A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 12; pp. 8766 - 8778 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels. |
|---|---|
| AbstractList | We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels. We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels. |
| Author | Oksuz, Ilkay Schnabel, Julia A. Clough, James R. Zimmer, Veronika A. Byrne, Nicholas King, Andrew P. |
| AuthorAffiliation | Computer Engineering Department Istanbul Technical University 34467 Sariyer/Istanbul Turkey School of Biomedical Engineering and Imaging Sciences King's College London WC2R 2LS London United Kingdom School of Biomedical Engineering and Imaging Sciences King's College London 4616 WC2R 2LS London United Kingdom |
| AuthorAffiliation_xml | – name: School of Biomedical Engineering and Imaging Sciences King's College London 4616 WC2R 2LS London United Kingdom – name: Computer Engineering Department Istanbul Technical University 34467 Sariyer/Istanbul Turkey – name: School of Biomedical Engineering and Imaging Sciences King's College London WC2R 2LS London United Kingdom |
| Author_xml | – sequence: 1 givenname: James R. orcidid: 0000-0002-9135-0545 surname: Clough fullname: Clough, James R. email: james.clough@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 2 givenname: Nicholas orcidid: 0000-0003-3401-9570 surname: Byrne fullname: Byrne, Nicholas email: nicholas.byrne@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 3 givenname: Ilkay orcidid: 0000-0001-6478-0534 surname: Oksuz fullname: Oksuz, Ilkay email: ilkay.oksuz@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 4 givenname: Veronika A. orcidid: 0000-0002-5093-5854 surname: Zimmer fullname: Zimmer, Veronika A. email: veronika.zimmer@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 5 givenname: Julia A. orcidid: 0000-0001-6107-3009 surname: Schnabel fullname: Schnabel, Julia A. email: julia.schnabel@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom – sequence: 6 givenname: Andrew P. orcidid: 0000-0002-9965-7015 surname: King fullname: King, Andrew P. email: andrew.king@kcl.ac.uk organization: School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32886606$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9v0zAUxS00xLrBFwAJReJlLyn-E9vxC1IZjFUqYhLds3Gdm-ApsTs7Qdq3n7t2E-yBJ0u-v3N07j0n6MgHDwi9JXhOCFYf11eL78s5xRTPGSZMSPUCzSgRuFRU0SM0w0TQsq5pfYxOUrrBmFQcs1fomNG6FgKLGfq1KNZhG_rQOWv6YhVSKi4mb0cXfNGGWHwB2JYrMNE73xWfTYKmWA6mg-IndAP40Tyg12k3voKYXBrzb3EZhp3r3Wv0sjV9gjeH9xRdX3xdn1-Wqx_flueLVWk5EWNpq7bim1o0xJBGWCUoY6yR0nLZNnmbHBwajIXNhDK0tYIr2ihuQRBJ-Yadok973-20GaCxOUM0vd5GN5h4p4Nx-t-Jd791F_5oJSnhVGSDs4NBDLcTpFEPLlnoe-MhTEnTqsKVJFzWGf3wDL0JU_R5PU0lq1jNpZCZev93oqcoj8fPQL0HbMxnj9Bq6_bnzAFdrwnWu571Q89617M-9Jyl9Jn00f2_ond7kQOAJ4EiOY2o2D2SC7OV |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2023_104287 crossref_primary_10_1093_dmfr_twad012 crossref_primary_10_1109_TKDE_2024_3450910 crossref_primary_10_1007_s11548_024_03159_2 crossref_primary_10_1016_j_compbiomed_2024_109357 crossref_primary_10_1049_ipr2_13023 crossref_primary_10_1016_j_neucom_2024_127806 crossref_primary_10_1109_JSEN_2024_3422425 crossref_primary_10_1111_liv_16205 crossref_primary_10_1186_s12880_024_01423_0 crossref_primary_10_1109_TPAMI_2024_3391356 crossref_primary_10_3389_fcomp_2025_1463006 crossref_primary_10_1007_s42044_025_00242_y crossref_primary_10_1016_j_compbiomed_2023_106556 crossref_primary_10_1002_brx2_29 crossref_primary_10_1109_ACCESS_2021_3062380 crossref_primary_10_1016_j_compbiomed_2023_107840 crossref_primary_10_3390_e27010019 crossref_primary_10_3390_math13020208 crossref_primary_10_1109_RBME_2021_3136343 crossref_primary_10_3389_fcvm_2023_1118499 crossref_primary_10_1016_j_patrec_2024_06_010 crossref_primary_10_1117_1_JMI_11_4_044002 crossref_primary_10_1109_TIV_2023_3319546 crossref_primary_10_1007_s10462_024_10710_9 crossref_primary_10_1007_s10489_025_06721_w crossref_primary_10_1109_TNNLS_2024_3520147 crossref_primary_10_1016_j_engappai_2024_109547 crossref_primary_10_1016_j_dsp_2023_104339 crossref_primary_10_3390_agronomy13092435 crossref_primary_10_1016_j_bspc_2025_107656 crossref_primary_10_1016_j_engappai_2025_110355 crossref_primary_10_1007_s00521_023_08731_6 crossref_primary_10_3233_JIFS_237994 crossref_primary_10_1007_s00500_023_08610_1 crossref_primary_10_1007_s10489_024_05496_w crossref_primary_10_1007_s11517_024_03052_9 crossref_primary_10_1109_LRA_2024_3355632 crossref_primary_10_3390_fractalfract8120731 crossref_primary_10_1007_s00392_022_02088_x crossref_primary_10_1016_j_optlaseng_2024_108499 crossref_primary_10_1016_j_patcog_2024_111048 crossref_primary_10_1109_TMI_2024_3474028 crossref_primary_10_3390_app14052197 crossref_primary_10_1109_TPAMI_2023_3299789 crossref_primary_10_1007_s11517_024_03201_0 crossref_primary_10_1016_j_asoc_2025_113692 crossref_primary_10_1016_j_media_2024_103364 crossref_primary_10_1109_TNNLS_2023_3274142 crossref_primary_10_1016_j_neucom_2025_129577 crossref_primary_10_3390_app14219944 crossref_primary_10_4018_JOEUC_323426 crossref_primary_10_1109_TMI_2024_3400840 crossref_primary_10_1109_TMM_2024_3371218 crossref_primary_10_1109_TPAMI_2022_3217443 crossref_primary_10_1109_TPAMI_2023_3246921 crossref_primary_10_1177_14738716231168671 crossref_primary_10_1016_j_compbiomed_2024_108373 crossref_primary_10_1109_TNSE_2021_3106673 crossref_primary_10_3847_1538_4357_ad26e8 crossref_primary_10_1016_j_actamat_2025_120993 crossref_primary_10_1016_j_autcon_2025_106120 crossref_primary_10_1093_bib_bbad289 crossref_primary_10_1109_TNNLS_2021_3054746 crossref_primary_10_1109_ACCESS_2023_3329056 crossref_primary_10_1088_1748_605X_ad3f60 crossref_primary_10_1016_j_jbusres_2023_114410 crossref_primary_10_1109_TIP_2025_3526061 crossref_primary_10_1016_j_neucom_2024_128055 crossref_primary_10_1088_1361_6560_ad0b63 crossref_primary_10_1109_JBHI_2023_3250429 crossref_primary_10_1016_j_media_2025_103496 crossref_primary_10_1109_JBHI_2022_3225475 crossref_primary_10_1016_j_neucom_2024_128690 |
| Cites_doi | 10.1016/j.media.2017.07.005 10.1103/PhysRevE.93.052138 10.1162/netn_a_00073 10.1109/ICABME.2017.8167531 10.1109/SFCS.2000.892133 10.1007/978-3-030-00931-1_68 10.1007/978-3-319-66185-8_29 10.1023/A:1026135101267 10.1016/S1361-8415(96)80007-7 10.1007/978-3-030-20351-1_2 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2015.179 10.1109/SDS.2019.000-1 10.1109/TMI.2017.2743464 10.1016/j.jcmg.2016.12.001 10.1007/978-3-319-67558-9_28 10.1186/s12968-016-0227-4 10.1090/conm/453/08802 10.1007/978-3-030-32875-7_20 10.1109/TMI.2018.2837502 10.1214/15-AOAS886 10.1109/TMI.2006.887364 10.1140/epjds/s13688-017-0109-5 10.1109/TMI.2019.2905990 10.1016/j.cmpb.2012.03.009 10.1007/978-3-642-23175-9_7 10.1177/2048004016645467 10.1007/978-3-642-38868-2_16 10.1016/j.procs.2016.07.033 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 2020 Author |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: 2020 Author |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1109/TPAMI.2020.3013679 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 8778 |
| ExternalDocumentID | PMC9721526 32886606 10_1109_TPAMI_2020_3013679 9186664 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust IEH Award grantid: 102431 – fundername: Kings College London funderid: 10.13039/501100000764 – fundername: Guy's and St Thomas' NHS Foundation Trust; St Thomas NHS Foundation Trust funderid: 10.13039/501100004941 – fundername: National Institute for Health Research funderid: 10.13039/501100000272 – fundername: School of Biomedical Engineering and Imaging Sciences – fundername: Kings College London grantid: WT 203148/Z/16/Z funderid: 10.13039/501100000764 – fundername: Engineering and Physical Sciences Research Council; EPSRC grantid: EP/P001009/1 funderid: 10.13039/501100000266 – fundername: Wellcome Trust grantid: 102431 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: Wellcome Trust grantid: 203148 – fundername: ; grantid: 102431 – fundername: ; – fundername: ; grantid: WT 203148/Z/16/Z – fundername: ; grantid: EP/P001009/1 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CGR CUY CVF ECM EIF FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c516t-c4f45b86d1a1d6c962333d77c57fd292450ed006c6d19a2fc6592d95ce61725b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 170 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880661400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Tue Sep 30 17:18:06 EDT 2025 Sun Sep 28 15:17:24 EDT 2025 Sun Jun 29 15:37:14 EDT 2025 Mon Jul 21 06:04:54 EDT 2025 Sat Nov 29 05:15:59 EST 2025 Tue Nov 18 22:33:42 EST 2025 Wed Aug 27 02:18:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-c4f45b86d1a1d6c962333d77c57fd292450ed006c6d19a2fc6592d95ce61725b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6107-3009 0000-0003-3401-9570 0000-0002-9965-7015 0000-0001-6478-0534 0000-0002-9135-0545 0000-0002-5093-5854 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9186664 |
| PMID | 32886606 |
| PQID | 2734385767 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_32886606 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721526 proquest_miscellaneous_2440471578 crossref_primary_10_1109_TPAMI_2020_3013679 crossref_citationtrail_10_1109_TPAMI_2020_3013679 ieee_primary_9186664 proquest_journals_2734385767 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 lecun (ref28) 1998 ref37 simonyan (ref7) 2015 ref36 ref30 ref11 ref32 ref10 mosinska (ref6) 2018 rieck (ref13) 2019 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 brüel-gabrielsson (ref14) 2020 krähenbühl (ref31) 2011 ref23 ref26 ref25 ref42 ref41 ref22 ref21 han (ref24) 2016 hofer (ref15) 2019 çiçek (ref33) 2016 ref29 (ref27) 2015 ref8 ref9 ref4 ref3 hu (ref20) 2019 ref40 chen (ref12) 0; 89 kohl (ref5) 2018 |
| References_xml | – start-page: 1553 year: 2020 ident: ref14 article-title: A topology layer for machine learning – ident: ref2 doi: 10.1016/j.media.2017.07.005 – ident: ref22 doi: 10.1103/PhysRevE.93.052138 – start-page: 6965 year: 2018 ident: ref5 article-title: A probabilistic U-net for segmentation of ambiguous images publication-title: Proc Int Conf Neural Inf Process – ident: ref21 doi: 10.1162/netn_a_00073 – ident: ref18 doi: 10.1109/ICABME.2017.8167531 – ident: ref11 doi: 10.1109/SFCS.2000.892133 – ident: ref40 doi: 10.1007/978-3-030-00931-1_68 – start-page: 5658 year: 2019 ident: ref20 article-title: Topology-preserving deep image segmentation publication-title: Proc 33rd Conf Neural Inf Process Syst – start-page: 2751 year: 2019 ident: ref15 article-title: Connectivity-optimized representation learning via persistent homology – volume: 89 start-page: 2573 year: 0 ident: ref12 article-title: TopoReg: A topological regularizer for classifiers – year: 2015 ident: ref27 publication-title: GUDHI User and Reference Manual – ident: ref32 doi: 10.1007/978-3-319-66185-8_29 – ident: ref42 doi: 10.1023/A:1026135101267 – ident: ref10 doi: 10.1016/S1361-8415(96)80007-7 – ident: ref4 doi: 10.1007/978-3-030-20351-1_2 – ident: ref29 doi: 10.1007/978-3-319-24574-4_28 – start-page: 109 year: 2011 ident: ref31 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials publication-title: Proc Int Conf Neural Inf Process – ident: ref41 doi: 10.1109/ICCV.2015.179 – year: 1998 ident: ref28 article-title: The MNIST database of handwritten digits – ident: ref16 doi: 10.1109/SDS.2019.000-1 – ident: ref8 doi: 10.1109/TMI.2017.2743464 – ident: ref37 doi: 10.1016/j.jcmg.2016.12.001 – ident: ref3 doi: 10.1007/978-3-319-67558-9_28 – year: 2015 ident: ref7 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref30 doi: 10.1186/s12968-016-0227-4 – ident: ref25 doi: 10.1090/conm/453/08802 – ident: ref39 doi: 10.1007/978-3-030-32875-7_20 – ident: ref1 doi: 10.1109/TMI.2018.2837502 – ident: ref23 doi: 10.1214/15-AOAS886 – start-page: 424 year: 2016 ident: ref33 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref35 doi: 10.1109/TMI.2006.887364 – ident: ref26 doi: 10.1140/epjds/s13688-017-0109-5 – ident: ref9 doi: 10.1109/TMI.2019.2905990 – ident: ref36 doi: 10.1016/j.cmpb.2012.03.009 – ident: ref34 doi: 10.1007/978-3-642-23175-9_7 – start-page: 3136 year: 2018 ident: ref6 article-title: Beyond the pixel-wise loss for topology-aware delineation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref38 doi: 10.1177/2048004016645467 – ident: ref19 doi: 10.1007/978-3-642-38868-2_16 – year: 2016 ident: ref24 article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis – year: 2019 ident: ref13 article-title: Neural persistence: A complexity measure for deep neural networks using algebraic topology – ident: ref17 doi: 10.1016/j.procs.2016.07.033 |
| SSID | ssj0014503 |
| Score | 2.717163 |
| Snippet | We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8766 |
| SubjectTerms | Algorithms convolutional neural networks Data analysis Deep Learning Homology Image Processing, Computer-Assisted - methods Image segmentation Labels Loss measurement Magnetic resonance imaging Magnetic Resonance Imaging - methods medical imaging Myocardium Network topologies Network topology Neural networks Neural Networks, Computer Object recognition persistent homology Segmentation Shape Topology Training |
| Title | A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology |
| URI | https://ieeexplore.ieee.org/document/9186664 https://www.ncbi.nlm.nih.gov/pubmed/32886606 https://www.proquest.com/docview/2734385767 https://www.proquest.com/docview/2440471578 https://pubmed.ncbi.nlm.nih.gov/PMC9721526 |
| Volume | 44 |
| WOSCitedRecordID | wos000880661400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE9lBb6SAvIlXprUzbxKz5uoSuQKELqVtpbmtgOIHWzCHb7-zvjONFSoUrcInliWfpm7Bl75huAj1w49LstKq9rMEDxjUhr1ZhU25pXRS606yjzz_T5eTGbmYsN-DzUwnjvQ_KZ_0Kf4S3fLeyKrsoODbGzKbEJm1rrrlZreDEQMnRBRg8GLRzDiL5AZmQOpxfj76cYCuYYoQaKMqIK5XmBk1Gjo7XzKDRYecjX_Ddlcu0Mmmw_bvUv4Hn0Ndm4U46XsOHbHdju-ziwaNY78GyNlHAXfo3ZtOucQPixM1w1m-DpRwgydHHZsfc3aeRlvWRf8Rh07HSO-xL74S_nsZapZSEZgVGGPWlSu2Qni3m4w38FPyffpkcnaezDkFqZqWVqRSNkXSiXVZlT1qDHxLnT2krduBwDODnyDq3XooSp8sbSU60z0npyj2TNX8NWu2j9W2BcKmrsUVeFqITKbZ0pV9ccNcPkhXU-gaxHo7SRpJx6ZfwuQ7AyMmUAsyQwywhmAp-Gf246io7_Su8SNINkRCWBvR70MlrxXUnUP7zAiEwn8GEYRvujR5Wq9YsVyhDBos5w40vgTacjw9y9jiWg72nPIEDc3vdH2uurwPFNpEoyV-8eXu17eJpTGUZIq9mDreXtyu_DE_tneX13e4DmMSsOgnn8BXwnCsI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ8bLDxETbASLxBWOP4I37sgKoVXTWJIu0tJLYzJtF02lr-fu6cD3XThMRbJF8sS787-86--x3A-1Q49LstKq-rMEDxlYhLVZlY2zItMi60ayjzp3o2y87OzOkWfOxrYbz3IfnMf6LP8JbvlnZNV2VHhtjZlLgH96UQPGmqtfo3AyFDH2T0YdDGMZDoSmQG5mh-OjyZYDDIMUYNJGVEFpryDKejVkcbJ1JosXKXt3k7aXLjFBrt_t_6n8BO622yYaMeT2HL13uw23VyYK1h78HjDVrCffg5ZPOmdwIhyKa4ajbC848wZOjksi_eX8YtM-s5O8aD0LHJAncm9t2fL9pqppqFdARGOfakS_WKjZeLcIv_DH6Mvs4_j-O2E0NsZaJWsRWVkGWmXFIkTlmDPlOaOq2t1JXjGMLJgXdovxYlTMErS4-1zkjryUGSZfoctutl7V8CS6Wi1h5lkYlCKG7LRLmyTFE3DM-s8xEkHRq5bWnKqVvG7zyEKwOTBzBzAjNvwYzgQ__PZUPS8U_pfYKml2xRieCwAz1v7fg6J_KfNMOYTEfwrh9GC6RnlaL2yzXKEMWiTnDri-BFoyP93J2ORaBvaE8vQOzeN0fqi1-B5ZtolSRXr-5e7Vt4OJ6fTPPpZPbtAB5xKsoISTaHsL26WvvX8MD-WV1cX70JRvIXME8NIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Topological+Loss+Function+for+Deep-Learning+Based+Image+Segmentation+Using+Persistent+Homology&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Clough%2C+James+R.&rft.au=Byrne%2C+Nicholas&rft.au=Oksuz%2C+Ilkay&rft.au=Zimmer%2C+Veronika+A.&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=12&rft.spage=8766&rft.epage=8778&rft_id=info:doi/10.1109%2FTPAMI.2020.3013679&rft_id=info%3Apmid%2F32886606&rft.externalDocID=9186664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |