The Roles of NRF2 in Modulating Cellular Iron Homeostasis

Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Antioxidants & redox signaling Ročník 29; číslo 17; s. 1756
Hlavní autoři: Kerins, Michael John, Ooi, Aikseng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.12.2018
Témata:
ISSN:1557-7716, 1557-7716
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis. Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered. Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.
AbstractList Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis. Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered. Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis.SIGNIFICANCEIron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis.Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered.CRITICAL ISSUESDespite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered.Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.FUTURE DIRECTIONSFurther studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Author Kerins, Michael John
Ooi, Aikseng
Author_xml – sequence: 1
  givenname: Michael John
  surname: Kerins
  fullname: Kerins, Michael John
  organization: Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
– sequence: 2
  givenname: Aikseng
  surname: Ooi
  fullname: Ooi, Aikseng
  organization: Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28793787$$D View this record in MEDLINE/PubMed
BookMark eNpNj01Lw0AURQep2A9dupVZukmd99pkMksp1haqQqnr8DJvopEkUzPJwn_fgBVc3bO4XM6dilHjGyfELag5qNQ8UBvmqEDPNejkQkwgjnWkNSSjfzwW0xC-lFIIoK7EGFNtFjrVE2EOn07ufeWC9IV83a9Rlo188dxX1JXNh1y5qhq4ldvWN3Lja-dDR6EM1-KyoCq4m3POxPv66bDaRLu35-3qcRfZGJIuQsIYWedMzAA5GVI8qCKr2FqzxIKIbcLW2Jw5sXoJbAnccsGpjtkUOBP3v7vH1n_3LnRZXQY7WFHjfB8yMKhTTJMhZ-LuXO3z2nF2bMua2p_s7y6eACYeWGs
CitedBy_id crossref_primary_10_1631_jzus_B2300138
crossref_primary_10_1016_j_yexcr_2024_114216
crossref_primary_10_1007_s11064_024_04116_w
crossref_primary_10_1212_WNL_0000000000008861
crossref_primary_10_1002_btm2_70025
crossref_primary_10_1080_02699052_2025_2468309
crossref_primary_10_1186_s41065_022_00235_y
crossref_primary_10_1038_s41598_025_97101_4
crossref_primary_10_1007_s12035_024_04097_5
crossref_primary_10_1016_j_arr_2025_102770
crossref_primary_10_1038_s41467_019_12894_z
crossref_primary_10_1177_1753425919879503
crossref_primary_10_3390_antiox11081548
crossref_primary_10_3389_fcell_2021_733908
crossref_primary_10_3390_cells9102229
crossref_primary_10_1016_j_bbamcr_2019_118535
crossref_primary_10_1155_2020_9547127
crossref_primary_10_1016_j_bbrc_2021_10_054
crossref_primary_10_1007_s10495_025_02099_9
crossref_primary_10_2147_DDDT_S458013
crossref_primary_10_3389_fmolb_2022_892957
crossref_primary_10_3390_antiox10111649
crossref_primary_10_1016_j_freeradbiomed_2020_10_323
crossref_primary_10_3389_fcimb_2025_1578163
crossref_primary_10_1007_s10495_023_01907_4
crossref_primary_10_3390_antiox11081577
crossref_primary_10_1016_j_cej_2023_145920
crossref_primary_10_1186_s12967_021_03042_7
crossref_primary_10_3389_fnins_2020_00776
crossref_primary_10_3390_cancers15041216
crossref_primary_10_1089_ars_2019_7975
crossref_primary_10_1097_SHK_0000000000001751
crossref_primary_10_1016_j_expneurol_2024_115084
crossref_primary_10_2174_0115672026348862241003042336
crossref_primary_10_1155_2019_3461251
crossref_primary_10_1186_s12951_020_00700_8
crossref_primary_10_3389_fcell_2024_1374735
crossref_primary_10_1186_s12931_020_01500_2
crossref_primary_10_3389_fendo_2024_1390013
crossref_primary_10_1111_cas_15356
crossref_primary_10_3390_ijms21207780
crossref_primary_10_3390_antiox12061217
crossref_primary_10_1002_advs_202301476
crossref_primary_10_3389_fphar_2023_1252567
crossref_primary_10_1142_S0192415X25500156
crossref_primary_10_3390_cancers12103023
crossref_primary_10_1002_jbt_22751
crossref_primary_10_4103_NRR_NRR_D_24_00112
crossref_primary_10_1016_j_freeradbiomed_2025_05_396
crossref_primary_10_1016_j_freeradbiomed_2024_03_023
crossref_primary_10_3389_ebm_2024_10280
crossref_primary_10_1111_nan_12615
crossref_primary_10_3389_fphar_2024_1503064
crossref_primary_10_1002_jcp_29017
crossref_primary_10_1007_s12640_024_00694_3
crossref_primary_10_1038_s41416_022_01998_x
crossref_primary_10_3389_fimmu_2023_1249379
crossref_primary_10_3389_fpubh_2024_1365828
crossref_primary_10_1080_15384101_2023_2278328
crossref_primary_10_3390_ijms24076723
crossref_primary_10_1007_s11064_023_04096_3
crossref_primary_10_1016_j_phymed_2025_156824
crossref_primary_10_1016_j_phymed_2024_156306
crossref_primary_10_1007_s11596_023_2818_2
crossref_primary_10_3389_fphar_2021_808480
crossref_primary_10_3892_mmr_2025_13557
crossref_primary_10_1016_j_phymed_2025_156941
crossref_primary_10_1080_10799893_2023_2185083
crossref_primary_10_1016_j_freeradbiomed_2024_05_042
crossref_primary_10_1002_fsn3_70589
crossref_primary_10_1016_j_biopha_2025_118304
crossref_primary_10_3390_ijms22094376
crossref_primary_10_1016_j_biopha_2022_113776
crossref_primary_10_1186_s12964_023_01422_8
crossref_primary_10_1038_s41419_023_06070_x
crossref_primary_10_4103_NRR_NRR_D_23_01741
crossref_primary_10_1016_j_bbadis_2023_166969
crossref_primary_10_1038_s41419_022_05384_6
crossref_primary_10_1007_s00345_025_05637_x
crossref_primary_10_3389_fendo_2023_1319969
crossref_primary_10_3390_antiox10030467
crossref_primary_10_3390_cancers17111853
crossref_primary_10_1007_s11010_024_05009_w
crossref_primary_10_1016_j_phrs_2021_105701
crossref_primary_10_3390_ijms25179648
crossref_primary_10_1016_j_tcb_2023_06_002
crossref_primary_10_1016_j_yexcr_2021_112583
crossref_primary_10_1007_s11655_024_3657_0
crossref_primary_10_3390_nu16101417
crossref_primary_10_1016_j_cellsig_2024_111509
crossref_primary_10_3389_fgene_2023_1136240
crossref_primary_10_3389_fimmu_2024_1423263
crossref_primary_10_1177_09603271221149663
crossref_primary_10_1016_j_arr_2022_101756
crossref_primary_10_1016_j_neulet_2023_137346
crossref_primary_10_3390_nu14122451
crossref_primary_10_3390_foods10122952
crossref_primary_10_1016_j_freeradbiomed_2022_01_012
crossref_primary_10_3390_pharmaceutics15051475
crossref_primary_10_1038_s41420_023_01369_2
crossref_primary_10_3390_antiox13030298
crossref_primary_10_1007_s12031_021_01890_y
crossref_primary_10_1016_j_scitotenv_2020_143840
crossref_primary_10_1038_s41698_025_01088_0
crossref_primary_10_3390_ijms21165825
crossref_primary_10_1089_ars_2022_0200
crossref_primary_10_1093_jleuko_qiaf051
crossref_primary_10_34133_research_0840
crossref_primary_10_1007_s11356_022_20996_3
crossref_primary_10_3390_ijms21217889
crossref_primary_10_1089_ars_2023_0455
crossref_primary_10_3389_fphar_2019_00153
crossref_primary_10_1007_s11064_023_04095_4
crossref_primary_10_3389_fphar_2025_1519273
crossref_primary_10_1007_s00204_023_03476_6
crossref_primary_10_1007_s12032_024_02494_3
crossref_primary_10_3390_biomedicines11092421
crossref_primary_10_1016_j_algal_2023_103363
crossref_primary_10_1038_s41418_022_00941_0
crossref_primary_10_1016_j_pneurobio_2020_101890
crossref_primary_10_1016_j_neuroscience_2024_08_035
crossref_primary_10_1111_cns_14865
crossref_primary_10_3389_fphar_2022_845600
crossref_primary_10_1016_j_cpt_2022_10_002
crossref_primary_10_1186_s12951_025_03128_0
crossref_primary_10_1016_j_redox_2025_103832
crossref_primary_10_1080_15548627_2025_2469129
crossref_primary_10_1111_iwj_14466
crossref_primary_10_4049_jimmunol_1801180
crossref_primary_10_1016_j_critrevonc_2022_103732
crossref_primary_10_1016_j_tiv_2019_03_032
crossref_primary_10_1089_ars_2022_0214
crossref_primary_10_3389_fphar_2022_977062
crossref_primary_10_3390_antiox13111426
crossref_primary_10_1038_s41401_024_01367_9
crossref_primary_10_1038_s41598_024_69431_2
crossref_primary_10_1073_pnas_2412816122
crossref_primary_10_1002_cam4_5243
crossref_primary_10_1016_j_jbc_2022_101617
crossref_primary_10_3390_ijms252313042
crossref_primary_10_1016_j_lfs_2022_121091
crossref_primary_10_1002_cbf_4036
crossref_primary_10_1111_febs_16382
crossref_primary_10_1080_07391102_2021_1905557
crossref_primary_10_1016_j_phymed_2025_156818
crossref_primary_10_1002_biof_1920
crossref_primary_10_3390_nu13113732
crossref_primary_10_3389_fendo_2023_1188003
crossref_primary_10_1016_j_ejmech_2020_113032
crossref_primary_10_3389_fphys_2023_1131201
crossref_primary_10_1002_tox_24412
crossref_primary_10_1016_j_jep_2025_119555
crossref_primary_10_4251_wjgo_v15_i7_1135
crossref_primary_10_3390_ijms20102531
crossref_primary_10_1016_j_ejphar_2025_177746
crossref_primary_10_3390_antiox12091739
crossref_primary_10_1016_j_fsi_2023_109112
crossref_primary_10_1080_13880209_2024_2309891
crossref_primary_10_1016_j_phrs_2025_107802
crossref_primary_10_1038_s41467_019_13237_8
crossref_primary_10_3389_fonc_2022_1023427
crossref_primary_10_1016_j_jnutbio_2023_109339
crossref_primary_10_1039_D4NR01857E
crossref_primary_10_1016_j_freeradbiomed_2022_02_023
crossref_primary_10_1016_j_jtemb_2021_126882
crossref_primary_10_1016_j_scitotenv_2022_160839
crossref_primary_10_1002_rmv_2531
crossref_primary_10_1016_j_biopha_2024_116457
crossref_primary_10_1186_s12944_023_01855_7
crossref_primary_10_3389_fendo_2020_00488
crossref_primary_10_1097_CM9_0000000000002642
crossref_primary_10_1146_annurev_pharmtox_052220_104025
crossref_primary_10_1007_s00018_025_05601_3
crossref_primary_10_2147_COPD_S340113
crossref_primary_10_3389_fonc_2020_00476
crossref_primary_10_3390_ijms21197234
crossref_primary_10_3389_fphar_2023_1067402
crossref_primary_10_1007_s40618_023_02010_w
crossref_primary_10_3390_ijms21228765
crossref_primary_10_3390_life12081150
crossref_primary_10_1016_j_jep_2025_119459
crossref_primary_10_1186_s13046_021_01995_7
crossref_primary_10_3390_antiox11112089
crossref_primary_10_1038_s41392_023_01720_0
crossref_primary_10_3892_mmr_2024_13401
crossref_primary_10_1111_cns_13973
crossref_primary_10_1080_10942912_2023_2215967
crossref_primary_10_1016_j_ejphar_2025_177969
crossref_primary_10_3389_fimmu_2024_1410018
crossref_primary_10_1080_21505594_2025_2532806
crossref_primary_10_3390_antiox11122377
crossref_primary_10_3389_fonc_2024_1354859
crossref_primary_10_1016_j_semcancer_2025_02_011
crossref_primary_10_3389_fphar_2024_1497733
crossref_primary_10_1016_j_exer_2024_110021
crossref_primary_10_3390_antiox10030364
crossref_primary_10_1016_j_chemosphere_2020_128413
crossref_primary_10_1080_15384101_2023_2215081
crossref_primary_10_1073_pnas_2401579121
crossref_primary_10_1038_s41420_025_02696_2
crossref_primary_10_1016_j_phrs_2020_104919
crossref_primary_10_3390_toxics13080677
crossref_primary_10_3390_pharmaceutics16081068
crossref_primary_10_1002_cbin_12144
crossref_primary_10_3389_fphar_2024_1430561
crossref_primary_10_3390_ijms26115375
crossref_primary_10_1155_2024_7632408
crossref_primary_10_3390_antiox11030583
crossref_primary_10_3389_fphar_2022_973611
crossref_primary_10_3389_fphar_2022_1065867
crossref_primary_10_3389_fcell_2023_1226044
crossref_primary_10_1007_s12265_025_10590_6
crossref_primary_10_1016_j_biopha_2024_117570
crossref_primary_10_3389_fphar_2024_1415145
crossref_primary_10_1016_j_ejphar_2023_176298
crossref_primary_10_1016_j_phymed_2025_156783
crossref_primary_10_1002_mc_23816
crossref_primary_10_3389_fphys_2023_1138162
crossref_primary_10_1016_j_cellsig_2023_111006
crossref_primary_10_3389_fmolb_2022_1027912
crossref_primary_10_3389_fcell_2021_799499
crossref_primary_10_1155_2022_3873420
crossref_primary_10_1016_j_phymed_2023_155186
crossref_primary_10_1038_s41401_020_0443_1
crossref_primary_10_3389_fphar_2022_879317
crossref_primary_10_1039_D2FO02716J
crossref_primary_10_3389_fonc_2022_989896
crossref_primary_10_3389_fphar_2025_1615294
crossref_primary_10_1016_j_jnutbio_2025_110098
crossref_primary_10_1016_j_freeradbiomed_2023_11_013
crossref_primary_10_1016_j_micres_2024_127667
crossref_primary_10_1038_s41392_020_00428_9
crossref_primary_10_1097_MNH_0000000000000556
crossref_primary_10_1016_j_jnutbio_2023_109427
crossref_primary_10_3892_mmr_2021_12313
crossref_primary_10_1016_j_bcp_2023_115909
crossref_primary_10_1002_bit_27715
crossref_primary_10_1016_j_freeradbiomed_2021_01_001
crossref_primary_10_1007_s12272_020_01224_3
crossref_primary_10_1016_j_chembiol_2020_03_011
crossref_primary_10_1016_j_acthis_2024_152203
crossref_primary_10_1016_j_intimp_2024_113590
crossref_primary_10_1155_2020_5695723
crossref_primary_10_1002_biof_2042
crossref_primary_10_3389_fphar_2022_889226
crossref_primary_10_1016_j_resp_2025_104451
crossref_primary_10_1016_j_ejmech_2020_112114
crossref_primary_10_1007_s11010_021_04112_6
crossref_primary_10_1007_s12011_023_03773_2
crossref_primary_10_1038_s41401_024_01336_2
crossref_primary_10_2147_DDDT_S499037
crossref_primary_10_3390_biomedicines13081913
crossref_primary_10_1038_s41392_025_02287_8
crossref_primary_10_1016_j_taap_2020_115241
crossref_primary_10_2174_0113816128343266241230045019
crossref_primary_10_3892_ijmm_2023_5321
crossref_primary_10_3389_fnins_2019_00811
crossref_primary_10_1016_j_nbd_2023_106210
crossref_primary_10_3389_fphar_2021_709538
crossref_primary_10_4103_1673_5374_385284
crossref_primary_10_1167_iovs_66_5_26
crossref_primary_10_1080_10715762_2023_2232941
crossref_primary_10_1016_j_lfs_2021_119799
crossref_primary_10_3390_antiox12020214
crossref_primary_10_3390_nu14214549
crossref_primary_10_1155_2020_6286984
crossref_primary_10_1128_MCB_00037_19
crossref_primary_10_3390_toxins11110660
crossref_primary_10_3389_fonc_2020_00897
crossref_primary_10_1186_s12938_024_01288_y
crossref_primary_10_1016_j_mcn_2019_103413
crossref_primary_10_1080_19768354_2024_2349758
crossref_primary_10_1111_cas_13701
crossref_primary_10_1016_j_bbrc_2024_149599
crossref_primary_10_1016_j_cbi_2023_110469
crossref_primary_10_1016_j_ejphar_2019_03_049
crossref_primary_10_3390_biomedicines13092067
crossref_primary_10_1007_s13258_023_01443_0
crossref_primary_10_1016_j_bcp_2023_115614
crossref_primary_10_1186_s12935_022_02685_w
crossref_primary_10_1016_j_jhazmat_2021_128010
crossref_primary_10_1007_s00018_022_04248_8
crossref_primary_10_1038_s41598_024_65778_8
crossref_primary_10_3389_fmolb_2023_1275774
crossref_primary_10_1016_j_envpol_2024_125118
crossref_primary_10_1007_s00277_024_05728_6
crossref_primary_10_3390_nu11092112
crossref_primary_10_1016_j_ejphar_2020_172973
crossref_primary_10_1038_s41419_020_02961_5
crossref_primary_10_3389_fendo_2022_945976
crossref_primary_10_1016_j_exger_2024_112500
crossref_primary_10_3390_cancers11081077
crossref_primary_10_1182_blood_2022016987
crossref_primary_10_15252_embj_2019102209
crossref_primary_10_3390_ijms23052846
crossref_primary_10_3390_metabo12010058
crossref_primary_10_1016_j_freeradbiomed_2023_06_025
crossref_primary_10_3389_fphar_2024_1525456
crossref_primary_10_1042_BCJ20220154
crossref_primary_10_1016_j_intimp_2024_114004
crossref_primary_10_1002_prp2_70066
crossref_primary_10_1016_j_envpol_2022_119449
crossref_primary_10_3390_hemato5040035
crossref_primary_10_1016_j_cell_2017_09_021
crossref_primary_10_1002_ptr_8527
crossref_primary_10_1007_s00210_024_03125_4
crossref_primary_10_1016_j_cellsig_2023_110654
crossref_primary_10_1096_fj_202201070R
crossref_primary_10_3389_fphar_2024_1509172
crossref_primary_10_1016_j_freeradbiomed_2022_04_014
crossref_primary_10_1007_s12035_024_04495_9
crossref_primary_10_1016_j_intimp_2022_109257
crossref_primary_10_3390_cells10092431
crossref_primary_10_1007_s12272_025_01557_x
crossref_primary_10_1038_s42003_024_06704_6
crossref_primary_10_3390_cells11223653
crossref_primary_10_1002_acn3_660
crossref_primary_10_1016_j_jep_2025_120037
crossref_primary_10_1016_j_intimp_2024_113146
crossref_primary_10_1016_j_lfs_2025_123609
crossref_primary_10_1016_j_theriogenology_2024_10_033
crossref_primary_10_3390_ijms22136668
crossref_primary_10_3390_antiox10091377
crossref_primary_10_1007_s11064_023_03927_7
crossref_primary_10_3389_fnins_2018_00466
crossref_primary_10_3389_fphar_2022_905501
crossref_primary_10_1007_s40242_023_3049_6
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2025058526
crossref_primary_10_3389_fphar_2022_869300
crossref_primary_10_3390_ijms21134777
crossref_primary_10_1155_2022_5130546
crossref_primary_10_3390_cancers14020311
crossref_primary_10_1016_j_jep_2024_117937
crossref_primary_10_1155_2022_9678625
crossref_primary_10_3390_biomedicines9111660
crossref_primary_10_1016_j_freeradbiomed_2025_02_011
crossref_primary_10_1038_s41598_024_65079_0
crossref_primary_10_1080_15384101_2023_2200291
crossref_primary_10_3389_fimmu_2019_01362
crossref_primary_10_1016_j_ijantimicag_2024_107374
crossref_primary_10_1002_jcp_30901
crossref_primary_10_1002_adma_202507526
crossref_primary_10_3390_ijms25137461
crossref_primary_10_1016_j_biopha_2021_111872
crossref_primary_10_1016_j_prp_2025_156085
crossref_primary_10_2147_DMSO_S249382
crossref_primary_10_3390_ijms252312987
crossref_primary_10_1016_j_semcancer_2021_06_013
crossref_primary_10_1016_j_molcel_2020_11_022
crossref_primary_10_1002_jcb_27184
crossref_primary_10_3390_molecules25225474
crossref_primary_10_1007_s10495_020_01638_w
crossref_primary_10_1097_WNR_0000000000001892
crossref_primary_10_3390_biom10050791
crossref_primary_10_1016_j_brainres_2023_148715
crossref_primary_10_3390_molecules30153266
crossref_primary_10_3390_cells11152401
crossref_primary_10_1016_j_ecoenv_2024_116680
crossref_primary_10_1080_10641963_2020_1783545
crossref_primary_10_1016_j_jad_2022_12_092
crossref_primary_10_3389_fcell_2022_1014243
crossref_primary_10_1111_1753_0407_13524
crossref_primary_10_1134_S0006297923120039
crossref_primary_10_1007_s10565_024_09930_0
crossref_primary_10_1007_s10565_024_09953_7
crossref_primary_10_1080_08830185_2021_2016739
crossref_primary_10_3389_fendo_2022_1048818
crossref_primary_10_1007_s00059_021_05039_w
crossref_primary_10_1038_s41598_025_10414_2
crossref_primary_10_3390_antiox14080993
crossref_primary_10_1042_BSR20212234
crossref_primary_10_1016_j_freeradbiomed_2025_02_040
crossref_primary_10_1016_j_scitotenv_2022_161183
crossref_primary_10_1016_j_freeradbiomed_2020_06_028
crossref_primary_10_1111_bjh_16129
crossref_primary_10_3390_antiox10010039
crossref_primary_10_1007_s10565_023_09834_5
crossref_primary_10_1016_j_biopha_2024_116753
crossref_primary_10_1016_j_arr_2024_102629
crossref_primary_10_1007_s00580_023_03540_8
crossref_primary_10_3390_biomedicines9111585
crossref_primary_10_3389_fphar_2024_1283465
crossref_primary_10_1016_j_aquatox_2024_107128
crossref_primary_10_3390_nano10050837
crossref_primary_10_1002_ptr_7749
crossref_primary_10_1080_19390211_2022_2075072
crossref_primary_10_3389_fendo_2023_1227498
crossref_primary_10_1016_j_ecoenv_2023_114973
crossref_primary_10_3390_antiox13121441
crossref_primary_10_3390_biomedicines9121855
crossref_primary_10_1146_annurev_cancerbio_030518_055844
crossref_primary_10_1038_s41419_023_06144_w
crossref_primary_10_3390_diseases9030057
crossref_primary_10_1016_j_bbrc_2024_150871
crossref_primary_10_1016_j_brainres_2022_148073
crossref_primary_10_1007_s12032_023_02124_4
crossref_primary_10_2174_0929867329666221003101548
crossref_primary_10_3390_ijms21218387
crossref_primary_10_3389_fnagi_2022_888989
crossref_primary_10_1016_j_cbi_2024_111312
crossref_primary_10_3389_fimmu_2025_1567994
crossref_primary_10_3389_fonc_2020_578315
crossref_primary_10_3390_ijms23095188
crossref_primary_10_1016_j_ecoenv_2025_118523
crossref_primary_10_3390_brainsci13101367
crossref_primary_10_1016_j_biopha_2023_114897
crossref_primary_10_1186_s13046_023_02684_3
crossref_primary_10_3390_molecules28020475
crossref_primary_10_1016_S1875_5364_24_60727_2
crossref_primary_10_1155_2022_9865606
crossref_primary_10_1155_2023_8258354
crossref_primary_10_3389_fnmol_2023_1113081
crossref_primary_10_1016_j_mito_2024_101937
crossref_primary_10_1016_j_heliyon_2024_e37323
crossref_primary_10_1093_jn_nxab340
crossref_primary_10_1155_2019_8592348
crossref_primary_10_1038_s41418_019_0393_7
crossref_primary_10_3389_fnagi_2022_998292
crossref_primary_10_1016_j_jtemb_2024_127420
crossref_primary_10_3389_fnins_2019_00048
crossref_primary_10_1097_CM9_0000000000003048
crossref_primary_10_1002_fsn3_4465
crossref_primary_10_1007_s11064_024_04185_x
crossref_primary_10_1002_cbin_11960
crossref_primary_10_1016_j_pestbp_2023_105698
crossref_primary_10_1007_s12013_025_01831_1
crossref_primary_10_1007_s12011_022_03362_9
crossref_primary_10_1186_s13020_024_01047_0
crossref_primary_10_1155_2022_6833867
crossref_primary_10_1038_s41419_022_04660_9
crossref_primary_10_3390_ijms26031110
crossref_primary_10_3389_fnins_2020_00267
crossref_primary_10_1016_j_isci_2023_106827
crossref_primary_10_1016_j_bbamcr_2025_119985
crossref_primary_10_1111_jcmm_18206
crossref_primary_10_1155_2023_4130937
crossref_primary_10_3390_antiox11071255
crossref_primary_10_1007_s10147_025_02818_x
crossref_primary_10_1016_j_scib_2022_01_014
crossref_primary_10_3389_fmed_2022_1052540
crossref_primary_10_1002_hep_31730
crossref_primary_10_3389_fphar_2025_1570069
crossref_primary_10_3390_ijms24054659
crossref_primary_10_1177_03000605211004229
crossref_primary_10_1016_j_biopha_2022_114102
crossref_primary_10_3389_fnut_2022_1033129
crossref_primary_10_1111_febs_16336
crossref_primary_10_1002_fsn3_4045
crossref_primary_10_1007_s10787_025_01840_9
crossref_primary_10_3389_fonc_2025_1567216
crossref_primary_10_1155_2022_3472443
crossref_primary_10_33549_physiolres_935330
crossref_primary_10_3762_bjnano_16_97
crossref_primary_10_3390_metabo13091005
crossref_primary_10_1016_j_heliyon_2024_e37477
crossref_primary_10_3892_mmr_2023_13089
crossref_primary_10_3892_ijo_2019_4720
crossref_primary_10_1007_s11130_023_01094_2
crossref_primary_10_3390_ijms25052458
crossref_primary_10_1007_s10571_025_01593_7
crossref_primary_10_1016_j_fct_2020_111643
crossref_primary_10_1002_mnfr_202200275
crossref_primary_10_1007_s10534_021_00324_x
crossref_primary_10_1016_j_abb_2022_109199
crossref_primary_10_1111_febs_16208
crossref_primary_10_1371_journal_pone_0322746
crossref_primary_10_1016_j_jep_2022_116069
crossref_primary_10_3389_fcell_2021_809457
crossref_primary_10_1016_j_jep_2023_117679
crossref_primary_10_1073_pnas_2121251119
crossref_primary_10_1038_s41420_025_02309_y
crossref_primary_10_1016_j_bbadis_2023_166788
crossref_primary_10_1074_jbc_RA119_009591
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_3389_fncel_2022_1005182
crossref_primary_10_1016_j_exphem_2020_02_005
crossref_primary_10_1038_s41467_025_57542_x
crossref_primary_10_1016_j_bone_2024_117384
crossref_primary_10_1186_s40959_024_00242_0
crossref_primary_10_1016_j_brainres_2023_148404
crossref_primary_10_1007_s10735_025_10450_2
crossref_primary_10_3390_ijms23031352
crossref_primary_10_3390_cancers12051265
crossref_primary_10_1016_j_brainresbull_2025_111396
crossref_primary_10_1038_s41598_021_94674_8
crossref_primary_10_3390_vetsci12040350
crossref_primary_10_3390_cells9122591
crossref_primary_10_1016_j_intimp_2023_110215
crossref_primary_10_1016_j_jnutbio_2021_108870
crossref_primary_10_1016_j_lfs_2022_121127
crossref_primary_10_1155_2024_4505905
crossref_primary_10_1111_jpn_14025
crossref_primary_10_3389_fonc_2022_834681
crossref_primary_10_1016_j_biopha_2023_115765
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_3390_cancers14215233
crossref_primary_10_1038_s41419_019_1854_0
crossref_primary_10_1007_s12035_025_05226_4
crossref_primary_10_1007_s10735_023_10180_3
ContentType Journal Article
DBID NPM
7X8
DOI 10.1089/ars.2017.7176
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1557-7716
ExternalDocumentID 28793787
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES006694
GroupedDBID ---
0R~
23M
4.4
5GY
5RE
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CS3
EBS
EJD
F5P
IER
IHR
IM4
MV1
NPM
NQHIM
O9-
P2P
RML
UE5
7X8
IAO
SCNPE
ID FETCH-LOGICAL-c516t-2a252d7bdadd11ba9a0d7172d05cc942faadc6dc9cbdd6c741dca1e43d875d9f2
IEDL.DBID 7X8
ISICitedReferencesCount 587
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448371900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-7716
IngestDate Fri Sep 05 11:53:01 EDT 2025
Wed Feb 19 02:36:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords iron
cancer
ferroptosis
NRF2
heme
oxygen
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-2a252d7bdadd11ba9a0d7172d05cc942faadc6dc9cbdd6c741dca1e43d875d9f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.liebertpub.com/doi/pdf/10.1089/ars.2017.7176
PMID 28793787
PQID 1927828619
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1927828619
pubmed_primary_28793787
PublicationCentury 2000
PublicationDate 2018-12-10
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2018
SSID ssj0002110
Score 2.6956022
SecondaryResourceType review_article
Snippet Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1756
Title The Roles of NRF2 in Modulating Cellular Iron Homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/28793787
https://www.proquest.com/docview/1927828619
Volume 29
WOSCitedRecordID wos000448371900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UinrxUV_1xQpeV3eT7CZ7EikWPTSUotBb2acUSlKb6u93Nk3pSRC85JaQnUwm37cz-T6E7hSPpE6EINYyR5KMZ0Q5w4lJhLFUUJ3orDabSPM8G43koNlwq5qxylVNrAu1LU3YI38AJJKGX56ZfJx9kuAaFbqrjYXGJmrFAGXCSFc6WquFB3JT66XyFFAkE43GJs3kA7DGMNeV3gOdEb-jy_or0zv47_0dov0GX-KnZUIcoQ1XtNFud2Xr1kY7_aabfowk5AgeBkUnXHqcD3sRnhS4X9ra0qv4wF03nYYxVfw6LwscHNVLAJPVpDpB773nt-4LaawUiOFMLEikIh7ZVFsoZ4xpJRW1sPLIUm6MTCKvlDXCGmm0tcIAzLBGMZfEFviMlT46RVtFWbhzhL2B6yQ0jr1mQY5de0c955oyDVRG-Q66XQVoDEsL_QdVuPKrGq9D1EFnyyiPZ0tNjTEQNwBKWXrxh7Mv0R48uiwMlTB6hVoeXlR3jbbN92JSzW_qHIBjPuj_AFP-u94
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Roles+of+NRF2+in+Modulating+Cellular+Iron+Homeostasis&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Kerins%2C+Michael+John&rft.au=Ooi%2C+Aikseng&rft.date=2018-12-10&rft.issn=1557-7716&rft.eissn=1557-7716&rft.volume=29&rft.issue=17&rft.spage=1756&rft_id=info:doi/10.1089%2Fars.2017.7176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon