MnAl Layered Double Hydroxide Nanoparticles as a Dual‐Functional Platform for Magnetic Resonance Imaging and siRNA Delivery
Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐...
Uloženo v:
| Vydáno v: | Chemistry : a European journal Ročník 23; číslo 57; s. 14299 - 14306 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
12.10.2017
|
| Témata: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm−1 s−1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4 mm−1 s−1). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.
Multifunctional nanoparticles: Dual‐functional manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were fabricated by a co‐precipitation method. Their pH‐sensitive behaviour significantly enhanced T1‐weighted magnetic resonance imaging, which is highly beneficial for the detection of tumour cells and tissues. Anticancer therapeutics carried by Mn‐LDH more efficiently killed cancer cells than their free counterparts (see figure). |
|---|---|
| AbstractList | Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T
-weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r
value of 4.47 mm
s
, which is even higher than that of commercial contrast agents based on Gd complexes (r
=3.4 mm
s
). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T 1 ‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r 1 value of 4.47 m m −1 s −1 , which is even higher than that of commercial contrast agents based on Gd complexes ( r 1 =3.4 m m −1 s −1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1-weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47mm-1s-1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4mm-1s-1). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1 -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm-1 s-1 , which is even higher than that of commercial contrast agents based on Gd complexes (r1 =3.4 mm-1 s-1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1 -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm-1 s-1 , which is even higher than that of commercial contrast agents based on Gd complexes (r1 =3.4 mm-1 s-1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm−1 s−1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4 mm−1 s−1). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles: Dual‐functional manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were fabricated by a co‐precipitation method. Their pH‐sensitive behaviour significantly enhanced T1‐weighted magnetic resonance imaging, which is highly beneficial for the detection of tumour cells and tissues. Anticancer therapeutics carried by Mn‐LDH more efficiently killed cancer cells than their free counterparts (see figure). |
| Author | Xu, Zhi Ping Li, Bei Zuo, Huali Gu, Zi Chen, Weiyu Xu, Kewei Cooper, Helen |
| Author_xml | – sequence: 1 givenname: Huali orcidid: 0000-0002-7308-5434 surname: Zuo fullname: Zuo, Huali organization: The University of Queensland – sequence: 2 givenname: Weiyu orcidid: 0000-0003-4436-2743 surname: Chen fullname: Chen, Weiyu organization: The University of Queensland – sequence: 3 givenname: Bei surname: Li fullname: Li, Bei organization: The University of Queensland – sequence: 4 givenname: Kewei surname: Xu fullname: Xu, Kewei organization: The University of Queensland – sequence: 5 givenname: Helen orcidid: 0000-0003-4590-9384 surname: Cooper fullname: Cooper, Helen organization: University of New South Wales – sequence: 6 givenname: Zi surname: Gu fullname: Gu, Zi email: zi.gu1@unsw.edu.au organization: The University of Queensland – sequence: 7 givenname: Zhi Ping orcidid: 0000-0001-6070-5035 surname: Xu fullname: Xu, Zhi Ping email: gordonxu@uq.edu.au organization: The University of Queensland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28762580$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFrFDEUx4NU7LZ69SgBL15mzSSTmeS47LZuYbdK0XPIZt6sKZlkTWaqcxD8CH5GP4kzbKtQEOHx3iG_34O8_xk68cEDQi9zMs8JoW_NZ2jnlOQVoYLxJ2iWc5pnrCr5CZoRWVRZyZk8RWcp3RJCZMnYM3RKRVVSLsgMfd_6hcMbPUCEGq9Cv3OA10MdwzdbA77WPhx07KxxkLAeC6967X79-HnZe9PZ4LXDH5zumhBbPDa81XsPI49vII2v3gC-avXe-j3WvsbJ3lwv8AqcvYM4PEdPG-0SvLif5-jT5cXH5TrbvH93tVxsMsPzkmcgmNGibopCECF5QwwlnAE1IJnJ66ooZQ2MkB0lwBgzQlTCiAq0NFUhd8DO0Zvj3kMMX3pInWptMuCc9hD6pHJJOa3KkpUj-voRehv6OH5zogopxNRH6tU91e9aqNUh2lbHQT0cdgSKI2BiSClCo4zt9HSwLmrrVE7UlJ-a8lN_8hu1-SPtYfM_BXkUvloHw39otVxfbP-6vwHJp63e |
| CitedBy_id | crossref_primary_10_3390_min10020172 crossref_primary_10_1002_EXP_20220002 crossref_primary_10_1088_1748_605X_ad1baf crossref_primary_10_3390_ma15227977 crossref_primary_10_1002_chem_201802851 crossref_primary_10_1007_s43207_020_00090_5 crossref_primary_10_1016_j_matlet_2021_129331 crossref_primary_10_1016_j_apsb_2024_09_012 crossref_primary_10_1002_tcr_201700102 crossref_primary_10_1002_advs_201801155 crossref_primary_10_1002_advs_202002085 crossref_primary_10_1007_s10876_022_02226_5 crossref_primary_10_1038_s41392_022_01298_z crossref_primary_10_1016_j_ccr_2024_216109 crossref_primary_10_3390_nano9101404 crossref_primary_10_1002_wnan_1679 crossref_primary_10_1016_j_jssc_2018_08_043 crossref_primary_10_1016_j_saa_2020_118618 crossref_primary_10_1007_s11426_020_9933_4 crossref_primary_10_1246_bcsj_20190270 crossref_primary_10_1016_j_addr_2021_114031 crossref_primary_10_1016_j_partic_2021_06_005 crossref_primary_10_1016_j_cej_2023_141640 crossref_primary_10_1007_s42860_019_0006_z crossref_primary_10_1016_j_biomaterials_2018_05_055 crossref_primary_10_1016_j_cclet_2021_12_033 crossref_primary_10_1088_1361_6528_aaf095 crossref_primary_10_1002_anbr_202100123 crossref_primary_10_1016_j_clay_2022_106514 crossref_primary_10_3389_fonc_2021_707618 crossref_primary_10_2147_IJN_S426311 crossref_primary_10_1016_j_cej_2024_149961 crossref_primary_10_1016_j_addr_2022_114360 crossref_primary_10_1002_chem_201803093 crossref_primary_10_1140_epjp_s13360_022_02993_0 crossref_primary_10_1016_j_matchemphys_2019_122232 crossref_primary_10_1021_acsbiomaterials_8b01618 crossref_primary_10_1016_j_jcis_2018_03_006 crossref_primary_10_1002_admi_202101914 crossref_primary_10_1016_j_carbon_2018_07_058 crossref_primary_10_1039_D2CS00236A crossref_primary_10_1002_tcr_201700091 crossref_primary_10_1186_s12951_021_01096_9 crossref_primary_10_1002_smtd_201900343 crossref_primary_10_1002_sstr_202000112 crossref_primary_10_3390_biomedicines10061374 crossref_primary_10_1002_adma_202407914 crossref_primary_10_1016_j_addr_2022_114590 crossref_primary_10_3390_ijms26136293 |
| Cites_doi | 10.1038/nmat1251 10.1016/j.clay.2010.12.021 10.1016/j.biomaterials.2013.12.095 10.1152/ajpcell.1994.267.1.C195 10.1148/radiol.2502080498 10.1002/ange.200790130 10.1021/ja312610j 10.1517/17425240903130585 10.1351/pac200678091771 10.1039/C5RA18165H 10.1039/C6CC09510K 10.1002/anie.200352400 10.1002/jmri.22075 10.1021/ja056652a 10.1016/j.biomaterials.2010.03.050 10.1016/j.jri.2015.05.008 10.1039/c2nr33576j 10.1016/j.clay.2009.11.032 10.1002/ange.201104407 10.1021/jp062281o 10.1126/science.1157581 10.1016/j.jpcs.2007.10.140 10.1039/C5CC04376J 10.1021/ja048427j 10.1259/bjr.20150207 10.1021/cr980440x 10.1016/S1476-5586(03)80005-2 10.1021/mp100228v 10.1016/j.jinorgbio.2006.09.023 10.1016/j.biomaterials.2010.12.057 10.1016/j.biomaterials.2011.05.083 10.1016/j.biomaterials.2012.06.059 10.1002/adma.201402572 10.1002/anie.200790130 10.1021/cm703602t 10.1158/1078-0432.CCR-12-1414 10.1038/ncpneph0660 10.1002/smll.201670058 10.1002/zaac.200801287 10.1002/adma.201700373 10.1146/annurev-bioeng-071812-152409 10.1016/j.addr.2012.06.006 10.1021/cm048085g 10.1002/adma.200502665 10.1021/ar2000138 10.1002/ange.201106180 10.1038/nrm883 10.1021/jp048229e 10.1016/0920-5861(91)80068-K 10.1126/science.1077194 10.1021/nn1019779 10.1038/32588 10.1016/j.jconrel.2015.01.005 10.1039/c3cc45714a 10.1016/j.neuro.2003.08.006 10.1002/anie.201106180 10.1021/acsnano.5b05575 10.1016/j.jconrel.2008.05.021 10.1016/j.addr.2010.04.009 10.1021/mp200292c 10.1007/s12013-011-9201-9 10.1177/030089160809400219 10.1016/j.biomaterials.2010.01.010 10.1016/j.actbio.2015.11.036 10.1021/cm980523u 10.1021/nl902715v 10.1055/s-0033-1356403 10.1039/b719817e 10.1002/ange.200352400 10.1021/cr300358b 10.1002/anie.201104407 10.1021/ar7001667 10.1016/j.addr.2010.08.004 10.1016/j.biomaterials.2012.11.054 |
| ContentType | Journal Article |
| Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.201702835 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 14306 |
| ExternalDocumentID | 28762580 10_1002_chem_201702835 CHEM201702835 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Health and Medical Research Council (AU) funderid: APP1073591 – fundername: Australian Research Council funderid: FT120100813 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION O8X CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c5165-e83ca8df4480895f0c2053e2ce93c1d7469de300b20e333c8878c87ea9c749be3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412819400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Oct 02 04:18:28 EDT 2025 Sat Nov 29 14:59:54 EST 2025 Thu Apr 03 07:08:33 EDT 2025 Tue Nov 18 22:35:30 EST 2025 Sat Nov 29 07:14:59 EST 2025 Wed Jan 22 17:01:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 57 |
| Keywords | theranostics layered compounds nanoparticles drug delivery nuclear magnetic resonance |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5165-e83ca8df4480895f0c2053e2ce93c1d7469de300b20e333c8878c87ea9c749be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4436-2743 0000-0003-4590-9384 0000-0001-6070-5035 0000-0002-7308-5434 |
| OpenAccessLink | http://hdl.handle.net/1959.4/unsworks_55721 |
| PMID | 28762580 |
| PQID | 1949881949 |
| PQPubID | 986340 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1925276636 proquest_journals_1949881949 pubmed_primary_28762580 crossref_citationtrail_10_1002_chem_201702835 crossref_primary_10_1002_chem_201702835 wiley_primary_10_1002_chem_201702835_CHEM201702835 |
| PublicationCentury | 2000 |
| PublicationDate | October 12, 2017 |
| PublicationDateYYYYMMDD | 2017-10-12 |
| PublicationDate_xml | – month: 10 year: 2017 text: October 12, 2017 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 101 2004; 126 2006; 78 1991; 11 2004; 25 2011; 61 2004; 3 2014; 26 2016; 30 2012; 18 2009; 635 2013; 5 2010; 62 1998; 392 1994; 267 2013; 15 2015; 88 2008; 69 2011; 63 1999; 99 1999; 11 2013; 113 2003; 5 2007; 3 2016; 114 2008; 20 2006; 128 2010; 7 2012; 64 2010; 31 2004 2004; 43 116 2015; 5 2013; 49 2015; 51 2008; 18 2002; 298 2006; 110 2006; 18 2002; 3 2011; 32 2017; 29 2009; 250 2015; 205 2008; 94 2008; 321 2015; 9 2004; 108 2011; 5 2012; 33 2011; 8 2016; 12 2017; 53 2010; 48 2013; 34 2011; 51 2007 2007; 46 119 2011; 44 2009; 9 2013; 135 2014; 35 2011 2011; 50 123 2009; 6 2008; 41 2013 2005; 17 2008; 130 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_60_2 e_1_2_7_81_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_87_1 e_1_2_7_1_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_90_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_37_3 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_80_1 e_1_2_7_18_2 e_1_2_7_82_2 e_1_2_7_84_1 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_12_2 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 Häfeli U. (e_1_2_7_13_2) 2013 e_1_2_7_91_1 e_1_2_7_72_2 e_1_2_7_70_1 e_1_2_7_53_1 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_78_2 e_1_2_7_36_3 e_1_2_7_38_2 |
| References_xml | – volume: 51 start-page: 330 year: 2011 end-page: 334 publication-title: Appl. Clay Sci. – volume: 250 start-page: 371 year: 2009 end-page: 377 publication-title: Radiology – volume: 11 start-page: 298 year: 1999 end-page: 302 publication-title: Chem. Mater. – volume: 3 start-page: 600 year: 2002 end-page: 614 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 7 start-page: 1899 year: 2010 end-page: 1912 publication-title: Mol. Pharmac. – volume: 51 start-page: 11587 year: 2015 end-page: 11590 publication-title: Chem. Commun. – volume: 635 start-page: 1470 year: 2009 end-page: 1475 publication-title: Zeitschr. Anorg. Allgem. Chemie – volume: 41 start-page: 479 year: 2008 end-page: 487 publication-title: Acc. Chem. Res. – volume: 108 start-page: 13594 year: 2004 end-page: 13598 publication-title: J. Phys. Chem. B – volume: 64 start-page: 1394 year: 2012 end-page: 1416 publication-title: Adv. Drug Delivery Rev. – volume: 5 start-page: 2045 year: 2013 end-page: 2054 publication-title: Nanoscale – volume: 69 start-page: 1528 year: 2008 end-page: 1532 publication-title: J. Phys. Chem. Solids – volume: 34 start-page: 2069 year: 2013 end-page: 2076 publication-title: Biomaterials – volume: 50 123 start-page: 12505 12713 year: 2011 2011 end-page: 12509 12717 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 3106 year: 2011 end-page: 3114 publication-title: Biomaterials – volume: 88 start-page: 20150207 year: 2015 publication-title: Brit. J. Radiol. – volume: 33 start-page: 7126 year: 2012 end-page: 7137 publication-title: Biomaterials – volume: 78 start-page: 1771 year: 2006 end-page: 1779 publication-title: Pure Appl. Chem. – volume: 46 119 start-page: 5247 5341 year: 2007 2007 end-page: 5247 5341 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 321 start-page: 113 year: 2008 end-page: 117 publication-title: Science – volume: 5 start-page: 97675 year: 2015 end-page: 97680 publication-title: RSC Adv. – volume: 128 start-page: 36 year: 2006 end-page: 37 publication-title: J. Am. Chem. Soc. – volume: 267 start-page: 195 year: 1994 end-page: 203 publication-title: Am. J. Physiol. Cell Physiol. – volume: 9 start-page: 11455 year: 2015 end-page: 11461 publication-title: ACS Nano – volume: 35 start-page: 3331 year: 2014 end-page: 3339 publication-title: Biomaterials – volume: 18 start-page: 4889 year: 2012 end-page: 4894 publication-title: Clin. Cancer Res. – volume: 30 start-page: 378 year: 2016 end-page: 387 publication-title: Acta Biomater. – volume: 6 start-page: 907 year: 2009 end-page: 922 publication-title: Expert Opinion on Drug Delivery – volume: 99 start-page: 2293 year: 1999 end-page: 2352 publication-title: Chem. Rev. – volume: 110 start-page: 16923 year: 2006 end-page: 16929 publication-title: J. Phys. Chem. B – volume: 298 start-page: 1759 year: 2002 end-page: 1762 publication-title: Science – volume: 17 start-page: 1055 year: 2005 end-page: 1062 publication-title: Chem. Mater. – volume: 3 start-page: 654 year: 2007 end-page: 668 publication-title: Nature Clinical Practice Nephrology – volume: 130 start-page: 86 year: 2008 end-page: 94 publication-title: J. Controlled Release – volume: 3 start-page: 891 year: 2004 end-page: 895 publication-title: Nat. Mater. – volume: 49 start-page: 10938 year: 2013 end-page: 10940 publication-title: Chem. Commun. – volume: 8 start-page: 2032 year: 2011 end-page: 2038 publication-title: Mol. Pharmac. – volume: 25 start-page: 543 year: 2004 end-page: 553 publication-title: Neurotoxicology – volume: 114 start-page: 86 year: 2016 end-page: 91 publication-title: J. Reprod. Immunol. – volume: 48 start-page: 280 year: 2010 end-page: 289 publication-title: Appl. Clay Sci. – volume: 205 start-page: 134 year: 2015 end-page: 143 publication-title: J. Controlled Release – volume: 62 start-page: 1052 year: 2010 end-page: 1063 publication-title: Adv. drug delivery rev. – volume: 5 start-page: 135 year: 2003 end-page: 145 publication-title: Neoplasia – volume: 29 start-page: 1700373 year: 2017 end-page: 1700380 publication-title: Adv. Mater. – volume: 31 start-page: 3016 year: 2010 end-page: 3022 publication-title: Biomaterials – volume: 53 start-page: 2339 year: 2017 end-page: 2342 publication-title: Chem. Commun. – volume: 31 start-page: 625 year: 2010 end-page: 631 publication-title: J. Magn. Resonance Imaging – volume: 126 start-page: 9387 year: 2004 end-page: 9398 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 12572 12780 year: 2011 2011 end-page: 12577 12785 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 4620 year: 2013 end-page: 4623 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 1115 1135 year: 2004 2004 end-page: 1117 1137 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 5455 year: 2010 end-page: 5462 publication-title: Biomaterials – volume: 32 start-page: 7234 year: 2011 end-page: 7240 publication-title: Biomaterials – volume: 61 start-page: 277 year: 2011 end-page: 287 publication-title: Cell Biochem. Biophys. – volume: 26 start-page: 7019 year: 2014 end-page: 7026 publication-title: Adv Mater – volume: 18 start-page: 2890 year: 2006 end-page: 2894 publication-title: Adv. Mater. – volume: 11 start-page: 173 year: 1991 end-page: 301 publication-title: Catal. Today – volume: 94 start-page: 264 year: 2008 publication-title: Tumori – volume: 18 start-page: 2112 year: 2008 end-page: 2120 publication-title: J. Mater. Chem. – volume: 20 start-page: 3715 year: 2008 end-page: 3722 publication-title: Chem. Mater. – volume: 392 start-page: 245 year: 1998 end-page: 252 publication-title: Nature – volume: 113 start-page: 5071 year: 2013 end-page: 5109 publication-title: Chem. Rev. – volume: 101 start-page: 225 year: 2007 end-page: 232 publication-title: J. Inorg. Biochem. – volume: 63 start-page: 136 year: 2011 end-page: 151 publication-title: Adv. Drug Delivery Rev. – volume: 15 start-page: 253 year: 2013 end-page: 282 publication-title: Ann. Rev. Biomed. Eng. – volume: 5 start-page: 3438 year: 2011 end-page: 3446 publication-title: ACS Nano – volume: 12 start-page: 1541 year: 2016 end-page: 1541 publication-title: Small – volume: 44 start-page: 1018 year: 2011 end-page: 1028 publication-title: Acc. Chem. Res. – year: 2013 – volume: 9 start-page: 4434 year: 2009 end-page: 4440 publication-title: Nano Lett. – ident: e_1_2_7_30_2 doi: 10.1038/nmat1251 – ident: e_1_2_7_34_1 – ident: e_1_2_7_45_2 doi: 10.1016/j.clay.2010.12.021 – ident: e_1_2_7_75_2 doi: 10.1016/j.biomaterials.2013.12.095 – ident: e_1_2_7_89_1 doi: 10.1152/ajpcell.1994.267.1.C195 – ident: e_1_2_7_20_1 – ident: e_1_2_7_82_2 doi: 10.1148/radiol.2502080498 – ident: e_1_2_7_22_3 doi: 10.1002/ange.200790130 – ident: e_1_2_7_54_1 doi: 10.1021/ja312610j – ident: e_1_2_7_70_1 doi: 10.1517/17425240903130585 – ident: e_1_2_7_58_2 doi: 10.1351/pac200678091771 – ident: e_1_2_7_11_1 – ident: e_1_2_7_21_2 doi: 10.1039/C5RA18165H – ident: e_1_2_7_25_1 – ident: e_1_2_7_26_2 doi: 10.1039/C6CC09510K – ident: e_1_2_7_36_2 doi: 10.1002/anie.200352400 – ident: e_1_2_7_74_1 – ident: e_1_2_7_35_2 doi: 10.1002/jmri.22075 – ident: e_1_2_7_41_1 doi: 10.1021/ja056652a – ident: e_1_2_7_65_1 doi: 10.1016/j.biomaterials.2010.03.050 – ident: e_1_2_7_19_1 doi: 10.1016/j.jri.2015.05.008 – ident: e_1_2_7_49_1 doi: 10.1039/c2nr33576j – ident: e_1_2_7_72_2 doi: 10.1016/j.clay.2009.11.032 – ident: e_1_2_7_37_3 doi: 10.1002/ange.201104407 – ident: e_1_2_7_42_1 doi: 10.1021/jp062281o – ident: e_1_2_7_64_2 doi: 10.1126/science.1157581 – ident: e_1_2_7_78_2 doi: 10.1016/j.jpcs.2007.10.140 – ident: e_1_2_7_27_2 doi: 10.1039/C5CC04376J – ident: e_1_2_7_52_2 doi: 10.1021/ja048427j – ident: e_1_2_7_5_1 doi: 10.1259/bjr.20150207 – ident: e_1_2_7_16_1 – ident: e_1_2_7_14_1 doi: 10.1021/cr980440x – ident: e_1_2_7_88_1 doi: 10.1016/S1476-5586(03)80005-2 – ident: e_1_2_7_7_2 doi: 10.1021/mp100228v – ident: e_1_2_7_68_2 doi: 10.1016/j.jinorgbio.2006.09.023 – ident: e_1_2_7_86_1 doi: 10.1016/j.biomaterials.2010.12.057 – ident: e_1_2_7_87_1 doi: 10.1016/j.biomaterials.2011.05.083 – ident: e_1_2_7_63_2 doi: 10.1016/j.biomaterials.2012.06.059 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201402572 – ident: e_1_2_7_22_2 doi: 10.1002/anie.200790130 – ident: e_1_2_7_46_1 – ident: e_1_2_7_43_1 – ident: e_1_2_7_57_2 doi: 10.1021/cm703602t – ident: e_1_2_7_8_2 doi: 10.1158/1078-0432.CCR-12-1414 – ident: e_1_2_7_18_2 doi: 10.1038/ncpneph0660 – ident: e_1_2_7_33_2 doi: 10.1002/smll.201670058 – ident: e_1_2_7_44_2 doi: 10.1002/zaac.200801287 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201700373 – ident: e_1_2_7_91_1 doi: 10.1146/annurev-bioeng-071812-152409 – ident: e_1_2_7_62_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_9_1 doi: 10.1016/j.addr.2012.06.006 – ident: e_1_2_7_60_2 doi: 10.1021/cm048085g – ident: e_1_2_7_83_1 doi: 10.1002/adma.200502665 – ident: e_1_2_7_56_2 doi: 10.1021/jp062281o – ident: e_1_2_7_59_1 – ident: e_1_2_7_2_2 doi: 10.1021/ar2000138 – ident: e_1_2_7_17_3 doi: 10.1002/ange.201106180 – ident: e_1_2_7_85_1 doi: 10.1038/nrm883 – ident: e_1_2_7_32_2 doi: 10.1021/jp048229e – volume-title: Scientific and Clinical Applications of Magnetic Carriers year: 2013 ident: e_1_2_7_13_2 – ident: e_1_2_7_47_2 doi: 10.1016/0920-5861(91)80068-K – ident: e_1_2_7_71_1 – ident: e_1_2_7_31_2 doi: 10.1126/science.1077194 – ident: e_1_2_7_38_2 doi: 10.1021/nn1019779 – ident: e_1_2_7_79_2 doi: 10.1038/32588 – ident: e_1_2_7_24_1 doi: 10.1016/j.jconrel.2015.01.005 – ident: e_1_2_7_28_2 doi: 10.1039/c3cc45714a – ident: e_1_2_7_1_1 – ident: e_1_2_7_67_2 doi: 10.1016/j.neuro.2003.08.006 – ident: e_1_2_7_17_2 doi: 10.1002/anie.201106180 – ident: e_1_2_7_23_1 doi: 10.1021/acsnano.5b05575 – ident: e_1_2_7_55_1 – ident: e_1_2_7_73_2 doi: 10.1016/j.jconrel.2008.05.021 – ident: e_1_2_7_4_1 doi: 10.1016/j.addr.2010.04.009 – ident: e_1_2_7_66_1 – ident: e_1_2_7_84_1 doi: 10.1021/mp200292c – ident: e_1_2_7_76_2 doi: 10.1007/s12013-011-9201-9 – ident: e_1_2_7_77_1 – ident: e_1_2_7_10_1 doi: 10.1177/030089160809400219 – ident: e_1_2_7_80_1 – ident: e_1_2_7_3_2 doi: 10.1016/j.biomaterials.2010.01.010 – ident: e_1_2_7_69_2 doi: 10.1016/j.actbio.2015.11.036 – ident: e_1_2_7_48_2 doi: 10.1021/cm980523u – ident: e_1_2_7_6_1 – ident: e_1_2_7_50_1 – ident: e_1_2_7_81_2 doi: 10.1021/nl902715v – ident: e_1_2_7_15_1 doi: 10.1055/s-0033-1356403 – ident: e_1_2_7_61_2 doi: 10.1039/b719817e – ident: e_1_2_7_36_3 doi: 10.1002/ange.200352400 – ident: e_1_2_7_53_1 doi: 10.1021/cr300358b – ident: e_1_2_7_37_2 doi: 10.1002/anie.201104407 – ident: e_1_2_7_51_2 doi: 10.1021/ar7001667 – ident: e_1_2_7_12_2 doi: 10.1016/j.addr.2010.08.004 – ident: e_1_2_7_90_1 doi: 10.1016/j.biomaterials.2012.11.054 |
| SSID | ssj0009633 |
| Score | 2.4730918 |
| Snippet | Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14299 |
| SubjectTerms | Aluminum - chemistry Anticancer properties Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Biocompatibility Brain Brain cancer Brain Neoplasms - diagnosis Brain Neoplasms - pathology Brain Neoplasms - therapy Cancer Cell death Cell Line, Tumor Cell Survival Chemistry Contrast agents Contrast Media - chemistry Cytotoxicity drug delivery Drug delivery systems Gene transfer Gene Transfer Techniques Genetic Therapy Humans Hydroxides Hydroxides - chemistry layered compounds Magnesium - chemistry Magnetic resonance imaging Magnetic Resonance Imaging - methods Manganese Manganese - chemistry Nanoparticles Nanoparticles - chemistry Neuroimaging Neurons - pathology NMR Nuclear magnetic resonance Particle Size RNA, Small Interfering - administration & dosage RNA, Small Interfering - chemistry siRNA Surface Properties Theranostic Nanomedicine theranostics Therapy Toxicity |
| Title | MnAl Layered Double Hydroxide Nanoparticles as a Dual‐Functional Platform for Magnetic Resonance Imaging and siRNA Delivery |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201702835 https://www.ncbi.nlm.nih.gov/pubmed/28762580 https://www.proquest.com/docview/1949881949 https://www.proquest.com/docview/1925276636 |
| Volume | 23 |
| WOSCitedRecordID | wos000412819400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6s6WB72f3irSsaDPYkKkuWLT2GZqGDNpSyQt6MJMsj4Dojl9I8DPYT9hv3S6ZjO-7CGIMNjLCxbF2Pzjm6fB_Au2CCi9I4S0vPSpokiaXaypjKuEhMqZwVRdKQTWSTiZpO9fkvp_hbfIh-wg0loxmvUcCNXR7dgoaGMuFJ8jhDDSn3YJ-HzisHsD-6GF-e3gLvph2dfJJRhGHdAjcyfrT7h13F9Ju1uWu8Ntpn_PD_8_0IHnSWJxm2XeUx3PH1E7h3vCV8ewpfz-phRU7NBuk7SbCsbeXJyaZYzG9mhSdhHA4OdrePjphwkdHaVD--fR8H3dhOKZLzyqzQDCYhIGfmc41nJAmuESCwhycfrxpWJGLqgixnF5MhGYXiBHHaPIPL8YdPxye0Y2egTsappF4JZ1RRBv-OKS1L5ngQaM-d18LFRRb87sILxixnXgjhwmimnMq80S5LtPXiOQzqee1fAtFMl0Iym8bonrrM8NQ4nWiDfIFOqAjotmly10GXI4NGlbegyzzHSs37So3gfR__Swva8ceYB9uWzjvhXeZxSFopDCN4278OjYFrKab28zXG4ZJnwVxLI3jR9pA-KY4aRioWAW86wl_ykCP4Rf_06l8-eg338Z42O20OYLBarP0buOuuV7Pl4hD2sqk67ATjJ2d_DPI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5oK7Qv3rWrVUcQfBo6mcll5nHpumxxdymlhb6FyWRSFmJW9iLug-BP8Df6SzwnyaYsIoIIYSDJJHM7Z86Z2_cBvEMXXBXWZbzwouBhGGbcZFHAoyAPbaFdpvKwJptIplN9fW3O292EdBamwYfoJtxIM-r-mhScJqRPblFDsVB0lDxIyERGd2E_RFlCId8fXAyvxrfIu3HLJx8mnHBYt8iNQp7s_mHXMv3mbu56r7X5GT74Dxl_CPdb35P1G2F5BHd89RgOTreUb0_g26Tql2xsN0TgydC3zkrPRpt8Mf86yz3DnhiH2O1OOmbxYoO1LX9-_zFE69hMKrLz0q7IEWYYsIm9qeiUJKNVAoL28OzsU82LxGyVs-XsYtpnAywPKtTmKVwNP1yejnjLz8BdFMQR91o5q_MCR3hCm6gQTqJKe-m8US7IExx5514JkUnhlVIO-zPtdOKtcUloMq-ewV41r_wRMCNMoSKRxQENUF1iZWydCY0lxkCndA_4tm1S14KXE4dGmTawyzKlSk27Su3B-y7-5wa2448xj7dNnbbqu0wDTFprCnvwtnuNjUGrKbby8zXFkZFM0GGLe_C8EZEuKUk2JtKiB7KWhL_kISX4i-7uxb989AYORpeTcTo-m358CYf0nNf7bo5hb7VY-1dwz31ZzZaL161-_AIwmA_6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orKgv3l2rq0YQfAqbJk2bPA47ll2cHYbFhX0raZouA7WzzGVxHgR_gr_RX2JO2-kyiAgilEDbtLmenHNy-T6A994EF6WxOS0dK2kURTnVuQypDIvIlMrmoogasolkMlEXF3ra7SbEszAtPkQ_4YaS0YzXKODuqigPb1BDfaHwKHmYoIqUt2EvQiaZAeyNztLz8Q3ybtzxyUcJRRzWLXIj44e7f9jVTL-Zm7vWa6N-0of_IeOP4EFne5Jh21kewy1XP4F7R1vKt6fw7bQeVmRsNkjgSbxtnVeOHG-KxfzrrHDEj8Texe520hHjLzJam-rn9x-p147tpCKZVmaFhjDxATk1lzWekiS4SoDQHo6cfGl4kYipC7KcnU2GZOTL4wVq8wzO04-fj45px89ArQxjSZ0S1qii9B4eU1qWzHIv0o5bp4UNi8R73oUTjOWcOSGE9eOZsipxRtsk0rkTz2FQz2v3AohmuhSS5XGIDqpNDI-N1ZE2yBhohQqAbtsmsx14OXJoVFkLu8wzrNSsr9QAPvTxr1rYjj_GPNg2ddaJ7zILfdJKYRjAu_61bwxcTTG1m68xDpc88QZbHMB-20X6pDjqGKlYALzpCX_JQ4bwF_3dy3_56C3cnY7SbHwy-fQK7uNj2my7OYDBarF2r-GOvV7Nlos3nXj8AqL9D3U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnAl+Layered+Double+Hydroxide+Nanoparticles+as+a+Dual%E2%80%90Functional+Platform+for+Magnetic+Resonance+Imaging+and+siRNA+Delivery&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zuo%2C+Huali&rft.au=Chen%2C+Weiyu&rft.au=Li%2C+Bei&rft.au=Xu%2C+Kewei&rft.date=2017-10-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=57&rft.spage=14299&rft.epage=14306&rft_id=info:doi/10.1002%2Fchem.201702835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201702835 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |