High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles

Motivation: Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics Vol. 27; no. 6; pp. 777 - 784
Main Authors: Wang, Yejun, Zhang, Qing, Sun, Ming-an, Guo, Dianjing
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 15.03.2011
Subjects:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation: Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified. Results: In this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion (∼50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of ∼90.97% and an average selectivity of ∼97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model. Availability: An R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac. Contact:  djguo@cuhk.edu.hk Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Motivation: Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified.Results: In this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion ( similar to 50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of similar to 90.97% and an average selectivity of similar to 97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model.Availability: An R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac.Contact:[ /bold] djguo[at]cuhk.edu.hkSupplementary information: Supplementary data are available at Bioinformatics online.
Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified.MOTIVATIONBacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified.In this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion (∼50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of ∼90.97% and an average selectivity of ∼97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model.RESULTSIn this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion (∼50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of ∼90.97% and an average selectivity of ∼97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model.An R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac.AVAILABILITYAn R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac.
Motivation: Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified. Results: In this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion (∼50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of ∼90.97% and an average selectivity of ∼97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model. Availability: An R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac. Contact:  djguo@cuhk.edu.hk Supplementary information:  Supplementary data are available at Bioinformatics online.
Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in the interaction between bacteria and their hosts. Previous computational methods for T3S protein prediction have only achieved limited accuracy, and distinct features for effective T3S protein prediction remain to be identified. In this work, a distinctive N-terminal position-specific amino acid composition (Aac) feature was identified for T3S proteins. A large portion (∼50%) of T3S proteins exhibit distinct position-specific Aac features that can tolerate position shift. A classifier, BPBAac, was developed and trained using Support Vector Machine (SVM) based on the Aac feature extracted using a Bi-profile Bayes model. We demonstrated that the BPBAac model outperformed other implementations in classification of T3S and non-T3S proteins, giving an average sensitivity of ∼90.97% and an average selectivity of ∼97.42% in a 5-fold cross-validation evaluation. The model was also robust when a small-size training dataset was used. The fact that the position-specific Aac feature is commonly found in T3S proteins across different bacterial species gives this model wide application. To demonstrate the model's application, a genome-wide prediction of T3S effector proteins was performed for Ralstonia solanacearum, an important plant pathogenic bacterium, and a number of putative candidates were identified using this model. An R package of BPBAac tool is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac.
Author Wang, Yejun
Sun, Ming-an
Zhang, Qing
Guo, Dianjing
Author_xml – sequence: 1
  givenname: Yejun
  surname: Wang
  fullname: Wang, Yejun
– sequence: 2
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
– sequence: 3
  givenname: Ming-an
  surname: Sun
  fullname: Sun, Ming-an
– sequence: 4
  givenname: Dianjing
  surname: Guo
  fullname: Guo, Dianjing
