The role of grain boundaries in solid-state Li-metal batteries
Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resi...
Uložené v:
| Vydané v: | Materials futures Ročník 2; číslo 1; s. 13501 - 13517 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IOP Publishing
01.03.2023
|
| Predmet: | |
| ISSN: | 2752-5724, 2752-5724 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resistive and hence contribute to this lower ionic conductivity. Additionally, in spite of the hope that solid electrolytes would inhibit lithium filaments, in most scenarios their growth is still observed, and in some polycrystalline systems this is suggested to occur along grain boundaries. It is apparent that grain boundaries affect the performance of solid-state electrolytes, however a deeper understanding is lacking. In this perspective, the current theories relating to grain boundaries in solid-state electrolytes are explored, as well as addressing some of the challenges which arise when trying to investigate their role. Glasses are presented as a possible solution to reduce the effect of grain boundaries in electrolytes. Future research directions are suggested which will aid in both understanding the role of grain boundaries, and diminishing their contribution in cases where they are detrimental. |
|---|---|
| AbstractList | Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in part to the lower ionic conductivity of solid electrolytes. In many solid superionic conductors, grain boundaries are found to be ionically resistive and hence contribute to this lower ionic conductivity. Additionally, in spite of the hope that solid electrolytes would inhibit lithium filaments, in most scenarios their growth is still observed, and in some polycrystalline systems this is suggested to occur along grain boundaries. It is apparent that grain boundaries affect the performance of solid-state electrolytes, however a deeper understanding is lacking. In this perspective, the current theories relating to grain boundaries in solid-state electrolytes are explored, as well as addressing some of the challenges which arise when trying to investigate their role. Glasses are presented as a possible solution to reduce the effect of grain boundaries in electrolytes. Future research directions are suggested which will aid in both understanding the role of grain boundaries, and diminishing their contribution in cases where they are detrimental. |
| Author | Milan, Emily Pasta, Mauro |
| Author_xml | – sequence: 1 givenname: Emily surname: Milan fullname: Milan, Emily organization: University of Oxford Department of Materials, Oxford OX1 3PH, United Kingdom – sequence: 2 givenname: Mauro orcidid: 0000-0002-2613-4555 surname: Pasta fullname: Pasta, Mauro organization: The Faraday Institution , Didcot OX11 0RA, United Kingdom |
| BookMark | eNp9kDtPwzAURi1UJErpzpiFjYAfie0uSKjiUakSS5mt6_i6uErjykkH_j0pQRVCwHQf-r4znHMyamKDhFwyesOo1rdclTwvFS9uoQJFxQkZH1-jb_sZmbbthlLKlSpKpcbkbvWGWYo1ZtFn6wShyWzcNw5SwDbrrzbWweVtBx1my5BvsYM6s9B1eEhckFMPdYvTrzkhr48Pq_lzvnx5Wszvl3lVMtnlKEArLSXMhPVKcwdCAFWcW-48U9rqUlQFBckFQ-Gtsg4qj1QozzloFBOyGLguwsbsUthCejcRgvl8xLQ2kLpQ1Wis9FzMFJaCYuFAglQlMlvNnFReU9qz6MCqUmzbhP7IY9QcdJqDL3PwZQadfUX-qFShNxJi0_XK6v-KV0MxxJ3ZxH1qektm6w03zFAmSsrMzvk-d_1L7k_sBymulTE |
| CODEN | MFAUAP |
| CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118225 crossref_primary_10_1002_adma_202302543 crossref_primary_10_1016_j_scriptamat_2025_116987 crossref_primary_10_1016_j_jpowsour_2025_238266 crossref_primary_10_1016_j_mseb_2024_117962 crossref_primary_10_1002_adfm_202404434 crossref_primary_10_1557_s43577_025_00924_9 crossref_primary_10_1016_j_ensm_2024_103975 crossref_primary_10_3390_batteries10040132 crossref_primary_10_1016_j_actamat_2025_121374 crossref_primary_10_1002_ange_202314444 crossref_primary_10_1002_anie_202314444 crossref_primary_10_1016_j_est_2025_116933 crossref_primary_10_1002_admi_202400423 crossref_primary_10_1021_acselectrochem_4c00077 crossref_primary_10_1002_celc_202300349 crossref_primary_10_1007_s10854_025_15697_9 crossref_primary_10_1002_aenm_202304230 crossref_primary_10_1038_s41467_024_55154_5 crossref_primary_10_3390_batteries9110543 crossref_primary_10_1002_celc_202500180 crossref_primary_10_1063_5_0202249 crossref_primary_10_1021_jacs_3c07343 crossref_primary_10_1149_1945_7111_aded38 |
| Cites_doi | 10.1039/D2TA01462A 10.1002/aenm.201701003 10.1063/1.4962437 10.1016/j.jeurceramsoc.2018.08.048 10.1149/1.2056487 10.1039/c6cp07757a 10.1021/am508111r 10.1021/acs.chemmater.5b00988 10.3389/fenrg.2020.00218 10.1039/c5cp05722a 10.1016/j.ceramint.2019.07.114 10.1039/c3ee41728j 10.26434/chemrxiv-2022-0jghq 10.1149/1.1392498 10.1557/s43578-020-00098-x 10.1016/j.xcrp.2022.101043 10.1016/S0022-3093(00)00180-0 10.1016/j.ssi.2010.01.014 10.1039/C8EE00540K 10.1016/j.electacta.2016.12.018 10.1039/C3EE41655K 10.1038/s41563-021-00967-8 10.1111/j.1151-2916.1980.tb10688.x 10.1038/s41598-018-27851-x 10.1002/anie.201712769 10.1016/j.ssi.2007.03.001 10.1021/acsami.5b02528 10.1016/0167-2738(84)90108-5 10.1016/B978-012524975-1/50014-8 10.1007/978-3-319-93728-1_50 10.1149/1.1625948 10.1016/S0167-2738(00)00327-1 10.1111/jace.14084 10.1016/j.jpowsour.2016.08.115 10.1103/PhysRevB.81.184301 10.1016/S0921-5093(98)00978-2 10.1002/adfm.202007564 10.1039/C4CC05372A 10.1021/acs.chemmater.7b02805 10.1021/acsenergylett.8b02542 10.1016/S0167-2738(01)00677-4 10.1016/0167-2738(81)90341-6 10.1007/s10008-012-1900-7 10.1021/acsami.6b00831 10.1021/cm4016222 10.1016/0167-2738(86)90139-6 10.1016/j.mtener.2022.101118 10.1016/S0167-2738(02)00137-6 10.1016/0022-4596(87)90081-8 10.1007/s11581-017-2314-4 10.1016/0167-2738(92)90310-L 10.1038/s41563-019-0431-3 10.21203/rs.3.rs-1851478/v1 10.1021/acsami.8b17223 10.1039/d2ee01390h 10.1021/cm503717e 10.1002/advs.201500359 10.1038/s41563-021-01019-x 10.1126/sciadv.1601659 10.1039/c4ee00382a 10.1021/acs.chemmater.9b01794 10.1039/C9CP03884A 10.1039/c4cs00020j 10.1021/acs.jpcc.7b04004 10.1149/1.1393226 10.1016/j.ssi.2011.10.022 10.1016/0167-2738(94)90232-1 10.1039/C7TA06790A 10.1021/acs.nanolett.6b01119 10.1038/s41560-018-0312-z 10.1016/0378-7753(93)80106-Y 10.1016/j.jpowsour.2012.06.081 10.1021/acs.inorgchem.8b00458 10.1021/jacs.7b10593 10.1111/j.1151-2916.2001.tb00685.x 10.1149/1.1850854 10.1038/s41560-017-0047-2 10.1002/aenm.202100654 10.1016/j.ssi.2005.10.021 10.1021/acsami.0c18674 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory |
| Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory |
| DBID | O3W TSCCA AAYXX CITATION DOA |
| DOI | 10.1088/2752-5724/aca703 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2752-5724 |
| ExternalDocumentID | oai_doaj_org_article_b6f2397e530e4da6a675e1bc9d67f800 10_1088_2752_5724_aca703 mfaca703 |
| GrantInformation_xml | – fundername: Faraday Institution grantid: FIRG026 funderid: http://dx.doi.org/10.13039/100017146 – fundername: Henry Royce Institute grantid: EP/R010145/1 funderid: http://dx.doi.org/10.13039/100016128 |
| GroupedDBID | AAFWJ ACHIP AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS CJUJL GROUPED_DOAJ M~E N5L O3W OK1 TSCCA AAYXX AEINN CITATION |
| ID | FETCH-LOGICAL-c516t-e3a87866a93bf782da33a0722b2df178b853c40a6231e3fb7bdacfe037f22a8e3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089028800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2752-5724 |
| IngestDate | Fri Oct 03 12:53:41 EDT 2025 Tue Nov 18 22:22:07 EST 2025 Sat Nov 29 03:38:28 EST 2025 Wed Aug 21 03:34:55 EDT 2024 Wed Jun 07 11:19:01 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-e3a87866a93bf782da33a0722b2df178b853c40a6231e3fb7bdacfe037f22a8e3 |
| Notes | MF-100100.R1 |
| ORCID | 0000-0002-2613-4555 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2752-5724/aca703 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1088_2752_5724_aca703 crossref_citationtrail_10_1088_2752_5724_aca703 iop_journals_10_1088_2752_5724_aca703 doaj_primary_oai_doaj_org_article_b6f2397e530e4da6a675e1bc9d67f800 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials futures |
| PublicationTitleAbbrev | mf |
| PublicationTitleAlternate | Mater. Futures |
| PublicationYear | 2023 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Bates (mfaca703bib53) 1993; 43 Tsai (mfaca703bib42) 2016; 8 Biesuz (mfaca703bib78) 2019; 39 Mizuno (mfaca703bib76) 2005; 8 Kalnaus (mfaca703bib58) 2021; 36 Kuhn (mfaca703bib22) 2013; 6 Lu (mfaca703bib17) 2015; 17 Westover (mfaca703bib55) 2019; 4 Kondo (mfaca703bib68) 1992; 56 Mishin (mfaca703bib3) 1999; 260 Monroe (mfaca703bib26) 2005; 152 Lee (mfaca703bib45) 2022; 10 Deng (mfaca703bib18) 2015; 27 Viallet (mfaca703bib49) 2019 Wang (mfaca703bib54) 2016; 16 Kennedy (mfaca703bib67) 1987; 257 Albertus (mfaca703bib27) 2018; 3 Neudecker (mfaca703bib57) 2000; 147 Yu (mfaca703bib15) 2017; 29 Chen (mfaca703bib35) 2017; 121 Cheng (mfaca703bib63) 2022 Menetrier (mfaca703bib66) 1984; 14 Krauskopf (mfaca703bib25) 2018; 57 Hayashi (mfaca703bib71) 1999; 146 Lee (mfaca703bib81) 2002; 149 Dawson (mfaca703bib4) 2018; 140 Durá (mfaca703bib13) 2010; 81 Nonemacher (mfaca703bib61) 2019; 45 Kim (mfaca703bib47) 2016; 99 Hamon (mfaca703bib52) 2006; 177 Cheng (mfaca703bib1) 2017; 223 Fu (mfaca703bib30) 2017; 3 Mouta (mfaca703bib20) 2014; 26 Ujiie (mfaca703bib74) 2013; 17 Ning (mfaca703bib80) 2021; 20 Thangadurai (mfaca703bib31) 7 2014; 43 Aotani (mfaca703bib70) 1994; 68 Emly (mfaca703bib19) 2013; 25 Kataoka (mfaca703bib82) 2018; 8 Tatsumisago (mfaca703bib72) 2000; 274 Seino (mfaca703bib75) 2014; 7 Famprikis (mfaca703bib28) 2019; 18 Campos (mfaca703bib79) Bates (mfaca703bib56) 2000; 135 Mercier (mfaca703bib65) 1981; 5 Zhu (mfaca703bib7) 2016; 109 Jackman (mfaca703bib59) 2012; 218 Wu (mfaca703bib43) 2018; 11 Sharafi (mfaca703bib44) 2017; 5 Ma (mfaca703bib8) 2014; 7 Kjølseth (mfaca703bib14) 2010; 181 Singh (mfaca703bib41) 2022; 3 Wu (mfaca703bib9) 2017; 19 Tiku (mfaca703bib10) 1980; 63 Abdelouas (mfaca703bib48) 2019 Pradel (mfaca703bib69) 1986; 19 Huang (mfaca703bib46) 2020; 12 Dawson (mfaca703bib16) 7 2019; 31 Hao (mfaca703bib29) 2021; 31 Wolfenstine (mfaca703bib60) 2018; 24 Porz (mfaca703bib62) 2017; 7 Han (mfaca703bib34) 2019; 4 Minami (mfaca703bib36) 2007; 178 Tschope (mfaca703bib11) 2001; 139 Ohring (mfaca703bib2) 2002 Bron (mfaca703bib23) 2016; 329 Su (mfaca703bib64) 2022; 15 Liu (mfaca703bib33) 2021; 20 Lü (mfaca703bib5) 2016; 3 Hayashi (mfaca703bib73) 2001; 84 Rangasamy (mfaca703bib37) 2012; 206 Li (mfaca703bib38) 2019; 21 Cheng (mfaca703bib40) 2015; 7 Das (mfaca703bib51) 2022; 29 Duchardt (mfaca703bib24) 2018; 57 Grady (mfaca703bib50) 2020; 8 Guo (mfaca703bib12) 2004; 151 Cheng (mfaca703bib39) 2015; 7 Quirk (mfaca703bib21) 2022 Wang (mfaca703bib77) 2021; 11 Lü (mfaca703bib6) 2014; 50 Yu (mfaca703bib32) 2018; 10 |
| References_xml | – volume: 10 year: 2022 ident: mfaca703bib45 article-title: Li-ion conductivity in Li2OHCl (1−x) Br x solid electrolytes: grains, grain boundaries and interfaces publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01462A – volume: 7 year: 2017 ident: mfaca703bib62 article-title: Mechanism of lithium metal penetration through inorganic solid electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701003 – volume: 109 start-page: 9 year: 2016 ident: mfaca703bib7 article-title: Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte publication-title: Appl. Phys. Lett. doi: 10.1063/1.4962437 – volume: 39 start-page: 115 year: 2019 ident: mfaca703bib78 article-title: Flash sintering of ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.08.048 – volume: 8 start-page: A603 year: 2005 ident: mfaca703bib76 article-title: New lithium-ion conducting crystal obtained by crystallization of the Li2S-P2S5 glasses publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2056487 – volume: 19 start-page: 5880 year: 2017 ident: mfaca703bib9 article-title: Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li 3x La 0.67−x TiO3 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c6cp07757a – volume: 7 start-page: 2073 year: 2015 ident: mfaca703bib40 article-title: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508111r – volume: 27 start-page: 3749 year: 2015 ident: mfaca703bib18 article-title: Rational composition optimization of the lithium-rich Li3OCl 1−x Br x anti-perovskite superionic conductors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00988 – volume: 8 start-page: 1 year: 2020 ident: mfaca703bib50 article-title: Emerging role of non-crystalline electrolytes in solid-state battery research publication-title: Front. Energy Res. doi: 10.3389/fenrg.2020.00218 – volume: 17 start-page: 32547 year: 2015 ident: mfaca703bib17 article-title: Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c5cp05722a – volume: 45 start-page: 21308 year: 2019 ident: mfaca703bib61 article-title: Micromechanical assessment of AL/Y-substituted nasicon solid electrolytes publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.07.114 – volume: 6 start-page: 3548 year: 2013 ident: mfaca703bib22 article-title: Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41728j – year: 2022 ident: mfaca703bib21 article-title: Design principles for grain boundaries in solid-state lithium-ion conductors doi: 10.26434/chemrxiv-2022-0jghq – volume: 146 start-page: 3472 year: 1999 ident: mfaca703bib71 article-title: Electrochemical properties for the lithium ion conductive (100-x) (0.6Li2 S · 0.4SiS2) · xLi4SiO4 oxysulfide glasses publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392498 – volume: 36 start-page: 787 year: 2021 ident: mfaca703bib58 article-title: Resistance to fracture in the glassy solid electrolyte LiPON publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00098-x – volume: 3 year: 2022 ident: mfaca703bib41 article-title: Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.101043 – volume: 274 start-page: 30 year: 2000 ident: mfaca703bib72 article-title: Preparation and structure of amorphous solid electrolytes based on lithium sulfide publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(00)00180-0 – volume: 181 start-page: 268 year: 2010 ident: mfaca703bib14 article-title: Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 - δ publication-title: Solid State Ion. doi: 10.1016/j.ssi.2010.01.014 – volume: 11 start-page: 1803 year: 2018 ident: mfaca703bib43 article-title: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00540K – volume: 223 start-page: 85 year: 2017 ident: mfaca703bib1 article-title: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.018 – volume: 7 start-page: 627 year: 2014 ident: mfaca703bib75 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE41655K – volume: 20 start-page: 1121 year: 2021 ident: mfaca703bib80 article-title: Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells publication-title: Nat. Mater. doi: 10.1038/s41563-021-00967-8 – volume: 63 start-page: 183 year: 1980 ident: mfaca703bib10 article-title: Effects of space charge, grain-boundary segregation and mobility differences between grain boundary and bulk on the conductivity of polycrystalline Al2O3 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1980.tb10688.x – volume: 8 start-page: 9965 year: 2018 ident: mfaca703bib82 article-title: Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application publication-title: Sci. Rep. doi: 10.1038/s41598-018-27851-x – volume: 57 start-page: 1351 year: 2018 ident: mfaca703bib24 article-title: Vacancy-controlled Na+ superion conduction in Na11Sn2PS12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712769 – volume: 178 start-page: 837 year: 2007 ident: mfaca703bib36 article-title: Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method publication-title: Solid State Ion. doi: 10.1016/j.ssi.2007.03.001 – volume: 7 start-page: 17649 year: 2015 ident: mfaca703bib39 article-title: Interrelationships among grain size, surface composition, air stability and interfacial resistance of al-substituted Li7La3Zr2O12 solid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02528 – volume: 14 start-page: 257 year: 1984 ident: mfaca703bib66 article-title: New secondary batteries for room temperature applications using a vitreous electrolyte publication-title: Solid State Ion. doi: 10.1016/0167-2738(84)90108-5 – year: 2002 ident: mfaca703bib2 article-title: Interdiffusion, reactions and transformations in thin films doi: 10.1016/B978-012524975-1/50014-8 – year: 2019 ident: mfaca703bib49 article-title: Glasses and glass-ceramics for solid-state battery applications doi: 10.1007/978-3-319-93728-1_50 – volume: 151 start-page: J1 year: 2004 ident: mfaca703bib12 article-title: Grain boundary space charge effect in zirconia publication-title: J. Electrochem. Soc. doi: 10.1149/1.1625948 – volume: 135 start-page: 33 year: 2000 ident: mfaca703bib56 article-title: Thin-film lithium and lithium-ion batteries publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00327-1 – volume: 99 start-page: 1367 year: 2016 ident: mfaca703bib47 article-title: The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14084 – volume: 329 start-page: 530 year: 2016 ident: mfaca703bib23 article-title: Li10Si0.3Sn0.7P2S12 – a low-cost and low-grain-boundary-resistance lithium superionic conductor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.115 – volume: 81 start-page: 5 year: 2010 ident: mfaca703bib13 article-title: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.184301 – volume: 260 start-page: 55 year: 1999 ident: mfaca703bib3 article-title: Grain boundary diffusion: recent progress and future research publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(98)00978-2 – volume: 31 year: 2021 ident: mfaca703bib29 article-title: 3D imaging of lithium protrusions in solid-state lithium batteries using x-ray computed tomography publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007564 – volume: 50 start-page: 11520 year: 2014 ident: mfaca703bib6 article-title: Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity publication-title: Chem. Commun. doi: 10.1039/C4CC05372A – volume: 29 start-page: 9639 year: 2017 ident: mfaca703bib15 article-title: Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O 12 (LLZO) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02805 – volume: 4 start-page: 651 year: 2019 ident: mfaca703bib55 article-title: Deposition and confinement of Li metal along an artificial Lipon-Lipon interface publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02542 – volume: 139 start-page: 267 year: 2001 ident: mfaca703bib11 article-title: Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: space charge model publication-title: Solid State Ion. doi: 10.1016/S0167-2738(01)00677-4 – volume: 5 start-page: 663 year: 1981 ident: mfaca703bib65 article-title: Superionic conduction in Li2S - P2S5 - LiI - glasses publication-title: Solid State Ion. doi: 10.1016/0167-2738(81)90341-6 – volume: 17 start-page: 675 year: 2013 ident: mfaca703bib74 article-title: Preparation and ionic conductivity of ( 100−x )(0.8Li2S·0.2P2S5 ⋅x LiI glass-ceramic electrolytes publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-012-1900-7 – volume: 8 start-page: 10617 year: 2016 ident: mfaca703bib42 article-title: Li7La3Zr2O12 interface modification for Li dendrite prevention publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00831 – volume: 25 start-page: 4663 year: 2013 ident: mfaca703bib19 article-title: Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors publication-title: Chem. Mater. doi: 10.1021/cm4016222 – volume: 19 start-page: 351 year: 1986 ident: mfaca703bib69 article-title: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching publication-title: Solid State Ion. doi: 10.1016/0167-2738(86)90139-6 – volume: 29 year: 2022 ident: mfaca703bib51 article-title: Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2022.101118 – volume: 149 start-page: 59 year: 2002 ident: mfaca703bib81 article-title: Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte publication-title: Solid State Ion. doi: 10.1016/S0167-2738(02)00137-6 – volume: 257 start-page: 252 year: 1987 ident: mfaca703bib67 article-title: Glass-forming region and structure in SiS2-Li−2S-LiX (X = Br, I) publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(87)90081-8 – volume: 24 start-page: 1271 year: 2018 ident: mfaca703bib60 article-title: Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review publication-title: Ionics doi: 10.1007/s11581-017-2314-4 – volume: 56 start-page: 1183 year: 1992 ident: mfaca703bib68 article-title: New lithium ion conductors based on Li2S-SiS2 system publication-title: Solid State Ion. doi: 10.1016/0167-2738(92)90310-L – volume: 18 start-page: 1278 year: 2019 ident: mfaca703bib28 article-title: Fundamentals of inorganic solid-state electrolytes for batteries publication-title: Nat. Mater. doi: 10.1038/s41563-019-0431-3 – year: 2022 ident: mfaca703bib63 article-title: Freestanding LiPON: from fundamental study to uniformly dense Li metal deposition under zero external pressure doi: 10.21203/rs.3.rs-1851478/v1 – volume: 10 start-page: 38151 year: 2018 ident: mfaca703bib32 article-title: Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17223 – volume: 15 start-page: 3805 year: 2022 ident: mfaca703bib64 article-title: Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers publication-title: Energy Environ. Sci. doi: 10.1039/d2ee01390h – volume: 26 start-page: 7137 year: 2014 ident: mfaca703bib20 article-title: Concentration of charge carriers, migration and stability in Li3OCl solid electrolytes publication-title: Chem. Mater. doi: 10.1021/cm503717e – volume: 3 start-page: 3 year: 2016 ident: mfaca703bib5 article-title: Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500359 – volume: 20 start-page: 1485 year: 2021 ident: mfaca703bib33 article-title: Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes publication-title: Nat. Mater. doi: 10.1038/s41563-021-01019-x – volume: 3 year: 2017 ident: mfaca703bib30 article-title: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective artificial solid-state electrolyte/metallic Li interface publication-title: Sci. Adv. doi: 10.1126/sciadv.1601659 – volume: 7 start-page: 1638 year: 2014 ident: mfaca703bib8 article-title: Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00382a – volume: 31 start-page: 5296 year: 7 2019 ident: mfaca703bib16 article-title: Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01794 – volume: 21 start-page: 20354 year: 2019 ident: mfaca703bib38 article-title: Dendrite nucleation in lithium-conductive ceramics publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03884A – volume: 43 start-page: 4714 year: 7 2014 ident: mfaca703bib31 article-title: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review publication-title: Chem. Soc. Rev. doi: 10.1039/c4cs00020j – volume: 121 start-page: 15565 year: 2017 ident: mfaca703bib35 article-title: Voltammetric enhancement of Li-ion conduction in al-doped Li 7−x La3Zr2O12 solid electrolyte publication-title: J. Phys. Chem C doi: 10.1021/acs.jpcc.7b04004 – volume: 147 start-page: 517 year: 2000 ident: mfaca703bib57 article-title: “Lithium-free” thin-film battery with in situ plated Li anode publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393226 – volume: 206 start-page: 28 year: 2012 ident: mfaca703bib37 article-title: The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2011.10.022 – volume: 68 start-page: 35 year: 1994 ident: mfaca703bib70 article-title: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4–Li2S–SiS2 publication-title: Solid State Ion. doi: 10.1016/0167-2738(94)90232-1 – volume: 5 start-page: 21491 year: 2017 ident: mfaca703bib44 article-title: Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06790A – volume: 16 start-page: 3760 year: 2016 ident: mfaca703bib54 article-title: In situ stem-eels observation of nanoscale interfacial phenomena in all-solid-state batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01119 – volume: 4 start-page: 187 year: 2019 ident: mfaca703bib34 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z – volume: 43 start-page: 103 year: 1993 ident: mfaca703bib53 article-title: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries publication-title: J. Power Sources doi: 10.1016/0378-7753(93)80106-Y – volume: 218 start-page: 65 year: 2012 ident: mfaca703bib59 article-title: Effect of microcracking on ionic conductivity in LATP publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.06.081 – year: 2019 ident: mfaca703bib48 – volume: 57 start-page: 4739 year: 2018 ident: mfaca703bib25 article-title: Local tetragonal structure of the cubic superionic conductor Na3PS4 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00458 – volume: 140 start-page: 362 year: 2018 ident: mfaca703bib4 article-title: Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10593 – ident: mfaca703bib79 article-title: Flash sintering with concurrent crystallization of Li 1.5 Al 0.5 Ge 1.5 (PO4 3 glass – volume: 84 start-page: 477 year: 2001 ident: mfaca703bib73 article-title: Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2001.tb00685.x – volume: 152 start-page: 396 year: 2005 ident: mfaca703bib26 article-title: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces publication-title: J. Electrochem. Soc. doi: 10.1149/1.1850854 – volume: 3 start-page: 16 year: 2018 ident: mfaca703bib27 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-017-0047-2 – volume: 11 start-page: 1 year: 2021 ident: mfaca703bib77 article-title: Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100654 – volume: 177 start-page: 257 year: 2006 ident: mfaca703bib52 article-title: Influence of sputtering conditions on ionic conductivity of lipon thin films publication-title: Solid State Ion. doi: 10.1016/j.ssi.2005.10.021 – volume: 12 start-page: 56118 year: 2020 ident: mfaca703bib46 article-title: Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18674 |
| SSID | ssj0002774577 |
| Score | 2.4282932 |
| Snippet | Despite the potential advantages promised by solid-state batteries, the success of solid-state electrolytes has not yet been fully realised. This is due in... |
| SourceID | doaj crossref iop |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 13501 |
| SubjectTerms | glasses grain boundaries lithium growth solid electrolytes |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKo_IAA0OUxE5sd0ECRMVQVQyAull-oiL6UFv4fq6dtApLWRgT3SjRvXbOubJ9DkJXGTMl1SIcP7PQoCjuEq0LkzhngvE24T46z731-WAghsPuc8PqK-wJq-SBq8SlmnkCmOlKmrnCKqaA4bpcm65l3APbCX9fYD2NZuojLqfxouS8XpeEmZQSXkLXxUmRKqP4yiOrxqEo1w_oMprOGujS20d7NS3Ed9XnHKAtNzlEuw2xwCN0CxXFYTMgnnr8HpwdsI6eSKHZxXAFo2hkk3hCCPdHydgBr8Y66mdCxDF67T2-PDwltftBYsqcLRNHleCCMdWl2gOOW0WpyjghmlhIoNAAtKbIFPCX3FGvubbKeJdR7glRwtET1JpMJ-4U4ZzprgAwVCT3hYK-sdBMGeGNAnqRWd9G6SoX0tTS4MGh4lPGJWohZMieDNmTVfba6Gb9xKySxdgQex_Su44LgtbxBpRZ1mWWf5W5ja6hOLKeYIsNL-v8iht7SWQugeiWWS5n1p_9x9eco51gO1_tRbtAreX8y12ibfO9HC3mnTgUfwDl2d-6 priority: 102 providerName: Directory of Open Access Journals |
| Title | The role of grain boundaries in solid-state Li-metal batteries |
| URI | https://iopscience.iop.org/article/10.1088/2752-5724/aca703 https://doaj.org/article/b6f2397e530e4da6a675e1bc9d67f800 |
| Volume | 2 |
| WOSCitedRecordID | wos001089028800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2752-5724 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002774577 issn: 2752-5724 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2752-5724 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002774577 issn: 2752-5724 databaseCode: O3W dateStart: 20211210 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2752-5724 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002774577 issn: 2752-5724 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7L6kEPvsX1seSgBw9126RNsgiCyi4efB187C3kKQvuA109-tudpHVRkEXwUtoyacrMtPNNHt8gtJ8yU1AtwvYzCwmK4i7ROjeJcyYU3ibcx8pzD5f8-lr0eu3bGjqe7oUZjatf_xGclkTBpQqrBXGiRXgB-RMneUsZxQPT5xwVBQtOfkMfpwMsBIBNwXk1Nflbwx-hKDL2Q4CBXr8FmO7yv15tBS1VuBKflqKrqOaGa2jxG9vgOjoBl8BhNSEeefwUSkNgHYsqhWwZwxW4Yd8mcYsRvuwnAwfAHOtIwAkSG-i-27k7v0iq8gmJKTI2SRxVggvGVJtqD0DAKkpVygnRxIIFhIZIbfJUAQDKHPWaa6uMdynlnhAlHN1E9eFo6LYQzphuC4imimQ-V5B45popI7xRgE9S6xuo9aVJaSpu8VDi4lnGOW4hZNCMDJqRpWYa6HDaYlzyasyQPQvGmcoFRux4A0wgKxNIzTwBbOUKmrrcKqYgE3KZNm3LuAdU3EAHYDVZfaGvMzpr_pAbeElkJgEpF2kmx9Zv__FBO2ghlKYv16vtovrk5c3toXnzPum_vjRj7g_Hq49OM_rtJ25U6hc |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqBAcoLRFLKXUB3roId3ETmzvpRK0rECsFg6FcrP8rFaC3RUs_f2MHXcFUoWQuCXROI5mJplvYs98APsltw0zMpafOUxQtPCFMbUtvLeReJuKkJjnLgdiOJRXV73zzHOaamEm0_zp_4aHbaPgVoV5Q5zsUtFg_iRo3dVWo8N2py4swnLDGha5G87Y7_lPForgphEiL0_-b_CTcJS69mOQwZkfBZn-xqsf7y2sZ3xJDlrxTVjw43ew9qjr4Hv4jq5B4q5CMgnkT6SIICaRK8WsmeAZuuPIFanUiAxGxY1HgE5MasSJEh_gon_068dxkWkUCttUfFZ4pqWQnOseMwEBgdOM6VJQaqhDS0iDEdvWpUYgVHkWjDBO2-BLJgKlWnq2BUvjydhvA6m46UmMqppWodaYgNaGayuD1YhTShc60P2nTWVzj_FIdXGt0lq3lCpqR0XtqFY7Hfg6HzFt-2s8I3sYDTSXi52x0wU0g8pmUIYHihjLozP42mmuMSPylbE9x0VAdNyBL2g5ld_Uu2cm23sidxMUVZVCxNyUlUKb7rzwRp9h5fxnXw1OhqcfYTWy1bdb2HZhaXZ77z_BG_t3Nrq73Uuu-wAXE-1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+grain+boundaries+in+solid-state+Li-metal+batteries&rft.jtitle=Materials+futures&rft.au=Milan%2C+Emily&rft.au=Pasta%2C+Mauro&rft.date=2023-03-01&rft.issn=2752-5724&rft.eissn=2752-5724&rft.volume=2&rft.issue=1&rft.spage=13501&rft_id=info:doi/10.1088%2F2752-5724%2Faca703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2752_5724_aca703 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5724&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5724&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5724&client=summon |