A learning algorithm for adaptive canonical correlation analysis of several data sets

Canonical correlation analysis (CCA) is a classical tool in statistical analysis to find the projections that maximize the correlation between two data sets. In this work we propose a generalization of CCA to several data sets, which is shown to be equivalent to the classical maximum variance (MAXVA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 20; číslo 1; s. 139 - 152
Hlavní autoři: VIA, Javier, SANTAMARIA, Ignacio, PEREZ, Jesus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 2007
Elsevier Science
Témata:
ISSN:0893-6080, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Canonical correlation analysis (CCA) is a classical tool in statistical analysis to find the projections that maximize the correlation between two data sets. In this work we propose a generalization of CCA to several data sets, which is shown to be equivalent to the classical maximum variance (MAXVAR) generalization proposed by Kettenring. The reformulation of this generalization as a set of coupled least squares regression problems is exploited to develop a neural structure for CCA. In particular, the proposed CCA model is a two layer feedforward neural network with lateral connections in the output layer to achieve the simultaneous extraction of all the CCA eigenvectors through deflation. The CCA neural model is trained using a recursive least squares (RLS) algorithm. Finally, the convergence of the proposed learning rule is proved by means of stochastic approximation techniques and their performance is analyzed through simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2006.09.011