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23955842$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21233168$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxSNURP_ARwD5gugl1I5jxxEnVEG7UiUucI4m4zEYJXGwvYeV-PB42W0RHOjFY2t-b56seefVyRIWqqqXgr8VvJdXow9-cSHOkD2mqzFH3ogn1ZmQuqtbI8TJw53L0-o8pe-cc8WVfladNqKRUmhzVv289V-_1YC4jYA7tkayHrMPCwuOjYCZooeJ5d1KbLPZsEQYKZNl5BxhDjEVKpV3Uawh-b20Tiuhdx4ZzH4JDNBbhmG-7xeX4PxE6Xn11MGU6MWxXlRfPn74fH1b33262Vy_v6tRCZ1r03EgpEa1pnedxVYpg0I6khb70VkBjTbd2DhqFTTEyTQt9CCsaY21pORF9eYwtxj_2FLKw-wT0jTBQmGbBqN7wzUX4nFS6U53vG0KeflfUuhOSFPOtqCvjuh2nMkOa_QzxN1wv4UCvD4CkBAmF2FBn_5wsi8__u2pDhzGkFIk94AIPuxTMfydiuGQiqJ7948OfYb9KnIEPz2i_gUK5Mc4
CitedBy_id crossref_primary_10_1016_S2095_3119_19_62883_2
crossref_primary_10_1038_srep34516
crossref_primary_10_1016_j_ab_2024_115648
crossref_primary_10_3390_ijms150610410
crossref_primary_10_3390_microbiolres15040145
crossref_primary_10_1038_s41598_018_33874_1
crossref_primary_10_1155_2012_696190
crossref_primary_10_1007_s42360_020_00290_3
crossref_primary_10_1016_j_compbiomed_2023_106638
crossref_primary_10_1186_1471_2105_13_66
crossref_primary_10_1074_jbc_M114_633677
crossref_primary_10_1093_femsle_fnx276
crossref_primary_10_1128_AEM_00537_16
crossref_primary_10_3389_fpls_2024_1400659
crossref_primary_10_1128_msystems_01004_23
crossref_primary_10_1111_1462_2920_13755
crossref_primary_10_1093_bib_bby009
crossref_primary_10_1105_tpc_112_101329
crossref_primary_10_1186_s12859_022_04604_2
crossref_primary_10_1007_s10096_016_2716_7
crossref_primary_10_7717_peerj_167
crossref_primary_10_3389_fmicb_2016_00387
crossref_primary_10_1371_journal_pone_0035097
crossref_primary_10_1111_mmi_12675
crossref_primary_10_1093_bib_bbab037
crossref_primary_10_3389_fmicb_2021_605782
crossref_primary_10_1128_mSystems_00288_20
crossref_primary_10_3389_fpls_2022_1024405
crossref_primary_10_1016_j_ab_2023_115407
crossref_primary_10_1093_bib_bbx078
crossref_primary_10_1093_bib_bbw100
crossref_primary_10_1155_2021_6690299
crossref_primary_10_2174_0109298673277663240101111507
crossref_primary_10_1002_mbo3_553
crossref_primary_10_1016_j_compbiomed_2019_103374
crossref_primary_10_1016_j_ymeth_2012_06_011
crossref_primary_10_3389_fpls_2016_00126
crossref_primary_10_1093_bib_bbab310
crossref_primary_10_1128_JB_00173_12
crossref_primary_10_1093_bioinformatics_btae378
crossref_primary_10_1007_s40484_019_0184_7
crossref_primary_10_1099_mic_0_001328
crossref_primary_10_1016_j_csbj_2021_03_019
crossref_primary_10_1016_j_ab_2016_06_012
crossref_primary_10_1002_jcb_30642
crossref_primary_10_1371_journal_pone_0059754
crossref_primary_10_1371_journal_pone_0036038
crossref_primary_10_1155_2020_3974598
crossref_primary_10_1155_2014_845479
crossref_primary_10_3390_microorganisms10020260
crossref_primary_10_1586_epr_12_52
crossref_primary_10_1371_journal_pone_0026930
crossref_primary_10_1371_journal_pone_0084439
crossref_primary_10_1016_j_tim_2023_05_011
crossref_primary_10_1093_nargab_lqab086
crossref_primary_10_1042_BJ20150518
crossref_primary_10_1093_nar_gkz924
crossref_primary_10_1186_1471_2105_12_442
crossref_primary_10_1038_srep38741
crossref_primary_10_1371_journal_pone_0058173
crossref_primary_10_1039_C5AN00311C
crossref_primary_10_3389_fmicb_2021_813094
crossref_primary_10_1093_bib_bbaa008
crossref_primary_10_1186_s12864_016_3363_1
crossref_primary_10_1038_srep41031
crossref_primary_10_1016_j_compbiolchem_2017_10_004
crossref_primary_10_1186_s12859_018_2321_0
crossref_primary_10_1371_journal_pone_0056632
crossref_primary_10_1016_j_ab_2018_09_007
Cites_doi 10.1016/j.canlet.2007.12.022
10.1093/bioinformatics/16.4.404
10.1038/nature05272
10.1371/journal.ppat.1000375
10.1128/JB.00180-06
10.1038/415497a
10.1073/pnas.112183899
10.1128/mr.57.4.995-1017.1993
10.1038/35102073
10.1093/bioinformatics/bth382
10.1128/JB.187.5.1559-1567.2005
10.1046/j.1365-2958.2003.03772.x
10.1073/pnas.230450797
10.1093/nar/gki396
10.1186/1471-2105-11-S1-S47
10.1371/journal.pone.0004920
10.1371/journal.pone.0005917
10.1078/1438-4221-00199
10.1046/j.1365-2958.2002.03196.x
10.1128/JB.186.2.543-555.2004
10.1101/gr.849004
10.1371/journal.ppat.1000376
10.1046/j.1365-2958.2002.02738.x
10.1073/pnas.0604891103
10.1128/MMBR.68.4.692-744.2004
10.1111/j.1365-2958.2005.04823.x
10.1046/j.1365-2958.2001.02271.x
10.1093/bioinformatics/14.9.755
10.1094/MPMI-23-3-0251
10.1016/j.mib.2008.01.006
10.1128/MMBR.62.2.379-433.1998
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7QL
7QO
7T7
C1K
FR3
P64
DOI 10.1093/bioinformatics/btr021
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Biotechnology Research Abstracts
Computer and Information Systems Abstracts
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 784
ExternalDocumentID 21233168
23955842
10_1093_bioinformatics_btr021
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABGNP
ABNGD
ABQTQ
ACUKT
AFFNX
AI.
AQDSO
ATTQO
AZFZN
ELUNK
HVGLF
IQODW
M49
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
482
7SC
8FD
ABJNI
JQ2
L7M
L~C
L~D
ROZ
TN5
WH7
7X8
7QL
7QO
7T7
C1K
FR3
P64
ID FETCH-LOGICAL-c516t-870aece25489f7dc4558c13fe3dc9bfd1a2687b2fe45a2e0e824a9a1d848dde53
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288277300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Tue Oct 07 09:56:34 EDT 2025
Sun Nov 09 11:29:22 EST 2025
Fri Jul 11 12:37:05 EDT 2025
Wed Feb 19 01:48:35 EST 2025
Wed Apr 02 07:17:09 EDT 2025
Sat Nov 29 05:33:46 EST 2025
Tue Nov 18 22:32:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Composition
Accuracy
Position
Secretion
Aminoacid
Prediction
Bacteria
Profile
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-870aece25489f7dc4558c13fe3dc9bfd1a2687b2fe45a2e0e824a9a1d848dde53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/27/6/777/48864167/bioinformatics_27_6_777.pdf
PMID 21233168
PQID 1671381674
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_869806011
proquest_miscellaneous_856767042
proquest_miscellaneous_1671381674
pubmed_primary_21233168
pascalfrancis_primary_23955842
crossref_primary_10_1093_bioinformatics_btr021
crossref_citationtrail_10_1093_bioinformatics_btr021
PublicationCentury 2000
PublicationDate 2011-03-15
PublicationDateYYYYMMDD 2011-03-15
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Fath (2023012511540714100_B6) 1993; 57
Lloyd (2023012511540714100_B13) 2001; 39
Hueck (2023012511540714100_B10) 1998; 62
Wang (2023012511540714100_B31) 2008; 263
Kim (2023012511540714100_B12) 2004; 20
Panina (2023012511540714100_B20) 2005; 58
Tobe (2023012511540714100_B30) 2006; 103
Cheng (2023012511540714100_B3) 2005; 33
Petnicki-Ocwieja (2023012511540714100_B21) 2002; 99
Mukaihara (2023012511540714100_B19) 2010; 23
Bingle (2023012511540714100_B2) 2008; 11
Meyer (2023012511540714100_B17) 2006; 188
Ramamurthi (2023012511540714100_B22) 2003; 50
McGuffin (2023012511540714100_B16) 2000; 16
Samudrala (2023012511540714100_B25) 2009; 5
Galán (2023012511540714100_B8) 2006; 444
Löwer (2023012511540714100_B15) 2009; 4
Lloyd (2023012511540714100_B14) 2002; 43
Rüssmann (2023012511540714100_B23) 2002; 46
Arnold (2023012511540714100_B1) 2009; 5
Shao (2023012511540714100_B28) 2009; 4
Henderson (2023012511540714100_B9) 2004; 68
Fischer (2023012511540714100_B7) 2002; 292
Mudgett (2023012511540714100_B18) 2000; 97
Eddy (2023012511540714100_B5) 1998; 14
Karavolos (2023012511540714100_B11) 2005; 187
Crooks (2023012511540714100_B4) 2004; 14
Yang (2023012511540714100_B32) 2010; 11
Stebbins (2023012511540714100_B29) 2001; 414
Salanoubat (2023012511540714100_B24) 2002; 415
Scholkopf (2023012511540714100_B26) 2002
Schechter (2023012511540714100_B27) 2004; 186
References_xml – volume: 263
  start-page: 67
  year: 2008
  ident: 2023012511540714100_B31
  article-title: Two oral HBx vaccines delivered by live attenuated Salmonella: both eliciting effective anti-tumor immunity
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2007.12.022
– volume: 16
  start-page: 404
  year: 2000
  ident: 2023012511540714100_B16
  article-title: The PSIPRED protein structure prediction server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.4.404
– volume: 444
  start-page: 567
  year: 2006
  ident: 2023012511540714100_B8
  article-title: Protein delivery into eukaryotic cells by type III secretion machines
  publication-title: Nature
  doi: 10.1038/nature05272
– volume: 5
  start-page: e1000375
  year: 2009
  ident: 2023012511540714100_B25
  article-title: Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1000375
– volume: 188
  start-page: 4903
  year: 2006
  ident: 2023012511540714100_B17
  article-title: PopF1 and PopF2, two proteins secreted by the Type III protein secretion system of Ralstonia solanacearum are translocators belonging to the HrpF/NopX family
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00180-06
– volume: 415
  start-page: 497
  year: 2002
  ident: 2023012511540714100_B24
  article-title: Genome sequence of the plant pathogen Ralstonia solanacearum
  publication-title: Nature
  doi: 10.1038/415497a
– volume: 99
  start-page: 7652
  year: 2002
  ident: 2023012511540714100_B21
  article-title: Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.112183899
– volume: 57
  start-page: 995
  year: 1993
  ident: 2023012511540714100_B6
  article-title: ABC transporters: bacterial exporters
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.57.4.995-1017.1993
– volume: 414
  start-page: 77
  year: 2001
  ident: 2023012511540714100_B29
  article-title: Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion
  publication-title: Nature
  doi: 10.1038/35102073
– volume: 20
  start-page: 3179
  year: 2004
  ident: 2023012511540714100_B12
  article-title: Prediction of phosphorylation sites using SVMs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth382
– volume: 187
  start-page: 1559
  year: 2005
  ident: 2023012511540714100_B11
  article-title: Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.5.1559-1567.2005
– volume: 50
  start-page: 1189
  year: 2003
  ident: 2023012511540714100_B22
  article-title: Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03772.x
– volume: 97
  start-page: 13324
  year: 2000
  ident: 2023012511540714100_B18
  article-title: Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.230450797
– volume: 33
  start-page: W72
  year: 2005
  ident: 2023012511540714100_B3
  article-title: SCRATCH: a protein structure and structural feature prediction server
  publication-title: Nuceic Acids Res.
  doi: 10.1093/nar/gki396
– volume: 11
  start-page: S47
  issue: Suppl. 1
  year: 2010
  ident: 2023012511540714100_B32
  article-title: Computational prediction of type III secreted proteins from gram-negative bacteria
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-11-S1-S47
– volume: 4
  start-page: e4920
  year: 2009
  ident: 2023012511540714100_B28
  article-title: Computational identification of protein methylation sites through bi-profile Bayes feature extraction
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004920
– volume-title: Learning with Kernels.
  year: 2002
  ident: 2023012511540714100_B26
– volume: 4
  start-page: e5917
  year: 2009
  ident: 2023012511540714100_B15
  article-title: Prediction of type III secretion signals in genomes of gram-negative bacteria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005917
– volume: 292
  start-page: 159
  year: 2002
  ident: 2023012511540714100_B7
  article-title: Type IV secretion systems in pathogenic bacteria
  publication-title: Int. J. Med. Microbiol.
  doi: 10.1078/1438-4221-00199
– volume: 46
  start-page: 769
  year: 2002
  ident: 2023012511540714100_B23
  article-title: Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.03196.x
– volume: 186
  start-page: 543
  year: 2004
  ident: 2023012511540714100_B27
  article-title: Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.2.543-555.2004
– volume: 14
  start-page: 1188
  year: 2004
  ident: 2023012511540714100_B4
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 5
  start-page: e1000376
  year: 2009
  ident: 2023012511540714100_B1
  article-title: Sequence-based prediction of type III secreted proteins
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1000376
– volume: 43
  start-page: 51
  year: 2002
  ident: 2023012511540714100_B14
  article-title: Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02738.x
– volume: 103
  start-page: 14941
  year: 2006
  ident: 2023012511540714100_B30
  article-title: An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0604891103
– volume: 68
  start-page: 692
  year: 2004
  ident: 2023012511540714100_B9
  article-title: Type V protein secretion pathway: the autotransporter story
  publication-title: Mol. Biol. Rev.
  doi: 10.1128/MMBR.68.4.692-744.2004
– volume: 58
  start-page: 267
  year: 2005
  ident: 2023012511540714100_B20
  article-title: A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04823.x
– volume: 39
  start-page: 520
  year: 2001
  ident: 2023012511540714100_B13
  article-title: Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02271.x
– volume: 14
  start-page: 755
  year: 1998
  ident: 2023012511540714100_B5
  article-title: Profile hidden Markov models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.755
– volume: 23
  start-page: 251
  year: 2010
  ident: 2023012511540714100_B19
  article-title: Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-23-3-0251
– volume: 11
  start-page: 3
  year: 2008
  ident: 2023012511540714100_B2
  article-title: Type VI secretion: a beginner's guide
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2008.01.006
– volume: 62
  start-page: 379
  year: 1998
  ident: 2023012511540714100_B10
  article-title: Type III protein secretion systems in bacterial pathogens of animals and plants
  publication-title: Mol. Biol. Rev.
  doi: 10.1128/MMBR.62.2.379-433.1998
SSID ssj0005056
ssj0051444
Score 2.3599792
Snippet Motivation: Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important...
Bacterial type III secreted (T3S) effectors are delivered into host cells specifically via type III secretion systems (T3SSs), which play important roles in...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 777
SubjectTerms Algorithms
Amino Acid Sequence
Amino acids
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - classification
Bacterial Secretion Systems
Bayes Theorem
Bioinformatics
Biological and medical sciences
Composition effects
Computational Biology - methods
Effectors
Fundamental and applied biological sciences. Psychology
General aspects
Genome, Bacterial
Mathematical models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Statistical
Proteins
Ralstonia solanacearum
Ralstonia solanacearum - chemistry
Secretions
Sequence Analysis, Protein - methods
Software
Support vector machines
Title High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles
URI https://www.ncbi.nlm.nih.gov/pubmed/21233168
https://www.proquest.com/docview/1671381674
https://www.proquest.com/docview/856767042
https://www.proquest.com/docview/869806011
Volume 27
WOSCitedRecordID wos000288277300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ARISQtwpl8pIiJcqLBcndh4RbFCp6kDqoDxFrmOjTiMtvUxD4u_wPzkndpJGU8V44CVqXTtyej77nPhcPkJeRikzCVfai5k2HjNKemmSG1jxIjBCmECXdD6fh3w0EpNJ-rHT-V3lwpyf8aIQFxfp4r-KGtpA2Jg6-w_irm8KDfAZhA5XEDtcryR4jNzwpFKbJTK5L5boianMwqmtzYwB5nj0OhgM-iu0G9HstJEdyL2Dmi1HL0IV0eVhPibGFPXl91kx70s1K5Phqt_7jvl71XIRz-auKut6K6L-izuf_qpPNzUu61PrT5UiLd1ULq6_-OY1EH6_Kc923wGqT6vOeXMKG3k2bdPtsxGWWxe-3du0bWOJD5J0BcLd5mwLBzgQbu-03LG_WKXNLc_cJX1ga2VNWw-MDeulbxOz2xW4R8fZ0clwmI0PJ-NXix8ekpOhE98xteyRayGPU9w8x8eTJpLIx3pE9gvYn8wSKbsHrLLG0uigPY0DO4mWPXRrIVewNI3lVNn90lMaP-M75LZ7a6FvLNruko4u7pEblsf0533yq4U52mCOzg2tMUcRcxQwRyvM0RpztMQchRGXMEdLzFHEHN3CHK0w94CcHB2O337wHK2Hp-IgWYP-9aVWOoR35dTwXLE4FiqIjI5ylU5NHsgwEXwaGs1iGWpfi5DJVAa5YAKUcRw9JPvFvNCPCZV5lIOGymOVJqDxE6Eizqa5FFzE3ASsS1j152bK1bxH6pWzzMZeRFlbJpmVSZe8roctbNGXvw3otSRXjwqjFJ6OhV3yohJlBvs3OuVkoeebVRYkPEDnPYfJ0h19RIxlFX28zc4uSSqwtBJM5ZFFSjMHME6Rnu7JFebwlNxsluszsr9ebvRzcl2dr2erZY_s8YnoleD_AzWB6O8
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-accuracy+prediction+of+bacterial+type+III+secreted+effectors+based+on+position-specific+amino+acid+composition+profiles&rft.jtitle=Bioinformatics&rft.au=Wang%2C+Yejun&rft.au=Zhang%2C+Qing&rft.au=Sun%2C+Ming-an&rft.au=Guo%2C+Dianjing&rft.date=2011-03-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=27&rft.issue=6&rft.spage=777&rft.epage=784&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon