossref_primary_10_1002_smsc_202400471
crossref_primary_10_3390_molecules26195788
crossref_primary_10_3390_w13070973
crossref_primary_10_1007_s40097_022_00504_2
crossref_primary_10_1016_j_msec_2021_112610
crossref_primary_10_1016_j_ejmech_2020_112526
crossref_primary_10_1016_j_tox_2017_01_001
crossref_primary_10_1016_j_addr_2019_08_004
crossref_primary_10_1007_s11356_016_6211_6
crossref_primary_10_1016_j_jcis_2024_03_039
crossref_primary_10_3390_ani11072097
crossref_primary_10_3390_ijms25094964
crossref_primary_10_3390_nano14191601
crossref_primary_10_3390_toxics9090210
crossref_primary_10_3390_pharmaceutics14030630
crossref_primary_10_1016_j_matlet_2017_02_068
crossref_primary_10_1038_s41598_018_36954_4
crossref_primary_10_3390_biom9010014
crossref_primary_10_1016_j_biomaterials_2019_03_025
crossref_primary_10_1016_j_ijpharm_2022_121912
crossref_primary_10_1002_adma_201704307
crossref_primary_10_1016_j_smim_2017_08_013
crossref_primary_10_3390_pharmaceutics12040371
crossref_primary_10_1007_s11051_019_4628_9
crossref_primary_10_1039_C9EN01353A
crossref_primary_10_1016_j_exphem_2024_104651
crossref_primary_10_3390_cells9010093
crossref_primary_10_1080_17425247_2021_1854223
crossref_primary_10_1007_s11051_016_3595_7
crossref_primary_10_1038_s41578_022_00458_5
crossref_primary_10_1016_j_hazadv_2022_100166
crossref_primary_10_1016_j_taap_2018_10_023
crossref_primary_10_1016_j_pbiomolbio_2022_08_006
crossref_primary_10_1007_s12550_019_00375_7
crossref_primary_10_1002_adtp_202300048
crossref_primary_10_1039_C6CS00636A
crossref_primary_10_1007_s10853_023_08680_4
crossref_primary_10_1002_smll_201701815
crossref_primary_10_3762_bjnano_8_200
crossref_primary_10_1002_ange_201906303
crossref_primary_10_3389_fimmu_2022_853769
crossref_primary_10_1080_01480545_2025_2453580
crossref_primary_10_1016_j_nantod_2021_101279
crossref_primary_10_1016_j_bbagen_2016_12_012
crossref_primary_10_1016_j_biomaterials_2021_120791
crossref_primary_10_1016_j_ecoenv_2022_114108
crossref_primary_10_1016_j_mattod_2015_10_008
crossref_primary_10_14356_kona_2020013
crossref_primary_10_1016_j_intimp_2022_108533
crossref_primary_10_1039_C8RA06665E
crossref_primary_10_1016_j_actbio_2018_09_026
crossref_primary_10_1002_adfm_202104487
crossref_primary_10_1002_adhm_202000529
crossref_primary_10_3390_v14081684
crossref_primary_10_3762_bjnano_12_22
crossref_primary_10_1016_j_envres_2022_113202
crossref_primary_10_1186_s12951_022_01670_9
crossref_primary_10_1080_17435889_2025_2533106
crossref_primary_10_1016_j_colsurfb_2017_09_062
crossref_primary_10_1002_advs_201500104
crossref_primary_10_1016_j_tiv_2016_03_004
crossref_primary_10_1016_j_addr_2022_114403
crossref_primary_10_1038_s41423_025_01316_4
crossref_primary_10_1080_02652048_2019_1692943
crossref_primary_10_2147_IJN_S434693
crossref_primary_10_1016_j_envpol_2021_116974
crossref_primary_10_1038_srep29030
crossref_primary_10_1016_j_jbc_2022_102596
crossref_primary_10_1016_j_aquatox_2018_10_008
crossref_primary_10_3390_antibiotics8020039
crossref_primary_10_1371_journal_pone_0178260
crossref_primary_10_1007_s12274_021_3781_5
crossref_primary_10_1002_jat_4378
crossref_primary_10_3390_pharmaceutics14051103
crossref_primary_10_1016_j_ejpb_2020_11_024
crossref_primary_10_1016_j_envpol_2024_123599
crossref_primary_10_3390_ma13143227
crossref_primary_10_1007_s00204_023_03528_x
crossref_primary_10_1016_j_nano_2016_03_002
crossref_primary_10_3390_ijms25094714
crossref_primary_10_2147_IJN_S430877
crossref_primary_10_1002_adhm_202303865
crossref_primary_10_3390_ijms252011101
crossref_primary_10_1002_adfm_202109032
crossref_primary_10_1039_C6NR03543D
crossref_primary_10_1016_j_addr_2018_10_011
crossref_primary_10_1016_j_envpol_2023_121668
crossref_primary_10_1186_s11671_018_2728_6
crossref_primary_10_4103_1673_5374_379016
crossref_primary_10_1016_j_heliyon_2024_e37308
crossref_primary_10_3390_cancers14205086
crossref_primary_10_1002_jat_3606
crossref_primary_10_1016_j_chemosphere_2024_141463
crossref_primary_10_2217_nnm_2017_0362
crossref_primary_10_3389_fimmu_2023_1148253
crossref_primary_10_1016_j_jconrel_2017_03_008
crossref_primary_10_1016_j_placenta_2017_06_344
crossref_primary_10_1080_10717544_2022_2117435
crossref_primary_10_1177_2049936117713593
crossref_primary_10_3390_biology12040624
crossref_primary_10_3390_w14060863
crossref_primary_10_1016_j_toxlet_2017_05_009
crossref_primary_10_1039_D0BM01086C
crossref_primary_10_1007_s44169_022_00013_x
crossref_primary_10_3389_fphar_2015_00055
crossref_primary_10_3390_nano11051183
crossref_primary_10_1039_D0BM01333A
crossref_primary_10_1016_j_bioorg_2019_103423
crossref_primary_10_1002_biot_201600453
crossref_primary_10_1007_s11051_021_05249_7
crossref_primary_10_1002_smll_202204293
crossref_primary_10_1016_j_biomaterials_2015_02_099
crossref_primary_10_1016_j_jconrel_2020_07_032
crossref_primary_10_1016_j_micromeso_2020_110593
crossref_primary_10_1038_s41598_017_16025_w
crossref_primary_10_3390_cells14010044
crossref_primary_10_1515_pac_2017_0102
crossref_primary_10_3762_bjnano_16_115
crossref_primary_10_1016_j_ijpharm_2018_01_051
crossref_primary_10_3390_ijms18061301
crossref_primary_10_1038_s41598_020_78550_5
crossref_primary_10_1016_j_matpr_2024_04_006
crossref_primary_10_1007_s11307_019_01440_4
crossref_primary_10_1016_j_scitotenv_2021_147784
crossref_primary_10_3390_pharmaceutics15030999
crossref_primary_10_3390_ijms25084152
crossref_primary_10_1038_s41598_023_28958_6
crossref_primary_10_1016_j_addr_2021_113948
crossref_primary_10_3390_ijerph22010045
crossref_primary_10_1039_D0NR05452F
crossref_primary_10_3390_cells11213445
crossref_primary_10_1002_ange_201705422
crossref_primary_10_1038_s41598_021_01938_4
crossref_primary_10_1002_xrs_70041
crossref_primary_10_1016_j_ejpb_2016_12_025
crossref_primary_10_1007_s11095_019_2589_4
crossref_primary_10_1080_17425247_2018_1503249
crossref_primary_10_3390_pharmaceutics15030740
crossref_primary_10_1016_j_tiv_2022_105415
crossref_primary_10_1039_D0NR03581E
crossref_primary_10_3762_bjnano_8_239
crossref_primary_10_1016_j_aquatox_2019_105322
crossref_primary_10_1111_jcmm_13110
crossref_primary_10_1208_s12249_019_1503_z
crossref_primary_10_1007_s11051_016_3493_z
crossref_primary_10_1016_j_jhazmat_2025_139890
crossref_primary_10_3762_bjnano_8_40
crossref_primary_10_1016_j_carbpol_2018_02_073
crossref_primary_10_3390_pharmaceutics14061202
crossref_primary_10_1016_j_apsb_2021_03_007
crossref_primary_10_1016_j_nano_2016_02_009
crossref_primary_10_1016_j_jddst_2023_104215
crossref_primary_10_3390_vaccines3040829
crossref_primary_10_1002_adfm_202508761
crossref_primary_10_3390_nano12193431
crossref_primary_10_3390_toxins15080482
crossref_primary_10_1016_j_lfs_2024_122937
crossref_primary_10_1080_08982104_2018_1556293
crossref_primary_10_1111_exd_14015
crossref_primary_10_1007_s40495_019_00205_5
crossref_primary_10_1007_s12668_020_00726_0
crossref_primary_10_1016_j_ijpharm_2020_120095
crossref_primary_10_3389_fcell_2020_595515
crossref_primary_10_1016_j_biochi_2019_02_012
crossref_primary_10_1016_j_scitotenv_2025_179404
crossref_primary_10_1080_17429145_2018_1455903
crossref_primary_10_1177_07482337211035000
Cites_doi 10.1038/cr.2010.19
10.1002/adma.200801393
10.1091/mbc.10.4.961
10.1165/rcmb.2004-0187OC
10.1016/j.addr.2011.09.001
10.1002/smll.201000528
10.1016/j.addr.2004.05.003
10.1016/S0022-2275(20)34940-3
10.2147/ijn.s33803
10.1016/j.nantod.2011.02.003
10.1038/nature01451
10.1083/jcb.152.1.165
10.1088/0957-4484/21/35/355102
10.1021/nn101277w
10.1021/nn300223w
10.1080/00222930701314932
10.1007/s00018-009-0053-z
10.2217/nnm.13.24
10.1016/j.biomaterials.2010.08.111
10.1002/cphy.c100035
10.1088/0953-8984/24/16/164207
10.1021/nl051077u
10.1016/j.ejpb.2007.09.002
10.1016/S0300-9084(86)80004-9
10.1021/la051982u
10.2533/chimia.2012.104
10.1002/pat.401
10.1021/ar7002804
10.1146/annurev.immunol.17.1.593
10.1038/nrm3151
10.1016/S0927-7757(99)00439-2
10.1039/c3nr34005h
10.1016/j.biomaterials.2008.04.038
10.1083/jcb.200102084
10.1073/pnas.96.12.6775
10.1517/17425247.2011.565326
10.1083/jcb.62.3.647
10.1194/jlr.R200021-JLR200
10.1007/s00396-009-2087-z
10.1515/entl-2015-0004
10.1021/nn203892h
10.1016/0092-8674(92)90143-Z
10.1042/bj20031253
10.1021/nn5018523
10.1021/es0522635
10.1146/annurev.cellbio.17.1.517
10.1038/nnano.2007.99
10.1007/s00204-012-0876-5
10.1186/1743-8977-4-9
10.1371/journal.pone.0024438
10.1083/jcb.105.4.1473
10.1007/978-0-387-93877-6_9
10.1016/j.cis.2013.10.013
10.1146/annurev.biochem.66.1.511
10.1016/j.nano.2008.02.002
10.1289/ehp.8006
10.1124/pr.58.1.8
10.1089/jamp.2011.0889
10.1146/annurev.biochem.78.081307.110540
10.1021/mp060122j
10.1074/jbc.274.15.10203
10.1096/fj.01-0689com
ContentType Journal Article
Copyright Copyright © 2014, Kuhn et al. 2014 Kuhn et al.
Copyright_xml – notice: Copyright © 2014, Kuhn et al. 2014 Kuhn et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3762/bjnano.5.174
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2190-4286
EndPage 1636
ExternalDocumentID oai_doaj_org_article_2fe92d5b71c7464f9e6a1bcfc0b87691
PMC4222452
25383275
10_3762_bjnano_5_174
Genre Journal Article
GroupedDBID 53G
5VS
AAFWJ
AAKDD
AAYXX
ACGFO
ACGOD
ADBBV
ADDVE
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
~9O
88I
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
NPM
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
7X8
5PM
ID FETCH-LOGICAL-c516t-f0f00faf2ae9bce5c0cc207fec43905595dc0717cbf7a4c605647bd076ab9ef03
IEDL.DBID DOA
ISICitedReferencesCount 408
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344110500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-4286
IngestDate Fri Oct 03 12:47:20 EDT 2025
Thu Aug 21 18:24:41 EDT 2025
Fri Jul 11 09:00:10 EDT 2025
Mon Jul 21 05:57:48 EDT 2025
Sat Nov 29 03:41:58 EST 2025
Tue Nov 18 22:45:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords endocytosis
inhibition
nanoparticles
uptake proteins
cell lines
Language English
License http://creativecommons.org/licenses/by/2.0
The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-f0f00faf2ae9bce5c0cc207fec43905595dc0717cbf7a4c605647bd076ab9ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/2fe92d5b71c7464f9e6a1bcfc0b87691
PMID 25383275
PQID 1622594857
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2fe92d5b71c7464f9e6a1bcfc0b87691
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4222452
proquest_miscellaneous_1622594857
pubmed_primary_25383275
crossref_primary_10_3762_bjnano_5_174
crossref_citationtrail_10_3762_bjnano_5_174
PublicationCentury 2000
PublicationDate 2014-09-24
PublicationDateYYYYMMDD 2014-09-24
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-24
  day: 24
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
PublicationTitle Beilstein journal of nanotechnology
PublicationTitleAlternate Beilstein J Nanotechnol
PublicationYear 2014
Publisher Beilstein-Institut
Publisher_xml – name: Beilstein-Institut
References ref13
ref57
ref12
ref56
ref15
Rothen-Rutishauser (ref51) 2012; 4
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
Rothen-Rutishauser (ref17) 2007
ref7
ref9
ref4
ref3
ref6
ref5
Ivanov (ref31) 2008; 440
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Rothen-Rutishauser (ref50) 2009
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
Christian (ref43) 1997; 38
ref29
ref60
ref62
ref61
3312229 - J Cell Biol. 1987 Oct;105(4):1473-8
17894871 - Part Fibre Toxicol. 2007 Sep 25;4:9
17945472 - Eur J Pharm Biopharm. 2008 Mar;68(3):676-87
16903270 - Environ Sci Technol. 2006 Jul 15;40(14):4353-9
21028844 - ACS Nano. 2010 Nov 23;4(11):6787-97
24200091 - Adv Colloid Interface Sci. 2013 Dec;201-202:18-29
11687498 - Annu Rev Cell Dev Biol. 2001;17:517-68
21925220 - Adv Drug Deliv Rev. 2012 Feb;64(2):129-37
18447366 - Acc Chem Res. 2008 Dec;41(12):1578-86
12562849 - J Lipid Res. 2003 Apr;44(4):655-67
17373820 - Mol Pharm. 2007 May-Jun;4(3):435-47
18501424 - Biomaterials. 2008 Aug-Sep;29(24-25):3469-76
10358769 - Annu Rev Immunol. 1999;17:593-623
20125123 - Cell Res. 2010 Mar;20(3):256-75
16277438 - Nano Lett. 2005 Nov;5(11):2123-30
18369934 - Methods Mol Biol. 2008;440:15-33
20602428 - Small. 2010 Aug 2;6(15):1669-78
10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74
23478880 - Nanoscale. 2013 Apr 21;5(8):3127-48
21949717 - PLoS One. 2011;6(9):e24438
22904626 - Int J Nanomedicine. 2012;7:4147-58
15518920 - Adv Drug Deliv Rev. 2005 Jan 2;57(1):43-61
21779028 - Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33
1739974 - Cell. 1992 Feb 21;68(4):673-82
24773217 - ACS Nano. 2014 May 27;8(5):4304-12
19606281 - Adv Mater. 2009;21:419-424
10187805 - J Biol Chem. 1999 Apr 9;274(15):10203-12
16507881 - Pharmacol Rev. 2006 Mar;58(1):32-45
12205028 - FASEB J. 2002 Sep;16(11):1371-8
15640437 - Am J Respir Cell Mol Biol. 2005 Apr;32(4):281-9
9242916 - Annu Rev Biochem. 1997;66:511-48
20880574 - Biomaterials. 2011 Jan;32(2):547-55
16378435 - Langmuir. 2006 Jan 3;22(1):300-5
22250809 - ACS Nano. 2012 Feb 28;6(2):1251-9
16263511 - Environ Health Perspect. 2005 Nov;113(11):1555-60
21438741 - Expert Opin Drug Deliv. 2011 May;8(5):547-63
11481344 - J Cell Biol. 2001 Aug 6;154(3):535-47
22669515 - Arch Toxicol. 2013 Jun;87(6):1053-65
12621426 - Nature. 2003 Mar 6;422(6927):37-44
18654291 - Nat Nanotechnol. 2007 May;2(5):318-23
23738633 - Nanomedicine (Lond). 2014 Apr;9(5):607-21
22721453 - ACS Nano. 2012 Jul 24;6(7):5845-57
9392424 - J Lipid Res. 1997 Nov;38(11):2264-72
11149929 - J Cell Biol. 2001 Jan 8;152(1):165-80
22007674 - J Aerosol Med Pulm Drug Deliv. 2012 Feb;25(1):7-15
19317650 - Annu Rev Biochem. 2009;78:857-902
4368822 - J Cell Biol. 1974 Sep;62(3):647-59
2874839 - Biochimie. 1986 Mar;68(3):375-81
18375191 - Nanomedicine. 2008 Jun;4(2):139-45
19499185 - Cell Mol Life Sci. 2009 Sep;66(17):2873-96
10359788 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6775-80
19851469 - Colloid Polym Sci. 2009 Nov;287(11):1261-1271
20689164 - Nanotechnology. 2010 Sep 3;21(35):355102
14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69
22546253 - Chimia (Aarau). 2012;66(3):104-9
22466161 - J Phys Condens Matter. 2012 Apr 25;24(16):164207
23733639 - Compr Physiol. 2011 Jul;1(3):1159-74
References_xml – ident: ref15
  doi: 10.1038/cr.2010.19
– ident: ref55
  doi: 10.1002/adma.200801393
– ident: ref57
  doi: 10.1091/mbc.10.4.961
– ident: ref58
  doi: 10.1165/rcmb.2004-0187OC
– ident: ref9
  doi: 10.1016/j.addr.2011.09.001
– ident: ref19
  doi: 10.1002/smll.201000528
– ident: ref3
  doi: 10.1016/j.addr.2004.05.003
– volume: 38
  start-page: 2264
  year: 1997
  ident: ref43
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)34940-3
– ident: ref49
  doi: 10.2147/ijn.s33803
– ident: ref11
  doi: 10.1016/j.nantod.2011.02.003
– ident: ref20
  doi: 10.1038/nature01451
– ident: ref61
  doi: 10.1083/jcb.152.1.165
– volume-title: Particle Toxicology
  year: 2007
  ident: ref17
– ident: ref38
  doi: 10.1088/0957-4484/21/35/355102
– ident: ref53
  doi: 10.1021/nn101277w
– ident: ref56
  doi: 10.1021/nn300223w
– ident: ref18
  doi: 10.1080/00222930701314932
– ident: ref8
  doi: 10.1007/s00018-009-0053-z
– ident: ref32
  doi: 10.2217/nnm.13.24
– ident: ref62
  doi: 10.1016/j.biomaterials.2010.08.111
– ident: ref26
  doi: 10.1002/cphy.c100035
– ident: ref54
  doi: 10.1088/0953-8984/24/16/164207
– ident: ref63
  doi: 10.1021/nl051077u
– ident: ref21
  doi: 10.1016/j.ejpb.2007.09.002
– ident: ref42
  doi: 10.1016/S0300-9084(86)80004-9
– ident: ref5
  doi: 10.1021/la051982u
– ident: ref10
  doi: 10.2533/chimia.2012.104
– ident: ref47
  doi: 10.1002/pat.401
– ident: ref4
  doi: 10.1021/ar7002804
– ident: ref23
  doi: 10.1146/annurev.immunol.17.1.593
– ident: ref37
  doi: 10.1038/nrm3151
– ident: ref64
  doi: 10.1016/S0927-7757(99)00439-2
– ident: ref7
  doi: 10.1039/c3nr34005h
– ident: ref41
  doi: 10.1016/j.biomaterials.2008.04.038
– ident: ref45
  doi: 10.1083/jcb.200102084
– ident: ref44
  doi: 10.1073/pnas.96.12.6775
– ident: ref2
  doi: 10.1517/17425247.2011.565326
– ident: ref35
  doi: 10.1083/jcb.62.3.647
– ident: ref27
  doi: 10.1194/jlr.R200021-JLR200
– ident: ref48
  doi: 10.1007/s00396-009-2087-z
– volume: 4
  start-page: 1
  year: 2012
  ident: ref51
  publication-title: Euro Nanotox. Lett.
  doi: 10.1515/entl-2015-0004
– volume: 440
  start-page: 15
  volume-title: Pharmacological Inhibition of Endocytotic Pathways: Is It Specific Enough to Be Useful?
  year: 2008
  ident: ref31
– ident: ref65
  doi: 10.1021/nn203892h
– ident: ref28
  doi: 10.1016/0092-8674(92)90143-Z
– ident: ref12
  doi: 10.1042/bj20031253
– ident: ref46
  doi: 10.1021/nn5018523
– ident: ref22
  doi: 10.1021/es0522635
– ident: ref25
  doi: 10.1146/annurev.cellbio.17.1.517
– ident: ref6
  doi: 10.1038/nnano.2007.99
– start-page: 226
  volume-title: Particle–Lung Interactions
  year: 2009
  ident: ref50
– ident: ref29
  doi: 10.1007/s00204-012-0876-5
– ident: ref30
  doi: 10.1186/1743-8977-4-9
– ident: ref52
  doi: 10.1371/journal.pone.0024438
– ident: ref34
  doi: 10.1083/jcb.105.4.1473
– ident: ref36
  doi: 10.1007/978-0-387-93877-6_9
– ident: ref16
  doi: 10.1016/j.cis.2013.10.013
– ident: ref24
  doi: 10.1146/annurev.biochem.66.1.511
– ident: ref13
  doi: 10.1016/j.nano.2008.02.002
– ident: ref59
  doi: 10.1289/ehp.8006
– ident: ref60
  doi: 10.1124/pr.58.1.8
– ident: ref1
  doi: 10.1089/jamp.2011.0889
– ident: ref14
  doi: 10.1146/annurev.biochem.78.081307.110540
– ident: ref33
  doi: 10.1021/mp060122j
– ident: ref40
  doi: 10.1074/jbc.274.15.10203
– ident: ref39
  doi: 10.1096/fj.01-0689com
– reference: 18369934 - Methods Mol Biol. 2008;440:15-33
– reference: 22007674 - J Aerosol Med Pulm Drug Deliv. 2012 Feb;25(1):7-15
– reference: 16903270 - Environ Sci Technol. 2006 Jul 15;40(14):4353-9
– reference: 15518920 - Adv Drug Deliv Rev. 2005 Jan 2;57(1):43-61
– reference: 16378435 - Langmuir. 2006 Jan 3;22(1):300-5
– reference: 20880574 - Biomaterials. 2011 Jan;32(2):547-55
– reference: 4368822 - J Cell Biol. 1974 Sep;62(3):647-59
– reference: 3312229 - J Cell Biol. 1987 Oct;105(4):1473-8
– reference: 21028844 - ACS Nano. 2010 Nov 23;4(11):6787-97
– reference: 11687498 - Annu Rev Cell Dev Biol. 2001;17:517-68
– reference: 23478880 - Nanoscale. 2013 Apr 21;5(8):3127-48
– reference: 22250809 - ACS Nano. 2012 Feb 28;6(2):1251-9
– reference: 18375191 - Nanomedicine. 2008 Jun;4(2):139-45
– reference: 22669515 - Arch Toxicol. 2013 Jun;87(6):1053-65
– reference: 21949717 - PLoS One. 2011;6(9):e24438
– reference: 18447366 - Acc Chem Res. 2008 Dec;41(12):1578-86
– reference: 11481344 - J Cell Biol. 2001 Aug 6;154(3):535-47
– reference: 10359788 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6775-80
– reference: 20125123 - Cell Res. 2010 Mar;20(3):256-75
– reference: 12205028 - FASEB J. 2002 Sep;16(11):1371-8
– reference: 24200091 - Adv Colloid Interface Sci. 2013 Dec;201-202:18-29
– reference: 11149929 - J Cell Biol. 2001 Jan 8;152(1):165-80
– reference: 2874839 - Biochimie. 1986 Mar;68(3):375-81
– reference: 19499185 - Cell Mol Life Sci. 2009 Sep;66(17):2873-96
– reference: 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74
– reference: 24773217 - ACS Nano. 2014 May 27;8(5):4304-12
– reference: 23733639 - Compr Physiol. 2011 Jul;1(3):1159-74
– reference: 9242916 - Annu Rev Biochem. 1997;66:511-48
– reference: 20689164 - Nanotechnology. 2010 Sep 3;21(35):355102
– reference: 19317650 - Annu Rev Biochem. 2009;78:857-902
– reference: 22904626 - Int J Nanomedicine. 2012;7:4147-58
– reference: 17894871 - Part Fibre Toxicol. 2007 Sep 25;4:9
– reference: 1739974 - Cell. 1992 Feb 21;68(4):673-82
– reference: 16277438 - Nano Lett. 2005 Nov;5(11):2123-30
– reference: 18501424 - Biomaterials. 2008 Aug-Sep;29(24-25):3469-76
– reference: 17945472 - Eur J Pharm Biopharm. 2008 Mar;68(3):676-87
– reference: 18654291 - Nat Nanotechnol. 2007 May;2(5):318-23
– reference: 19606281 - Adv Mater. 2009;21:419-424
– reference: 22466161 - J Phys Condens Matter. 2012 Apr 25;24(16):164207
– reference: 20602428 - Small. 2010 Aug 2;6(15):1669-78
– reference: 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69
– reference: 21925220 - Adv Drug Deliv Rev. 2012 Feb;64(2):129-37
– reference: 10187805 - J Biol Chem. 1999 Apr 9;274(15):10203-12
– reference: 22721453 - ACS Nano. 2012 Jul 24;6(7):5845-57
– reference: 10358769 - Annu Rev Immunol. 1999;17:593-623
– reference: 16263511 - Environ Health Perspect. 2005 Nov;113(11):1555-60
– reference: 21779028 - Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33
– reference: 16507881 - Pharmacol Rev. 2006 Mar;58(1):32-45
– reference: 9392424 - J Lipid Res. 1997 Nov;38(11):2264-72
– reference: 17373820 - Mol Pharm. 2007 May-Jun;4(3):435-47
– reference: 12621426 - Nature. 2003 Mar 6;422(6927):37-44
– reference: 21438741 - Expert Opin Drug Deliv. 2011 May;8(5):547-63
– reference: 12562849 - J Lipid Res. 2003 Apr;44(4):655-67
– reference: 15640437 - Am J Respir Cell Mol Biol. 2005 Apr;32(4):281-9
– reference: 22546253 - Chimia (Aarau). 2012;66(3):104-9
– reference: 23738633 - Nanomedicine (Lond). 2014 Apr;9(5):607-21
– reference: 19851469 - Colloid Polym Sci. 2009 Nov;287(11):1261-1271
SSID ssj0000402898
Score 2.5301955
Snippet Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1625
SubjectTerms cell lines
endocytosis
Full Research Paper
inhibition
nanoparticles
Nanoscience
Nanotechnology
uptake proteins
Title Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages
URI https://www.ncbi.nlm.nih.gov/pubmed/25383275
https://www.proquest.com/docview/1622594857
https://pubmed.ncbi.nlm.nih.gov/PMC4222452
https://doaj.org/article/2fe92d5b71c7464f9e6a1bcfc0b87691
Volume 5
WOSCitedRecordID wos000344110500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4gAHVL4XSmUkOKFQx3Hs9bGFVlyoOIC0F2TZE1td6DqrJovUS387Yye72kUgLlxySEaKM29szzgzbwh57RFl0YAqrOe6EBxc4XhjC6lkUwWQluuQm02o8_PpbKY_b7X6SjlhAz3woLgjHrzmTe1UCUpIEbSXtnQQgDmcyLlunaPXsxVM5TVYpD9ouR1dqpVGH1sOWe84n_iR-x5tbN_VKZtnZz_KtP1_8jV_T5nc2oPO9sn90Xmkx8OgH5BbPj4k97YoBR-Rbx_Gjic99bFp4bpvUZiulr394enCp0LfebfoKDqrNI1vuU6No_NI_TKVaFyiTdJ0ot9RGxu6sKnN1wUuPN1j8vXs9Mv7j8XYQqGAupR9EVhgLNjArdcOfA0MgDMVPKAjwjCaqBtIER24oKwAjG2kUK5hSlqnfWDVE7IX2-ifEWpD5RXTCETVJBi001OERksAFUpRT8jbtSINjPziqc3FpcE4I6ndDGo3tUG1T8ibjfRy4NX4i9xJwmQjk9iw8w20ETMqyPzLRibk1RpRg7MnKdBG3646U0pczxJBjpqQpwPCm1dx3AsqrvDD1A72O2PZfRLnF5mhO52riZo__x-Df0HuopMmivwn7IDs9Vcr_5LcgZ_9vLs6JLfVbHqYjR-vn25OfwEc-g8L
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+endocytotic+uptake+mechanisms+for+nanoparticles+in+epithelial+cells+and+macrophages&rft.jtitle=Beilstein+journal+of+nanotechnology&rft.au=Kuhn%2C+Dagmar+A&rft.au=Vanhecke%2C+Dimitri&rft.au=Michen%2C+Benjamin&rft.au=Blank%2C+Fabian&rft.date=2014-09-24&rft.pub=Beilstein-Institut&rft.eissn=2190-4286&rft.volume=5&rft.spage=1625&rft.epage=1636&rft_id=info:doi/10.3762%2Fbjnano.5.174&rft_id=info%3Apmid%2F25383275&rft.externalDocID=PMC4222452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4286&client=summon