The role of grain boundaries in solid-state Li-metal batteries

Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials futures Ročník 2; číslo 1; s. 13501 - 13517
Hlavní autori: Milan, Emily, Pasta, Mauro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IOP Publishing 01.03.2023
Predmet:
ISSN:2752-5724, 2752-5724
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resistive and hence contribute to this lower ionic conductivity. Additionally, in spite of the hope that solid electrolytes would inhibit lithium filaments, in most scenarios their growth is still observed, and in some polycrystalline systems this is suggested to occur along grain boundaries. It is apparent that grain boundaries affect the performance of solid-state electrolytes, however a deeper understanding is lacking. In this perspective, the current theories relating to grain boundaries in solid-state electrolytes are explored, as well as addressing some of the challenges which arise when trying to investigate their role. Glasses are presented as a possible solution to reduce the effect of grain boundaries in electrolytes. Future research directions are suggested which will aid in both understanding the role of grain boundaries, and diminishing their contribution in cases where they are detrimental.
AbstractList Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resistive and hence contribute to this lower ionic conductivity. Additionally, in spite of the hope that solid electrolytes would inhibit lithium filaments, in most scenarios their growth is still observed, and in some polycrystalline systems this is suggested to occur along grain boundaries. It is apparent that grain boundaries affect the performance of solid-state electrolytes, however a deeper understanding is lacking. In this perspective, the current theories relating to grain boundaries in solid-state electrolytes are explored, as well as addressing some of the challenges which arise when trying to investigate their role. Glasses are presented as a possible solution to reduce the effect of grain boundaries in electrolytes. Future research directions are suggested which will aid in both understanding the role of grain boundaries, and diminishing their contribution in cases where they are detrimental.
Author Milan, Emily
Pasta, Mauro
Author_xml – sequence: 1
  givenname: Emily
  surname: Milan
  fullname: Milan, Emily
  organization: University of Oxford Department of Materials, Oxford OX1 3PH, United Kingdom
– sequence: 2
  givenname: Mauro
  orcidid: 0000-0002-2613-4555
  surname: Pasta
  fullname: Pasta, Mauro
  organization: The Faraday Institution , Didcot OX11 0RA, United Kingdom
BookMark eNp9kDtPwzAURi1UJErpzpiFjYAfie0uSKjiUakSS5mt6_i6uErjykkH_j0pQRVCwHQf-r4znHMyamKDhFwyesOo1rdclTwvFS9uoQJFxQkZH1-jb_sZmbbthlLKlSpKpcbkbvWGWYo1ZtFn6wShyWzcNw5SwDbrrzbWweVtBx1my5BvsYM6s9B1eEhckFMPdYvTrzkhr48Pq_lzvnx5Wszvl3lVMtnlKEArLSXMhPVKcwdCAFWcW-48U9rqUlQFBckFQ-Gtsg4qj1QozzloFBOyGLguwsbsUthCejcRgvl8xLQ2kLpQ1Wis9FzMFJaCYuFAglQlMlvNnFReU9qz6MCqUmzbhP7IY9QcdJqDL3PwZQadfUX-qFShNxJi0_XK6v-KV0MxxJ3ZxH1qektm6w03zFAmSsrMzvk-d_1L7k_sBymulTE
CODEN MFAUAP
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118225
crossref_primary_10_1002_adma_202302543
crossref_primary_10_1016_j_scriptamat_2025_116987
crossref_primary_10_1016_j_jpowsour_2025_238266
crossref_primary_10_1016_j_mseb_2024_117962
crossref_primary_10_1002_adfm_202404434
crossref_primary_10_1557_s43577_025_00924_9
crossref_primary_10_1016_j_ensm_2024_103975
crossref_primary_10_3390_batteries10040132
crossref_primary_10_1016_j_actamat_2025_121374
crossref_primary_10_1002_ange_202314444
crossref_primary_10_1002_anie_202314444
crossref_primary_10_1016_j_est_2025_116933
crossref_primary_10_1002_admi_202400423
crossref_primary_10_1021_acselectrochem_4c00077
crossref_primary_10_1002_celc_202300349
crossref_primary_10_1007_s10854_025_15697_9
crossref_primary_10_1002_aenm_202304230
crossref_primary_10_1038_s41467_024_55154_5
crossref_primary_10_3390_batteries9110543
crossref_primary_10_1002_celc_202500180
crossref_primary_10_1063_5_0202249
crossref_primary_10_1021_jacs_3c07343
crossref_primary_10_1149_1945_7111_aded38
Cites_doi 10.1039/D2TA01462A
10.1002/aenm.201701003
10.1063/1.4962437
10.1016/j.jeurceramsoc.2018.08.048
10.1149/1.2056487
10.1039/c6cp07757a
10.1021/am508111r
10.1021/acs.chemmater.5b00988
10.3389/fenrg.2020.00218
10.1039/c5cp05722a
10.1016/j.ceramint.2019.07.114
10.1039/c3ee41728j
10.26434/chemrxiv-2022-0jghq
10.1149/1.1392498
10.1557/s43578-020-00098-x
10.1016/j.xcrp.2022.101043
10.1016/S0022-3093(00)00180-0
10.1016/j.ssi.2010.01.014
10.1039/C8EE00540K
10.1016/j.electacta.2016.12.018
10.1039/C3EE41655K
10.1038/s41563-021-00967-8
10.1111/j.1151-2916.1980.tb10688.x
10.1038/s41598-018-27851-x
10.1002/anie.201712769
10.1016/j.ssi.2007.03.001
10.1021/acsami.5b02528
10.1016/0167-2738(84)90108-5
10.1016/B978-012524975-1/50014-8
10.1007/978-3-319-93728-1_50
10.1149/1.1625948
10.1016/S0167-2738(00)00327-1
10.1111/jace.14084
10.1016/j.jpowsour.2016.08.115
10.1103/PhysRevB.81.184301
10.1016/S0921-5093(98)00978-2
10.1002/adfm.202007564
10.1039/C4CC05372A
10.1021/acs.chemmater.7b02805
10.1021/acsenergylett.8b02542
10.1016/S0167-2738(01)00677-4
10.1016/0167-2738(81)90341-6
10.1007/s10008-012-1900-7
10.1021/acsami.6b00831
10.1021/cm4016222
10.1016/0167-2738(86)90139-6
10.1016/j.mtener.2022.101118
10.1016/S0167-2738(02)00137-6
10.1016/0022-4596(87)90081-8
10.1007/s11581-017-2314-4
10.1016/0167-2738(92)90310-L
10.1038/s41563-019-0431-3
10.21203/rs.3.rs-1851478/v1
10.1021/acsami.8b17223
10.1039/d2ee01390h
10.1021/cm503717e
10.1002/advs.201500359
10.1038/s41563-021-01019-x
10.1126/sciadv.1601659
10.1039/c4ee00382a
10.1021/acs.chemmater.9b01794
10.1039/C9CP03884A
10.1039/c4cs00020j
10.1021/acs.jpcc.7b04004
10.1149/1.1393226
10.1016/j.ssi.2011.10.022
10.1016/0167-2738(94)90232-1
10.1039/C7TA06790A
10.1021/acs.nanolett.6b01119
10.1038/s41560-018-0312-z
10.1016/0378-7753(93)80106-Y
10.1016/j.jpowsour.2012.06.081
10.1021/acs.inorgchem.8b00458
10.1021/jacs.7b10593
10.1111/j.1151-2916.2001.tb00685.x
10.1149/1.1850854
10.1038/s41560-017-0047-2
10.1002/aenm.202100654
10.1016/j.ssi.2005.10.021
10.1021/acsami.0c18674
ContentType Journal Article
Copyright 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Copyright_xml – notice: 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.1088/2752-5724/aca703
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2752-5724
ExternalDocumentID oai_doaj_org_article_b6f2397e530e4da6a675e1bc9d67f800
10_1088_2752_5724_aca703
mfaca703
GrantInformation_xml – fundername: Faraday Institution
  grantid: FIRG026
  funderid: http://dx.doi.org/10.13039/100017146
– fundername: Henry Royce Institute
  grantid: EP/R010145/1
  funderid: http://dx.doi.org/10.13039/100016128
GroupedDBID AAFWJ
ACHIP
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
M~E
N5L
O3W
OK1
TSCCA
AAYXX
AEINN
CITATION
ID FETCH-LOGICAL-c516t-e3a87866a93bf782da33a0722b2df178b853c40a6231e3fb7bdacfe037f22a8e3
IEDL.DBID O3W
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089028800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2752-5724
IngestDate Fri Oct 03 12:53:41 EDT 2025
Tue Nov 18 22:22:07 EST 2025
Sat Nov 29 03:38:28 EST 2025
Wed Aug 21 03:34:55 EDT 2024
Wed Jun 07 11:19:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-e3a87866a93bf782da33a0722b2df178b853c40a6231e3fb7bdacfe037f22a8e3
Notes MF-100100.R1
ORCID 0000-0002-2613-4555
OpenAccessLink https://iopscience.iop.org/article/10.1088/2752-5724/aca703
PageCount 17
ParticipantIDs crossref_primary_10_1088_2752_5724_aca703
crossref_citationtrail_10_1088_2752_5724_aca703
iop_journals_10_1088_2752_5724_aca703
doaj_primary_oai_doaj_org_article_b6f2397e530e4da6a675e1bc9d67f800
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials futures
PublicationTitleAbbrev mf
PublicationTitleAlternate Mater. Futures
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bates (mfaca703bib53) 1993; 43
Tsai (mfaca703bib42) 2016; 8
Biesuz (mfaca703bib78) 2019; 39
Mizuno (mfaca703bib76) 2005; 8
Kalnaus (mfaca703bib58) 2021; 36
Kuhn (mfaca703bib22) 2013; 6
Lu (mfaca703bib17) 2015; 17
Westover (mfaca703bib55) 2019; 4
Kondo (mfaca703bib68) 1992; 56
Mishin (mfaca703bib3) 1999; 260
Monroe (mfaca703bib26) 2005; 152
Lee (mfaca703bib45) 2022; 10
Deng (mfaca703bib18) 2015; 27
Viallet (mfaca703bib49) 2019
Wang (mfaca703bib54) 2016; 16
Kennedy (mfaca703bib67) 1987; 257
Albertus (mfaca703bib27) 2018; 3
Neudecker (mfaca703bib57) 2000; 147
Yu (mfaca703bib15) 2017; 29
Chen (mfaca703bib35) 2017; 121
Cheng (mfaca703bib63) 2022
Menetrier (mfaca703bib66) 1984; 14
Krauskopf (mfaca703bib25) 2018; 57
Hayashi (mfaca703bib71) 1999; 146
Lee (mfaca703bib81) 2002; 149
Dawson (mfaca703bib4) 2018; 140
Durá (mfaca703bib13) 2010; 81
Nonemacher (mfaca703bib61) 2019; 45
Kim (mfaca703bib47) 2016; 99
Hamon (mfaca703bib52) 2006; 177
Cheng (mfaca703bib1) 2017; 223
Fu (mfaca703bib30) 2017; 3
Mouta (mfaca703bib20) 2014; 26
Ujiie (mfaca703bib74) 2013; 17
Ning (mfaca703bib80) 2021; 20
Thangadurai (mfaca703bib31) 7 2014; 43
Aotani (mfaca703bib70) 1994; 68
Emly (mfaca703bib19) 2013; 25
Kataoka (mfaca703bib82) 2018; 8
Tatsumisago (mfaca703bib72) 2000; 274
Seino (mfaca703bib75) 2014; 7
Famprikis (mfaca703bib28) 2019; 18
Campos (mfaca703bib79)
Bates (mfaca703bib56) 2000; 135
Mercier (mfaca703bib65) 1981; 5
Zhu (mfaca703bib7) 2016; 109
Jackman (mfaca703bib59) 2012; 218
Wu (mfaca703bib43) 2018; 11
Sharafi (mfaca703bib44) 2017; 5
Ma (mfaca703bib8) 2014; 7
Kjølseth (mfaca703bib14) 2010; 181
Singh (mfaca703bib41) 2022; 3
Wu (mfaca703bib9) 2017; 19
Tiku (mfaca703bib10) 1980; 63
Abdelouas (mfaca703bib48) 2019
Pradel (mfaca703bib69) 1986; 19
Huang (mfaca703bib46) 2020; 12
Dawson (mfaca703bib16) 7 2019; 31
Hao (mfaca703bib29) 2021; 31
Wolfenstine (mfaca703bib60) 2018; 24
Porz (mfaca703bib62) 2017; 7
Han (mfaca703bib34) 2019; 4
Minami (mfaca703bib36) 2007; 178
Tschope (mfaca703bib11) 2001; 139
Ohring (mfaca703bib2) 2002
Bron (mfaca703bib23) 2016; 329
Su (mfaca703bib64) 2022; 15
Liu (mfaca703bib33) 2021; 20
Lü (mfaca703bib5) 2016; 3
Hayashi (mfaca703bib73) 2001; 84
Rangasamy (mfaca703bib37) 2012; 206
Li (mfaca703bib38) 2019; 21
Cheng (mfaca703bib40) 2015; 7
Das (mfaca703bib51) 2022; 29
Duchardt (mfaca703bib24) 2018; 57
Grady (mfaca703bib50) 2020; 8
Guo (mfaca703bib12) 2004; 151
Cheng (mfaca703bib39) 2015; 7
Quirk (mfaca703bib21) 2022
Wang (mfaca703bib77) 2021; 11
Lü (mfaca703bib6) 2014; 50
Yu (mfaca703bib32) 2018; 10
References_xml – volume: 10
  year: 2022
  ident: mfaca703bib45
  article-title: Li-ion conductivity in Li2OHCl (1−x) Br x solid electrolytes: grains, grain boundaries and interfaces
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01462A
– volume: 7
  year: 2017
  ident: mfaca703bib62
  article-title: Mechanism of lithium metal penetration through inorganic solid electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701003
– volume: 109
  start-page: 9
  year: 2016
  ident: mfaca703bib7
  article-title: Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4962437
– volume: 39
  start-page: 115
  year: 2019
  ident: mfaca703bib78
  article-title: Flash sintering of ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.08.048
– volume: 8
  start-page: A603
  year: 2005
  ident: mfaca703bib76
  article-title: New lithium-ion conducting crystal obtained by crystallization of the Li2S-P2S5 glasses
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2056487
– volume: 19
  start-page: 5880
  year: 2017
  ident: mfaca703bib9
  article-title: Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li 3x La 0.67−x TiO3
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c6cp07757a
– volume: 7
  start-page: 2073
  year: 2015
  ident: mfaca703bib40
  article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508111r
– volume: 27
  start-page: 3749
  year: 2015
  ident: mfaca703bib18
  article-title: Rational composition optimization of the lithium-rich Li3OCl 1−x Br x anti-perovskite superionic conductors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00988
– volume: 8
  start-page: 1
  year: 2020
  ident: mfaca703bib50
  article-title: Emerging role of non-crystalline electrolytes in solid-state battery research
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2020.00218
– volume: 17
  start-page: 32547
  year: 2015
  ident: mfaca703bib17
  article-title: Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c5cp05722a
– volume: 45
  start-page: 21308
  year: 2019
  ident: mfaca703bib61
  article-title: Micromechanical assessment of AL/Y-substituted nasicon solid electrolytes
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.07.114
– volume: 6
  start-page: 3548
  year: 2013
  ident: mfaca703bib22
  article-title: Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41728j
– year: 2022
  ident: mfaca703bib21
  article-title: Design principles for grain boundaries in solid-state lithium-ion conductors
  doi: 10.26434/chemrxiv-2022-0jghq
– volume: 146
  start-page: 3472
  year: 1999
  ident: mfaca703bib71
  article-title: Electrochemical properties for the lithium ion conductive (100-x) (0.6Li2 S · 0.4SiS2) · xLi4SiO4 oxysulfide glasses
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392498
– volume: 36
  start-page: 787
  year: 2021
  ident: mfaca703bib58
  article-title: Resistance to fracture in the glassy solid electrolyte LiPON
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00098-x
– volume: 3
  year: 2022
  ident: mfaca703bib41
  article-title: Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.101043
– volume: 274
  start-page: 30
  year: 2000
  ident: mfaca703bib72
  article-title: Preparation and structure of amorphous solid electrolytes based on lithium sulfide
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(00)00180-0
– volume: 181
  start-page: 268
  year: 2010
  ident: mfaca703bib14
  article-title: Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 - δ
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2010.01.014
– volume: 11
  start-page: 1803
  year: 2018
  ident: mfaca703bib43
  article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00540K
– volume: 223
  start-page: 85
  year: 2017
  ident: mfaca703bib1
  article-title: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.018
– volume: 7
  start-page: 627
  year: 2014
  ident: mfaca703bib75
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE41655K
– volume: 20
  start-page: 1121
  year: 2021
  ident: mfaca703bib80
  article-title: Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00967-8
– volume: 63
  start-page: 183
  year: 1980
  ident: mfaca703bib10
  article-title: Effects of space charge, grain-boundary segregation and mobility differences between grain boundary and bulk on the conductivity of polycrystalline Al2O3
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1980.tb10688.x
– volume: 8
  start-page: 9965
  year: 2018
  ident: mfaca703bib82
  article-title: Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27851-x
– volume: 57
  start-page: 1351
  year: 2018
  ident: mfaca703bib24
  article-title: Vacancy-controlled Na+ superion conduction in Na11Sn2PS12
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712769
– volume: 178
  start-page: 837
  year: 2007
  ident: mfaca703bib36
  article-title: Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2007.03.001
– volume: 7
  start-page: 17649
  year: 2015
  ident: mfaca703bib39
  article-title: Interrelationships among grain size, surface composition, air stability and interfacial resistance of al-substituted Li7La3Zr2O12 solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02528
– volume: 14
  start-page: 257
  year: 1984
  ident: mfaca703bib66
  article-title: New secondary batteries for room temperature applications using a vitreous electrolyte
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(84)90108-5
– year: 2002
  ident: mfaca703bib2
  article-title: Interdiffusion, reactions and transformations in thin films
  doi: 10.1016/B978-012524975-1/50014-8
– year: 2019
  ident: mfaca703bib49
  article-title: Glasses and glass-ceramics for solid-state battery applications
  doi: 10.1007/978-3-319-93728-1_50
– volume: 151
  start-page: J1
  year: 2004
  ident: mfaca703bib12
  article-title: Grain boundary space charge effect in zirconia
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1625948
– volume: 135
  start-page: 33
  year: 2000
  ident: mfaca703bib56
  article-title: Thin-film lithium and lithium-ion batteries
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00327-1
– volume: 99
  start-page: 1367
  year: 2016
  ident: mfaca703bib47
  article-title: The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14084
– volume: 329
  start-page: 530
  year: 2016
  ident: mfaca703bib23
  article-title: Li10Si0.3Sn0.7P2S12 – a low-cost and low-grain-boundary-resistance lithium superionic conductor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.115
– volume: 81
  start-page: 5
  year: 2010
  ident: mfaca703bib13
  article-title: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.184301
– volume: 260
  start-page: 55
  year: 1999
  ident: mfaca703bib3
  article-title: Grain boundary diffusion: recent progress and future research
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(98)00978-2
– volume: 31
  year: 2021
  ident: mfaca703bib29
  article-title: 3D imaging of lithium protrusions in solid-state lithium batteries using x-ray computed tomography
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007564
– volume: 50
  start-page: 11520
  year: 2014
  ident: mfaca703bib6
  article-title: Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05372A
– volume: 29
  start-page: 9639
  year: 2017
  ident: mfaca703bib15
  article-title: Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O 12 (LLZO)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02805
– volume: 4
  start-page: 651
  year: 2019
  ident: mfaca703bib55
  article-title: Deposition and confinement of Li metal along an artificial Lipon-Lipon interface
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02542
– volume: 139
  start-page: 267
  year: 2001
  ident: mfaca703bib11
  article-title: Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: space charge model
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(01)00677-4
– volume: 5
  start-page: 663
  year: 1981
  ident: mfaca703bib65
  article-title: Superionic conduction in Li2S - P2S5 - LiI - glasses
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(81)90341-6
– volume: 17
  start-page: 675
  year: 2013
  ident: mfaca703bib74
  article-title: Preparation and ionic conductivity of ( 100−x )(0.8Li2S·0.2P2S5 ⋅x LiI glass-ceramic electrolytes
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-012-1900-7
– volume: 8
  start-page: 10617
  year: 2016
  ident: mfaca703bib42
  article-title: Li7La3Zr2O12 interface modification for Li dendrite prevention
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00831
– volume: 25
  start-page: 4663
  year: 2013
  ident: mfaca703bib19
  article-title: Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors
  publication-title: Chem. Mater.
  doi: 10.1021/cm4016222
– volume: 19
  start-page: 351
  year: 1986
  ident: mfaca703bib69
  article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(86)90139-6
– volume: 29
  year: 2022
  ident: mfaca703bib51
  article-title: Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2022.101118
– volume: 149
  start-page: 59
  year: 2002
  ident: mfaca703bib81
  article-title: Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(02)00137-6
– volume: 257
  start-page: 252
  year: 1987
  ident: mfaca703bib67
  article-title: Glass-forming region and structure in SiS2-Li−2S-LiX (X = Br, I)
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(87)90081-8
– volume: 24
  start-page: 1271
  year: 2018
  ident: mfaca703bib60
  article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review
  publication-title: Ionics
  doi: 10.1007/s11581-017-2314-4
– volume: 56
  start-page: 1183
  year: 1992
  ident: mfaca703bib68
  article-title: New lithium ion conductors based on Li2S-SiS2 system
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(92)90310-L
– volume: 18
  start-page: 1278
  year: 2019
  ident: mfaca703bib28
  article-title: Fundamentals of inorganic solid-state electrolytes for batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0431-3
– year: 2022
  ident: mfaca703bib63
  article-title: Freestanding LiPON: from fundamental study to uniformly dense Li metal deposition under zero external pressure
  doi: 10.21203/rs.3.rs-1851478/v1
– volume: 10
  start-page: 38151
  year: 2018
  ident: mfaca703bib32
  article-title: Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17223
– volume: 15
  start-page: 3805
  year: 2022
  ident: mfaca703bib64
  article-title: Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d2ee01390h
– volume: 26
  start-page: 7137
  year: 2014
  ident: mfaca703bib20
  article-title: Concentration of charge carriers, migration and stability in Li3OCl solid electrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/cm503717e
– volume: 3
  start-page: 3
  year: 2016
  ident: mfaca703bib5
  article-title: Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500359
– volume: 20
  start-page: 1485
  year: 2021
  ident: mfaca703bib33
  article-title: Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01019-x
– volume: 3
  year: 2017
  ident: mfaca703bib30
  article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective artificial solid-state electrolyte/metallic Li interface
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601659
– volume: 7
  start-page: 1638
  year: 2014
  ident: mfaca703bib8
  article-title: Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00382a
– volume: 31
  start-page: 5296
  year: 7 2019
  ident: mfaca703bib16
  article-title: Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01794
– volume: 21
  start-page: 20354
  year: 2019
  ident: mfaca703bib38
  article-title: Dendrite nucleation in lithium-conductive ceramics
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03884A
– volume: 43
  start-page: 4714
  year: 7 2014
  ident: mfaca703bib31
  article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c4cs00020j
– volume: 121
  start-page: 15565
  year: 2017
  ident: mfaca703bib35
  article-title: Voltammetric enhancement of Li-ion conduction in al-doped Li 7−x La3Zr2O12 solid electrolyte
  publication-title: J. Phys. Chem C
  doi: 10.1021/acs.jpcc.7b04004
– volume: 147
  start-page: 517
  year: 2000
  ident: mfaca703bib57
  article-title: “Lithium-free” thin-film battery with in situ plated Li anode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393226
– volume: 206
  start-page: 28
  year: 2012
  ident: mfaca703bib37
  article-title: The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2011.10.022
– volume: 68
  start-page: 35
  year: 1994
  ident: mfaca703bib70
  article-title: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4–Li2S–SiS2
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(94)90232-1
– volume: 5
  start-page: 21491
  year: 2017
  ident: mfaca703bib44
  article-title: Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06790A
– volume: 16
  start-page: 3760
  year: 2016
  ident: mfaca703bib54
  article-title: In situ stem-eels observation of nanoscale interfacial phenomena in all-solid-state batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01119
– volume: 4
  start-page: 187
  year: 2019
  ident: mfaca703bib34
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
– volume: 43
  start-page: 103
  year: 1993
  ident: mfaca703bib53
  article-title: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(93)80106-Y
– volume: 218
  start-page: 65
  year: 2012
  ident: mfaca703bib59
  article-title: Effect of microcracking on ionic conductivity in LATP
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.06.081
– year: 2019
  ident: mfaca703bib48
– volume: 57
  start-page: 4739
  year: 2018
  ident: mfaca703bib25
  article-title: Local tetragonal structure of the cubic superionic conductor Na3PS4
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00458
– volume: 140
  start-page: 362
  year: 2018
  ident: mfaca703bib4
  article-title: Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10593
– ident: mfaca703bib79
  article-title: Flash sintering with concurrent crystallization of Li 1.5 Al 0.5 Ge 1.5 (PO4 3 glass
– volume: 84
  start-page: 477
  year: 2001
  ident: mfaca703bib73
  article-title: Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2001.tb00685.x
– volume: 152
  start-page: 396
  year: 2005
  ident: mfaca703bib26
  article-title: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1850854
– volume: 3
  start-page: 16
  year: 2018
  ident: mfaca703bib27
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0047-2
– volume: 11
  start-page: 1
  year: 2021
  ident: mfaca703bib77
  article-title: Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100654
– volume: 177
  start-page: 257
  year: 2006
  ident: mfaca703bib52
  article-title: Influence of sputtering conditions on ionic conductivity of lipon thin films
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2005.10.021
– volume: 12
  start-page: 56118
  year: 2020
  ident: mfaca703bib46
  article-title: Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18674
SSID ssj0002774577
Score 2.4282932
Snippet Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in...
SourceID doaj
crossref
iop
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 13501
SubjectTerms glasses
grain boundaries
lithium growth
solid electrolytes
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKo_IAA0OUxE5sd0ECRMVQVQyAull-oiL6UFv4fq6dtApLWRgT3SjRvXbOubJ9DkJXGTMl1SIcP7PQoCjuEq0LkzhngvE24T46z731-WAghsPuc8PqK-wJq-SBq8SlmnkCmOlKmrnCKqaA4bpcm65l3APbCX9fYD2NZuojLqfxouS8XpeEmZQSXkLXxUmRKqP4yiOrxqEo1w_oMprOGujS20d7NS3Ed9XnHKAtNzlEuw2xwCN0CxXFYTMgnnr8HpwdsI6eSKHZxXAFo2hkk3hCCPdHydgBr8Y66mdCxDF67T2-PDwltftBYsqcLRNHleCCMdWl2gOOW0WpyjghmlhIoNAAtKbIFPCX3FGvubbKeJdR7glRwtET1JpMJ-4U4ZzprgAwVCT3hYK-sdBMGeGNAnqRWd9G6SoX0tTS4MGh4lPGJWohZMieDNmTVfba6Gb9xKySxdgQex_Su44LgtbxBpRZ1mWWf5W5ja6hOLKeYIsNL-v8iht7SWQugeiWWS5n1p_9x9eco51gO1_tRbtAreX8y12ibfO9HC3mnTgUfwDl2d-6
  priority: 102
  providerName: Directory of Open Access Journals
Title The role of grain boundaries in solid-state Li-metal batteries
URI https://iopscience.iop.org/article/10.1088/2752-5724/aca703
https://doaj.org/article/b6f2397e530e4da6a675e1bc9d67f800
Volume 2
WOSCitedRecordID wos001089028800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2752-5724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002774577
  issn: 2752-5724
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2752-5724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002774577
  issn: 2752-5724
  databaseCode: O3W
  dateStart: 20211210
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2752-5724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002774577
  issn: 2752-5724
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7L6kEPvsX1seSgBw9126RNsgiCyi4efB187C3kKQvuA109-tudpHVRkEXwUtoyacrMtPNNHt8gtJ8yU1AtwvYzCwmK4i7ROjeJcyYU3ibcx8pzD5f8-lr0eu3bGjqe7oUZjatf_xGclkTBpQqrBXGiRXgB-RMneUsZxQPT5xwVBQtOfkMfpwMsBIBNwXk1Nflbwx-hKDL2Q4CBXr8FmO7yv15tBS1VuBKflqKrqOaGa2jxG9vgOjoBl8BhNSEeefwUSkNgHYsqhWwZwxW4Yd8mcYsRvuwnAwfAHOtIwAkSG-i-27k7v0iq8gmJKTI2SRxVggvGVJtqD0DAKkpVygnRxIIFhIZIbfJUAQDKHPWaa6uMdynlnhAlHN1E9eFo6LYQzphuC4imimQ-V5B45popI7xRgE9S6xuo9aVJaSpu8VDi4lnGOW4hZNCMDJqRpWYa6HDaYlzyasyQPQvGmcoFRux4A0wgKxNIzTwBbOUKmrrcKqYgE3KZNm3LuAdU3EAHYDVZfaGvMzpr_pAbeElkJgEpF2kmx9Zv__FBO2ghlKYv16vtovrk5c3toXnzPum_vjRj7g_Hq49OM_rtJ25U6hc
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqBAcoLRFLKXUB3roId3ETmzvpRK0rECsFg6FcrP8rFaC3RUs_f2MHXcFUoWQuCXROI5mJplvYs98APsltw0zMpafOUxQtPCFMbUtvLeReJuKkJjnLgdiOJRXV73zzHOaamEm0_zp_4aHbaPgVoV5Q5zsUtFg_iRo3dVWo8N2py4swnLDGha5G87Y7_lPForgphEiL0_-b_CTcJS69mOQwZkfBZn-xqsf7y2sZ3xJDlrxTVjw43ew9qjr4Hv4jq5B4q5CMgnkT6SIICaRK8WsmeAZuuPIFanUiAxGxY1HgE5MasSJEh_gon_068dxkWkUCttUfFZ4pqWQnOseMwEBgdOM6VJQaqhDS0iDEdvWpUYgVHkWjDBO2-BLJgKlWnq2BUvjydhvA6m46UmMqppWodaYgNaGayuD1YhTShc60P2nTWVzj_FIdXGt0lq3lCpqR0XtqFY7Hfg6HzFt-2s8I3sYDTSXi52x0wU0g8pmUIYHihjLozP42mmuMSPylbE9x0VAdNyBL2g5ld_Uu2cm23sidxMUVZVCxNyUlUKb7rzwRp9h5fxnXw1OhqcfYTWy1bdb2HZhaXZ77z_BG_t3Nrq73Uuu-wAXE-1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+grain+boundaries+in+solid-state+Li-metal+batteries&rft.jtitle=Materials+futures&rft.au=Milan%2C+Emily&rft.au=Pasta%2C+Mauro&rft.date=2023-03-01&rft.issn=2752-5724&rft.eissn=2752-5724&rft.volume=2&rft.issue=1&rft.spage=13501&rft_id=info:doi/10.1088%2F2752-5724%2Faca703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2752_5724_aca703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5724&client=summon