Machine-Learning-Enabled Design and Manipulation of a Microfluidic Concentration Gradient Generator
Microfluidics concentration gradient generators have been widely applied in chemical and biological fields. However, the current gradient generators still have some limitations. In this work, we presented a microfluidic concentration gradient generator with its corresponding manipulation process to...
Uloženo v:
| Vydáno v: | Micromachines (Basel) Ročník 13; číslo 11; s. 1810 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
24.10.2022
MDPI |
| Témata: | |
| ISSN: | 2072-666X, 2072-666X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Microfluidics concentration gradient generators have been widely applied in chemical and biological fields. However, the current gradient generators still have some limitations. In this work, we presented a microfluidic concentration gradient generator with its corresponding manipulation process to generate an arbitrary concentration gradient. Machine-learning techniques and interpolation algorithms were implemented to help researchers instantly analyze the current concentration profile of the gradient generator with different inlet configurations. The proposed method has a 93.71% accuracy rate with a 300× acceleration effect compared to the conventional finite element analysis. In addition, our method shows the potential application of the design automation and computer-aided design of microfluidics by leveraging both artificial neural networks and computer science algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ISSN: | 2072-666X 2072-666X |
| DOI: | 10.3390/mi13111810 |