Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research
Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Inv...
Saved in:
| Published in: | Elementa (Washington, D.C.) Vol. 6; no. 1; p. 1 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
BioOne
2018
|
| Subjects: | |
| ISSN: | 2325-1026, 2325-1026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics. |
|---|---|
| AbstractList | Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the 'Tropospheric Ozone Assessment Report (TOAR)' is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics. Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics. Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics. Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics. |
| Author | Xu, Xiaobin Wells, Benjamin Musselman, Robert C. Solberg, Sverre Zhang, Li Feng, Zhaozhong Lefohn, Allen S. Simon, Heather Wang, Tao Paoletti, Elena De Marco, Alessandra Mills, Gina Kobayashi, Kazuhiko Gerosa, Giacomo Brauer, Michael Smith, Luther Malley, Christopher S. Schultz, Martin G. Sicard, Pierre Hazucha, Milan Neufeld, Howard S. Tang, Haoye Naik, Vaishali Tarasick, David |
| AuthorAffiliation | Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, CN NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK Air Quality Research Division, Environment and Climate Change Canada, Downsview, ON, CA School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, CA ACRI-HE, 260 route du Pin Montard BP234, Sophia Antipolis, FR Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, US Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP Norwegian Institute for Air Research (NILU), Kjeller, NO School of Chemistry, University of Edinburgh, Edinburgh, UK A.S.L. & Associates, Helena. MT, US Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, IT Stockholm Environment Institute, Environment Department, University of York, York, UK Department |
| AuthorAffiliation_xml | – name: Forschungszentrum Jülich GmbH, Jülich, DE – name: Department of Biology, Appalachian State University, Boone,NC, US – name: NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK – name: Institute for Sustainable Plant Protection, National Research Council, Florence, IT – name: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP – name: School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, CA – name: Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, CN – name: School of Chemistry, University of Edinburgh, Edinburgh, UK – name: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN – name: Norwegian Institute for Air Research (NILU), Kjeller, NO – name: Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, CN – name: Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, IT – name: A.S.L. & Associates, Helena. MT, US – name: NERC Centre for Ecology and Hydrology, Penicuik, UK – name: Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, US – name: Alion Science and Technology, Inc., Research Triangle Park, NC, US – name: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, US – name: Air Quality Research Division, Environment and Climate Change Canada, Downsview, ON, CA – name: Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, IT – name: Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC, US – name: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, CN – name: Stockholm Environment Institute, Environment Department, University of York, York, UK – name: USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, US – name: ACRI-HE, 260 route du Pin Montard BP234, Sophia Antipolis, FR |
| Author_xml | – sequence: 1 givenname: Allen S. surname: Lefohn fullname: Lefohn, Allen S. organization: A.S.L. & Associates, Helena. MT, US – sequence: 2 givenname: Christopher S. surname: Malley fullname: Malley, Christopher S. organization: Stockholm Environment Institute, Environment Department, University of York, York, UK, NERC Centre for Ecology and Hydrology, Penicuik, UK, School of Chemistry, University of Edinburgh, Edinburgh, UK – sequence: 3 givenname: Luther surname: Smith fullname: Smith, Luther organization: Alion Science and Technology, Inc., Research Triangle Park, NC, US – sequence: 4 givenname: Benjamin surname: Wells fullname: Wells, Benjamin organization: Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC, US – sequence: 5 givenname: Milan surname: Hazucha fullname: Hazucha, Milan organization: Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, US – sequence: 6 givenname: Heather surname: Simon fullname: Simon, Heather organization: Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC, US – sequence: 7 givenname: Vaishali surname: Naik fullname: Naik, Vaishali organization: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, US – sequence: 8 givenname: Gina surname: Mills fullname: Mills, Gina organization: NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK – sequence: 9 givenname: Martin G. surname: Schultz fullname: Schultz, Martin G. organization: Forschungszentrum Jülich GmbH, Jülich, DE – sequence: 10 givenname: Elena surname: Paoletti fullname: Paoletti, Elena organization: Institute for Sustainable Plant Protection, National Research Council, Florence, IT – sequence: 11 givenname: Alessandra surname: De Marco fullname: De Marco, Alessandra organization: Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, IT – sequence: 12 givenname: Xiaobin surname: Xu fullname: Xu, Xiaobin organization: Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, CN – sequence: 13 givenname: Li surname: Zhang fullname: Zhang, Li organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN – sequence: 14 givenname: Tao surname: Wang fullname: Wang, Tao organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN – sequence: 15 givenname: Howard S. surname: Neufeld fullname: Neufeld, Howard S. organization: Department of Biology, Appalachian State University, Boone, NC, US – sequence: 16 givenname: Robert C. surname: Musselman fullname: Musselman, Robert C. organization: USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, US – sequence: 17 givenname: David surname: Tarasick fullname: Tarasick, David organization: Air Quality Research Division, Environment and Climate Change Canada, Downsview, ON, CA – sequence: 18 givenname: Michael surname: Brauer fullname: Brauer, Michael organization: School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, CA – sequence: 19 givenname: Zhaozhong surname: Feng fullname: Feng, Zhaozhong organization: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, CN – sequence: 20 givenname: Haoye surname: Tang fullname: Tang, Haoye organization: Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, CN – sequence: 21 givenname: Kazuhiko surname: Kobayashi fullname: Kobayashi, Kazuhiko organization: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP – sequence: 22 givenname: Pierre surname: Sicard fullname: Sicard, Pierre organization: ACRI-HE, 260 route du Pin Montard BP234, Sophia Antipolis, FR – sequence: 23 givenname: Sverre surname: Solberg fullname: Solberg, Sverre organization: Norwegian Institute for Air Research (NILU), Kjeller, NO – sequence: 24 givenname: Giacomo surname: Gerosa fullname: Gerosa, Giacomo organization: Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, IT |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30345319$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkkFv1DAQhSNUREvpjTPykcNua4_jJOaAhKpSKlXiUs7WxJlsUjnxYnsryq_H291FLeJky_Pme6Pxe1sczX6mongv-LlQoC7I0URzwnOo9aviBCSopeBQHT27HxdnMd5zzgWvoQR4UxxLLkslhT4pft0Fv_ZxPVAYLfO_M55hjBTjlssCrX1In9i18y26fX2ilMWR9T4w68YJEzE74LyiBRs2E85sIHRpWDCcO2azwQVZHx9joikTI2Gww7vidY8u0tn-PC1-fL26u_y2vP1-fXP55XZplajSUjTAG4lSW0LJVV_XZVdx0ZbcthVCFjVAqlUAWkvkZdtKiX0rG9AtNE0vT4ubHbfzeG_WIY8bHo3H0Tw9-LAyGNJoHZkKVKmxx05AVbZIWjQWSo62qTtdV5RZn3es9aadqLN5QwHdC-jLyjwOZuUfTCU0lBIy4OMeEPzPDcVkpjFacg5n8ptoQIACXdW1ytIPz73-mhy-LgtgJ8gLjjFQb-yYMI1-az06I7jZRsQcImJyRHLT4p-mA_e_8j-T_sGt |
| CitedBy_id | crossref_primary_10_1080_01919512_2025_2486811 crossref_primary_10_1007_s11356_023_26538_9 crossref_primary_10_1186_s12302_020_00450_2 crossref_primary_10_5194_acp_21_10825_2021 crossref_primary_10_3389_feart_2023_1239325 crossref_primary_10_1016_j_envint_2023_107961 crossref_primary_10_1111_eva_70069 crossref_primary_10_1016_j_envres_2020_110193 crossref_primary_10_1088_1748_9326_addfef crossref_primary_10_3390_atmos15111350 crossref_primary_10_1007_s11676_021_01327_7 crossref_primary_10_5194_acp_20_15743_2020 crossref_primary_10_5194_amt_16_3085_2023 crossref_primary_10_1007_s11356_024_32344_8 crossref_primary_10_5194_acp_22_8385_2022 crossref_primary_10_1016_j_envpol_2019_113466 crossref_primary_10_1007_s11676_022_01537_7 crossref_primary_10_3390_atmos15070852 crossref_primary_10_3389_fenvs_2022_894937 crossref_primary_10_1007_s11270_022_05873_6 crossref_primary_10_1029_2022GH000711 crossref_primary_10_1111_gcb_15049 crossref_primary_10_3390_atmos15020198 crossref_primary_10_5194_acp_18_16439_2018 crossref_primary_10_1016_j_coesh_2020_04_005 crossref_primary_10_1029_2021GL097472 crossref_primary_10_1007_s43630_023_00369_6 crossref_primary_10_1016_j_atmosenv_2019_03_026 crossref_primary_10_3390_atmos13091505 crossref_primary_10_1016_j_atmosenv_2019_04_061 crossref_primary_10_1029_2019JD031908 crossref_primary_10_1029_2020JD033054 crossref_primary_10_1007_s10661_024_12426_3 crossref_primary_10_3390_atmos11111262 crossref_primary_10_1016_j_atmosenv_2022_119454 crossref_primary_10_1016_j_scitotenv_2019_01_092 crossref_primary_10_5194_acp_21_11053_2021 crossref_primary_10_1007_s11869_023_01468_0 crossref_primary_10_1016_j_atmosenv_2018_08_019 crossref_primary_10_1016_j_buildenv_2019_01_023 crossref_primary_10_5194_acp_20_6305_2020 crossref_primary_10_1016_j_atmosres_2025_108350 crossref_primary_10_1016_j_scitotenv_2020_139542 crossref_primary_10_1016_j_atmosenv_2021_118227 crossref_primary_10_3390_atmos9100413 crossref_primary_10_1016_j_atmosenv_2021_118869 crossref_primary_10_1029_2024JD042349 crossref_primary_10_1016_j_ecolind_2021_108292 crossref_primary_10_5194_acp_24_12537_2024 crossref_primary_10_1007_s12145_021_00631_4 crossref_primary_10_1016_j_envint_2021_107060 crossref_primary_10_1016_j_atmosenv_2025_121274 crossref_primary_10_1525_elementa_291 crossref_primary_10_1080_01919512_2021_1937043 crossref_primary_10_1016_j_envint_2019_01_064 crossref_primary_10_1016_j_jenvman_2023_119754 crossref_primary_10_1080_20964129_2021_1911602 crossref_primary_10_3389_fenvs_2019_00196 crossref_primary_10_1029_2023JD040086 crossref_primary_10_1088_1748_9326_ac69fe crossref_primary_10_1525_elementa_00042 crossref_primary_10_5194_acp_22_8617_2022 crossref_primary_10_1080_20964129_2022_2144466 crossref_primary_10_1007_s11270_023_06586_0 crossref_primary_10_1016_j_envpol_2018_10_051 crossref_primary_10_1016_j_scitotenv_2018_12_388 crossref_primary_10_3390_plants8090346 crossref_primary_10_5194_acp_19_14535_2019 crossref_primary_10_1016_j_apr_2022_101387 crossref_primary_10_1016_j_scitotenv_2020_143795 crossref_primary_10_3390_rs17183238 crossref_primary_10_3390_atmos13101558 crossref_primary_10_1029_2019JD030943 crossref_primary_10_1016_j_envpol_2020_114076 crossref_primary_10_1016_j_scitotenv_2020_137958 crossref_primary_10_1016_j_jenvman_2025_124150 crossref_primary_10_1016_j_coesh_2020_100225 crossref_primary_10_3389_fenvs_2023_1178833 crossref_primary_10_1016_j_envres_2024_119974 crossref_primary_10_1080_10807039_2018_1492872 crossref_primary_10_5194_acp_22_8935_2022 crossref_primary_10_5194_acp_24_4017_2024 crossref_primary_10_1002_gch2_202300258 crossref_primary_10_1039_c8pp90064g crossref_primary_10_5194_acp_24_12225_2024 crossref_primary_10_1016_j_envres_2023_115230 crossref_primary_10_1525_elementa_2022_00019 crossref_primary_10_3390_atmos16040397 crossref_primary_10_5194_acp_22_2625_2022 crossref_primary_10_1016_j_envpol_2022_119458 crossref_primary_10_3390_rs17050779 crossref_primary_10_1016_j_envpol_2024_125407 crossref_primary_10_1029_2020JD032735 crossref_primary_10_1111_gcb_16278 crossref_primary_10_3390_atmos13101706 crossref_primary_10_3390_atmos16080927 crossref_primary_10_1029_2022GH000749 crossref_primary_10_3390_agriculture15060612 crossref_primary_10_1038_s41598_024_60374_2 crossref_primary_10_5572_KOSAE_2025_41_4_645 crossref_primary_10_1016_j_jes_2025_02_034 crossref_primary_10_1161_CIRCOUTCOMES_119_005598 crossref_primary_10_1111_gcb_16108 crossref_primary_10_1016_j_scitotenv_2024_175048 crossref_primary_10_1016_j_atmosenv_2018_10_021 crossref_primary_10_1080_01919512_2025_2535434 crossref_primary_10_3390_agriculture14081223 crossref_primary_10_1016_j_jes_2024_07_017 crossref_primary_10_1525_elementa_398 crossref_primary_10_1525_elementa_399 crossref_primary_10_3390_environments8100104 crossref_primary_10_1038_s41467_025_57548_5 crossref_primary_10_1038_s41467_020_19035_x crossref_primary_10_3390_atmos14121711 crossref_primary_10_5194_acp_23_13613_2023 crossref_primary_10_1016_j_envres_2025_121165 crossref_primary_10_1080_10962247_2020_1764879 crossref_primary_10_1016_j_envpol_2019_113828 crossref_primary_10_5194_acp_24_6219_2024 crossref_primary_10_1016_j_atmosenv_2023_119889 crossref_primary_10_1016_j_ecolind_2022_109296 crossref_primary_10_5194_acp_22_1209_2022 crossref_primary_10_1016_j_scitotenv_2021_147303 crossref_primary_10_1525_elementa_302 crossref_primary_10_5194_acp_25_7187_2025 crossref_primary_10_1016_j_apr_2025_102531 crossref_primary_10_1016_j_jes_2022_09_032 crossref_primary_10_5194_acp_21_11013_2021 crossref_primary_10_5194_essd_13_3013_2021 crossref_primary_10_1007_s11356_023_28164_x crossref_primary_10_1016_j_scitotenv_2020_144009 crossref_primary_10_1016_j_atmosenv_2019_117162 crossref_primary_10_1016_j_microc_2019_104434 crossref_primary_10_5194_amt_15_2955_2022 crossref_primary_10_5194_acp_22_15243_2022 crossref_primary_10_1016_j_scitotenv_2020_142875 crossref_primary_10_1016_j_envexpbot_2020_104309 crossref_primary_10_1016_j_envpol_2024_123769 crossref_primary_10_1029_2024JD041453 crossref_primary_10_5194_acp_18_17061_2018 crossref_primary_10_5194_acp_24_11545_2024 crossref_primary_10_5194_acp_25_8907_2025 crossref_primary_10_1038_s43247_025_02413_y crossref_primary_10_5194_amt_12_3383_2019 crossref_primary_10_1007_s11676_019_01056_y crossref_primary_10_1016_j_envint_2024_108993 crossref_primary_10_3390_rs15194871 crossref_primary_10_3389_ffgc_2020_00045 crossref_primary_10_1525_elementa_376 crossref_primary_10_5194_amt_17_2559_2024 crossref_primary_10_1016_j_atmosres_2022_106048 crossref_primary_10_1525_elementa_409 crossref_primary_10_1080_10962247_2018_1534701 crossref_primary_10_3390_atmos14121733 crossref_primary_10_5194_acp_20_1757_2020 crossref_primary_10_5194_acp_23_8225_2023 crossref_primary_10_1007_s11356_023_25319_8 crossref_primary_10_1016_j_scitotenv_2024_170009 crossref_primary_10_1016_j_envres_2022_113887 crossref_primary_10_5194_acp_24_13151_2024 crossref_primary_10_1029_2020JD033519 crossref_primary_10_3390_atmos16090995 crossref_primary_10_3390_ijerph19127186 crossref_primary_10_5194_acp_24_11927_2024 crossref_primary_10_1016_j_aosl_2023_100378 crossref_primary_10_1007_s11869_024_01618_y crossref_primary_10_1016_j_jes_2022_11_022 crossref_primary_10_1111_tpj_15501 crossref_primary_10_1016_j_envpol_2024_124524 crossref_primary_10_5194_acp_21_12385_2021 crossref_primary_10_1007_s11676_020_01191_x crossref_primary_10_1016_j_scitotenv_2025_179360 crossref_primary_10_1016_j_apr_2018_12_018 crossref_primary_10_1371_journal_pone_0282006 crossref_primary_10_3390_atmos13040542 crossref_primary_10_1038_s41467_021_25147_9 crossref_primary_10_3390_cli6020046 crossref_primary_10_5194_essd_15_1947_2023 crossref_primary_10_1007_s00709_021_01617_1 crossref_primary_10_1016_j_envpol_2020_116183 crossref_primary_10_1016_j_jes_2023_02_025 crossref_primary_10_1016_j_scitotenv_2020_143461 crossref_primary_10_1016_j_atmosenv_2020_117538 crossref_primary_10_1126_science_adm7628 |
| Cites_doi | 10.1021/es504514z 10.1016/S1001-0742(13)60377-0 10.1016/j.atmosenv.2014.05.079 10.1164/ajrccm/146.6.1487 10.1016/j.envpol.2015.09.038 10.5194/bg-9-271-2012 10.1152/jappl.1976.41.6.859 10.1016/j.atmosenv.2013.05.030 10.1016/j.atmosenv.2007.03.052 10.1016/j.envpol.2015.08.034 10.1016/j.envpol.2007.06.016 10.1164/ajrccm/142.5.1158 10.1164/arrd.1980.121.3.431 10.1016/j.envpol.2009.04.011 10.1056/NEJMoa0803894 10.3109/08958378.2012.705919 10.1016/j.atmosenv.2010.03.010 10.1016/j.envpol.2006.11.011 10.1016/S1352-2310(02)00145-0 10.1016/j.scitotenv.2015.09.113 10.1525/elementa.273 10.1289/EHP190 10.1289/ehp.10108 10.5194/acp-15-4025-2015 10.1016/j.atmosenv.2012.10.057 10.1016/j.cosust.2014.07.008 10.1126/science.151.3710.577 10.1038/srep09871 10.1016/j.envpol.2012.01.014 10.1080/1073161X.1993.10467111 10.1016/j.atmosenv.2008.02.018 10.1016/j.atmosenv.2004.08.049 10.1016/j.atmosenv.2014.08.068 10.5094/APR.2012.038 10.1007/978-3-642-04898-2_420 10.1016/S1352-2310(03)00203-6 10.1016/j.atmosenv.2010.07.037 10.1016/j.atmosenv.2008.02.036 10.1016/j.atmosenv.2008.09.051 10.1016/S0269-7491(00)00043-9 10.1016/j.envpol.2010.05.028 10.1016/j.atmosenv.2010.11.040 10.1029/98JD00995 10.1029/2012JD018261 10.1016/j.atmosenv.2011.06.009 10.1080/10473289.1999.10463835 10.1016/j.atmosenv.2008.08.012 10.1002/2013JD021435 10.1016/j.atmosenv.2015.08.071 10.1016/j.atmosenv.2007.04.061 10.1016/j.atmosenv.2011.07.054 10.1016/j.atmosenv.2013.08.003 10.1016/j.scitotenv.2013.04.045 10.1021/acs.chemrev.5b00089 10.1016/j.atmosenv.2004.01.008 10.5194/acp-15-10581-2015 10.1016/B978-0-408-10705-1.50006-5 10.1111/j.1365-3040.2007.01717.x 10.1001/jama.292.19.2372 10.1029/2008JD010816 10.1525/elementa.265 10.1016/j.atmosenv.2010.08.049 10.1016/S0269-7491(97)00067-5 10.1029/2006JD007782 10.1016/j.envpol.2006.04.015 10.2307/1907187 10.1016/j.foreco.2006.05.059 10.1073/pnas.1211658109 10.1038/sj.jea.7500169 10.1002/2015JD024121 10.1007/978-3-642-77176-7_22 10.21273/JASHS.108.2.347 10.1002/2015JD024101 10.1016/j.scitotenv.2016.10.061 10.1016/j.envpol.2009.02.012 10.1164/rccm.201508-1633OC 10.1080/01621459.1958.10501481 10.1016/S1352-2310(01)00346-6 10.1080/08958370500306107 10.3109/08958378.2010.505253 10.5194/acp-7-5327-2007 10.1016/j.atmosenv.2010.01.015 10.1016/j.envpol.2017.06.044 10.1007/978-94-009-1367-7 10.1111/j.2517-6161.1950.tb00054.x 10.1016/j.atmosenv.2015.04.019 10.1016/j.atmosenv.2012.07.012 10.1002/jgrd.50659 10.1016/j.atmosenv.2014.09.017 10.5194/acp-15-2723-2015 10.1080/08958370600563599 10.1016/j.scitotenv.2015.05.014 10.3402/tellusb.v66.23455 10.1136/oem.2009.051714 10.1016/j.envres.2016.05.014 10.1111/j.1365-2486.2010.02217.x 10.1164/rccm.200403-333OC 10.1016/0004-6981(88)90353-8 10.1046/j.1469-8137.1999.00444.x 10.5194/acp-13-2063-2013 10.1146/annurev.energy.26.1.237 10.1080/10807039.2013.838117 10.5194/acp-16-1445-2016 10.5194/acp-8-2595-2008 10.1016/S0269-7491(98)00027-X 10.1007/s00038-015-0690-y 10.1164/ajrccm.150.2.8049826 10.1016/0004-6981(82)90298-0 10.1016/j.envpol.2014.04.040 10.1007/s10661-008-0470-8 10.1021/es303674e 10.1080/08958370304505 10.1016/j.atmosenv.2014.07.045 10.1029/2002GL016708 10.5194/acp-15-8889-2015 10.5194/acp-6-51-2006 10.1016/j.envpol.2012.02.026 10.1002/2016JD024836 10.5194/acp-15-10033-2015 10.1016/0004-6981(85)90198-2 10.1016/S0140-6736(15)00128-2 10.1111/j.1469-8137.2007.02018.x 10.1080/08940630.1988.10466349 10.1029/WR018i001p00107 10.1164/ajrccm.150.3.8087332 10.1029/JD090iD06p10463 10.1029/2006JD008262 10.1038/ngeo2493 10.1029/2006GL026080 10.5194/acp-12-6983-2012 10.1016/j.atmosenv.2006.01.029 10.21273/JASHS.111.3.470 10.1016/j.envpol.2009.08.006 10.1080/01621459.1968.10480934 10.1525/elementa.244 10.1016/0269-7491(88)90025-5 10.1016/j.envsci.2009.09.003 10.5194/acp-14-6089-2014 10.1039/c2em10862c 10.1021/es983569x 10.1038/ngeo2827 10.1016/0269-7491(88)90024-3 10.1016/0004-6981(87)90038-2 10.1002/2015GL065311 10.1016/j.envpol.2013.10.033 10.1016/j.envpol.2010.04.024 10.1016/1352-2310(94)90019-1 10.5194/acp-9-5027-2009 10.1016/j.atmosenv.2014.11.018 10.1111/pce.13043 10.1029/94JD03125 10.1007/s10584-011-0154-1 10.1016/j.envpol.2015.09.040 10.1016/j.atmosenv.2013.07.042 10.1016/j.atmosenv.2015.01.005 10.1038/ngeo604 10.1093/aje/kwm396 10.1016/j.envpol.2014.05.016 10.1016/S1352-2310(98)00345-8 10.1016/j.atmosenv.2014.12.001 10.1021/acs.est.5b03709 10.1016/j.atmosenv.2005.10.064 10.12952/journal.elementa.000029 10.5194/acp-12-437-2012 10.5194/acp-11-567-2011 10.1016/j.envsci.2010.02.001 10.1029/2007JD008917 10.1371/journal.pone.0039270 10.1080/10962247.2015.1040526 10.1016/j.envpol.2015.06.033 10.1002/grl.50303 10.1016/1352-2310(94)00368-U 10.1016/1352-2310(94)90444-8 10.1023/A:1022913116566 10.1175/JAM2523.1 10.1016/j.atmosenv.2009.03.011 10.3109/08958370903089557 10.1016/j.atmosenv.2016.12.025 10.1111/j.1469-8137.2007.01970.x 10.1016/j.envpol.2011.10.019 10.1007/s10661-015-4500-z |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1525/elementa.279 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Sciences (General) |
| EISSN | 2325-1026 |
| ExternalDocumentID | oai_doaj_org_article_62549afad1264bae918c240ac87d976e PMC6192432 30345319 10_1525_elementa_279 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Intramural EPA grantid: EPA999999 |
| GroupedDBID | 0R~ 2XV 5VS AAFWJ AAPRH AAYXX ACCQO ADBBV AFPKN AHJUD ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CITATION DOUXS EBS FRP GROUPED_DOAJ GX1 H13 IAO KQ8 M~E OK1 ULGLC ABJCF AEUYN AFKRA ATCPS BGLVJ BHPHI BKSAR CCPQU EDH HCIFZ IEP IGS IPNFZ ITC M7S NPM PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PTHSS PYCSY RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c516t-182083a39cea305f774d601b40cb6a2c5182e5b522993a04bb33afb3829b288f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 310 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429374000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2325-1026 |
| IngestDate | Fri Oct 03 12:52:28 EDT 2025 Tue Sep 30 16:03:23 EDT 2025 Sun Sep 28 01:22:06 EDT 2025 Mon Jul 21 06:08:11 EDT 2025 Sat Nov 29 04:33:07 EST 2025 Tue Nov 18 21:03:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | tropospheric ozone ground-level ozone metrics ozone distributions trends shifting ozone concentrations |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-182083a39cea305f774d601b40cb6a2c5182e5b522993a04bb33afb3829b288f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions Contributed to conception and design: All co-authors.Contributed to acquisition of data: none.Contributed to analysis and interpretation of data: all co-authors.Drafted and/or revised the paper: all co-authors participated in the drafting of the original article, while a subset of the co-authors helped with revision of the various drafts of the manuscript.Approved the submitted and revised versions for publication: all co-authors. |
| OpenAccessLink | https://doaj.org/article/62549afad1264bae918c240ac87d976e |
| PMID | 30345319 |
| PQID | 2125296775 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_62549afad1264bae918c240ac87d976e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6192432 proquest_miscellaneous_2125296775 pubmed_primary_30345319 crossref_citationtrail_10_1525_elementa_279 crossref_primary_10_1525_elementa_279 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Elementa (Washington, D.C.) |
| PublicationTitleAlternate | Elementa (Wash D C) |
| PublicationYear | 2018 |
| Publisher | BioOne |
| Publisher_xml | – name: BioOne |
| References | (2021072819445740600_B61) 2008; 42 (2021072819445740600_B178) 2016; 124 (2021072819445740600_B12) 2015 (2021072819445740600_B114) 1987; 21 (2021072819445740600_B17) 2002; 36 (2021072819445740600_B66) 2004; 170 (2021072819445740600_B221) 1999; 143 EEA (2021072819445740600_B37) 2009 (2021072819445740600_B10) 2007; 115 (2021072819445740600_B174) 1976; 41 (2021072819445740600_B209) 1998; 103 (2021072819445740600_B110) 1993; 43 (2021072819445740600_B35) 2016; 121 (2021072819445740600_B72) 2007; 41 2021072819445740600_B94 (2021072819445740600_B215) 2008; 113 (2021072819445740600_B135) 2017 (2021072819445740600_B150) 1994; 28 (2021072819445740600_B82) 2012; 9 (2021072819445740600_B180) 2016; 16 (2021072819445740600_B181) 2005; 39 (2021072819445740600_B63) 2011; 109 (2021072819445740600_B170) 2016; 541 (2021072819445740600_B173) 1999; 33 (2021072819445740600_B195) 2016; 193 (2021072819445740600_B20) 2007; 41 (2021072819445740600_B130) 2012; 24 (2021072819445740600_B23) 2014; 2 (2021072819445740600_B112) 1988; 22 (2021072819445740600_B105) 1999; 49 (2021072819445740600_B116) 1998; 32 (2021072819445740600_B59) 2007; 46 (2021072819445740600_B193) 2012; 3 (2021072819445740600_B89) 2009; 43 (2021072819445740600_B111) 2010; 22 (2021072819445740600_B172) 2016; 149 (2021072819445740600_B11) 2004; 292 (2021072819445740600_B32) 2015; 109 (2021072819445740600_B184) 2007; 112 (2021072819445740600_B148) 2006; 40 (2021072819445740600_B85) 2012; 7 (2021072819445740600_B216) 2015; 15 (2021072819445740600_B225) 2016; 9 (2021072819445740600_B106) 1987 2021072819445740600_B198 (2021072819445740600_B140) 2007; 7 2021072819445740600_B199 (2021072819445740600_B137) 2011; 45 (2021072819445740600_B80) 1985; 19 (2021072819445740600_B56) 2017; 230 (2021072819445740600_B77) 2015; 60 (2021072819445740600_B183) 2009; 157 (2021072819445740600_B136) 2011; 17 (2021072819445740600_B175) 2013; 47 (2021072819445740600_B98) 2009; 142 (2021072819445740600_B18) 2015; 206 (2021072819445740600_B86) 2015; 207 (2021072819445740600_B57) 2017 (2021072819445740600_B101) 2013 (2021072819445740600_B145) 1994; 28 (2021072819445740600_B103) 2012; 12 (2021072819445740600_B118) 2014; 26 (2021072819445740600_B47) 2014; 96 (2021072819445740600_B149) 2013; 67 (2021072819445740600_B166) 2012; 162 (2021072819445740600_B26) 2010; 158 (2021072819445740600_B33) 2014; 20 2021072819445740600_B58 (2021072819445740600_B49) 2018; 6 (2021072819445740600_B224) 2014; 14 (2021072819445740600_B206) 2015; 8 (2021072819445740600_B90) 1992 (2021072819445740600_B124) 1985; 90 (2021072819445740600_B9) 2008; 167 (2021072819445740600_B163) 2012; 14 (2021072819445740600_B54) 1997; 97 2021072819445740600_B161 (2021072819445740600_B52) 2015; 386 2021072819445740600_B162 (2021072819445740600_B156) 2013; 40 (2021072819445740600_B121) 2008; 42 (2021072819445740600_B223) 2011; 45 (2021072819445740600_B51) 1988; 38 (2021072819445740600_B24) 1950; 12 (2021072819445740600_B188) 1950; 53 (2021072819445740600_B97) 2007; 150 (2021072819445740600_B120) 2013 (2021072819445740600_B78) 1982; 18 (2021072819445740600_B96) 2006; 232 (2021072819445740600_B117) 1995; 69 (2021072819445740600_B84) 2015; 5 (2021072819445740600_B192) 2014; 94 (2021072819445740600_B27) 2015; 120 2021072819445740600_B157 (2021072819445740600_B194) 1985 (2021072819445740600_B138) 2015; 15 (2021072819445740600_B31) 2010; 13 (2021072819445740600_B125) 2015; 15 (2021072819445740600_B28) 2013; 80 (2021072819445740600_B212) 2007; 30 (2021072819445740600_B144) 1983; 108 (2021072819445740600_B48) 2010; 44 (2021072819445740600_B143) 1988; 53 (2021072819445740600_B2) 2006; 18 European Council Directive (2021072819445740600_B43) (2021072819445740600_B55) 2013 (2021072819445740600_B91) 2008; 42 (2021072819445740600_B15) 2014; 192 (2021072819445740600_B152) 2014; 192 (2021072819445740600_B155) 2014; 119 US Federal Register (2021072819445740600_B203) 2015 (2021072819445740600_B207) 2015; 115 (2021072819445740600_B165) 2017 (2021072819445740600_B186) 1950; 53 (2021072819445740600_B44) 2012; 164 (2021072819445740600_B42) 2000; 109 (2021072819445740600_B102) 2003; 144 (2021072819445740600_B132) 2007; 174 (2021072819445740600_B67) 2014; 98 2021072819445740600_B210 (2021072819445740600_B127) 2007; 146 (2021072819445740600_B113) 2017; 152 (2021072819445740600_B218) 2013; 13 2021072819445740600_B21 2021072819445740600_B25 (2021072819445740600_B187) 1950; 53 (2021072819445740600_B7) 1998; 101 (2021072819445740600_B46) 2015; 65 (2021072819445740600_B134) 2016; 208 (2021072819445740600_B50) 1980; 121 (2021072819445740600_B171) 2013; 79 (2021072819445740600_B179) 2014; 9–10 (2021072819445740600_B30) 2004; 38 (2021072819445740600_B29) 2016; 121 (2021072819445740600_B182) 1982; 16 (2021072819445740600_B64) 2014; 98 (2021072819445740600_B164) 2015; 15 2021072819445740600_B39 2021072819445740600_B38 (2021072819445740600_B151) 2015; 112 (2021072819445740600_B73) 2009; 43 (2021072819445740600_B122) 2015; 42 (2021072819445740600_B71) 1994; 150 (2021072819445740600_B65) 2012; 165 (2021072819445740600_B191) 1991 (2021072819445740600_B189) 2001; 11 (2021072819445740600_B99) 2010; 13 (2021072819445740600_B160) 2009; 9 (2021072819445740600_B205) 2015; 527 (2021072819445740600_B108) 2003; 37 (2021072819445740600_B131) 2015; 93 (2021072819445740600_B115) 2010; 44 (2021072819445740600_B185) 2007; 112 (2021072819445740600_B88) 1995; 100 (2021072819445740600_B22) 2012; 117 (2021072819445740600_B123) 1994; 150 (2021072819445740600_B128) 2001; 26 (2021072819445740600_B70) 1992; 146 (2021072819445740600_B109) 2014; 66 (2021072819445740600_B141) 1986; 111 (2021072819445740600_B14) 2010; 158 US EPA (2021072819445740600_B196) 1986 2021072819445740600_B40 (2021072819445740600_B34) 2015; 101 2021072819445740600_B41 (2021072819445740600_B204) 2006; 33 (2021072819445740600_B16) 2007; 146 (2021072819445740600_B159) 2015; 187 (2021072819445740600_B153) 2010; 158 (2021072819445740600_B95) 2017; 576 (2021072819445740600_B147) 2001; 35 (2021072819445740600_B176) 2012; 61 (2021072819445740600_B76) 2009; 2 (2021072819445740600_B87) 2013; 77 (2021072819445740600_B208) 2015; 207 (2021072819445740600_B36) 2010; 44 2021072819445740600_B5 (2021072819445740600_B211) 2012; 12 2021072819445740600_B6 (2021072819445740600_B93) 2006; 6 (2021072819445740600_B190) 1989 (2021072819445740600_B53) 1982 (2021072819445740600_B104) 1958; 53 (2021072819445740600_B81) 2013 (2021072819445740600_B169) 2009; 156 (2021072819445740600_B100) 1990 US EPA (2021072819445740600_B197) 1992 (2021072819445740600_B217) 2008; 8 (2021072819445740600_B154) 2016; 121 (2021072819445740600_B142) 2006; 40 (2021072819445740600_B74) 1966; 151 (2021072819445740600_B220) 2015; 15 (2021072819445740600_B1) 2003; 15 (2021072819445740600_B60) 2011 (2021072819445740600_B107) 1988; 53 (2021072819445740600_B126) 1945; 13 2021072819445740600_B200 2021072819445740600_B201 (2021072819445740600_B75) 1988 2021072819445740600_B202 (2021072819445740600_B133) 2007; 174 (2021072819445740600_B222) 2003; 30 (2021072819445740600_B69) 1993 (2021072819445740600_B146) 1995; 29 (2021072819445740600_B8) 2009; 157 (2021072819445740600_B62) 2014; 185 (2021072819445740600_B219) 2018; 6 (2021072819445740600_B4) 2015; 102 (2021072819445740600_B3) 2006; 18 (2021072819445740600_B92) 2009; 360 (2021072819445740600_B68) 2010; 44 (2021072819445740600_B45) 2009; 114 (2021072819445740600_B129) 2010; 22 WMO (2021072819445740600_B213) 1992 (2021072819445740600_B83) 1990; 142 (2021072819445740600_B167) 1968; 63 (2021072819445740600_B158) 2010; 67 WMO (2021072819445740600_B214) 1966 (2021072819445740600_B139) 2013; 458–460 (2021072819445740600_B119) 2017; 40 (2021072819445740600_B177) 2015; 49 (2021072819445740600_B19) 2011; 45 (2021072819445740600_B13) 2016; 50 (2021072819445740600_B79) 2011; 11 (2021072819445740600_B168) 2012; 109 |
| References_xml | – volume: 49 start-page: 186 year: 2015 ident: 2021072819445740600_B177 article-title: Ozone trends across the United States over a period of decreasing NOx and VOC emissions publication-title: Environ Sci Technol doi: 10.1021/es504514z – volume: 26 start-page: 23 issue: 1 year: 2014 ident: 2021072819445740600_B118 article-title: Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011 publication-title: J Environ Sci doi: 10.1016/S1001-0742(13)60377-0 – volume: 94 start-page: 552 year: 2014 ident: 2021072819445740600_B192 article-title: Sensitivity of air quality to potential future climate change and emissions in the United States and major cities publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.05.079 – volume: 146 start-page: 1487 year: 1992 ident: 2021072819445740600_B70 article-title: Effects of steady-state and variable ozone concentration profiles on pulmonary function publication-title: Am Rev Respir Dis doi: 10.1164/ajrccm/146.6.1487 – volume: 208 start-page: 898 year: 2016 ident: 2021072819445740600_B134 article-title: Ozone impacts on vegetation in a nitrogen enriched and changing climate publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.09.038 – volume: 9 start-page: 271 year: 2012 ident: 2021072819445740600_B82 article-title: Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere publication-title: Biogeosciences doi: 10.5194/bg-9-271-2012 – volume: 41 start-page: 859 issue: 6 year: 1976 ident: 2021072819445740600_B174 article-title: Pulmonary Function Changes in Ozone — Interaction of Concentration and Ventilation publication-title: J Appl Physiol doi: 10.1152/jappl.1976.41.6.859 – volume: 77 start-page: 558 year: 2013 ident: 2021072819445740600_B87 article-title: The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2013.05.030 – year: 1987 ident: 2021072819445740600_B106 – volume: 41 start-page: 4559 issue: 22 year: 2007 ident: 2021072819445740600_B72 article-title: Nonlinearity in human health response to ozone: Experimental laboratory considerations publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2007.03.052 – volume: 207 start-page: 21 year: 2015 ident: 2021072819445740600_B86 article-title: Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.08.034 – volume: 150 start-page: 96 year: 2007 ident: 2021072819445740600_B97 article-title: Increasing risk for negative ozone impacts on vegetation in northern Sweden publication-title: Environ Pollut doi: 10.1016/j.envpol.2007.06.016 – volume: 142 start-page: 1158 year: 1990 ident: 2021072819445740600_B83 article-title: Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm/142.5.1158 – volume: 121 start-page: 431 year: 1980 ident: 2021072819445740600_B50 article-title: Respiratory responses in humans repeatedly exposed to low concentrations of ozone publication-title: Am Rev Respir Dis doi: 10.1164/arrd.1980.121.3.431 – volume: 157 start-page: 2216 issue: 8–9 year: 2009 ident: 2021072819445740600_B183 article-title: Cumulative effects and threshold levels in air pollution mortality: Data analysis of nine large US cities using the NMMAPS dataset publication-title: Environ Pollut doi: 10.1016/j.envpol.2009.04.011 – ident: 2021072819445740600_B199 – ident: 2021072819445740600_B210 – volume: 360 start-page: 1085 issue: 11 year: 2009 ident: 2021072819445740600_B92 article-title: Long-term ozone exposure and mortality publication-title: The New England J of Med doi: 10.1056/NEJMoa0803894 – year: 1992 ident: 2021072819445740600_B213 – volume: 24 start-page: 619 year: 2012 ident: 2021072819445740600_B130 article-title: Prediction of lung function response for populations exposed to a wide range of ozone conditions publication-title: Inhal Toxic doi: 10.3109/08958378.2012.705919 – volume: 44 start-page: 2213 year: 2010 ident: 2021072819445740600_B36 article-title: Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.03.010 – volume: 146 start-page: 587 year: 2007 ident: 2021072819445740600_B127 article-title: Promoting the O3 flux concept for European forest trees publication-title: Environ Pollut doi: 10.1016/j.envpol.2006.11.011 – volume: 36 start-page: 2841 issue: 17 year: 2002 ident: 2021072819445740600_B17 article-title: Trends in near-surface ozone concentrations in Switzerland: the 1990s publication-title: Atmos Environ doi: 10.1016/S1352-2310(02)00145-0 – ident: 2021072819445740600_B41 – volume: 541 start-page: 729 year: 2016 ident: 2021072819445740600_B170 article-title: An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2015.09.113 – volume: 53 start-page: 521 year: 1950 ident: 2021072819445740600_B187 article-title: A rank-invariant method of linear and polynomial regression analysis, II publication-title: Proc Kon Ne. Aka. v. Wetensch A – volume: 6 start-page: 12 issue: 1 year: 2018 ident: 2021072819445740600_B49 article-title: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health publication-title: Elem Sci Anth doi: 10.1525/elementa.273 – volume: 124 start-page: 1443 year: 2016 ident: 2021072819445740600_B178 article-title: Assessing temporal and spatial patterns of observed and predicted ozone in multiple urban areas publication-title: Environ Health Perspect doi: 10.1289/EHP190 – volume: 115 start-page: 1591 year: 2007 ident: 2021072819445740600_B10 article-title: Potential confounding of particulate matter on the short-term association between ozone and mortality in multisite time-series studies publication-title: Environ Health Perspect doi: 10.1289/ehp.10108 – volume: 15 start-page: 4025 issue: 8 year: 2015 ident: 2021072819445740600_B125 article-title: Trends and drivers of ozone human health and vegetation impact metrics from UK EMEP supersite measurements (1990–2013) publication-title: Atmos Chem Phys doi: 10.5194/acp-15-4025-2015 – volume: 67 start-page: 331 year: 2013 ident: 2021072819445740600_B149 article-title: Recent tropospheric ozone changes – A pattern dominated by slow or no growth publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.10.057 – volume: 9–10 start-page: 9 year: 2014 ident: 2021072819445740600_B179 article-title: Ozone – the persistent menace: interactions with the N cycle and climate change publication-title: Current Opinion in Environmental Sustainability doi: 10.1016/j.cosust.2014.07.008 – ident: 2021072819445740600_B198 – ident: 2021072819445740600_B94 – volume: 151 start-page: 577 year: 1966 ident: 2021072819445740600_B74 article-title: Ozone: nonlinear relation of dose and injury in plants publication-title: Science doi: 10.1126/science.151.3710.577 – volume: 5 year: 2015 ident: 2021072819445740600_B84 article-title: Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests publication-title: Scientific Reports doi: 10.1038/srep09871 – volume: 164 start-page: 16 year: 2012 ident: 2021072819445740600_B44 article-title: A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China publication-title: Environ Pollut doi: 10.1016/j.envpol.2012.01.014 – volume: 43 start-page: 106 issue: 1 year: 1993 ident: 2021072819445740600_B110 article-title: Establishing relevant ozone standards to protect vegetation and human health: exposure/dose-response considerations publication-title: J Air & Waste doi: 10.1080/1073161X.1993.10467111 – volume: 42 start-page: 5110 year: 2008 ident: 2021072819445740600_B61 article-title: Dynamic evaluation of regional air quality models: assessing changes in O3 stemming from changes in emissions and meteorology publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.02.018 – volume: 39 start-page: 179 year: 2005 ident: 2021072819445740600_B181 article-title: Changes in Nordic surface ozone episodes due to European emission reductions in the 1990s publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.08.049 – volume: 98 start-page: 571 year: 2014 ident: 2021072819445740600_B64 article-title: Diel trend in plant sensitivity to ozone: Implications for exposure- and flux-based ozone metrics publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.08.068 – start-page: 260 volume-title: Rank Correlation Methods year: 1990 ident: 2021072819445740600_B100 – volume: 3 start-page: 341 issue: 3 year: 2012 ident: 2021072819445740600_B193 article-title: An assessment of the surface ozone trend in Ireland relevant to air pollution and environmental protection publication-title: Atmos Poll Res doi: 10.5094/APR.2012.038 – start-page: 630 volume-title: Nonparametric Statistical Inference year: 2011 ident: 2021072819445740600_B60 doi: 10.1007/978-3-642-04898-2_420 – volume: 37 start-page: 2705 year: 2003 ident: 2021072819445740600_B108 article-title: History of tropospheric ozone for the San Bernardino Mountains of Southern California. 1963–1999 publication-title: Atmos Environ doi: 10.1016/S1352-2310(03)00203-6 – volume: 44 start-page: 4155 year: 2010 ident: 2021072819445740600_B68 article-title: Does a simulated upland grassland community respond to increasing background, peak or accumulated exposure of ozone? publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.07.037 – volume: 42 start-page: 5434 issue: 21 year: 2008 ident: 2021072819445740600_B91 article-title: Trends in ozone concentration distributions in the UK since 1990: Local, regional and global influences publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.02.036 – volume: 43 start-page: 51 year: 2009 ident: 2021072819445740600_B89 article-title: Effect of climate change on air quality publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.09.051 – volume: 142 start-page: 5 year: 2009 ident: 2021072819445740600_B98 article-title: Air pollution and health: a European and North American approach (APHENA) publication-title: Res Rep Health Eff Inst – volume: 109 start-page: 403 year: 2000 ident: 2021072819445740600_B42 article-title: Modelling stomatal ozone flux across Europe publication-title: Environ Pollut doi: 10.1016/S0269-7491(00)00043-9 – volume: 158 start-page: 2954 year: 2010 ident: 2021072819445740600_B14 article-title: Use of sap flow measurements to validate stomatal flunctions for mature beech (Fagus sylvatica) in view of ozone uptake calculations publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.05.028 – volume: 45 start-page: 1084 issue: 5 year: 2011 ident: 2021072819445740600_B19 article-title: Response of ozone and nitrate to stationary source NOx emission reductions in the eastern USA publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.11.040 – ident: 2021072819445740600_B40 – volume: 103 start-page: 17 issue: D14 year: 1998 ident: 2021072819445740600_B209 article-title: Factors affecting the detection of trends: Statistical considerations and applications to environmental data publication-title: J Geophys Res doi: 10.1029/98JD00995 – ident: 2021072819445740600_B6 – volume: 117 issue: D22 year: 2012 ident: 2021072819445740600_B22 article-title: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010 publication-title: J Geophys. Res. Atmos doi: 10.1029/2012JD018261 – volume: 45 start-page: 5064 year: 2011 ident: 2021072819445740600_B137 article-title: New stomatal flux-based critical levels for ozone effects on vegetation publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.06.009 – volume: 49 start-page: 669 year: 1999 ident: 2021072819445740600_B105 article-title: Role of concentrations and time of day in developing ozone exposure indices for a secondary standard publication-title: J Air Waste Manage Assoc doi: 10.1080/10473289.1999.10463835 – volume: 42 start-page: 8470 year: 2008 ident: 2021072819445740600_B121 article-title: Global model simulation of summertime US ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.08.012 – volume: 119 year: 2014 ident: 2021072819445740600_B155 article-title: Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes publication-title: J Geophys Res Atmos doi: 10.1002/2013JD021435 – volume: 120 start-page: 182 year: 2015 ident: 2021072819445740600_B27 article-title: Metrics of ozone risk assessment for Southern European forests: Canopy moisture content as a potential plant response indicator publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.08.071 – year: 2017 ident: 2021072819445740600_B135 article-title: Tropospheric Ozone Assessment Report: Present day tropospheric ozone distribution and trends relevant to vegetation publication-title: Elem Sci Anth – volume: 41 start-page: 7127 year: 2007 ident: 2021072819445740600_B20 article-title: The effects of meteorology on ozone in urban areas and their use in assessing ozone trends publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2007.04.061 – volume: 45 start-page: 6769 year: 2011 ident: 2021072819445740600_B223 article-title: Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.07.054 – volume: 80 start-page: 361 year: 2013 ident: 2021072819445740600_B28 article-title: Analysis and interpretation of 25 years of ozone observations at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland from 1987 to 2012 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2013.08.003 – volume: 458–460 start-page: 217 year: 2013 ident: 2021072819445740600_B139 article-title: Quantifying temporal trends in ground level ozone concentration in the UK publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.04.045 – volume-title: Tropospheric Ozone and the Environment year: 1991 ident: 2021072819445740600_B191 – volume: 115 start-page: 3856 issue: 10 year: 2015 ident: 2021072819445740600_B207 article-title: Chemistry and the linkages between air quality and climate change publication-title: Chem. Rev doi: 10.1021/acs.chemrev.5b00089 – volume: 38 start-page: 1891 issue: 13 year: 2004 ident: 2021072819445740600_B30 article-title: Intercontinental transport and the origins of the ozone observed at surface sites in Europe publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.01.008 – volume: 15 start-page: 10581 year: 2015 ident: 2021072819445740600_B164 article-title: Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone publication-title: Atmos Chem Phys doi: 10.5194/acp-15-10581-2015 – volume-title: Effects of Gaseous Air Pollution in Agriculture and Horticulture year: 1982 ident: 2021072819445740600_B53 doi: 10.1016/B978-0-408-10705-1.50006-5 – volume: 53 start-page: 386 year: 1950 ident: 2021072819445740600_B186 article-title: A rank-invariant method of linear and polynomial regression analysis, I publication-title: Proc Kon Ned Akad v. Wetensch A – volume: 93 start-page: 1783 issue: 7 year: 2015 ident: 2021072819445740600_B131 article-title: Science and policy in setting National Ambient Air Quality Standards: Resolving the ozone enigma publication-title: Tex Law Rev – volume: 30 start-page: 1150 year: 2007 ident: 2021072819445740600_B212 article-title: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance in trees? A meta-analytic review of the last 3 decades of experiments publication-title: Plant, Cell and Environ doi: 10.1111/j.1365-3040.2007.01717.x – ident: 2021072819445740600_B39 – volume: 292 start-page: 2372 issue: 19 year: 2004 ident: 2021072819445740600_B11 article-title: Ozone and short-term mortality in 95 US urban communities, 1987–2000 publication-title: Jama-Jour of the Amer Med Assoc doi: 10.1001/jama.292.19.2372 – volume: 114 start-page: 301 issue: D04 year: 2009 ident: 2021072819445740600_B45 article-title: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution publication-title: J Geophys Res doi: 10.1029/2008JD010816 – volume: 6 start-page: 10 issue: 1 year: 2018 ident: 2021072819445740600_B219 article-title: Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends publication-title: Elem Sci Anth doi: 10.1525/elementa.265 – volume: 44 start-page: 5199 issue: 39 year: 2010 ident: 2021072819445740600_B115 article-title: Characterizing changes in surface ozone levels in metropolitan and rural areas in the United States for 1980–2008 and 1994–2008 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.08.049 – volume: 97 start-page: 91 year: 1997 ident: 2021072819445740600_B54 article-title: Critical levels for ozone effects on vegetation in Europe publication-title: Environ Pollut doi: 10.1016/S0269-7491(97)00067-5 – volume: 112 start-page: S22 issue: D12 year: 2007 ident: 2021072819445740600_B185 article-title: Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above mid-latitude North America during the IONS/ICARTT campaign: evidence for stratospheric input publication-title: J Geophys Res doi: 10.1029/2006JD007782 – year: 2015 ident: 2021072819445740600_B12 – volume: 146 start-page: 624 year: 2007 ident: 2021072819445740600_B16 article-title: Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone publication-title: Environ Pollut doi: 10.1016/j.envpol.2006.04.015 – volume: 13 start-page: 245 year: 1945 ident: 2021072819445740600_B126 article-title: Nonparametric tests against trend publication-title: Econometrica doi: 10.2307/1907187 – volume: 232 start-page: 146 year: 2006 ident: 2021072819445740600_B96 article-title: Negative impact of ozone on the stem basal area increment of mature Norway spruce in south Sweden publication-title: For Ecol Manag doi: 10.1016/j.foreco.2006.05.059 – volume: 109 start-page: 16083 issue: 40 year: 2012 ident: 2021072819445740600_B168 article-title: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1211658109 – volume: 11 start-page: 286 issue: 4 year: 2001 ident: 2021072819445740600_B189 article-title: Epidemiological studies of acute Ozone exposures and mortality publication-title: J of Exp Anal and Environ Epidem doi: 10.1038/sj.jea.7500169 – volume: 121 start-page: 976 year: 2016 ident: 2021072819445740600_B35 article-title: A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014) publication-title: J. Geophys Res. Atmos doi: 10.1002/2015JD024121 – year: 1993 ident: 2021072819445740600_B69 article-title: Meta-analysis and “effective dose” revisited doi: 10.1007/978-3-642-77176-7_22 – year: 2009 ident: 2021072819445740600_B37 – volume: 108 start-page: 347 year: 1983 ident: 2021072819445740600_B144 article-title: Significance of pollutant concentration distribution in the response of ‘red kidney’ beans to ozone publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.108.2.347 – volume: 121 start-page: 538 year: 2016 ident: 2021072819445740600_B154 article-title: Seasonal cycles of O3 in the marine boundary layer: Observation and model simulation comparisons publication-title: J Geophys. Res doi: 10.1002/2015JD024101 – volume: 576 start-page: 22 year: 2017 ident: 2021072819445740600_B95 article-title: Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.10.061 – volume: 157 start-page: 2091 year: 2009 ident: 2021072819445740600_B8 article-title: Are Bavarian forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices publication-title: Environ Pollut doi: 10.1016/j.envpol.2009.02.012 – volume: 193 start-page: 1134 issue: 10 year: 2016 ident: 2021072819445740600_B195 article-title: Long-term ozone exposure and mortality in a large prospective study publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201508-1633OC – volume: 53 start-page: 814 year: 1958 ident: 2021072819445740600_B104 article-title: Ordinal measures of association publication-title: J Amer Statist Ass doi: 10.1080/01621459.1958.10501481 – volume: 35 start-page: 5245 year: 2001 ident: 2021072819445740600_B147 article-title: Responses of two birch (Betula pendula Roth. clones to different ozone profiles with similar AOT40 exposure publication-title: Atmos Environ doi: 10.1016/S1352-2310(01)00346-6 – volume: 18 start-page: 127 year: 2006 ident: 2021072819445740600_B2 article-title: Comparison of chamber 6.6-h exposures to 0.04–0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses publication-title: Inhal Toxicol doi: 10.1080/08958370500306107 – volume: 22 start-page: 999 issue: 12 year: 2010 ident: 2021072819445740600_B111 article-title: An alternative form and level of the human health ozone standard publication-title: Inhal Toxicol doi: 10.3109/08958378.2010.505253 – volume: 7 start-page: 5327 year: 2007 ident: 2021072819445740600_B140 article-title: The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity publication-title: Atmos Chem Phys doi: 10.5194/acp-7-5327-2007 – ident: 2021072819445740600_B5 – volume: 44 start-page: 2248 year: 2010 ident: 2021072819445740600_B48 article-title: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.01.015 – volume: 230 start-page: 268 year: 2017 ident: 2021072819445740600_B56 article-title: Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.06.044 – start-page: PB87 year: 1986 ident: 2021072819445740600_B196 – year: 1988 ident: 2021072819445740600_B75 doi: 10.1007/978-94-009-1367-7 – volume: 12 start-page: 171 year: 1950 ident: 2021072819445740600_B24 article-title: Rank correlation and population models publication-title: J. R. Statist Soc B doi: 10.1111/j.2517-6161.1950.tb00054.x – ident: 2021072819445740600_B161 – volume: 112 start-page: 278 year: 2015 ident: 2021072819445740600_B151 article-title: Climate controls on air quality in the Northeastern U.S.: An examination of summertime ozone statistics during 1993–2012 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.04.019 – volume: 61 start-page: 124 year: 2012 ident: 2021072819445740600_B176 article-title: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.07.012 – year: 2013 ident: 2021072819445740600_B120 article-title: Importance of NOx control for peak ozone reduction in the Pearl River Delta Region publication-title: J Geophys Res doi: 10.1002/jgrd.50659 – volume: 98 start-page: 376 year: 2014 ident: 2021072819445740600_B67 article-title: Air quality status and trends in Europe publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.09.017 – year: 1989 ident: 2021072819445740600_B190 article-title: Analysis of crop loss for alternative ozone exposure indices – volume: 15 start-page: 2723 year: 2015 ident: 2021072819445740600_B216 article-title: Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe publication-title: Atmos Chem Phys doi: 10.5194/acp-15-2723-2015 – ident: 2021072819445740600_B38 – ident: 2021072819445740600_B43 article-title: 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union 11.6.2008, L152/1–44 – volume: 18 start-page: 413 year: 2006 ident: 2021072819445740600_B3 article-title: Human pulmonary responses with 30-minute time intervals of exercise and rest when exposed for 8 hours to 0.12 ppm ozone via square-wave and acute triangular profiles publication-title: Inhal Toxicol doi: 10.1080/08958370600563599 – volume: 527 start-page: 351 year: 2015 ident: 2021072819445740600_B205 article-title: An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.05.014 – volume: 66 start-page: 23455 year: 2014 ident: 2021072819445740600_B109 article-title: Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China publication-title: Tellus B doi: 10.3402/tellusb.v66.23455 – volume: 67 start-page: 699 issue: 10 year: 2010 ident: 2021072819445740600_B158 article-title: Ozone, heat and mortality: acute effects in 15 British conurbations publication-title: Occup Environ Med doi: 10.1136/oem.2009.051714 – volume: 149 start-page: 122 year: 2016 ident: 2021072819445740600_B172 article-title: Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012 publication-title: Environ Res doi: 10.1016/j.envres.2016.05.014 – ident: 2021072819445740600_B21 – volume: 17 start-page: 592 issue: 1 year: 2011 ident: 2021072819445740600_B136 article-title: Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40-and flux-based risk maps publication-title: Global Change Biol doi: 10.1111/j.1365-2486.2010.02217.x – volume: 170 start-page: 1080 issue: 10 year: 2004 ident: 2021072819445740600_B66 article-title: Acute effects of ozone on mortality from the “Air pollution and health: A European approach” project publication-title: Am J Resp Crit Care doi: 10.1164/rccm.200403-333OC – volume: 22 start-page: 1229 year: 1988 ident: 2021072819445740600_B112 article-title: A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops publication-title: Atmos Environ doi: 10.1016/0004-6981(88)90353-8 – volume: 143 start-page: 305 year: 1999 ident: 2021072819445740600_B221 article-title: The response of sensitive and tolerant clones of Populus tremuloides to dynamic ozone exposure under controlled environmental conditions publication-title: New Phytologist doi: 10.1046/j.1469-8137.1999.00444.x – volume: 13 start-page: 2063 year: 2013 ident: 2021072819445740600_B218 article-title: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) publication-title: Atmos Chem Phys doi: 10.5194/acp-13-2063-2013 – volume: 26 start-page: 237 year: 2001 ident: 2021072819445740600_B128 article-title: Protecting agricultural crops from the effects of tropospheric ozone exposure-reconciling science and standard setting publication-title: Annual Review of Energy and Environment doi: 10.1146/annurev.energy.26.1.237 – volume: 20 start-page: 1406 issue: 5 year: 2014 ident: 2021072819445740600_B33 article-title: A support tool for air pollution health risk management in emerging countries: A case in Brazil publication-title: Hum Ecol Risk Assess doi: 10.1080/10807039.2013.838117 – volume: 16 start-page: 1445 year: 2016 ident: 2021072819445740600_B180 article-title: How to most effectively expand the global surface ozone observing network publication-title: Atmos Chem Phys doi: 10.5194/acp-16-1445-2016 – volume: 8 start-page: 2595 issue: 10 year: 2008 ident: 2021072819445740600_B217 article-title: Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability publication-title: Atmos Chem Phys doi: 10.5194/acp-8-2595-2008 – volume: 101 start-page: 291 year: 1998 ident: 2021072819445740600_B7 article-title: Relationships of ozone exposure to pine injury in the Sierra Nevada and San Bernardino Mountains of California, USA publication-title: Environ Pollut doi: 10.1016/S0269-7491(98)00027-X – volume: 60 start-page: 619 year: 2015 ident: 2021072819445740600_B77 article-title: Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project publication-title: Int J Public Health doi: 10.1007/s00038-015-0690-y – volume: 150 start-page: 431 year: 1994 ident: 2021072819445740600_B123 article-title: Effects of prolonged, repeated exposure to ozone, sulfuric acid, and their combination in healthy and asthmatic volunteers publication-title: Am. J Respir Crit Care Med doi: 10.1164/ajrccm.150.2.8049826 – volume: 16 start-page: 2267 year: 1982 ident: 2021072819445740600_B182 article-title: Effect of repetitive ozone treatment on bean plants-stress ethylene production and leaf necrosis publication-title: Atmos Environ doi: 10.1016/0004-6981(82)90298-0 – volume: 192 start-page: 295 year: 2014 ident: 2021072819445740600_B152 article-title: Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.04.040 – volume: 156 start-page: 141 year: 2009 ident: 2021072819445740600_B169 article-title: Near-surface ozone levels and trends at rural stations in France over the 1995–2003 period publication-title: Environ Mon and Assess doi: 10.1007/s10661-008-0470-8 – year: 1985 ident: 2021072819445740600_B194 – volume: 47 start-page: 2304 year: 2013 ident: 2021072819445740600_B175 article-title: A Direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard publication-title: Environ Sci & Technol doi: 10.1021/es303674e – volume: 15 start-page: 265 year: 2003 ident: 2021072819445740600_B1 article-title: Comparison of chamber and face-mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses publication-title: Inhal Toxicol doi: 10.1080/08958370304505 – volume: 96 start-page: 284 year: 2014 ident: 2021072819445740600_B47 article-title: Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.07.045 – volume: 30 start-page: 1392 year: 2003 ident: 2021072819445740600_B222 article-title: Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model publication-title: Geophys Res Lett doi: 10.1029/2002GL016708 – volume: 15 start-page: 8889 issue: 15 year: 2015 ident: 2021072819445740600_B138 article-title: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer publication-title: Atmos Chem Phys doi: 10.5194/acp-15-8889-2015 – volume: 6 start-page: 51 year: 2006 ident: 2021072819445740600_B93 article-title: Can we explain the trends in European ozone levels? publication-title: Atmos Chem Phys doi: 10.5194/acp-6-51-2006 – volume: 165 start-page: 147 year: 2012 ident: 2021072819445740600_B65 article-title: Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield publication-title: Environ Pollut doi: 10.1016/j.envpol.2012.02.026 – volume: 121 year: 2016 ident: 2021072819445740600_B29 article-title: Interhemispheric differences in seasonal cycles of tropospheric ozone in the marine boundary layer: Observation model comparisons publication-title: J. Geophys Res. Atmos doi: 10.1002/2016JD024836 – volume: 15 start-page: 10033 year: 2015 ident: 2021072819445740600_B220 article-title: Impact of 2050 climate change on North American wildfire: consequences for ozone air quality publication-title: Atmos Chem Phys doi: 10.5194/acp-15-10033-2015 – volume: 19 start-page: 1135 year: 1985 ident: 2021072819445740600_B80 article-title: A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth publication-title: Atmos Environ doi: 10.1016/0004-6981(85)90198-2 – volume: 386 start-page: 2287 year: 2015 ident: 2021072819445740600_B52 article-title: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013 publication-title: Lancet doi: 10.1016/S0140-6736(15)00128-2 – volume: 69 start-page: 192 year: 1995 ident: 2021072819445740600_B117 article-title: Ambient ozone and adverse crop response: an evaluation of north American and European data as they relate to exposure indices and critical levels publication-title: J Appl Bot – volume: 174 start-page: 109 year: 2007 ident: 2021072819445740600_B132 article-title: Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02018.x – volume: 38 start-page: 28 year: 1988 ident: 2021072819445740600_B51 article-title: Pulmonary function and symptom responses after 6.6-hour exposure to 0.12 ppm ozone with moderate exercise publication-title: J Air Waste Manag Assoc doi: 10.1080/08940630.1988.10466349 – volume: 18 start-page: 107 year: 1982 ident: 2021072819445740600_B78 article-title: Techniques of trend analysis for monthly water quality data publication-title: Water Resour Res doi: 10.1029/WR018i001p00107 – volume: 150 start-page: 642 year: 1994 ident: 2021072819445740600_B71 article-title: Lung function response of healthy women after sequential exposures to NO2 and O3 publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.150.3.8087332 – volume: 90 start-page: 10463 year: 1985 ident: 2021072819445740600_B124 article-title: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence publication-title: J Geophys Res doi: 10.1029/JD090iD06p10463 – volume: 112 start-page: 312 issue: D14 year: 2007 ident: 2021072819445740600_B184 article-title: Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States publication-title: J Geophys Res doi: 10.1029/2006JD008262 – ident: 2021072819445740600_B162 – volume: 8 start-page: 690 year: 2015 ident: 2021072819445740600_B206 article-title: Rapid increases in tropospheric ozone production and export from China publication-title: Nature Geoscience doi: 10.1038/ngeo2493 – ident: 2021072819445740600_B200 – year: 2013 ident: 2021072819445740600_B55 – volume: 33 start-page: 810 issue: L13 year: 2006 ident: 2021072819445740600_B204 article-title: Are decadal anthropogenic emission reductions in Europe consistent with surface ozone observations? publication-title: Geophys Res Lett doi: 10.1029/2006GL026080 – volume: 12 start-page: 6983 year: 2012 ident: 2021072819445740600_B103 article-title: Can a global model reproduce observed trends in summertime surface ozone levels? publication-title: Atmos Chem Phys doi: 10.5194/acp-12-6983-2012 – volume: 40 start-page: 3156 year: 2006 ident: 2021072819445740600_B148 article-title: Long-term changes in tropospheric ozone publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2006.01.029 – volume: 111 start-page: 470 year: 1986 ident: 2021072819445740600_B141 article-title: Response of beans to simulated ambient and uniform ozone distributions with equal peak concentration publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.111.3.470 – volume: 53 start-page: 1397 year: 1950 ident: 2021072819445740600_B188 article-title: A rank-invariant method of linear and polynomial regression analysis, III publication-title: Proc Kon Ned Aka. v. Wetensch A – volume: 158 start-page: 536 year: 2010 ident: 2021072819445740600_B26 article-title: Geostatistics as a validation tool for setting ozone standards for durum wheat publication-title: Environ Pollut doi: 10.1016/j.envpol.2009.08.006 – volume: 63 start-page: 1379 year: 1968 ident: 2021072819445740600_B167 article-title: Estimates of the regression coefficient based on Kendall’s tau publication-title: J Amer Statist Ass doi: 10.1080/01621459.1968.10480934 – year: 2017 ident: 2021072819445740600_B165 article-title: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations publication-title: Elementa doi: 10.1525/elementa.244 – volume: 53 start-page: 63 year: 1988 ident: 2021072819445740600_B143 article-title: Selecting ozone exposure statistics for determining crop yield loss from air pollutants publication-title: Environ Pollut doi: 10.1016/0269-7491(88)90025-5 – volume: 13 start-page: 28 issue: 1 year: 2010 ident: 2021072819445740600_B99 article-title: Setting national emission ceilings for air pollutants: policy lessons from an ex-post evaluation of the Gothenburg Protocol publication-title: Environ Sci Poli doi: 10.1016/j.envsci.2009.09.003 – volume: 14 start-page: 6089 year: 2014 ident: 2021072819445740600_B224 article-title: Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011 publication-title: Atmos Chem Phys doi: 10.5194/acp-14-6089-2014 – volume: 14 start-page: 666 issue: 2 year: 2012 ident: 2021072819445740600_B163 article-title: Update of long-term trends analysis of ambient 8-h ozone and precursor monitoring data in the South Central U.S.; encouraging news publication-title: J Environ. Monit doi: 10.1039/c2em10862c – start-page: PB92 year: 1992 ident: 2021072819445740600_B197 – volume: 32 start-page: 276A year: 1998 ident: 2021072819445740600_B116 article-title: The difficult challenge of attaining EPA’s new ozone standard publication-title: Environ Sci Technol doi: 10.1021/es983569x – volume: 9 start-page: 875 year: 2016 ident: 2021072819445740600_B225 article-title: Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions publication-title: Nature Geoscience doi: 10.1038/ngeo2827 – ident: 2021072819445740600_B25 – volume: 53 start-page: 43 year: 1988 ident: 2021072819445740600_B107 article-title: Evaluation of ozone exposure indices in exposure–response modeling publication-title: Environ Poll doi: 10.1016/0269-7491(88)90024-3 – ident: 2021072819445740600_B202 – volume: 21 start-page: 561 year: 1987 ident: 2021072819445740600_B114 article-title: Establishing standards to protect vegetation – Ozone exposure/dose considerations publication-title: Atmos Environ doi: 10.1016/0004-6981(87)90038-2 – start-page: 65292 year: 2015 ident: 2021072819445740600_B203 article-title: National Ambient Air Quality Standards for Ozone, 40 CFR Part 50, 51, 52, 53, and 58 – volume: 42 start-page: 8719 year: 2015 ident: 2021072819445740600_B122 article-title: Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America publication-title: Geophys Res Lett doi: 10.1002/2015GL065311 – volume: 185 start-page: 178 year: 2014 ident: 2021072819445740600_B62 article-title: Setting ozone critical levels for protecting horticultural Mediterranean crops: Case study of tomato publication-title: Environ Pollut doi: 10.1016/j.envpol.2013.10.033 – volume: 158 start-page: 2664 year: 2010 ident: 2021072819445740600_B153 article-title: Ozone exposure and stomatal sluggishness in different plant physiognomic classes publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.04.024 – year: 2013 ident: 2021072819445740600_B81 – ident: 2021072819445740600_B157 – volume: 28 start-page: 9 year: 1994 ident: 2021072819445740600_B150 article-title: Surface ozone measurements from a global network publication-title: Atmos Environ doi: 10.1016/1352-2310(94)90019-1 – volume: 9 start-page: 5027 year: 2009 ident: 2021072819445740600_B160 article-title: The influence of foreign vs. North American emissions on surface ozone in the US publication-title: Atmos Chem Phys doi: 10.5194/acp-9-5027-2009 – year: 2017 ident: 2021072819445740600_B57 article-title: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to climate change and global model evaluation publication-title: Elem Sci Anth – volume: 101 start-page: 209 year: 2015 ident: 2021072819445740600_B34 article-title: Emission reductions and urban ozone responses under more stringent US standards publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.11.018 – volume: 40 start-page: 2369 year: 2017 ident: 2021072819445740600_B119 article-title: Subtropical woody species are more tolerant to ozone than temperate species: a meta-analysis publication-title: Plant Cell and Environment doi: 10.1111/pce.13043 – volume: 100 start-page: 9315 issue: D5 year: 1995 ident: 2021072819445740600_B88 article-title: Seasonal transition from NOx- to hydrocarbon-limited conditions for ozone production over the Eastern United States in September publication-title: J Geophys Res-Atmos doi: 10.1029/94JD03125 – volume: 109 start-page: 163 year: 2011 ident: 2021072819445740600_B63 article-title: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period publication-title: Climatic Change doi: 10.1007/s10584-011-0154-1 – volume: 207 start-page: 413 year: 2015 ident: 2021072819445740600_B208 article-title: Diurnal variation of apoplastic ascorbate in winter wheat leaves in relation to ozone detoxification publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.09.040 – volume: 79 start-page: 705 year: 2013 ident: 2021072819445740600_B171 article-title: Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2013.07.042 – year: 1966 ident: 2021072819445740600_B214 – volume: 109 start-page: 282 year: 2015 ident: 2021072819445740600_B32 article-title: Comparison of background ozone estimates over the western United States based on two separate model methodologies publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.01.005 – volume: 2 start-page: 687 year: 2009 ident: 2021072819445740600_B76 article-title: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux publication-title: Nature Geosci doi: 10.1038/ngeo604 – year: 1992 ident: 2021072819445740600_B90 – volume: 167 start-page: 986 issue: 8 year: 2008 ident: 2021072819445740600_B9 article-title: Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities publication-title: Am J Epidemiol doi: 10.1093/aje/kwm396 – volume: 192 start-page: 129 year: 2014 ident: 2021072819445740600_B15 article-title: Growth losses in Swiss forests caused by ozone: Epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.05.016 – volume: 33 start-page: 1821 year: 1999 ident: 2021072819445740600_B173 article-title: The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments publication-title: Atmos Environ doi: 10.1016/S1352-2310(98)00345-8 – volume: 102 start-page: 302 year: 2015 ident: 2021072819445740600_B4 article-title: Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.12.001 – volume: 50 start-page: 79 year: 2016 ident: 2021072819445740600_B13 article-title: Ambient air pollution exposure estimation for the Global Burden of Disease 2013 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b03709 – volume: 40 start-page: 1869 issue: 10 year: 2006 ident: 2021072819445740600_B142 article-title: A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.10.064 – volume: 2 start-page: 000029 year: 2014 ident: 2021072819445740600_B23 article-title: Global distribution and trends of tropospheric ozone: An observation-based review publication-title: Elementa: Science of the Anthropocene doi: 10.12952/journal.elementa.000029 – volume: 12 start-page: 437 issue: 1 year: 2012 ident: 2021072819445740600_B211 article-title: Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005 publication-title: Atmos Chem Phys doi: 10.5194/acp-12-437-2012 – volume: 11 start-page: 567 year: 2011 ident: 2021072819445740600_B79 article-title: An analysis of long-term regional-scale ozone simulations over the Northeastern United States: variability and trends publication-title: Atmos Chem Phys doi: 10.5194/acp-11-567-2011 – ident: 2021072819445740600_B58 – volume: 13 start-page: 195 year: 2010 ident: 2021072819445740600_B31 article-title: Ozone in Central England: the impact of 20 years of precursor emission controls in Europe publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2010.02.001 – volume: 113 start-page: 302 issue: D06 year: 2008 ident: 2021072819445740600_B215 article-title: Effects of 2000–2050 global change on ozone air quality in the United States publication-title: J Geophys Res doi: 10.1029/2007JD008917 – volume: 7 issue: 6 year: 2012 ident: 2021072819445740600_B85 article-title: Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness publication-title: PLoS ONE doi: 10.1371/journal.pone.0039270 – volume: 65 start-page: 645 year: 2015 ident: 2021072819445740600_B46 article-title: Air quality and climate connections publication-title: J Air Waste Manag doi: 10.1080/10962247.2015.1040526 – volume: 206 start-page: 163 year: 2015 ident: 2021072819445740600_B18 article-title: New flux based dose-response relationships for ozone for European forest tree species publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.06.033 – volume: 40 start-page: 1631 issue: 8 year: 2013 ident: 2021072819445740600_B156 article-title: Lower tropospheric ozone at northern midlatitudes: Changing seasonal cycle publication-title: Geophys Res Lett doi: 10.1002/grl.50303 – volume: 29 start-page: 989 year: 1995 ident: 2021072819445740600_B146 article-title: Ozone exposure–response relationships for mixtures of perennial ryegrass and white clover depend on ozone exposure patterns publication-title: Atmos Environ doi: 10.1016/1352-2310(94)00368-U – volume: 28 start-page: 2727 year: 1994 ident: 2021072819445740600_B145 article-title: Response of Phaseolus vulgaris L. to differing ozone regimes having identical total exposure publication-title: Atmos Environ doi: 10.1016/1352-2310(94)90444-8 – volume: 144 start-page: 317 year: 2003 ident: 2021072819445740600_B102 article-title: Effects of two different ozone exposure regimes on chlorophyll and sucrose content of leaves and yield parameters of sugar beet (Beta Vulgaris L.) and rape (Brassica Napus L.) publication-title: Water Air Soil Poll doi: 10.1023/A:1022913116566 – volume: 46 start-page: 994 year: 2007 ident: 2021072819445740600_B59 article-title: Observation-based assessment of the impact of nitrogen oxides emissions reductions on ozone air quality over the Eastern United States publication-title: J Appl Meteo Clim doi: 10.1175/JAM2523.1 – volume: 43 start-page: 2919 year: 2009 ident: 2021072819445740600_B73 article-title: Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2009.03.011 – volume: 22 start-page: 160 issue: 02 year: 2010 ident: 2021072819445740600_B129 article-title: Prediction of ozone-induced lung function responses in humans publication-title: Inhal Toxic doi: 10.3109/08958370903089557 – volume: 152 start-page: 123 year: 2017 ident: 2021072819445740600_B113 article-title: Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.12.025 – volume: 174 start-page: 125 year: 2007 ident: 2021072819445740600_B133 article-title: Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.01970.x – volume: 162 start-page: 72 year: 2012 ident: 2021072819445740600_B166 article-title: Ozone weekend effect in Santiago, Chile publication-title: Environ Pollut doi: 10.1016/j.envpol.2011.10.019 – ident: 2021072819445740600_B201 – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: 2021072819445740600_B101 – volume: 187 start-page: 11 issue: 5 year: 2015 ident: 2021072819445740600_B159 article-title: Evaluation of air quality in Chengdu, Sichuan Basin, China: are China’s air quality standards sufficient yet? publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4500-z |
| SSID | ssj0001072422 |
| Score | 2.5349002 |
| Snippet | Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of... Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1 |
| SubjectTerms | ground-level ozone metrics ozone distributions shifting ozone concentrations trends tropospheric ozone |
| Title | Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30345319 https://www.proquest.com/docview/2125296775 https://pubmed.ncbi.nlm.nih.gov/PMC6192432 https://doaj.org/article/62549afad1264bae918c240ac87d976e |
| Volume | 6 |
| WOSCitedRecordID | wos000429374000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2325-1026 dateEnd: 20201231 omitProxy: false ssIdentifier: ssj0001072422 issn: 2325-1026 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2325-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001072422 issn: 2325-1026 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VqkhcEC2v8KhcCSQQTXfjPOxwo1VbLlQcirS3aOw46koli5otAg78dmZs72oXgXrpJYpiR7Ey48w38fj7AF6VpUbboUyrulNpgRpTQ4lzWiuTO4LQRdG2XmxCnZ3pyaT-vCL1xTVhgR44vLhRxRkMdthmFLoNujrTlqIQWq1aCqWOv76EelaSKf93Zawo9shY6V7KcuRiNfaB5KqtlRjkqfr_hS__LpNciTsnD-B-BIziQxjoNmy4fgfunnpB3p87sB0n5yDeRAbptw_hxzlrHwzMGDC1YvZr1juBSwpOEdYJ3ovA9x_bv7K0lh0EgVhhL6cEZJ0Iu4L3hRfyE2HL5L7AvhUs_DWizDUQQYtIGXTxCL6cHJ8ffUyjxEJqy6yap0zfrnPMa-uQZn5HYLClFM0UY2sqlNRJS1caAmmEY3BcGJPn2Jlcy9pIrbv8MWz2NMinIKoMsXAdZp1BMhTdlDF5naQzQxhinMC7xUtvbOQfZxmMy4bzEDJRszBRQyZK4PWy97fAu_Gffodsv2UfZsv2F8iHmuhDzU0-lMDewvoNzS5eMsHeza6HhgI7L0wrVSbwJHjD8lEU_Av-giWg1vxkbSzrLf30wjN4-7Q3l89uY_DP4R6BOB1-C72AzfnVtXsJW_b7fDpc7cIdNdG7fnLQ8dPv4z_OiRn5 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropospheric+ozone+assessment+report%3A+Global+ozone+metrics+for+climate+change%2C+human+health%2C+and+crop%2Fecosystem+research&rft.jtitle=Elementa+%28Washington%2C+D.C.%29&rft.au=Allen+S.+Lefohn&rft.au=Christopher+S.+Malley&rft.au=Luther+Smith&rft.au=Benjamin+Wells&rft.date=2018&rft.pub=BioOne&rft.eissn=2325-1026&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1525%2Felementa.279&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_62549afad1264bae918c240ac87d976e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-1026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-1026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-1026&client=summon |