Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages
Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774...
Uloženo v:
| Vydáno v: | Beilstein journal of nanotechnology Ročník 5; číslo 1; s. 1625 - 1636 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Beilstein-Institut
24.09.2014
|
| Témata: | |
| ISSN: | 2190-4286, 2190-4286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line. |
|---|---|
| AbstractList | Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line. Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line. |
| Author | Vanhecke, Dimitri Petri-Fink, Alke Blank, Fabian Rothen-Rutishauser, Barbara Gehr, Peter Kuhn, Dagmar A Michen, Benjamin |
| AuthorAffiliation | 3 Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland 2 Respiratory Medicine, University Hospital of Bern, Murtenstrasse 50, 3008 Bern, Switzerland 1 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland, Phone +41 26 300 95 02 |
| AuthorAffiliation_xml | – name: 1 Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland, Phone +41 26 300 95 02 – name: 3 Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland – name: 2 Respiratory Medicine, University Hospital of Bern, Murtenstrasse 50, 3008 Bern, Switzerland |
| Author_xml | – sequence: 1 givenname: Dagmar A surname: Kuhn fullname: Kuhn, Dagmar A – sequence: 2 givenname: Dimitri surname: Vanhecke fullname: Vanhecke, Dimitri – sequence: 3 givenname: Benjamin surname: Michen fullname: Michen, Benjamin – sequence: 4 givenname: Fabian surname: Blank fullname: Blank, Fabian – sequence: 5 givenname: Peter surname: Gehr fullname: Gehr, Peter – sequence: 6 givenname: Alke surname: Petri-Fink fullname: Petri-Fink, Alke – sequence: 7 givenname: Barbara surname: Rothen-Rutishauser fullname: Rothen-Rutishauser, Barbara |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25383275$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1vEzEQxS1UREvpjTPykQMJtuOP3QsSKgUqVeICR2TNeseJw6692JtK_e_rkFC1CF9sjX9-b_Q8L8lJTBEJec3ZcmW0eN9tI8S0VEtu5DNyJnjLFlI0-uTR-ZRclLJldUkmmrZ5QU6FWjUrYdQZ-fkpeI8Z40wx9sndzWkOju6mGX4hHdFtIIYyFupTpnuvCXIFBiw0RIpTmDc4BBiow2EoFGJPR3A5TRtYY3lFnnsYCl4c93Py4_PV98uvi5tvX64vP94snOJ6XnjmGfPgBWDbOVSOOSeY8ejkqmVKtap3zHDjOm9AOs2UlqbrmdHQtejZ6pxcH3T7BFs75TBCvrMJgv1TSHltj21b4bEVveoMd0Zq6VvUwDvnHesao1tetT4ctKZdN2LvajQZhieiT29i2Nh1urVSCCGVqAJvjwI5_d5hme0Yyj4eiJh2xXIthGplo0xF3zz2ejD5-z8VeHcAaqSlZPQPCGd2PwH2MAFW2ToBFRf_4C7MMIe07zQM_390D2gmuQ4 |
| CitedBy_id | crossref_primary_10_1016_j_cellsig_2019_03_022 crossref_primary_10_1039_D2RA06888E crossref_primary_10_3389_fimmu_2021_651109 crossref_primary_10_1016_j_colsurfb_2019_06_024 crossref_primary_10_1016_j_vetimm_2025_110977 crossref_primary_10_1016_j_xphs_2019_08_029 crossref_primary_10_3389_fimmu_2019_02495 crossref_primary_10_3389_fnut_2023_1186724 crossref_primary_10_1016_j_scitotenv_2021_146523 crossref_primary_10_1016_j_jconrel_2021_10_017 crossref_primary_10_1002_adhm_202303480 crossref_primary_10_1007_s11095_023_03540_x crossref_primary_10_1002_anie_201705422 crossref_primary_10_1002_jbm_a_35527 crossref_primary_10_1007_s13346_021_00976_9 crossref_primary_10_1111_cea_13178 crossref_primary_10_1080_17474124_2018_1399794 crossref_primary_10_1208_s12249_020_01873_z crossref_primary_10_2147_IJN_S257269 crossref_primary_10_1007_s11051_017_3787_9 crossref_primary_10_2147_IJN_S497859 crossref_primary_10_1016_j_actbio_2023_03_043 crossref_primary_10_1080_15376516_2025_2500546 crossref_primary_10_2147_IJN_S494224 crossref_primary_10_3390_nano11020496 crossref_primary_10_2174_0929867326666191125092111 crossref_primary_10_1002_ppsc_201600043 crossref_primary_10_1016_j_jhazmat_2022_129515 crossref_primary_10_1080_10717544_2018_1466936 crossref_primary_10_1016_j_talanta_2015_07_081 crossref_primary_10_1016_j_envint_2022_107711 crossref_primary_10_1038_s41598_021_95073_9 crossref_primary_10_3389_fcimb_2024_1494651 crossref_primary_10_1021_acsnano_5c01981 crossref_primary_10_1080_10717544_2019_1606363 crossref_primary_10_3390_ijms241411379 crossref_primary_10_1016_j_ijpharm_2024_124914 crossref_primary_10_1016_j_scitotenv_2017_12_334 crossref_primary_10_3390_toxics12010092 crossref_primary_10_1039_D3EN00681F crossref_primary_10_1080_17435889_2025_2478806 crossref_primary_10_1186_s12985_016_0506_6 crossref_primary_10_1016_j_mib_2019_05_007 crossref_primary_10_1021_acsabm_5c01187 crossref_primary_10_3390_nano13101621 crossref_primary_10_1016_j_cca_2018_10_004 crossref_primary_10_1080_10937404_2015_1126210 crossref_primary_10_1038_s41598_020_60684_1 crossref_primary_10_3390_ma12071026 crossref_primary_10_1039_D5MA00041F crossref_primary_10_1007_s40123_021_00365_y crossref_primary_10_1039_D2BM00181K crossref_primary_10_1186_s12951_021_00774_y crossref_primary_10_2217_nnm_2022_0320 crossref_primary_10_1016_j_chemosphere_2020_129235 crossref_primary_10_1016_j_chemphyslip_2023_105362 crossref_primary_10_1089_adt_2018_911 crossref_primary_10_3390_pharmaceutics14071447 crossref_primary_10_1002_mco2_327 crossref_primary_10_1016_j_mtbio_2025_102261 crossref_primary_10_1007_s12272_016_0847_0 crossref_primary_10_3389_fimmu_2017_00544 crossref_primary_10_3390_antib7010005 crossref_primary_10_2217_nnm_15_158 crossref_primary_10_1016_j_ejpb_2019_08_012 crossref_primary_10_1016_j_impact_2018_02_008 crossref_primary_10_3390_ijms23158788 crossref_primary_10_1039_C9NR09934D crossref_primary_10_1016_j_bbrc_2025_151736 crossref_primary_10_3390_pharmaceutics13101670 crossref_primary_10_1002_mds_29939 crossref_primary_10_1016_j_carbpol_2019_04_056 crossref_primary_10_1016_j_biomaterials_2022_121762 crossref_primary_10_3389_fbioe_2019_00228 crossref_primary_10_1016_j_apradiso_2017_09_004 crossref_primary_10_1080_17425247_2021_1873272 crossref_primary_10_1016_j_taap_2017_01_012 crossref_primary_10_1007_s11064_018_2598_4 crossref_primary_10_1016_j_tips_2018_03_001 crossref_primary_10_1016_j_jtemb_2017_12_003 crossref_primary_10_1080_03639045_2020_1724134 crossref_primary_10_1080_17435390_2019_1698779 crossref_primary_10_1007_s11051_017_4004_6 crossref_primary_10_1016_j_aquatox_2017_09_008 crossref_primary_10_1016_j_ecoenv_2023_115749 crossref_primary_10_3390_ma14216390 crossref_primary_10_1016_j_ejpb_2019_09_020 crossref_primary_10_1186_s12989_024_00590_w crossref_primary_10_1080_10937404_2024_2424156 crossref_primary_10_3390_nano6020034 crossref_primary_10_1016_j_colsurfb_2015_11_011 crossref_primary_10_1002_advs_202310314 crossref_primary_10_1016_j_biomaterials_2020_120587 crossref_primary_10_1038_s41598_020_76332_7 crossref_primary_10_3390_nano10010140 crossref_primary_10_1002_adfm_202109960 crossref_primary_10_1016_j_scitotenv_2019_134722 crossref_primary_10_1016_j_colsurfb_2016_09_046 crossref_primary_10_1007_s10565_020_09571_z crossref_primary_10_1016_j_jconrel_2019_12_052 crossref_primary_10_1016_j_intimp_2023_110035 crossref_primary_10_1016_j_fct_2019_02_015 crossref_primary_10_1002_mabi_202000196 crossref_primary_10_1371_journal_pone_0218122 crossref_primary_10_1016_j_ijpharm_2025_126102 crossref_primary_10_1016_j_smim_2017_09_011 crossref_primary_10_1007_s12011_023_03739_4 crossref_primary_10_1039_D1NR05357D crossref_primary_10_1016_j_snb_2020_128039 crossref_primary_10_1128_JVI_02255_16 crossref_primary_10_1186_s12989_024_00563_z crossref_primary_10_3390_molecules26020260 crossref_primary_10_1080_10717544_2018_1556359 crossref_primary_10_1016_j_jconrel_2020_01_010 crossref_primary_10_1016_j_molliq_2021_118008 crossref_primary_10_3390_pharmaceutics15020432 crossref_primary_10_1007_s12015_025_10897_6 crossref_primary_10_2217_nnm_2020_0229 crossref_primary_10_1038_s41598_018_22166_3 crossref_primary_10_2174_1381612826666200317140600 crossref_primary_10_1016_j_ultrasmedbio_2024_06_016 crossref_primary_10_1080_17435390_2017_1287313 crossref_primary_10_1016_j_jmmm_2016_10_106 crossref_primary_10_1089_aivt_2020_0017 crossref_primary_10_1002_btpr_3501 crossref_primary_10_1016_j_biopha_2018_11_116 crossref_primary_10_1016_j_ejpb_2015_02_014 crossref_primary_10_1016_j_envpol_2016_06_071 crossref_primary_10_1002_anie_201906303 crossref_primary_10_1039_C8NR09599J crossref_primary_10_1016_j_colsurfb_2022_112330 crossref_primary_10_1186_s12951_018_0343_4 crossref_primary_10_1007_s11010_017_3180_0 crossref_primary_10_1016_j_ijpharm_2024_124567 crossref_primary_10_3390_biology10111148 crossref_primary_10_3390_nano12030552 crossref_primary_10_1002_rmv_2403 crossref_primary_10_1038_srep40493 crossref_primary_10_2147_IJN_S491573 crossref_primary_10_3762_bjnano_11_25 crossref_primary_10_1021_acs_analchem_5c03585 crossref_primary_10_1128_spectrum_00645_24 crossref_primary_10_3762_bjnano_6_28 crossref_primary_10_1016_j_actbio_2016_11_066 crossref_primary_10_3390_ijms20205227 crossref_primary_10_3390_nano13192616 crossref_primary_10_1080_10408444_2020_1719974 crossref_primary_10_3390_toxics9090224 crossref_primary_10_1002_smsc_202400471 crossref_primary_10_3390_molecules26195788 crossref_primary_10_3390_w13070973 crossref_primary_10_1007_s40097_022_00504_2 crossref_primary_10_1016_j_msec_2021_112610 crossref_primary_10_1016_j_ejmech_2020_112526 crossref_primary_10_1016_j_tox_2017_01_001 crossref_primary_10_1016_j_addr_2019_08_004 crossref_primary_10_1007_s11356_016_6211_6 crossref_primary_10_1016_j_jcis_2024_03_039 crossref_primary_10_3390_ani11072097 crossref_primary_10_3390_ijms25094964 crossref_primary_10_3390_nano14191601 crossref_primary_10_3390_toxics9090210 crossref_primary_10_3390_pharmaceutics14030630 crossref_primary_10_1016_j_matlet_2017_02_068 crossref_primary_10_1038_s41598_018_36954_4 crossref_primary_10_3390_biom9010014 crossref_primary_10_1016_j_biomaterials_2019_03_025 crossref_primary_10_1016_j_ijpharm_2022_121912 crossref_primary_10_1002_adma_201704307 crossref_primary_10_1016_j_smim_2017_08_013 crossref_primary_10_3390_pharmaceutics12040371 crossref_primary_10_1007_s11051_019_4628_9 crossref_primary_10_1039_C9EN01353A crossref_primary_10_1016_j_exphem_2024_104651 crossref_primary_10_3390_cells9010093 crossref_primary_10_1080_17425247_2021_1854223 crossref_primary_10_1007_s11051_016_3595_7 crossref_primary_10_1038_s41578_022_00458_5 crossref_primary_10_1016_j_hazadv_2022_100166 crossref_primary_10_1016_j_taap_2018_10_023 crossref_primary_10_1016_j_pbiomolbio_2022_08_006 crossref_primary_10_1007_s12550_019_00375_7 crossref_primary_10_1002_adtp_202300048 crossref_primary_10_1039_C6CS00636A crossref_primary_10_1007_s10853_023_08680_4 crossref_primary_10_1002_smll_201701815 crossref_primary_10_3762_bjnano_8_200 crossref_primary_10_1002_ange_201906303 crossref_primary_10_3389_fimmu_2022_853769 crossref_primary_10_1080_01480545_2025_2453580 crossref_primary_10_1016_j_nantod_2021_101279 crossref_primary_10_1016_j_bbagen_2016_12_012 crossref_primary_10_1016_j_biomaterials_2021_120791 crossref_primary_10_1016_j_ecoenv_2022_114108 crossref_primary_10_1016_j_mattod_2015_10_008 crossref_primary_10_14356_kona_2020013 crossref_primary_10_1016_j_intimp_2022_108533 crossref_primary_10_1039_C8RA06665E crossref_primary_10_1016_j_actbio_2018_09_026 crossref_primary_10_1002_adfm_202104487 crossref_primary_10_1002_adhm_202000529 crossref_primary_10_3390_v14081684 crossref_primary_10_3762_bjnano_12_22 crossref_primary_10_1016_j_envres_2022_113202 crossref_primary_10_1186_s12951_022_01670_9 crossref_primary_10_1080_17435889_2025_2533106 crossref_primary_10_1016_j_colsurfb_2017_09_062 crossref_primary_10_1002_advs_201500104 crossref_primary_10_1016_j_tiv_2016_03_004 crossref_primary_10_1016_j_addr_2022_114403 crossref_primary_10_1038_s41423_025_01316_4 crossref_primary_10_1080_02652048_2019_1692943 crossref_primary_10_2147_IJN_S434693 crossref_primary_10_1016_j_envpol_2021_116974 crossref_primary_10_1038_srep29030 crossref_primary_10_1016_j_jbc_2022_102596 crossref_primary_10_1016_j_aquatox_2018_10_008 crossref_primary_10_3390_antibiotics8020039 crossref_primary_10_1371_journal_pone_0178260 crossref_primary_10_1007_s12274_021_3781_5 crossref_primary_10_1002_jat_4378 crossref_primary_10_3390_pharmaceutics14051103 crossref_primary_10_1016_j_ejpb_2020_11_024 crossref_primary_10_1016_j_envpol_2024_123599 crossref_primary_10_3390_ma13143227 crossref_primary_10_1007_s00204_023_03528_x crossref_primary_10_1016_j_nano_2016_03_002 crossref_primary_10_3390_ijms25094714 crossref_primary_10_2147_IJN_S430877 crossref_primary_10_1002_adhm_202303865 crossref_primary_10_3390_ijms252011101 crossref_primary_10_1002_adfm_202109032 crossref_primary_10_1039_C6NR03543D crossref_primary_10_1016_j_addr_2018_10_011 crossref_primary_10_1016_j_envpol_2023_121668 crossref_primary_10_1186_s11671_018_2728_6 crossref_primary_10_4103_1673_5374_379016 crossref_primary_10_1016_j_heliyon_2024_e37308 crossref_primary_10_3390_cancers14205086 crossref_primary_10_1002_jat_3606 crossref_primary_10_1016_j_chemosphere_2024_141463 crossref_primary_10_2217_nnm_2017_0362 crossref_primary_10_3389_fimmu_2023_1148253 crossref_primary_10_1016_j_jconrel_2017_03_008 crossref_primary_10_1016_j_placenta_2017_06_344 crossref_primary_10_1080_10717544_2022_2117435 crossref_primary_10_1177_2049936117713593 crossref_primary_10_3390_biology12040624 crossref_primary_10_3390_w14060863 crossref_primary_10_1016_j_toxlet_2017_05_009 crossref_primary_10_1039_D0BM01086C crossref_primary_10_1007_s44169_022_00013_x crossref_primary_10_3389_fphar_2015_00055 crossref_primary_10_3390_nano11051183 crossref_primary_10_1039_D0BM01333A crossref_primary_10_1016_j_bioorg_2019_103423 crossref_primary_10_1002_biot_201600453 crossref_primary_10_1007_s11051_021_05249_7 crossref_primary_10_1002_smll_202204293 crossref_primary_10_1016_j_biomaterials_2015_02_099 crossref_primary_10_1016_j_jconrel_2020_07_032 crossref_primary_10_1016_j_micromeso_2020_110593 crossref_primary_10_1038_s41598_017_16025_w crossref_primary_10_3390_cells14010044 crossref_primary_10_1515_pac_2017_0102 crossref_primary_10_3762_bjnano_16_115 crossref_primary_10_1016_j_ijpharm_2018_01_051 crossref_primary_10_3390_ijms18061301 crossref_primary_10_1038_s41598_020_78550_5 crossref_primary_10_1016_j_matpr_2024_04_006 crossref_primary_10_1007_s11307_019_01440_4 crossref_primary_10_1016_j_scitotenv_2021_147784 crossref_primary_10_3390_pharmaceutics15030999 crossref_primary_10_3390_ijms25084152 crossref_primary_10_1038_s41598_023_28958_6 crossref_primary_10_1016_j_addr_2021_113948 crossref_primary_10_3390_ijerph22010045 crossref_primary_10_1039_D0NR05452F crossref_primary_10_3390_cells11213445 crossref_primary_10_1002_ange_201705422 crossref_primary_10_1038_s41598_021_01938_4 crossref_primary_10_1002_xrs_70041 crossref_primary_10_1016_j_ejpb_2016_12_025 crossref_primary_10_1007_s11095_019_2589_4 crossref_primary_10_1080_17425247_2018_1503249 crossref_primary_10_3390_pharmaceutics15030740 crossref_primary_10_1016_j_tiv_2022_105415 crossref_primary_10_1039_D0NR03581E crossref_primary_10_3762_bjnano_8_239 crossref_primary_10_1016_j_aquatox_2019_105322 crossref_primary_10_1111_jcmm_13110 crossref_primary_10_1208_s12249_019_1503_z crossref_primary_10_1007_s11051_016_3493_z crossref_primary_10_1016_j_jhazmat_2025_139890 crossref_primary_10_3762_bjnano_8_40 crossref_primary_10_1016_j_carbpol_2018_02_073 crossref_primary_10_3390_pharmaceutics14061202 crossref_primary_10_1016_j_apsb_2021_03_007 crossref_primary_10_1016_j_nano_2016_02_009 crossref_primary_10_1016_j_jddst_2023_104215 crossref_primary_10_3390_vaccines3040829 crossref_primary_10_1002_adfm_202508761 crossref_primary_10_3390_nano12193431 crossref_primary_10_3390_toxins15080482 crossref_primary_10_1016_j_lfs_2024_122937 crossref_primary_10_1080_08982104_2018_1556293 crossref_primary_10_1111_exd_14015 crossref_primary_10_1007_s40495_019_00205_5 crossref_primary_10_1007_s12668_020_00726_0 crossref_primary_10_1016_j_ijpharm_2020_120095 crossref_primary_10_3389_fcell_2020_595515 crossref_primary_10_1016_j_biochi_2019_02_012 crossref_primary_10_1016_j_scitotenv_2025_179404 crossref_primary_10_1080_17429145_2018_1455903 crossref_primary_10_1177_07482337211035000 |
| Cites_doi | 10.1038/cr.2010.19 10.1002/adma.200801393 10.1091/mbc.10.4.961 10.1165/rcmb.2004-0187OC 10.1016/j.addr.2011.09.001 10.1002/smll.201000528 10.1016/j.addr.2004.05.003 10.1016/S0022-2275(20)34940-3 10.2147/ijn.s33803 10.1016/j.nantod.2011.02.003 10.1038/nature01451 10.1083/jcb.152.1.165 10.1088/0957-4484/21/35/355102 10.1021/nn101277w 10.1021/nn300223w 10.1080/00222930701314932 10.1007/s00018-009-0053-z 10.2217/nnm.13.24 10.1016/j.biomaterials.2010.08.111 10.1002/cphy.c100035 10.1088/0953-8984/24/16/164207 10.1021/nl051077u 10.1016/j.ejpb.2007.09.002 10.1016/S0300-9084(86)80004-9 10.1021/la051982u 10.2533/chimia.2012.104 10.1002/pat.401 10.1021/ar7002804 10.1146/annurev.immunol.17.1.593 10.1038/nrm3151 10.1016/S0927-7757(99)00439-2 10.1039/c3nr34005h 10.1016/j.biomaterials.2008.04.038 10.1083/jcb.200102084 10.1073/pnas.96.12.6775 10.1517/17425247.2011.565326 10.1083/jcb.62.3.647 10.1194/jlr.R200021-JLR200 10.1007/s00396-009-2087-z 10.1515/entl-2015-0004 10.1021/nn203892h 10.1016/0092-8674(92)90143-Z 10.1042/bj20031253 10.1021/nn5018523 10.1021/es0522635 10.1146/annurev.cellbio.17.1.517 10.1038/nnano.2007.99 10.1007/s00204-012-0876-5 10.1186/1743-8977-4-9 10.1371/journal.pone.0024438 10.1083/jcb.105.4.1473 10.1007/978-0-387-93877-6_9 10.1016/j.cis.2013.10.013 10.1146/annurev.biochem.66.1.511 10.1016/j.nano.2008.02.002 10.1289/ehp.8006 10.1124/pr.58.1.8 10.1089/jamp.2011.0889 10.1146/annurev.biochem.78.081307.110540 10.1021/mp060122j 10.1074/jbc.274.15.10203 10.1096/fj.01-0689com |
| ContentType | Journal Article |
| Copyright | Copyright © 2014, Kuhn et al. 2014 Kuhn et al. |
| Copyright_xml | – notice: Copyright © 2014, Kuhn et al. 2014 Kuhn et al. |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3762/bjnano.5.174 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2190-4286 |
| EndPage | 1636 |
| ExternalDocumentID | oai_doaj_org_article_2fe92d5b71c7464f9e6a1bcfc0b87691 PMC4222452 25383275 10_3762_bjnano_5_174 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS AAFWJ AAKDD AAYXX ACGFO ACGOD ADBBV ADDVE ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK FRP GROUPED_DOAJ GX1 HH5 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM ~9O 88I 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BPHCQ CCPQU DWQXO GNUQQ HCIFZ M2P NPM P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC 7X8 5PM |
| ID | FETCH-LOGICAL-c516t-f0f00faf2ae9bce5c0cc207fec43905595dc0717cbf7a4c605647bd076ab9ef03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 408 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344110500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-4286 |
| IngestDate | Fri Oct 03 12:47:20 EDT 2025 Thu Aug 21 18:24:41 EDT 2025 Fri Jul 11 09:00:10 EDT 2025 Mon Jul 21 05:57:48 EDT 2025 Sat Nov 29 03:41:58 EST 2025 Tue Nov 18 22:45:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | endocytosis inhibition nanoparticles uptake proteins cell lines |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-f0f00faf2ae9bce5c0cc207fec43905595dc0717cbf7a4c605647bd076ab9ef03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/2fe92d5b71c7464f9e6a1bcfc0b87691 |
| PMID | 25383275 |
| PQID | 1622594857 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2fe92d5b71c7464f9e6a1bcfc0b87691 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4222452 proquest_miscellaneous_1622594857 pubmed_primary_25383275 crossref_primary_10_3762_bjnano_5_174 crossref_citationtrail_10_3762_bjnano_5_174 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-24 |
| PublicationDateYYYYMMDD | 2014-09-24 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany |
| PublicationTitle | Beilstein journal of nanotechnology |
| PublicationTitleAlternate | Beilstein J Nanotechnol |
| PublicationYear | 2014 |
| Publisher | Beilstein-Institut |
| Publisher_xml | – name: Beilstein-Institut |
| References | ref13 ref57 ref12 ref56 ref15 Rothen-Rutishauser (ref51) 2012; 4 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 Rothen-Rutishauser (ref17) 2007 ref7 ref9 ref4 ref3 ref6 ref5 Ivanov (ref31) 2008; 440 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Rothen-Rutishauser (ref50) 2009 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 Christian (ref43) 1997; 38 ref29 ref60 ref62 ref61 3312229 - J Cell Biol. 1987 Oct;105(4):1473-8 17894871 - Part Fibre Toxicol. 2007 Sep 25;4:9 17945472 - Eur J Pharm Biopharm. 2008 Mar;68(3):676-87 16903270 - Environ Sci Technol. 2006 Jul 15;40(14):4353-9 21028844 - ACS Nano. 2010 Nov 23;4(11):6787-97 24200091 - Adv Colloid Interface Sci. 2013 Dec;201-202:18-29 11687498 - Annu Rev Cell Dev Biol. 2001;17:517-68 21925220 - Adv Drug Deliv Rev. 2012 Feb;64(2):129-37 18447366 - Acc Chem Res. 2008 Dec;41(12):1578-86 12562849 - J Lipid Res. 2003 Apr;44(4):655-67 17373820 - Mol Pharm. 2007 May-Jun;4(3):435-47 18501424 - Biomaterials. 2008 Aug-Sep;29(24-25):3469-76 10358769 - Annu Rev Immunol. 1999;17:593-623 20125123 - Cell Res. 2010 Mar;20(3):256-75 16277438 - Nano Lett. 2005 Nov;5(11):2123-30 18369934 - Methods Mol Biol. 2008;440:15-33 20602428 - Small. 2010 Aug 2;6(15):1669-78 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74 23478880 - Nanoscale. 2013 Apr 21;5(8):3127-48 21949717 - PLoS One. 2011;6(9):e24438 22904626 - Int J Nanomedicine. 2012;7:4147-58 15518920 - Adv Drug Deliv Rev. 2005 Jan 2;57(1):43-61 21779028 - Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33 1739974 - Cell. 1992 Feb 21;68(4):673-82 24773217 - ACS Nano. 2014 May 27;8(5):4304-12 19606281 - Adv Mater. 2009;21:419-424 10187805 - J Biol Chem. 1999 Apr 9;274(15):10203-12 16507881 - Pharmacol Rev. 2006 Mar;58(1):32-45 12205028 - FASEB J. 2002 Sep;16(11):1371-8 15640437 - Am J Respir Cell Mol Biol. 2005 Apr;32(4):281-9 9242916 - Annu Rev Biochem. 1997;66:511-48 20880574 - Biomaterials. 2011 Jan;32(2):547-55 16378435 - Langmuir. 2006 Jan 3;22(1):300-5 22250809 - ACS Nano. 2012 Feb 28;6(2):1251-9 16263511 - Environ Health Perspect. 2005 Nov;113(11):1555-60 21438741 - Expert Opin Drug Deliv. 2011 May;8(5):547-63 11481344 - J Cell Biol. 2001 Aug 6;154(3):535-47 22669515 - Arch Toxicol. 2013 Jun;87(6):1053-65 12621426 - Nature. 2003 Mar 6;422(6927):37-44 18654291 - Nat Nanotechnol. 2007 May;2(5):318-23 23738633 - Nanomedicine (Lond). 2014 Apr;9(5):607-21 22721453 - ACS Nano. 2012 Jul 24;6(7):5845-57 9392424 - J Lipid Res. 1997 Nov;38(11):2264-72 11149929 - J Cell Biol. 2001 Jan 8;152(1):165-80 22007674 - J Aerosol Med Pulm Drug Deliv. 2012 Feb;25(1):7-15 19317650 - Annu Rev Biochem. 2009;78:857-902 4368822 - J Cell Biol. 1974 Sep;62(3):647-59 2874839 - Biochimie. 1986 Mar;68(3):375-81 18375191 - Nanomedicine. 2008 Jun;4(2):139-45 19499185 - Cell Mol Life Sci. 2009 Sep;66(17):2873-96 10359788 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6775-80 19851469 - Colloid Polym Sci. 2009 Nov;287(11):1261-1271 20689164 - Nanotechnology. 2010 Sep 3;21(35):355102 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69 22546253 - Chimia (Aarau). 2012;66(3):104-9 22466161 - J Phys Condens Matter. 2012 Apr 25;24(16):164207 23733639 - Compr Physiol. 2011 Jul;1(3):1159-74 |
| References_xml | – ident: ref15 doi: 10.1038/cr.2010.19 – ident: ref55 doi: 10.1002/adma.200801393 – ident: ref57 doi: 10.1091/mbc.10.4.961 – ident: ref58 doi: 10.1165/rcmb.2004-0187OC – ident: ref9 doi: 10.1016/j.addr.2011.09.001 – ident: ref19 doi: 10.1002/smll.201000528 – ident: ref3 doi: 10.1016/j.addr.2004.05.003 – volume: 38 start-page: 2264 year: 1997 ident: ref43 publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)34940-3 – ident: ref49 doi: 10.2147/ijn.s33803 – ident: ref11 doi: 10.1016/j.nantod.2011.02.003 – ident: ref20 doi: 10.1038/nature01451 – ident: ref61 doi: 10.1083/jcb.152.1.165 – volume-title: Particle Toxicology year: 2007 ident: ref17 – ident: ref38 doi: 10.1088/0957-4484/21/35/355102 – ident: ref53 doi: 10.1021/nn101277w – ident: ref56 doi: 10.1021/nn300223w – ident: ref18 doi: 10.1080/00222930701314932 – ident: ref8 doi: 10.1007/s00018-009-0053-z – ident: ref32 doi: 10.2217/nnm.13.24 – ident: ref62 doi: 10.1016/j.biomaterials.2010.08.111 – ident: ref26 doi: 10.1002/cphy.c100035 – ident: ref54 doi: 10.1088/0953-8984/24/16/164207 – ident: ref63 doi: 10.1021/nl051077u – ident: ref21 doi: 10.1016/j.ejpb.2007.09.002 – ident: ref42 doi: 10.1016/S0300-9084(86)80004-9 – ident: ref5 doi: 10.1021/la051982u – ident: ref10 doi: 10.2533/chimia.2012.104 – ident: ref47 doi: 10.1002/pat.401 – ident: ref4 doi: 10.1021/ar7002804 – ident: ref23 doi: 10.1146/annurev.immunol.17.1.593 – ident: ref37 doi: 10.1038/nrm3151 – ident: ref64 doi: 10.1016/S0927-7757(99)00439-2 – ident: ref7 doi: 10.1039/c3nr34005h – ident: ref41 doi: 10.1016/j.biomaterials.2008.04.038 – ident: ref45 doi: 10.1083/jcb.200102084 – ident: ref44 doi: 10.1073/pnas.96.12.6775 – ident: ref2 doi: 10.1517/17425247.2011.565326 – ident: ref35 doi: 10.1083/jcb.62.3.647 – ident: ref27 doi: 10.1194/jlr.R200021-JLR200 – ident: ref48 doi: 10.1007/s00396-009-2087-z – volume: 4 start-page: 1 year: 2012 ident: ref51 publication-title: Euro Nanotox. Lett. doi: 10.1515/entl-2015-0004 – volume: 440 start-page: 15 volume-title: Pharmacological Inhibition of Endocytotic Pathways: Is It Specific Enough to Be Useful? year: 2008 ident: ref31 – ident: ref65 doi: 10.1021/nn203892h – ident: ref28 doi: 10.1016/0092-8674(92)90143-Z – ident: ref12 doi: 10.1042/bj20031253 – ident: ref46 doi: 10.1021/nn5018523 – ident: ref22 doi: 10.1021/es0522635 – ident: ref25 doi: 10.1146/annurev.cellbio.17.1.517 – ident: ref6 doi: 10.1038/nnano.2007.99 – start-page: 226 volume-title: Particle–Lung Interactions year: 2009 ident: ref50 – ident: ref29 doi: 10.1007/s00204-012-0876-5 – ident: ref30 doi: 10.1186/1743-8977-4-9 – ident: ref52 doi: 10.1371/journal.pone.0024438 – ident: ref34 doi: 10.1083/jcb.105.4.1473 – ident: ref36 doi: 10.1007/978-0-387-93877-6_9 – ident: ref16 doi: 10.1016/j.cis.2013.10.013 – ident: ref24 doi: 10.1146/annurev.biochem.66.1.511 – ident: ref13 doi: 10.1016/j.nano.2008.02.002 – ident: ref59 doi: 10.1289/ehp.8006 – ident: ref60 doi: 10.1124/pr.58.1.8 – ident: ref1 doi: 10.1089/jamp.2011.0889 – ident: ref14 doi: 10.1146/annurev.biochem.78.081307.110540 – ident: ref33 doi: 10.1021/mp060122j – ident: ref40 doi: 10.1074/jbc.274.15.10203 – ident: ref39 doi: 10.1096/fj.01-0689com – reference: 18369934 - Methods Mol Biol. 2008;440:15-33 – reference: 22007674 - J Aerosol Med Pulm Drug Deliv. 2012 Feb;25(1):7-15 – reference: 16903270 - Environ Sci Technol. 2006 Jul 15;40(14):4353-9 – reference: 15518920 - Adv Drug Deliv Rev. 2005 Jan 2;57(1):43-61 – reference: 16378435 - Langmuir. 2006 Jan 3;22(1):300-5 – reference: 20880574 - Biomaterials. 2011 Jan;32(2):547-55 – reference: 4368822 - J Cell Biol. 1974 Sep;62(3):647-59 – reference: 3312229 - J Cell Biol. 1987 Oct;105(4):1473-8 – reference: 21028844 - ACS Nano. 2010 Nov 23;4(11):6787-97 – reference: 11687498 - Annu Rev Cell Dev Biol. 2001;17:517-68 – reference: 23478880 - Nanoscale. 2013 Apr 21;5(8):3127-48 – reference: 22250809 - ACS Nano. 2012 Feb 28;6(2):1251-9 – reference: 18375191 - Nanomedicine. 2008 Jun;4(2):139-45 – reference: 22669515 - Arch Toxicol. 2013 Jun;87(6):1053-65 – reference: 21949717 - PLoS One. 2011;6(9):e24438 – reference: 18447366 - Acc Chem Res. 2008 Dec;41(12):1578-86 – reference: 11481344 - J Cell Biol. 2001 Aug 6;154(3):535-47 – reference: 10359788 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6775-80 – reference: 20125123 - Cell Res. 2010 Mar;20(3):256-75 – reference: 12205028 - FASEB J. 2002 Sep;16(11):1371-8 – reference: 24200091 - Adv Colloid Interface Sci. 2013 Dec;201-202:18-29 – reference: 11149929 - J Cell Biol. 2001 Jan 8;152(1):165-80 – reference: 2874839 - Biochimie. 1986 Mar;68(3):375-81 – reference: 19499185 - Cell Mol Life Sci. 2009 Sep;66(17):2873-96 – reference: 10198050 - Mol Biol Cell. 1999 Apr;10(4):961-74 – reference: 24773217 - ACS Nano. 2014 May 27;8(5):4304-12 – reference: 23733639 - Compr Physiol. 2011 Jul;1(3):1159-74 – reference: 9242916 - Annu Rev Biochem. 1997;66:511-48 – reference: 20689164 - Nanotechnology. 2010 Sep 3;21(35):355102 – reference: 19317650 - Annu Rev Biochem. 2009;78:857-902 – reference: 22904626 - Int J Nanomedicine. 2012;7:4147-58 – reference: 17894871 - Part Fibre Toxicol. 2007 Sep 25;4:9 – reference: 1739974 - Cell. 1992 Feb 21;68(4):673-82 – reference: 16277438 - Nano Lett. 2005 Nov;5(11):2123-30 – reference: 18501424 - Biomaterials. 2008 Aug-Sep;29(24-25):3469-76 – reference: 17945472 - Eur J Pharm Biopharm. 2008 Mar;68(3):676-87 – reference: 18654291 - Nat Nanotechnol. 2007 May;2(5):318-23 – reference: 19606281 - Adv Mater. 2009;21:419-424 – reference: 22466161 - J Phys Condens Matter. 2012 Apr 25;24(16):164207 – reference: 20602428 - Small. 2010 Aug 2;6(15):1669-78 – reference: 14505488 - Biochem J. 2004 Jan 1;377(Pt 1):159-69 – reference: 21925220 - Adv Drug Deliv Rev. 2012 Feb;64(2):129-37 – reference: 10187805 - J Biol Chem. 1999 Apr 9;274(15):10203-12 – reference: 22721453 - ACS Nano. 2012 Jul 24;6(7):5845-57 – reference: 10358769 - Annu Rev Immunol. 1999;17:593-623 – reference: 16263511 - Environ Health Perspect. 2005 Nov;113(11):1555-60 – reference: 21779028 - Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33 – reference: 16507881 - Pharmacol Rev. 2006 Mar;58(1):32-45 – reference: 9392424 - J Lipid Res. 1997 Nov;38(11):2264-72 – reference: 17373820 - Mol Pharm. 2007 May-Jun;4(3):435-47 – reference: 12621426 - Nature. 2003 Mar 6;422(6927):37-44 – reference: 21438741 - Expert Opin Drug Deliv. 2011 May;8(5):547-63 – reference: 12562849 - J Lipid Res. 2003 Apr;44(4):655-67 – reference: 15640437 - Am J Respir Cell Mol Biol. 2005 Apr;32(4):281-9 – reference: 22546253 - Chimia (Aarau). 2012;66(3):104-9 – reference: 23738633 - Nanomedicine (Lond). 2014 Apr;9(5):607-21 – reference: 19851469 - Colloid Polym Sci. 2009 Nov;287(11):1261-1271 |
| SSID | ssj0000402898 |
| Score | 2.5301955 |
| Snippet | Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1625 |
| SubjectTerms | cell lines endocytosis Full Research Paper inhibition nanoparticles Nanoscience Nanotechnology uptake proteins |
| Title | Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25383275 https://www.proquest.com/docview/1622594857 https://pubmed.ncbi.nlm.nih.gov/PMC4222452 https://doaj.org/article/2fe92d5b71c7464f9e6a1bcfc0b87691 |
| Volume | 5 |
| WOSCitedRecordID | wos000344110500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2190-4286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402898 issn: 2190-4286 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI5gxQEOiDflsQoSnFDZNM1jeuSxKy6sOIA0FxSleWgHdtLRtoO0l_3t2GlnNINAXLj00FqqZTuOndifCXnJLGfWB2zdsrEUuq5LSCN0Cfq2UQnFwC_nYRP69HQ2nzefd0Z9YU3YCA88Cu6Ix9BwL1tdOS2UiE1QtmpddKyFhZz71jlEPTvJVPbBAm_Q8jg67JWGGFuNVe-wnvhR-z3Z1L2RWM2ztx9l2P4_xZq_l0zu7EEnd8jtKXikb0em75JrId0jt3YgBe-Tbx-miScDDcl37nLogJiuV4P9EegyYKPvol_2FIJVivytNqVxdJFoWGGLxjnYJMUT_Z7a5OnS4pivM3A8_QPy9eT4y_uP5TRCoXSyUkMZWWQs2shtaFoXpGPOcaZjcBCIMMgmpHeY0bk2aisc5DZK6NYzrWzbhMjqh-QgdSk8JpRpLh14xlh5LmItmkrgha-vXR2beuYL8nojSOMmfHEcc3FuIM9AsZtR7EYaEHtBXm2pVyOuxl_o3qFOtjSIhp1fgI2YSUDmXzZSkBcbjRpYPShAm0K37k2lwJ8hQI4uyKNRw9tfcdgLaq5lQfSe7vd42f-SFmcZoRvP1YTkT_4H80_JTQjSRJlvwp6Rg-FiHZ6TG-7nsOgvDsl1PZ8dZuOH56er41_mmQ1X |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+endocytotic+uptake+mechanisms+for+nanoparticles+in+epithelial+cells+and+macrophages&rft.jtitle=Beilstein+journal+of+nanotechnology&rft.au=Kuhn%2C+Dagmar+A&rft.au=Vanhecke%2C+Dimitri&rft.au=Michen%2C+Benjamin&rft.au=Blank%2C+Fabian&rft.date=2014-09-24&rft.pub=Beilstein-Institut&rft.eissn=2190-4286&rft.volume=5&rft.spage=1625&rft.epage=1636&rft_id=info:doi/10.3762%2Fbjnano.5.174&rft_id=info%3Apmid%2F25383275&rft.externalDocID=PMC4222452 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4286&client=summon |