A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology

We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 12; pp. 8766 - 8778
Main Authors: Clough, James R., Byrne, Nicholas, Oksuz, Ilkay, Zimmer, Veronika A., Schnabel, Julia A., King, Andrew P.
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
AbstractList We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
Author Oksuz, Ilkay
Schnabel, Julia A.
Clough, James R.
Zimmer, Veronika A.
Byrne, Nicholas
King, Andrew P.
AuthorAffiliation Computer Engineering Department Istanbul Technical University 34467 Sariyer/Istanbul Turkey
School of Biomedical Engineering and Imaging Sciences King's College London WC2R 2LS London United Kingdom
School of Biomedical Engineering and Imaging Sciences King's College London 4616 WC2R 2LS London United Kingdom
AuthorAffiliation_xml – name: School of Biomedical Engineering and Imaging Sciences King's College London 4616 WC2R 2LS London United Kingdom
– name: Computer Engineering Department Istanbul Technical University 34467 Sariyer/Istanbul Turkey
– name: School of Biomedical Engineering and Imaging Sciences King's College London WC2R 2LS London United Kingdom
Author_xml – sequence: 1
  givenname: James R.
  orcidid: 0000-0002-9135-0545
  surname: Clough
  fullname: Clough, James R.
  email: james.clough@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0003-3401-9570
  surname: Byrne
  fullname: Byrne, Nicholas
  email: nicholas.byrne@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 3
  givenname: Ilkay
  orcidid: 0000-0001-6478-0534
  surname: Oksuz
  fullname: Oksuz, Ilkay
  email: ilkay.oksuz@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 4
  givenname: Veronika A.
  orcidid: 0000-0002-5093-5854
  surname: Zimmer
  fullname: Zimmer, Veronika A.
  email: veronika.zimmer@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 5
  givenname: Julia A.
  orcidid: 0000-0001-6107-3009
  surname: Schnabel
  fullname: Schnabel, Julia A.
  email: julia.schnabel@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
– sequence: 6
  givenname: Andrew P.
  orcidid: 0000-0002-9965-7015
  surname: King
  fullname: King, Andrew P.
  email: andrew.king@kcl.ac.uk
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32886606$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9v0zAUxS00xLrBFwAJReJlLyn-E9vxC1IZjFUqYhLds3Gdm-ApsTs7Qdq3n7t2E-yBJ0u-v3N07j0n6MgHDwi9JXhOCFYf11eL78s5xRTPGSZMSPUCzSgRuFRU0SM0w0TQsq5pfYxOUrrBmFQcs1fomNG6FgKLGfq1KNZhG_rQOWv6YhVSKi4mb0cXfNGGWHwB2JYrMNE73xWfTYKmWA6mg-IndAP40Tyg12k3voKYXBrzb3EZhp3r3Wv0sjV9gjeH9xRdX3xdn1-Wqx_flueLVWk5EWNpq7bim1o0xJBGWCUoY6yR0nLZNnmbHBwajIXNhDK0tYIr2ihuQRBJ-Yadok973-20GaCxOUM0vd5GN5h4p4Nx-t-Jd791F_5oJSnhVGSDs4NBDLcTpFEPLlnoe-MhTEnTqsKVJFzWGf3wDL0JU_R5PU0lq1jNpZCZev93oqcoj8fPQL0HbMxnj9Bq6_bnzAFdrwnWu571Q89617M-9Jyl9Jn00f2_ond7kQOAJ4EiOY2o2D2SC7OV
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_dsp_2023_104287
crossref_primary_10_1093_dmfr_twad012
crossref_primary_10_1109_TKDE_2024_3450910
crossref_primary_10_1007_s11548_024_03159_2
crossref_primary_10_1016_j_compbiomed_2024_109357
crossref_primary_10_1049_ipr2_13023
crossref_primary_10_1016_j_neucom_2024_127806
crossref_primary_10_1109_JSEN_2024_3422425
crossref_primary_10_1111_liv_16205
crossref_primary_10_1186_s12880_024_01423_0
crossref_primary_10_1109_TPAMI_2024_3391356
crossref_primary_10_3389_fcomp_2025_1463006
crossref_primary_10_1007_s42044_025_00242_y
crossref_primary_10_1016_j_compbiomed_2023_106556
crossref_primary_10_1002_brx2_29
crossref_primary_10_1109_ACCESS_2021_3062380
crossref_primary_10_1016_j_compbiomed_2023_107840
crossref_primary_10_3390_e27010019
crossref_primary_10_3390_math13020208
crossref_primary_10_1109_RBME_2021_3136343
crossref_primary_10_3389_fcvm_2023_1118499
crossref_primary_10_1016_j_patrec_2024_06_010
crossref_primary_10_1117_1_JMI_11_4_044002
crossref_primary_10_1109_TIV_2023_3319546
crossref_primary_10_1007_s10462_024_10710_9
crossref_primary_10_1007_s10489_025_06721_w
crossref_primary_10_1109_TNNLS_2024_3520147
crossref_primary_10_1016_j_engappai_2024_109547
crossref_primary_10_1016_j_dsp_2023_104339
crossref_primary_10_3390_agronomy13092435
crossref_primary_10_1016_j_bspc_2025_107656
crossref_primary_10_1016_j_engappai_2025_110355
crossref_primary_10_1007_s00521_023_08731_6
crossref_primary_10_3233_JIFS_237994
crossref_primary_10_1007_s00500_023_08610_1
crossref_primary_10_1007_s10489_024_05496_w
crossref_primary_10_1007_s11517_024_03052_9
crossref_primary_10_1109_LRA_2024_3355632
crossref_primary_10_3390_fractalfract8120731
crossref_primary_10_1007_s00392_022_02088_x
crossref_primary_10_1016_j_optlaseng_2024_108499
crossref_primary_10_1016_j_patcog_2024_111048
crossref_primary_10_1109_TMI_2024_3474028
crossref_primary_10_3390_app14052197
crossref_primary_10_1109_TPAMI_2023_3299789
crossref_primary_10_1007_s11517_024_03201_0
crossref_primary_10_1016_j_asoc_2025_113692
crossref_primary_10_1016_j_media_2024_103364
crossref_primary_10_1109_TNNLS_2023_3274142
crossref_primary_10_1016_j_neucom_2025_129577
crossref_primary_10_3390_app14219944
crossref_primary_10_4018_JOEUC_323426
crossref_primary_10_1109_TMI_2024_3400840
crossref_primary_10_1109_TMM_2024_3371218
crossref_primary_10_1109_TPAMI_2022_3217443
crossref_primary_10_1109_TPAMI_2023_3246921
crossref_primary_10_1177_14738716231168671
crossref_primary_10_1016_j_compbiomed_2024_108373
crossref_primary_10_1109_TNSE_2021_3106673
crossref_primary_10_3847_1538_4357_ad26e8
crossref_primary_10_1016_j_actamat_2025_120993
crossref_primary_10_1016_j_autcon_2025_106120
crossref_primary_10_1093_bib_bbad289
crossref_primary_10_1109_TNNLS_2021_3054746
crossref_primary_10_1109_ACCESS_2023_3329056
crossref_primary_10_1088_1748_605X_ad3f60
crossref_primary_10_1016_j_jbusres_2023_114410
crossref_primary_10_1109_TIP_2025_3526061
crossref_primary_10_1016_j_neucom_2024_128055
crossref_primary_10_1088_1361_6560_ad0b63
crossref_primary_10_1109_JBHI_2023_3250429
crossref_primary_10_1016_j_media_2025_103496
crossref_primary_10_1109_JBHI_2022_3225475
crossref_primary_10_1016_j_neucom_2024_128690
Cites_doi 10.1016/j.media.2017.07.005
10.1103/PhysRevE.93.052138
10.1162/netn_a_00073
10.1109/ICABME.2017.8167531
10.1109/SFCS.2000.892133
10.1007/978-3-030-00931-1_68
10.1007/978-3-319-66185-8_29
10.1023/A:1026135101267
10.1016/S1361-8415(96)80007-7
10.1007/978-3-030-20351-1_2
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2015.179
10.1109/SDS.2019.000-1
10.1109/TMI.2017.2743464
10.1016/j.jcmg.2016.12.001
10.1007/978-3-319-67558-9_28
10.1186/s12968-016-0227-4
10.1090/conm/453/08802
10.1007/978-3-030-32875-7_20
10.1109/TMI.2018.2837502
10.1214/15-AOAS886
10.1109/TMI.2006.887364
10.1140/epjds/s13688-017-0109-5
10.1109/TMI.2019.2905990
10.1016/j.cmpb.2012.03.009
10.1007/978-3-642-23175-9_7
10.1177/2048004016645467
10.1007/978-3-642-38868-2_16
10.1016/j.procs.2016.07.033
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
2020 Author
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: 2020 Author
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TPAMI.2020.3013679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 8778
ExternalDocumentID PMC9721526
32886606
10_1109_TPAMI_2020_3013679
9186664
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust IEH Award
  grantid: 102431
– fundername: Kings College London
  funderid: 10.13039/501100000764
– fundername: Guy's and St Thomas' NHS Foundation Trust; St Thomas NHS Foundation Trust
  funderid: 10.13039/501100004941
– fundername: National Institute for Health Research
  funderid: 10.13039/501100000272
– fundername: School of Biomedical Engineering and Imaging Sciences
– fundername: Kings College London
  grantid: WT 203148/Z/16/Z
  funderid: 10.13039/501100000764
– fundername: Engineering and Physical Sciences Research Council; EPSRC
  grantid: EP/P001009/1
  funderid: 10.13039/501100000266
– fundername: Wellcome Trust
  grantid: 102431
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: Wellcome Trust
  grantid: 203148
– fundername: ;
  grantid: 102431
– fundername: ;
– fundername: ;
  grantid: WT 203148/Z/16/Z
– fundername: ;
  grantid: EP/P001009/1
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c516t-c4f45b86d1a1d6c962333d77c57fd292450ed006c6d19a2fc6592d95ce61725b3
IEDL.DBID RIE
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880661400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Sep 30 17:18:06 EDT 2025
Sun Sep 28 15:17:24 EDT 2025
Sun Jun 29 15:37:14 EDT 2025
Mon Jul 21 06:04:54 EDT 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:33:42 EST 2025
Wed Aug 27 02:18:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-c4f45b86d1a1d6c962333d77c57fd292450ed006c6d19a2fc6592d95ce61725b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6107-3009
0000-0003-3401-9570
0000-0002-9965-7015
0000-0001-6478-0534
0000-0002-9135-0545
0000-0002-5093-5854
OpenAccessLink https://ieeexplore.ieee.org/document/9186664
PMID 32886606
PQID 2734385767
PQPubID 85458
PageCount 13
ParticipantIDs pubmed_primary_32886606
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721526
proquest_miscellaneous_2440471578
crossref_primary_10_1109_TPAMI_2020_3013679
crossref_citationtrail_10_1109_TPAMI_2020_3013679
ieee_primary_9186664
proquest_journals_2734385767
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
lecun (ref28) 1998
ref37
simonyan (ref7) 2015
ref36
ref30
ref11
ref32
ref10
mosinska (ref6) 2018
rieck (ref13) 2019
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
brüel-gabrielsson (ref14) 2020
krähenbühl (ref31) 2011
ref23
ref26
ref25
ref42
ref41
ref22
ref21
han (ref24) 2016
hofer (ref15) 2019
çiçek (ref33) 2016
ref29
(ref27) 2015
ref8
ref9
ref4
ref3
hu (ref20) 2019
ref40
chen (ref12) 0; 89
kohl (ref5) 2018
References_xml – start-page: 1553
  year: 2020
  ident: ref14
  article-title: A topology layer for machine learning
– ident: ref2
  doi: 10.1016/j.media.2017.07.005
– ident: ref22
  doi: 10.1103/PhysRevE.93.052138
– start-page: 6965
  year: 2018
  ident: ref5
  article-title: A probabilistic U-net for segmentation of ambiguous images
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref21
  doi: 10.1162/netn_a_00073
– ident: ref18
  doi: 10.1109/ICABME.2017.8167531
– ident: ref11
  doi: 10.1109/SFCS.2000.892133
– ident: ref40
  doi: 10.1007/978-3-030-00931-1_68
– start-page: 5658
  year: 2019
  ident: ref20
  article-title: Topology-preserving deep image segmentation
  publication-title: Proc 33rd Conf Neural Inf Process Syst
– start-page: 2751
  year: 2019
  ident: ref15
  article-title: Connectivity-optimized representation learning via persistent homology
– volume: 89
  start-page: 2573
  year: 0
  ident: ref12
  article-title: TopoReg: A topological regularizer for classifiers
– year: 2015
  ident: ref27
  publication-title: GUDHI User and Reference Manual
– ident: ref32
  doi: 10.1007/978-3-319-66185-8_29
– ident: ref42
  doi: 10.1023/A:1026135101267
– ident: ref10
  doi: 10.1016/S1361-8415(96)80007-7
– ident: ref4
  doi: 10.1007/978-3-030-20351-1_2
– ident: ref29
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 109
  year: 2011
  ident: ref31
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref41
  doi: 10.1109/ICCV.2015.179
– year: 1998
  ident: ref28
  article-title: The MNIST database of handwritten digits
– ident: ref16
  doi: 10.1109/SDS.2019.000-1
– ident: ref8
  doi: 10.1109/TMI.2017.2743464
– ident: ref37
  doi: 10.1016/j.jcmg.2016.12.001
– ident: ref3
  doi: 10.1007/978-3-319-67558-9_28
– year: 2015
  ident: ref7
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref30
  doi: 10.1186/s12968-016-0227-4
– ident: ref25
  doi: 10.1090/conm/453/08802
– ident: ref39
  doi: 10.1007/978-3-030-32875-7_20
– ident: ref1
  doi: 10.1109/TMI.2018.2837502
– ident: ref23
  doi: 10.1214/15-AOAS886
– start-page: 424
  year: 2016
  ident: ref33
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention
– ident: ref35
  doi: 10.1109/TMI.2006.887364
– ident: ref26
  doi: 10.1140/epjds/s13688-017-0109-5
– ident: ref9
  doi: 10.1109/TMI.2019.2905990
– ident: ref36
  doi: 10.1016/j.cmpb.2012.03.009
– ident: ref34
  doi: 10.1007/978-3-642-23175-9_7
– start-page: 3136
  year: 2018
  ident: ref6
  article-title: Beyond the pixel-wise loss for topology-aware delineation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref38
  doi: 10.1177/2048004016645467
– ident: ref19
  doi: 10.1007/978-3-642-38868-2_16
– year: 2016
  ident: ref24
  article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis
– year: 2019
  ident: ref13
  article-title: Neural persistence: A complexity measure for deep neural networks using algebraic topology
– ident: ref17
  doi: 10.1016/j.procs.2016.07.033
SSID ssj0014503
Score 2.717163
Snippet We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8766
SubjectTerms Algorithms
convolutional neural networks
Data analysis
Deep Learning
Homology
Image Processing, Computer-Assisted - methods
Image segmentation
Labels
Loss measurement
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
medical imaging
Myocardium
Network topologies
Network topology
Neural networks
Neural Networks, Computer
Object recognition
persistent homology
Segmentation
Shape
Topology
Training
Title A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology
URI https://ieeexplore.ieee.org/document/9186664
https://www.ncbi.nlm.nih.gov/pubmed/32886606
https://www.proquest.com/docview/2734385767
https://www.proquest.com/docview/2440471578
https://pubmed.ncbi.nlm.nih.gov/PMC9721526
Volume 44
WOSCitedRecordID wos000880661400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE9lBb6SAvIlXprUzbxKz5uoSuQKELqVtpbmtgOIHWzCHb7-zvjONFSoUrcInliWfpm7Bl75huAj1w49LstKq9rMEDxjUhr1ZhU25pXRS606yjzz_T5eTGbmYsN-DzUwnjvQ_KZ_0Kf4S3fLeyKrsoODbGzKbEJm1rrrlZreDEQMnRBRg8GLRzDiL5AZmQOpxfj76cYCuYYoQaKMqIK5XmBk1Gjo7XzKDRYecjX_Ddlcu0Mmmw_bvUv4Hn0Ndm4U46XsOHbHdju-ziwaNY78GyNlHAXfo3ZtOucQPixM1w1m-DpRwgydHHZsfc3aeRlvWRf8Rh07HSO-xL74S_nsZapZSEZgVGGPWlSu2Qni3m4w38FPyffpkcnaezDkFqZqWVqRSNkXSiXVZlT1qDHxLnT2krduBwDODnyDq3XooSp8sbSU60z0npyj2TNX8NWu2j9W2BcKmrsUVeFqITKbZ0pV9ccNcPkhXU-gaxHo7SRpJx6ZfwuQ7AyMmUAsyQwywhmAp-Gf246io7_Su8SNINkRCWBvR70MlrxXUnUP7zAiEwn8GEYRvujR5Wq9YsVyhDBos5w40vgTacjw9y9jiWg72nPIEDc3vdH2uurwPFNpEoyV-8eXu17eJpTGUZIq9mDreXtyu_DE_tneX13e4DmMSsOgnn8BXwnCsI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ8bLDxETbASLxBWOP4I37sgKoVXTWJIu0tJLYzJtF02lr-fu6cD3XThMRbJF8sS787-86--x3A-1Q49LstKq-rMEDxlYhLVZlY2zItMi60ayjzp3o2y87OzOkWfOxrYbz3IfnMf6LP8JbvlnZNV2VHhtjZlLgH96UQPGmqtfo3AyFDH2T0YdDGMZDoSmQG5mh-OjyZYDDIMUYNJGVEFpryDKejVkcbJ1JosXKXt3k7aXLjFBrt_t_6n8BO622yYaMeT2HL13uw23VyYK1h78HjDVrCffg5ZPOmdwIhyKa4ajbC848wZOjksi_eX8YtM-s5O8aD0LHJAncm9t2fL9pqppqFdARGOfakS_WKjZeLcIv_DH6Mvs4_j-O2E0NsZaJWsRWVkGWmXFIkTlmDPlOaOq2t1JXjGMLJgXdovxYlTMErS4-1zkjryUGSZfoctutl7V8CS6Wi1h5lkYlCKG7LRLmyTFE3DM-s8xEkHRq5bWnKqVvG7zyEKwOTBzBzAjNvwYzgQ__PZUPS8U_pfYKml2xRieCwAz1v7fg6J_KfNMOYTEfwrh9GC6RnlaL2yzXKEMWiTnDri-BFoyP93J2ORaBvaE8vQOzeN0fqi1-B5ZtolSRXr-5e7Vt4OJ6fTPPpZPbtAB5xKsoISTaHsL26WvvX8MD-WV1cX70JRvIXME8NIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Topological+Loss+Function+for+Deep-Learning+Based+Image+Segmentation+Using+Persistent+Homology&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Clough%2C+James+R.&rft.au=Byrne%2C+Nicholas&rft.au=Oksuz%2C+Ilkay&rft.au=Zimmer%2C+Veronika+A.&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=12&rft.spage=8766&rft.epage=8778&rft_id=info:doi/10.1109%2FTPAMI.2020.3013679&rft_id=info%3Apmid%2F32886606&rft.externalDocID=9186664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon