Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction

We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inverse problems Ročník 28; číslo 3
Hlavní autoři: Nikazad, T, Davidi, R, Herman, G T
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.03.2012
Témata:
ISSN:0266-5611
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.
AbstractList We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.
We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.
Author Herman, G T
Nikazad, T
Davidi, R
Author_xml – sequence: 1
  givenname: T
  surname: Nikazad
  fullname: Nikazad, T
  organization: Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
– sequence: 2
  givenname: R
  surname: Davidi
  fullname: Davidi, R
– sequence: 3
  givenname: G T
  surname: Herman
  fullname: Herman, G T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23440911$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRb0oog_4BJCXbEJtJ3bcZVXxkiqxgXVkO2PqksTBdkD8PWkprEYanTO6c-do0vkOELqi5JYSKZeECZFxQemSyWW-JDknhE_Q7H8_RfMY94RQKml5jqYsLwqyonSGurUx0EBQCWrcQ0hD0Co532UBomscdAnrxpv3zKUD5T4B98HvwRwg3ELa-TriL5d2WPV948zRxslj16o3wAGM72IKw1G4QGdWNREuT3OBXu_vXjaP2fb54Wmz3maGU5EyIYGKUha51prYWipJQRUra3NraE64LMHqgimeSzaytdKlttasSlJwRkTJFujm9-6Y9WOAmKrWxfHRRnXgh1jR0eOCM8lH9PqEDrqFuurDGDx8V38dsR9tzWyw
CitedBy_id crossref_primary_10_1186_s13660_016_1242_6
crossref_primary_10_1007_s10589_012_9491_x
crossref_primary_10_1080_10556788_2016_1209500
crossref_primary_10_1007_s11590_022_01961_y
crossref_primary_10_1088_1361_6420_33_4_044008
crossref_primary_10_1007_s11075_018_0524_0
crossref_primary_10_1007_s11432_014_5222_5
crossref_primary_10_1088_1361_6420_33_4_044006
crossref_primary_10_1088_1361_6420_33_4_044007
crossref_primary_10_1088_1361_6420_33_4_044004
crossref_primary_10_1016_j_cmpb_2013_01_003
crossref_primary_10_1088_1361_6420_33_4_044002
crossref_primary_10_1088_1361_6420_33_4_044003
crossref_primary_10_1093_imanum_drad070
crossref_primary_10_1002_mma_5100
crossref_primary_10_1007_s11075_020_01038_w
crossref_primary_10_3390_axioms12100999
crossref_primary_10_3390_sym16111409
crossref_primary_10_1080_02331934_2020_1722124
crossref_primary_10_1007_s10957_013_0408_3
crossref_primary_10_1007_s11075_021_01229_z
crossref_primary_10_1007_s11590_025_02192_7
crossref_primary_10_3390_sym15051084
crossref_primary_10_1007_s10589_015_9777_x
crossref_primary_10_3390_axioms12010015
crossref_primary_10_1007_s10957_014_0591_x
crossref_primary_10_1007_s11227_020_03215_z
crossref_primary_10_1007_s11431_023_2629_2
crossref_primary_10_1186_s13660_018_1695_x
crossref_primary_10_1007_s11042_024_18274_0
crossref_primary_10_3390_math11214536
crossref_primary_10_3934_ipi_2014_8_223
crossref_primary_10_1007_s11075_019_00818_3
crossref_primary_10_3390_math7060535
crossref_primary_10_3390_sym15091756
crossref_primary_10_1080_10556788_2018_1560442
crossref_primary_10_1109_TNS_2013_2283529
crossref_primary_10_1109_TSP_2014_2373318
crossref_primary_10_1063_1_4872378
crossref_primary_10_1515_jiip_2015_0082
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/0266-5611/28/3/035005
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Mathematics
ExternalDocumentID 23440911
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL070472
GroupedDBID -~X
.DC
1JI
1WK
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADACN
AEFHF
AENEX
AERVB
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
KZ1
LAP
LMP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TN5
W28
XPP
ZMT
~02
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c516t-68e167843bbb0fd8a81ea49ff3fc130587efb42a538268edab7bffc9704520672
IEDL.DBID 7X8
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300908800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-5611
IngestDate Thu Sep 04 16:55:51 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords block-iterative algorithms
superiorization
image reconstruction from projections
total variation
perturbation resilience
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-68e167843bbb0fd8a81ea49ff3fc130587efb42a538268edab7bffc9704520672
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3579648
PMID 23440911
PQID 1826565285
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826565285
pubmed_primary_23440911
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Inverse problems
PublicationTitleAlternate Inverse Probl
PublicationYear 2012
References 19095539 - IEEE Trans Image Process. 2009 Feb;18(2):260-8
23414602 - Comput Methods Programs Biomed. 2013 Jun;110(3):424-40
15449583 - IEEE Trans Image Process. 2004 Sep;13(9):1213-22
18285144 - IEEE Trans Image Process. 1996;5(3):554-6
20613969 - Inverse Probl. 2010 Jun 1;26(6):65008
19911080 - Inverse Probl. 2008 Aug;24(4):45011-45028
21158301 - Med Phys. 2010 Nov;37(11):5887-95
11686440 - IEEE Trans Med Imaging. 2001 Oct;20(10):1050-60
18249713 - IEEE Trans Image Process. 2002;11(12):1450-6
18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9
438379 - J Comput Assist Tomogr. 1979 Jun;3(3):373-8
12846426 - IEEE Trans Med Imaging. 2003 May;22(5):569-79
23271857 - Int Trans Oper Res. 2009 Jul 1;16(4):505-524
10069054 - J Opt Soc Am A Opt Image Sci Vis. 1999 Mar;16(3):679-93
References_xml – reference: 11686440 - IEEE Trans Med Imaging. 2001 Oct;20(10):1050-60
– reference: 19095539 - IEEE Trans Image Process. 2009 Feb;18(2):260-8
– reference: 19911080 - Inverse Probl. 2008 Aug;24(4):45011-45028
– reference: 438379 - J Comput Assist Tomogr. 1979 Jun;3(3):373-8
– reference: 12846426 - IEEE Trans Med Imaging. 2003 May;22(5):569-79
– reference: 15449583 - IEEE Trans Image Process. 2004 Sep;13(9):1213-22
– reference: 18218538 - IEEE Trans Med Imaging. 1994;13(4):601-9
– reference: 21158301 - Med Phys. 2010 Nov;37(11):5887-95
– reference: 23414602 - Comput Methods Programs Biomed. 2013 Jun;110(3):424-40
– reference: 20613969 - Inverse Probl. 2010 Jun 1;26(6):65008
– reference: 10069054 - J Opt Soc Am A Opt Image Sci Vis. 1999 Mar;16(3):679-93
– reference: 18249713 - IEEE Trans Image Process. 2002;11(12):1450-6
– reference: 18285144 - IEEE Trans Image Process. 1996;5(3):554-6
– reference: 23271857 - Int Trans Oper Res. 2009 Jul 1;16(4):505-524
SSID ssj0011817
Score 2.2496936
Snippet We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction
URI https://www.ncbi.nlm.nih.gov/pubmed/23440911
https://www.proquest.com/docview/1826565285
Volume 28
WOSCitedRecordID wos000300908800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qeNCD-zJuRPAauiRp2pMM4uDBGeagMLeSFQa1Haejv9-XtrNcBMFLaUsKJcv7vvde8j2E7kJLMxsbS7QwCWHOCCIjQ0konOWZ5troWjL_WQyH6XicjdqAW9Vuq1zYxNpQm1L7GHngeTCQjzjl99NP4qtG-exqW0JjE3UoUBm_pUuMV1kEQC_RxFgSAjwhWpzgAadv-S6I04AGPr8W8t9ZZo02_f3__ucB2mt5Ju41E-MQbdjiCO2uqQ_C02Ap2Vodo6KnNUCQV44weGpnAEWqHjUCDvnk3R-bxAqQ7400QsxgJXEbxoFGuKlEXWEf18VrWXE8L_HkA4wWrl3vpVztCXrtP748PJG2GAPRPErmJEltBMDGqFIqdCaVaWQly5yjTgMO8lRYp1gswYDG0NZIJZRzOhNes93ne0_RVlEW9hxhliZUcFj4sTVMhk4yHmoJt8pSakPVRbeLrs1hsvsMhixs-VXlq87torNmfPJpo8qRx5SBrxpFF3_4-hLtAPGJm71kV6jjYKnba7Stv-eTanZTzyK4DkeDH6Qf1H4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+perturbation-resilient+block-iterative+projection+methods+with+application+to+image+reconstruction&rft.jtitle=Inverse+problems&rft.au=Nikazad%2C+T&rft.au=Davidi%2C+R&rft.au=Herman%2C+G+T&rft.date=2012-03-01&rft.issn=0266-5611&rft.volume=28&rft.issue=3&rft_id=info:doi/10.1088%2F0266-5611%2F28%2F3%2F035005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon