MnAl Layered Double Hydroxide Nanoparticles as a Dual‐Functional Platform for Magnetic Resonance Imaging and siRNA Delivery

Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 23; číslo 57; s. 14299 - 14306
Hlavní autoři: Zuo, Huali, Chen, Weiyu, Li, Bei, Xu, Kewei, Cooper, Helen, Gu, Zi, Xu, Zhi Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 12.10.2017
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm−1 s−1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4 mm−1 s−1). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles: Dual‐functional manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were fabricated by a co‐precipitation method. Their pH‐sensitive behaviour significantly enhanced T1‐weighted magnetic resonance imaging, which is highly beneficial for the detection of tumour cells and tissues. Anticancer therapeutics carried by Mn‐LDH more efficiently killed cancer cells than their free counterparts (see figure).
AbstractList Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r value of 4.47 mm  s , which is even higher than that of commercial contrast agents based on Gd complexes (r =3.4 mm  s ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.
Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T 1 ‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r 1 value of 4.47 m m −1 s −1 , which is even higher than that of commercial contrast agents based on Gd complexes ( r 1 =3.4 m m −1 s −1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.
Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1-weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47mm-1s-1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4mm-1s-1). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.
Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1 -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm-1  s-1 , which is even higher than that of commercial contrast agents based on Gd complexes (r1 =3.4 mm-1  s-1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese-based layered double hydroxide nanoparticles (Mn-LDH) were examined as an effective anticancer drug/gene delivery system and for T1 -weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn-LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro-2a cells (N2a). Mn-LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell-death siRNA (CD-siRNA) delivered with Mn-LDH more efficiently kills brain cancer cells than the free CD-siRNA. Moreover, Mn-LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm-1  s-1 , which is even higher than that of commercial contrast agents based on Gd complexes (r1 =3.4 mm-1  s-1 ). Altogether, the high delivery efficacy and MRI contrast capability make dual-functional Mn-LDH potential bimodal agents for simultaneous cancer diagnosis and therapy.
Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were examined as an effective anticancer drug/gene delivery system and for T1‐weighted magnetic resonance imaging (MRI) in brain cancer theranostics. Such Mn‐LDH have been shown to accommodate dsDNA/siRNAs and efficiently deliver them to Neuro‐2a cells (N2a). Mn‐LDH have also shown high biocompatibility with low cytotoxicity. Importantly, the cell‐death siRNA (CD‐siRNA) delivered with Mn‐LDH more efficiently kills brain cancer cells than the free CD‐siRNA. Moreover, Mn‐LDH can act as excellent contrast agents for MRI, with an r1 value of 4.47 mm−1 s−1, which is even higher than that of commercial contrast agents based on Gd complexes (r1=3.4 mm−1 s−1). Altogether, the high delivery efficacy and MRI contrast capability make dual‐functional Mn‐LDH potential bimodal agents for simultaneous cancer diagnosis and therapy. Multifunctional nanoparticles: Dual‐functional manganese‐based layered double hydroxide nanoparticles (Mn‐LDH) were fabricated by a co‐precipitation method. Their pH‐sensitive behaviour significantly enhanced T1‐weighted magnetic resonance imaging, which is highly beneficial for the detection of tumour cells and tissues. Anticancer therapeutics carried by Mn‐LDH more efficiently killed cancer cells than their free counterparts (see figure).
Author Xu, Zhi Ping
Li, Bei
Zuo, Huali
Gu, Zi
Chen, Weiyu
Xu, Kewei
Cooper, Helen
Author_xml – sequence: 1
  givenname: Huali
  orcidid: 0000-0002-7308-5434
  surname: Zuo
  fullname: Zuo, Huali
  organization: The University of Queensland
– sequence: 2
  givenname: Weiyu
  orcidid: 0000-0003-4436-2743
  surname: Chen
  fullname: Chen, Weiyu
  organization: The University of Queensland
– sequence: 3
  givenname: Bei
  surname: Li
  fullname: Li, Bei
  organization: The University of Queensland
– sequence: 4
  givenname: Kewei
  surname: Xu
  fullname: Xu, Kewei
  organization: The University of Queensland
– sequence: 5
  givenname: Helen
  orcidid: 0000-0003-4590-9384
  surname: Cooper
  fullname: Cooper, Helen
  organization: University of New South Wales
– sequence: 6
  givenname: Zi
  surname: Gu
  fullname: Gu, Zi
  email: zi.gu1@unsw.edu.au
  organization: The University of Queensland
– sequence: 7
  givenname: Zhi Ping
  orcidid: 0000-0001-6070-5035
  surname: Xu
  fullname: Xu, Zhi Ping
  email: gordonxu@uq.edu.au
  organization: The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28762580$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEUx4NU7LZ69SgBL15mzSSTmeS47LZuYbdK0XPIZt6sKZlkTWaqcxD8CH5GP4kzbKtQEOHx3iG_34O8_xk68cEDQi9zMs8JoW_NZ2jnlOQVoYLxJ2iWc5pnrCr5CZoRWVRZyZk8RWcp3RJCZMnYM3RKRVVSLsgMfd_6hcMbPUCEGq9Cv3OA10MdwzdbA77WPhx07KxxkLAeC6967X79-HnZe9PZ4LXDH5zumhBbPDa81XsPI49vII2v3gC-avXe-j3WvsbJ3lwv8AqcvYM4PEdPG-0SvLif5-jT5cXH5TrbvH93tVxsMsPzkmcgmNGibopCECF5QwwlnAE1IJnJ66ooZQ2MkB0lwBgzQlTCiAq0NFUhd8DO0Zvj3kMMX3pInWptMuCc9hD6pHJJOa3KkpUj-voRehv6OH5zogopxNRH6tU91e9aqNUh2lbHQT0cdgSKI2BiSClCo4zt9HSwLmrrVE7UlJ-a8lN_8hu1-SPtYfM_BXkUvloHw39otVxfbP-6vwHJp63e
CitedBy_id crossref_primary_10_3390_min10020172
crossref_primary_10_1002_EXP_20220002
crossref_primary_10_1088_1748_605X_ad1baf
crossref_primary_10_3390_ma15227977
crossref_primary_10_1002_chem_201802851
crossref_primary_10_1007_s43207_020_00090_5
crossref_primary_10_1016_j_matlet_2021_129331
crossref_primary_10_1016_j_apsb_2024_09_012
crossref_primary_10_1002_tcr_201700102
crossref_primary_10_1002_advs_201801155
crossref_primary_10_1002_advs_202002085
crossref_primary_10_1007_s10876_022_02226_5
crossref_primary_10_1038_s41392_022_01298_z
crossref_primary_10_1016_j_ccr_2024_216109
crossref_primary_10_3390_nano9101404
crossref_primary_10_1002_wnan_1679
crossref_primary_10_1016_j_jssc_2018_08_043
crossref_primary_10_1016_j_saa_2020_118618
crossref_primary_10_1007_s11426_020_9933_4
crossref_primary_10_1246_bcsj_20190270
crossref_primary_10_1016_j_addr_2021_114031
crossref_primary_10_1016_j_partic_2021_06_005
crossref_primary_10_1016_j_cej_2023_141640
crossref_primary_10_1007_s42860_019_0006_z
crossref_primary_10_1016_j_biomaterials_2018_05_055
crossref_primary_10_1016_j_cclet_2021_12_033
crossref_primary_10_1088_1361_6528_aaf095
crossref_primary_10_1002_anbr_202100123
crossref_primary_10_1016_j_clay_2022_106514
crossref_primary_10_3389_fonc_2021_707618
crossref_primary_10_2147_IJN_S426311
crossref_primary_10_1016_j_cej_2024_149961
crossref_primary_10_1016_j_addr_2022_114360
crossref_primary_10_1002_chem_201803093
crossref_primary_10_1140_epjp_s13360_022_02993_0
crossref_primary_10_1016_j_matchemphys_2019_122232
crossref_primary_10_1021_acsbiomaterials_8b01618
crossref_primary_10_1016_j_jcis_2018_03_006
crossref_primary_10_1002_admi_202101914
crossref_primary_10_1016_j_carbon_2018_07_058
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1002_tcr_201700091
crossref_primary_10_1186_s12951_021_01096_9
crossref_primary_10_1002_smtd_201900343
crossref_primary_10_1002_sstr_202000112
crossref_primary_10_3390_biomedicines10061374
crossref_primary_10_1002_adma_202407914
crossref_primary_10_1016_j_addr_2022_114590
crossref_primary_10_3390_ijms26136293
Cites_doi 10.1038/nmat1251
10.1016/j.clay.2010.12.021
10.1016/j.biomaterials.2013.12.095
10.1152/ajpcell.1994.267.1.C195
10.1148/radiol.2502080498
10.1002/ange.200790130
10.1021/ja312610j
10.1517/17425240903130585
10.1351/pac200678091771
10.1039/C5RA18165H
10.1039/C6CC09510K
10.1002/anie.200352400
10.1002/jmri.22075
10.1021/ja056652a
10.1016/j.biomaterials.2010.03.050
10.1016/j.jri.2015.05.008
10.1039/c2nr33576j
10.1016/j.clay.2009.11.032
10.1002/ange.201104407
10.1021/jp062281o
10.1126/science.1157581
10.1016/j.jpcs.2007.10.140
10.1039/C5CC04376J
10.1021/ja048427j
10.1259/bjr.20150207
10.1021/cr980440x
10.1016/S1476-5586(03)80005-2
10.1021/mp100228v
10.1016/j.jinorgbio.2006.09.023
10.1016/j.biomaterials.2010.12.057
10.1016/j.biomaterials.2011.05.083
10.1016/j.biomaterials.2012.06.059
10.1002/adma.201402572
10.1002/anie.200790130
10.1021/cm703602t
10.1158/1078-0432.CCR-12-1414
10.1038/ncpneph0660
10.1002/smll.201670058
10.1002/zaac.200801287
10.1002/adma.201700373
10.1146/annurev-bioeng-071812-152409
10.1016/j.addr.2012.06.006
10.1021/cm048085g
10.1002/adma.200502665
10.1021/ar2000138
10.1002/ange.201106180
10.1038/nrm883
10.1021/jp048229e
10.1016/0920-5861(91)80068-K
10.1126/science.1077194
10.1021/nn1019779
10.1038/32588
10.1016/j.jconrel.2015.01.005
10.1039/c3cc45714a
10.1016/j.neuro.2003.08.006
10.1002/anie.201106180
10.1021/acsnano.5b05575
10.1016/j.jconrel.2008.05.021
10.1016/j.addr.2010.04.009
10.1021/mp200292c
10.1007/s12013-011-9201-9
10.1177/030089160809400219
10.1016/j.biomaterials.2010.01.010
10.1016/j.actbio.2015.11.036
10.1021/cm980523u
10.1021/nl902715v
10.1055/s-0033-1356403
10.1039/b719817e
10.1002/ange.200352400
10.1021/cr300358b
10.1002/anie.201104407
10.1021/ar7001667
10.1016/j.addr.2010.08.004
10.1016/j.biomaterials.2012.11.054
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201702835
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 14306
ExternalDocumentID 28762580
10_1002_chem_201702835
CHEM201702835
Genre article
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council (AU)
  funderid: APP1073591
– fundername: Australian Research Council
  funderid: FT120100813
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5165-e83ca8df4480895f0c2053e2ce93c1d7469de300b20e333c8878c87ea9c749be3
IEDL.DBID DRFUL
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412819400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Oct 02 04:18:28 EDT 2025
Sat Nov 29 14:59:54 EST 2025
Thu Apr 03 07:08:33 EDT 2025
Tue Nov 18 22:35:30 EST 2025
Sat Nov 29 07:14:59 EST 2025
Wed Jan 22 17:01:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 57
Keywords theranostics
layered compounds
nanoparticles
drug delivery
nuclear magnetic resonance
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5165-e83ca8df4480895f0c2053e2ce93c1d7469de300b20e333c8878c87ea9c749be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4436-2743
0000-0003-4590-9384
0000-0001-6070-5035
0000-0002-7308-5434
OpenAccessLink http://hdl.handle.net/1959.4/unsworks_55721
PMID 28762580
PQID 1949881949
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_1925276636
proquest_journals_1949881949
pubmed_primary_28762580
crossref_citationtrail_10_1002_chem_201702835
crossref_primary_10_1002_chem_201702835
wiley_primary_10_1002_chem_201702835_CHEM201702835
PublicationCentury 2000
PublicationDate October 12, 2017
PublicationDateYYYYMMDD 2017-10-12
PublicationDate_xml – month: 10
  year: 2017
  text: October 12, 2017
  day: 12
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 101
2004; 126
2006; 78
1991; 11
2004; 25
2011; 61
2004; 3
2014; 26
2016; 30
2012; 18
2009; 635
2013; 5
2010; 62
1998; 392
1994; 267
2013; 15
2015; 88
2008; 69
2011; 63
1999; 99
1999; 11
2013; 113
2003; 5
2007; 3
2016; 114
2008; 20
2006; 128
2010; 7
2012; 64
2010; 31
2004 2004; 43 116
2015; 5
2013; 49
2015; 51
2008; 18
2002; 298
2006; 110
2006; 18
2002; 3
2011; 32
2017; 29
2009; 250
2015; 205
2008; 94
2008; 321
2015; 9
2004; 108
2011; 5
2012; 33
2011; 8
2016; 12
2017; 53
2010; 48
2013; 34
2011; 51
2007 2007; 46 119
2011; 44
2009; 9
2013; 135
2014; 35
2011 2011; 50 123
2009; 6
2008; 41
2013
2005; 17
2008; 130
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_1
e_1_2_7_1_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_64_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_90_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_25_1
e_1_2_7_77_1
e_1_2_7_31_2
e_1_2_7_73_2
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_37_3
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_80_1
e_1_2_7_18_2
e_1_2_7_82_2
e_1_2_7_84_1
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_12_2
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
Häfeli U. (e_1_2_7_13_2) 2013
e_1_2_7_91_1
e_1_2_7_72_2
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_36_3
e_1_2_7_38_2
References_xml – volume: 51
  start-page: 330
  year: 2011
  end-page: 334
  publication-title: Appl. Clay Sci.
– volume: 250
  start-page: 371
  year: 2009
  end-page: 377
  publication-title: Radiology
– volume: 11
  start-page: 298
  year: 1999
  end-page: 302
  publication-title: Chem. Mater.
– volume: 3
  start-page: 600
  year: 2002
  end-page: 614
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 7
  start-page: 1899
  year: 2010
  end-page: 1912
  publication-title: Mol. Pharmac.
– volume: 51
  start-page: 11587
  year: 2015
  end-page: 11590
  publication-title: Chem. Commun.
– volume: 635
  start-page: 1470
  year: 2009
  end-page: 1475
  publication-title: Zeitschr. Anorg. Allgem. Chemie
– volume: 41
  start-page: 479
  year: 2008
  end-page: 487
  publication-title: Acc. Chem. Res.
– volume: 108
  start-page: 13594
  year: 2004
  end-page: 13598
  publication-title: J. Phys. Chem. B
– volume: 64
  start-page: 1394
  year: 2012
  end-page: 1416
  publication-title: Adv. Drug Delivery Rev.
– volume: 5
  start-page: 2045
  year: 2013
  end-page: 2054
  publication-title: Nanoscale
– volume: 69
  start-page: 1528
  year: 2008
  end-page: 1532
  publication-title: J. Phys. Chem. Solids
– volume: 34
  start-page: 2069
  year: 2013
  end-page: 2076
  publication-title: Biomaterials
– volume: 50 123
  start-page: 12505 12713
  year: 2011 2011
  end-page: 12509 12717
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  start-page: 3106
  year: 2011
  end-page: 3114
  publication-title: Biomaterials
– volume: 88
  start-page: 20150207
  year: 2015
  publication-title: Brit. J. Radiol.
– volume: 33
  start-page: 7126
  year: 2012
  end-page: 7137
  publication-title: Biomaterials
– volume: 78
  start-page: 1771
  year: 2006
  end-page: 1779
  publication-title: Pure Appl. Chem.
– volume: 46 119
  start-page: 5247 5341
  year: 2007 2007
  end-page: 5247 5341
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 321
  start-page: 113
  year: 2008
  end-page: 117
  publication-title: Science
– volume: 5
  start-page: 97675
  year: 2015
  end-page: 97680
  publication-title: RSC Adv.
– volume: 128
  start-page: 36
  year: 2006
  end-page: 37
  publication-title: J. Am. Chem. Soc.
– volume: 267
  start-page: 195
  year: 1994
  end-page: 203
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 9
  start-page: 11455
  year: 2015
  end-page: 11461
  publication-title: ACS Nano
– volume: 35
  start-page: 3331
  year: 2014
  end-page: 3339
  publication-title: Biomaterials
– volume: 18
  start-page: 4889
  year: 2012
  end-page: 4894
  publication-title: Clin. Cancer Res.
– volume: 30
  start-page: 378
  year: 2016
  end-page: 387
  publication-title: Acta Biomater.
– volume: 6
  start-page: 907
  year: 2009
  end-page: 922
  publication-title: Expert Opinion on Drug Delivery
– volume: 99
  start-page: 2293
  year: 1999
  end-page: 2352
  publication-title: Chem. Rev.
– volume: 110
  start-page: 16923
  year: 2006
  end-page: 16929
  publication-title: J. Phys. Chem. B
– volume: 298
  start-page: 1759
  year: 2002
  end-page: 1762
  publication-title: Science
– volume: 17
  start-page: 1055
  year: 2005
  end-page: 1062
  publication-title: Chem. Mater.
– volume: 3
  start-page: 654
  year: 2007
  end-page: 668
  publication-title: Nature Clinical Practice Nephrology
– volume: 130
  start-page: 86
  year: 2008
  end-page: 94
  publication-title: J. Controlled Release
– volume: 3
  start-page: 891
  year: 2004
  end-page: 895
  publication-title: Nat. Mater.
– volume: 49
  start-page: 10938
  year: 2013
  end-page: 10940
  publication-title: Chem. Commun.
– volume: 8
  start-page: 2032
  year: 2011
  end-page: 2038
  publication-title: Mol. Pharmac.
– volume: 25
  start-page: 543
  year: 2004
  end-page: 553
  publication-title: Neurotoxicology
– volume: 114
  start-page: 86
  year: 2016
  end-page: 91
  publication-title: J. Reprod. Immunol.
– volume: 48
  start-page: 280
  year: 2010
  end-page: 289
  publication-title: Appl. Clay Sci.
– volume: 205
  start-page: 134
  year: 2015
  end-page: 143
  publication-title: J. Controlled Release
– volume: 62
  start-page: 1052
  year: 2010
  end-page: 1063
  publication-title: Adv. drug delivery rev.
– volume: 5
  start-page: 135
  year: 2003
  end-page: 145
  publication-title: Neoplasia
– volume: 29
  start-page: 1700373
  year: 2017
  end-page: 1700380
  publication-title: Adv. Mater.
– volume: 31
  start-page: 3016
  year: 2010
  end-page: 3022
  publication-title: Biomaterials
– volume: 53
  start-page: 2339
  year: 2017
  end-page: 2342
  publication-title: Chem. Commun.
– volume: 31
  start-page: 625
  year: 2010
  end-page: 631
  publication-title: J. Magn. Resonance Imaging
– volume: 126
  start-page: 9387
  year: 2004
  end-page: 9398
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 12572 12780
  year: 2011 2011
  end-page: 12577 12785
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 4620
  year: 2013
  end-page: 4623
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 1115 1135
  year: 2004 2004
  end-page: 1117 1137
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 5455
  year: 2010
  end-page: 5462
  publication-title: Biomaterials
– volume: 32
  start-page: 7234
  year: 2011
  end-page: 7240
  publication-title: Biomaterials
– volume: 61
  start-page: 277
  year: 2011
  end-page: 287
  publication-title: Cell Biochem. Biophys.
– volume: 26
  start-page: 7019
  year: 2014
  end-page: 7026
  publication-title: Adv Mater
– volume: 18
  start-page: 2890
  year: 2006
  end-page: 2894
  publication-title: Adv. Mater.
– volume: 11
  start-page: 173
  year: 1991
  end-page: 301
  publication-title: Catal. Today
– volume: 94
  start-page: 264
  year: 2008
  publication-title: Tumori
– volume: 18
  start-page: 2112
  year: 2008
  end-page: 2120
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 3715
  year: 2008
  end-page: 3722
  publication-title: Chem. Mater.
– volume: 392
  start-page: 245
  year: 1998
  end-page: 252
  publication-title: Nature
– volume: 113
  start-page: 5071
  year: 2013
  end-page: 5109
  publication-title: Chem. Rev.
– volume: 101
  start-page: 225
  year: 2007
  end-page: 232
  publication-title: J. Inorg. Biochem.
– volume: 63
  start-page: 136
  year: 2011
  end-page: 151
  publication-title: Adv. Drug Delivery Rev.
– volume: 15
  start-page: 253
  year: 2013
  end-page: 282
  publication-title: Ann. Rev. Biomed. Eng.
– volume: 5
  start-page: 3438
  year: 2011
  end-page: 3446
  publication-title: ACS Nano
– volume: 12
  start-page: 1541
  year: 2016
  end-page: 1541
  publication-title: Small
– volume: 44
  start-page: 1018
  year: 2011
  end-page: 1028
  publication-title: Acc. Chem. Res.
– year: 2013
– volume: 9
  start-page: 4434
  year: 2009
  end-page: 4440
  publication-title: Nano Lett.
– ident: e_1_2_7_30_2
  doi: 10.1038/nmat1251
– ident: e_1_2_7_34_1
– ident: e_1_2_7_45_2
  doi: 10.1016/j.clay.2010.12.021
– ident: e_1_2_7_75_2
  doi: 10.1016/j.biomaterials.2013.12.095
– ident: e_1_2_7_89_1
  doi: 10.1152/ajpcell.1994.267.1.C195
– ident: e_1_2_7_20_1
– ident: e_1_2_7_82_2
  doi: 10.1148/radiol.2502080498
– ident: e_1_2_7_22_3
  doi: 10.1002/ange.200790130
– ident: e_1_2_7_54_1
  doi: 10.1021/ja312610j
– ident: e_1_2_7_70_1
  doi: 10.1517/17425240903130585
– ident: e_1_2_7_58_2
  doi: 10.1351/pac200678091771
– ident: e_1_2_7_11_1
– ident: e_1_2_7_21_2
  doi: 10.1039/C5RA18165H
– ident: e_1_2_7_25_1
– ident: e_1_2_7_26_2
  doi: 10.1039/C6CC09510K
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.200352400
– ident: e_1_2_7_74_1
– ident: e_1_2_7_35_2
  doi: 10.1002/jmri.22075
– ident: e_1_2_7_41_1
  doi: 10.1021/ja056652a
– ident: e_1_2_7_65_1
  doi: 10.1016/j.biomaterials.2010.03.050
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jri.2015.05.008
– ident: e_1_2_7_49_1
  doi: 10.1039/c2nr33576j
– ident: e_1_2_7_72_2
  doi: 10.1016/j.clay.2009.11.032
– ident: e_1_2_7_37_3
  doi: 10.1002/ange.201104407
– ident: e_1_2_7_42_1
  doi: 10.1021/jp062281o
– ident: e_1_2_7_64_2
  doi: 10.1126/science.1157581
– ident: e_1_2_7_78_2
  doi: 10.1016/j.jpcs.2007.10.140
– ident: e_1_2_7_27_2
  doi: 10.1039/C5CC04376J
– ident: e_1_2_7_52_2
  doi: 10.1021/ja048427j
– ident: e_1_2_7_5_1
  doi: 10.1259/bjr.20150207
– ident: e_1_2_7_16_1
– ident: e_1_2_7_14_1
  doi: 10.1021/cr980440x
– ident: e_1_2_7_88_1
  doi: 10.1016/S1476-5586(03)80005-2
– ident: e_1_2_7_7_2
  doi: 10.1021/mp100228v
– ident: e_1_2_7_68_2
  doi: 10.1016/j.jinorgbio.2006.09.023
– ident: e_1_2_7_86_1
  doi: 10.1016/j.biomaterials.2010.12.057
– ident: e_1_2_7_87_1
  doi: 10.1016/j.biomaterials.2011.05.083
– ident: e_1_2_7_63_2
  doi: 10.1016/j.biomaterials.2012.06.059
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201402572
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.200790130
– ident: e_1_2_7_46_1
– ident: e_1_2_7_43_1
– ident: e_1_2_7_57_2
  doi: 10.1021/cm703602t
– ident: e_1_2_7_8_2
  doi: 10.1158/1078-0432.CCR-12-1414
– ident: e_1_2_7_18_2
  doi: 10.1038/ncpneph0660
– ident: e_1_2_7_33_2
  doi: 10.1002/smll.201670058
– ident: e_1_2_7_44_2
  doi: 10.1002/zaac.200801287
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201700373
– ident: e_1_2_7_91_1
  doi: 10.1146/annurev-bioeng-071812-152409
– ident: e_1_2_7_62_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.addr.2012.06.006
– ident: e_1_2_7_60_2
  doi: 10.1021/cm048085g
– ident: e_1_2_7_83_1
  doi: 10.1002/adma.200502665
– ident: e_1_2_7_56_2
  doi: 10.1021/jp062281o
– ident: e_1_2_7_59_1
– ident: e_1_2_7_2_2
  doi: 10.1021/ar2000138
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.201106180
– ident: e_1_2_7_85_1
  doi: 10.1038/nrm883
– ident: e_1_2_7_32_2
  doi: 10.1021/jp048229e
– volume-title: Scientific and Clinical Applications of Magnetic Carriers
  year: 2013
  ident: e_1_2_7_13_2
– ident: e_1_2_7_47_2
  doi: 10.1016/0920-5861(91)80068-K
– ident: e_1_2_7_71_1
– ident: e_1_2_7_31_2
  doi: 10.1126/science.1077194
– ident: e_1_2_7_38_2
  doi: 10.1021/nn1019779
– ident: e_1_2_7_79_2
  doi: 10.1038/32588
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jconrel.2015.01.005
– ident: e_1_2_7_28_2
  doi: 10.1039/c3cc45714a
– ident: e_1_2_7_1_1
– ident: e_1_2_7_67_2
  doi: 10.1016/j.neuro.2003.08.006
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201106180
– ident: e_1_2_7_23_1
  doi: 10.1021/acsnano.5b05575
– ident: e_1_2_7_55_1
– ident: e_1_2_7_73_2
  doi: 10.1016/j.jconrel.2008.05.021
– ident: e_1_2_7_4_1
  doi: 10.1016/j.addr.2010.04.009
– ident: e_1_2_7_66_1
– ident: e_1_2_7_84_1
  doi: 10.1021/mp200292c
– ident: e_1_2_7_76_2
  doi: 10.1007/s12013-011-9201-9
– ident: e_1_2_7_77_1
– ident: e_1_2_7_10_1
  doi: 10.1177/030089160809400219
– ident: e_1_2_7_80_1
– ident: e_1_2_7_3_2
  doi: 10.1016/j.biomaterials.2010.01.010
– ident: e_1_2_7_69_2
  doi: 10.1016/j.actbio.2015.11.036
– ident: e_1_2_7_48_2
  doi: 10.1021/cm980523u
– ident: e_1_2_7_6_1
– ident: e_1_2_7_50_1
– ident: e_1_2_7_81_2
  doi: 10.1021/nl902715v
– ident: e_1_2_7_15_1
  doi: 10.1055/s-0033-1356403
– ident: e_1_2_7_61_2
  doi: 10.1039/b719817e
– ident: e_1_2_7_36_3
  doi: 10.1002/ange.200352400
– ident: e_1_2_7_53_1
  doi: 10.1021/cr300358b
– ident: e_1_2_7_37_2
  doi: 10.1002/anie.201104407
– ident: e_1_2_7_51_2
  doi: 10.1021/ar7001667
– ident: e_1_2_7_12_2
  doi: 10.1016/j.addr.2010.08.004
– ident: e_1_2_7_90_1
  doi: 10.1016/j.biomaterials.2012.11.054
SSID ssj0009633
Score 2.4730918
Snippet Multifunctional nanoparticles for cancer theranosis have been widely explored for effective cancer detection and therapy. In this work, dually functionalised...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14299
SubjectTerms Aluminum - chemistry
Anticancer properties
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biocompatibility
Brain
Brain cancer
Brain Neoplasms - diagnosis
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Cancer
Cell death
Cell Line, Tumor
Cell Survival
Chemistry
Contrast agents
Contrast Media - chemistry
Cytotoxicity
drug delivery
Drug delivery systems
Gene transfer
Gene Transfer Techniques
Genetic Therapy
Humans
Hydroxides
Hydroxides - chemistry
layered compounds
Magnesium - chemistry
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Manganese
Manganese - chemistry
Nanoparticles
Nanoparticles - chemistry
Neuroimaging
Neurons - pathology
NMR
Nuclear magnetic resonance
Particle Size
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - chemistry
siRNA
Surface Properties
Theranostic Nanomedicine
theranostics
Therapy
Toxicity
Title MnAl Layered Double Hydroxide Nanoparticles as a Dual‐Functional Platform for Magnetic Resonance Imaging and siRNA Delivery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201702835
https://www.ncbi.nlm.nih.gov/pubmed/28762580
https://www.proquest.com/docview/1949881949
https://www.proquest.com/docview/1925276636
Volume 23
WOSCitedRecordID wos000412819400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6s6WB72f3irSsaDPYkKkuWLT2GZqGDNpSyQt6MJMsj4Dojl9I8DPYT9hv3S6ZjO-7CGIMNjLCxbF2Pzjm6fB_Au2CCi9I4S0vPSpokiaXaypjKuEhMqZwVRdKQTWSTiZpO9fkvp_hbfIh-wg0loxmvUcCNXR7dgoaGMuFJ8jhDDSn3YJ-HzisHsD-6GF-e3gLvph2dfJJRhGHdAjcyfrT7h13F9Ju1uWu8Ntpn_PD_8_0IHnSWJxm2XeUx3PH1E7h3vCV8ewpfz-phRU7NBuk7SbCsbeXJyaZYzG9mhSdhHA4OdrePjphwkdHaVD--fR8H3dhOKZLzyqzQDCYhIGfmc41nJAmuESCwhycfrxpWJGLqgixnF5MhGYXiBHHaPIPL8YdPxye0Y2egTsappF4JZ1RRBv-OKS1L5ngQaM-d18LFRRb87sILxixnXgjhwmimnMq80S5LtPXiOQzqee1fAtFMl0Iym8bonrrM8NQ4nWiDfIFOqAjotmly10GXI4NGlbegyzzHSs37So3gfR__Swva8ceYB9uWzjvhXeZxSFopDCN4278OjYFrKab28zXG4ZJnwVxLI3jR9pA-KY4aRioWAW86wl_ykCP4Rf_06l8-eg338Z42O20OYLBarP0buOuuV7Pl4hD2sqk67ATjJ2d_DPI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5oK7Qv3rWrVUcQfBo6mcll5nHpumxxdymlhb6FyWRSFmJW9iLug-BP8Df6SzwnyaYsIoIIYSDJJHM7Z86Z2_cBvEMXXBXWZbzwouBhGGbcZFHAoyAPbaFdpvKwJptIplN9fW3O292EdBamwYfoJtxIM-r-mhScJqRPblFDsVB0lDxIyERGd2E_RFlCId8fXAyvxrfIu3HLJx8mnHBYt8iNQp7s_mHXMv3mbu56r7X5GT74Dxl_CPdb35P1G2F5BHd89RgOTreUb0_g26Tql2xsN0TgydC3zkrPRpt8Mf86yz3DnhiH2O1OOmbxYoO1LX9-_zFE69hMKrLz0q7IEWYYsIm9qeiUJKNVAoL28OzsU82LxGyVs-XsYtpnAywPKtTmKVwNP1yejnjLz8BdFMQR91o5q_MCR3hCm6gQTqJKe-m8US7IExx5514JkUnhlVIO-zPtdOKtcUloMq-ewV41r_wRMCNMoSKRxQENUF1iZWydCY0lxkCndA_4tm1S14KXE4dGmTawyzKlSk27Su3B-y7-5wa2448xj7dNnbbqu0wDTFprCnvwtnuNjUGrKbby8zXFkZFM0GGLe_C8EZEuKUk2JtKiB7KWhL_kISX4i-7uxb989AYORpeTcTo-m358CYf0nNf7bo5hb7VY-1dwz31ZzZaL161-_AIwmA_6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orKgv3l2rq0YQfAqbJk2bPA47ll2cHYbFhX0raZouA7WzzGVxHgR_gr_RX2JO2-kyiAgilEDbtLmenHNy-T6A994EF6WxOS0dK2kURTnVuQypDIvIlMrmoogasolkMlEXF3ra7SbEszAtPkQ_4YaS0YzXKODuqigPb1BDfaHwKHmYoIqUt2EvQiaZAeyNztLz8Q3ybtzxyUcJRRzWLXIj44e7f9jVTL-Zm7vWa6N-0of_IeOP4EFne5Jh21kewy1XP4F7R1vKt6fw7bQeVmRsNkjgSbxtnVeOHG-KxfzrrHDEj8Texe520hHjLzJam-rn9x-p147tpCKZVmaFhjDxATk1lzWekiS4SoDQHo6cfGl4kYipC7KcnU2GZOTL4wVq8wzO04-fj45px89ArQxjSZ0S1qii9B4eU1qWzHIv0o5bp4UNi8R73oUTjOWcOSGE9eOZsipxRtsk0rkTz2FQz2v3AohmuhSS5XGIDqpNDI-N1ZE2yBhohQqAbtsmsx14OXJoVFkLu8wzrNSsr9QAPvTxr1rYjj_GPNg2ddaJ7zILfdJKYRjAu_61bwxcTTG1m68xDpc88QZbHMB-20X6pDjqGKlYALzpCX_JQ4bwF_3dy3_56C3cnY7SbHwy-fQK7uNj2my7OYDBarF2r-GOvV7Nlos3nXj8AqL9D3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnAl+Layered+Double+Hydroxide+Nanoparticles+as+a+Dual%E2%80%90Functional+Platform+for+Magnetic+Resonance+Imaging+and+siRNA+Delivery&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zuo%2C+Huali&rft.au=Chen%2C+Weiyu&rft.au=Li%2C+Bei&rft.au=Xu%2C+Kewei&rft.date=2017-10-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=57&rft.spage=14299&rft.epage=14306&rft_id=info:doi/10.1002%2Fchem.201702835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201702835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon