Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction
•A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and a...
Uloženo v:
| Vydáno v: | Transportation research. Part D, Transport and environment Ročník 90; s. 102670 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2021
|
| Témata: | |
| ISSN: | 1361-9209, 1879-2340 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and air emissions is achieved by the method than the measured fuel cost.•About 275 tons of GHG emission can be reduced by the proposed method for the six voyages.
Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages. |
|---|---|
| AbstractList | •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and air emissions is achieved by the method than the measured fuel cost.•About 275 tons of GHG emission can be reduced by the proposed method for the six voyages.
Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages. Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages. |
| ArticleNumber | 102670 |
| Author | Wang, Helong Lang, Xiao Mao, Wengang |
| Author_xml | – sequence: 1 givenname: Helong surname: Wang fullname: Wang, Helong – sequence: 2 givenname: Xiao surname: Lang fullname: Lang, Xiao – sequence: 3 givenname: Wengang surname: Mao fullname: Mao, Wengang email: wengang.mao@chalmers.se |
| BackLink | https://research.chalmers.se/publication/521558$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kE1v3CAQQFGVSk3S_oDe_Ae8AQzGVk9V1C8pUg-Jch1hGLysDKyAbbX99bW7VQ895DTMiPcO74ZcxRSRkPeM7hhl_d1hV7Pdccq3nfeKviLXbFBjyztBr9Z317N25HR8Q25KOVBKpZT9NbHP6axnbNKx-uB_6epTbEwKk48-zs2MEas3jV7mlH3dh0ZH29hz1GG9HnOasw5h--lSbtwJlzsMvpTVUpqM9mQ24Vvy2uml4Lu_85Y8ff70dP-1ffj-5dv9x4fWSCZri1KjMMxZp6ZhEtZ0gjtumcTBKqlHPlInB8GEsK6Xg0XJneQ9NdwpM4zdLXm8aMtPPJ4mOGYfdD5D0h4yFtTZ7MHs9RIwFygIdkLBux7BuE6AUMMEg5gQmKKdQkORTXq1sovV5FRKRvfPyyhs7eEAa3vY2sOl_cqo_xjj65-2NWu_vEh-uJC4dvrhMUMxHqNB6zOaCjb5F-jfHvqkIg |
| CitedBy_id | crossref_primary_10_1007_s43069_022_00140_0 crossref_primary_10_12716_1001_19_01_13 crossref_primary_10_1016_j_jii_2024_100570 crossref_primary_10_1016_j_iswa_2023_200243 crossref_primary_10_1016_j_fuel_2023_129086 crossref_primary_10_1080_17445302_2025_2502694 crossref_primary_10_1109_ACCESS_2024_3478783 crossref_primary_10_3390_jmse12050817 crossref_primary_10_1016_j_tre_2022_102966 crossref_primary_10_1016_j_tre_2021_102489 crossref_primary_10_1016_j_tre_2024_103786 crossref_primary_10_1080_23302674_2025_2535688 crossref_primary_10_1016_j_trd_2025_104841 crossref_primary_10_3390_electricity6030038 crossref_primary_10_1016_j_trc_2025_105015 crossref_primary_10_1155_2022_5333171 crossref_primary_10_1109_TITS_2024_3416349 crossref_primary_10_12716_1001_19_02_36 crossref_primary_10_1016_j_ifacol_2024_09_038 crossref_primary_10_1016_j_oceaneng_2021_110261 crossref_primary_10_3390_sym17060817 crossref_primary_10_3390_jmse12010107 crossref_primary_10_1016_j_marpolbul_2025_117579 crossref_primary_10_1080_17445302_2023_2231200 crossref_primary_10_3390_forecast6010006 crossref_primary_10_1016_j_trd_2021_102755 crossref_primary_10_1177_03611981221150922 crossref_primary_10_3390_app14178029 crossref_primary_10_2478_ttj_2023_0028 crossref_primary_10_1080_17445302_2024_2329011 crossref_primary_10_1007_s40722_024_00341_1 crossref_primary_10_1007_s11356_024_33210_3 crossref_primary_10_3390_su16072766 crossref_primary_10_1109_TFUZZ_2022_3205045 crossref_primary_10_1016_j_etran_2023_100251 crossref_primary_10_1007_s40722_024_00363_9 crossref_primary_10_1007_s43069_023_00241_4 crossref_primary_10_1016_j_oceaneng_2024_120050 |
| Cites_doi | 10.1016/j.oceaneng.2016.06.035 10.1016/j.trd.2014.05.014 10.1016/j.trd.2018.04.014 10.1016/j.tre.2011.12.003 10.1016/j.oceaneng.2018.03.068 10.1016/j.trd.2017.03.022 10.1016/j.apor.2013.07.010 10.1287/mnsc.17.11.712 10.1016/j.oceaneng.2016.08.033 10.1016/j.trd.2017.03.009 10.5962/bhl.title.68064 10.1016/j.oceaneng.2019.106131 10.1016/j.trd.2017.05.002 10.1080/01605682.2018.1447253 10.1016/j.oceaneng.2018.01.100 10.1016/j.trd.2017.09.014 10.1007/s00773-011-0128-z 10.1115/OMAE2015-41939 10.1007/BF01386390 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors |
| Copyright_xml | – notice: 2020 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| DOI | 10.1016/j.trd.2020.102670 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering Environmental Sciences |
| EISSN | 1879-2340 |
| ExternalDocumentID | oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba 10_1016_j_trd_2020_102670 S1361920920308555 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABLJU ABLST ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW PZZ Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSB SSJ SSO SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| ID | FETCH-LOGICAL-c515t-e5ae4c1fdf7b8b4dc342f2d15e8d75a9290f584144df658de52f5260c2f7c893 |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613178200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-9209 |
| IngestDate | Wed Nov 05 04:22:39 EST 2025 Tue Nov 18 22:10:44 EST 2025 Sat Nov 29 07:03:42 EST 2025 Fri Feb 23 02:48:10 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Voyage optimization Emission reduction Dynamic programming Expected Time of Arrival (ETA) Genetic algorithm Fuel-saving |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c515t-e5ae4c1fdf7b8b4dc342f2d15e8d75a9290f584144df658de52f5260c2f7c893 |
| OpenAccessLink | https://research.chalmers.se/publication/521558 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba crossref_primary_10_1016_j_trd_2020_102670 crossref_citationtrail_10_1016_j_trd_2020_102670 elsevier_sciencedirect_doi_10_1016_j_trd_2020_102670 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part D, Transport and environment |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hinnenthal (b0075) 2008 DNVGL (b0050) 2015 Wen, Pacino, Kontovas, Psaraftis (b0200) 2017; 52 ECMWF (2019). Accessed at Wang, H., Mao, W. and Eriksson, L., 2018. Metocean data driven voyage optimization using genetic algorithm. Proceeding of the 28th ISOPE, Sapporo, Japan. Wang, Lang, Mao, Zhang, Storhaug (b0185) 2020; Vol. 200, No. 107063 Vettor, Guedes Soares (b0170) 2016; 123 Zaccone, Ottaviani, Figari, Altosole (b0210) 2018; 153 IMO MEPC72 (2018). MEPC 72 adopted resolution MEPC.304 (72) on Initial IMO Strategy on reduction of GHG emissions from ships. International Maritime Organization (IMO). Lee, Roh, Kim, Jung, Park (b0115) 2018; 175 Shao, Zhou (b0155) 2012; 6 IMO (b0080) 2020 Mao, W., Lanaers, P., Salomonsson, H. and Brandholm, P. (2016). Machine Learning to predict a ship's fuel consumption in seaways. Proceeding of PRADS, in Copenhagen, Denmark, 4-8 September 2016. Merien-Paul, Enshaei, Jayasinghe (b0145) 2018; 62 Lin, Fang, Yeung (b0125) 2013; 43 Kontovas (b0100) 2014; 31 ABB (2020). Shipping 4.0 Navigating the 4th industrial revolution. ABB. Chen (b0025) 1978 Ng (b0150) 2019; 70 Wang, Mao, Eriksson (b0180) 2019; 186 Goldberg (b0065) 1989 ISO (b0090) 2015; 15016 Lewis, E. V. (1988). Principles of Naval Architecture (2nd edition). Vol. 2, The Society of Naval Architects and Marine Engineers, Jersey City, US. Simonsen, M.H., Larsson, E., Mao, W., Ringsberg, J., 2015. State-of-the-art within ship weather routing. Proceeding of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety and Reliability. Skoglund (b9005) 2016 Copernicus (2019). Accessed at Hagiwara (b0070) 1989 Mao, Rychlik, Wallin, Storhaug (b0140) 2016; 126 Venturini, Iris, Kontovas, Larsen (b0165) 2017; 54 Calvert (b0020) 1990 Wang, Ji, Zhao, Liu, Xu (b0195) 2018; 65 . Lang, Mao (b0110) 2020; Vol. 209, No. 107494 Tillig, Ringsberg, Mao, Ramne (b9000) 2017; 231 Yen, J.Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17 (11), Theory Series, pp. 712–716. Dijkstra (b0045) 1959; 1 Maki (b0130) 2011; 16 Bouman, Lindstad, Rialland, Strømman (b0015) 2017; 52 Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, p. 162. Wang, Meng (b0190) 2012; 48 DNVGL (10.1016/j.trd.2020.102670_b0050) 2015 Lee (10.1016/j.trd.2020.102670_b0115) 2018; 175 Ng (10.1016/j.trd.2020.102670_b0150) 2019; 70 Venturini (10.1016/j.trd.2020.102670_b0165) 2017; 54 Dijkstra (10.1016/j.trd.2020.102670_b0045) 1959; 1 Skoglund (10.1016/j.trd.2020.102670_b9005) 2016 Merien-Paul (10.1016/j.trd.2020.102670_b0145) 2018; 62 Hinnenthal (10.1016/j.trd.2020.102670_b0075) 2008 Kontovas (10.1016/j.trd.2020.102670_b0100) 2014; 31 Shao (10.1016/j.trd.2020.102670_b0155) 2012; 6 Wang (10.1016/j.trd.2020.102670_b0195) 2018; 65 10.1016/j.trd.2020.102670_b0175 10.1016/j.trd.2020.102670_b0055 Mao (10.1016/j.trd.2020.102670_b0140) 2016; 126 10.1016/j.trd.2020.102670_b0035 Lang (10.1016/j.trd.2020.102670_b0110) 2020; Vol. 209, No. 107494 Calvert (10.1016/j.trd.2020.102670_b0020) 1990 Chen (10.1016/j.trd.2020.102670_b0025) 1978 10.1016/j.trd.2020.102670_b0135 Bouman (10.1016/j.trd.2020.102670_b0015) 2017; 52 Wen (10.1016/j.trd.2020.102670_b0200) 2017; 52 Lin (10.1016/j.trd.2020.102670_b0125) 2013; 43 Wang (10.1016/j.trd.2020.102670_b0190) 2012; 48 10.1016/j.trd.2020.102670_b0030 Goldberg (10.1016/j.trd.2020.102670_b0065) 1989 Hagiwara (10.1016/j.trd.2020.102670_b0070) 1989 Vettor (10.1016/j.trd.2020.102670_b0170) 2016; 123 IMO (10.1016/j.trd.2020.102670_b0080) 2020 10.1016/j.trd.2020.102670_b0205 ISO (10.1016/j.trd.2020.102670_b0090) 2015; 15016 Zaccone (10.1016/j.trd.2020.102670_b0210) 2018; 153 Maki (10.1016/j.trd.2020.102670_b0130) 2011; 16 Wang (10.1016/j.trd.2020.102670_b0185) 2020; Vol. 200, No. 107063 10.1016/j.trd.2020.102670_b0120 Tillig (10.1016/j.trd.2020.102670_b9000) 2017; 231 10.1016/j.trd.2020.102670_b0005 Wang (10.1016/j.trd.2020.102670_b0180) 2019; 186 10.1016/j.trd.2020.102670_b0160 10.1016/j.trd.2020.102670_b0085 |
| References_xml | – volume: 70 start-page: 541 year: 2019 end-page: 547 ident: b0150 article-title: Vessel speed optimisation in container shipping: A new look publication-title: J. Oper. Res. Soc. – volume: Vol. 200, No. 107063 year: 2020 ident: b0185 article-title: Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions publication-title: Ocean Eng. – volume: Vol. 209, No. 107494 year: 2020 ident: b0110 article-title: A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements publication-title: Ocean Eng. – reference: Lewis, E. V. (1988). Principles of Naval Architecture (2nd edition). Vol. 2, The Society of Naval Architects and Marine Engineers, Jersey City, US. – reference: Copernicus (2019). Accessed at – volume: 43 start-page: 184 year: 2013 end-page: 194 ident: b0125 article-title: The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements publication-title: Appl. Ocean Res. – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: b0045 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. – volume: 6 start-page: 79 year: 2012 end-page: 85 ident: b0155 article-title: Development of a 3D dynamic programming method for weather routing publication-title: Int. J. Mar. Navig. Saf. Sea Transport. – volume: 186 start-page: No.106131 year: 2019 ident: b0180 article-title: A three-dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization publication-title: Ocean Eng. – reference: Wang, H., Mao, W. and Eriksson, L., 2018. Metocean data driven voyage optimization using genetic algorithm. Proceeding of the 28th ISOPE, Sapporo, Japan. – volume: 52 start-page: 408 year: 2017 end-page: 421 ident: b0015 article-title: State-of-the-art technologies, measures and potential for reducing GHG emissions from shipping – A review publication-title: Transp. Res. Part D – volume: 231 start-page: 649 year: 2017 end-page: 666 ident: b9000 article-title: A generic energy system model for efficient ship design and operation publication-title: J. Eng. Marit. Environ. – year: 1989 ident: b0065 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – volume: 54 start-page: 142 year: 2017 end-page: 159 ident: b0165 article-title: The multi-port berth allocation problem with speed optimization and emission considerations publication-title: Transp. Res. Part D – volume: 48 start-page: 701 year: 2012 end-page: 714 ident: b0190 article-title: Sailings speed optimization for container ships in a liner shipping network publication-title: Transp. Res. Part E – volume: 16 start-page: 311 year: 2011 end-page: 322 ident: b0130 article-title: A new weather routing system that accounts for ship stability based on a real coded genetic algorithm publication-title: J. Mar. Sci. Technol. – volume: 62 start-page: 619 year: 2018 end-page: 632 ident: b0145 article-title: In-site data vs. Bottom-up approaches in estimations of marine fuel consumptions and emissions publication-title: Transp. Res. Part D – volume: 175 start-page: 301 year: 2018 end-page: 312 ident: b0115 article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems publication-title: Ocean Eng. – reference: Mao, W., Lanaers, P., Salomonsson, H. and Brandholm, P. (2016). Machine Learning to predict a ship's fuel consumption in seaways. Proceeding of PRADS, in Copenhagen, Denmark, 4-8 September 2016. – volume: 15016 year: 2015 ident: b0090 article-title: Ships and marine technology, Guidelines for the assessment of speed and power performance by analysis of speed trial data publication-title: ISO – reference: IMO MEPC72 (2018). MEPC 72 adopted resolution MEPC.304 (72) on Initial IMO Strategy on reduction of GHG emissions from ships. International Maritime Organization (IMO). – year: 2008 ident: b0075 article-title: Robust Pareto optimum routing of ships utilizing deterministic and ensemble weather forecasts – volume: 65 start-page: 817 year: 2018 end-page: 824 ident: b0195 article-title: Predicting ship fuel consumption based on LARSSO regression publication-title: Transp. Res. Part D – volume: 31 start-page: 61 year: 2014 end-page: 69 ident: b0100 article-title: The Green ship routing and scheduling problem (GSRSP): A conceptual approach publication-title: Transp. Res. Part D – volume: 52 start-page: 303 year: 2017 end-page: 321 ident: b0200 article-title: A multiple ship routing and speed optimization problem under time, cost and environmental objectives publication-title: Transp. Res. Part D – year: 2020 ident: b0080 article-title: Fourth IMO GHG Study 2020 – reference: Yen, J.Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17 (11), Theory Series, pp. 712–716. – volume: 126 start-page: 152 year: 2016 end-page: 162 ident: b0140 article-title: Statistical models for the speed prediction of a container ship publication-title: Ocean Eng. – reference: . – reference: ECMWF (2019). Accessed at – year: 1989 ident: b0070 article-title: Weather routing of (sail assisted) motor vessels – year: 2015 ident: b0050 article-title: Energy Management Study 2015 – year: 2016 ident: b9005 article-title: Optimal weather routing using ensemble weather forecasts – reference: Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, p. 162. – volume: 153 start-page: 215 year: 2018 end-page: 224 ident: b0210 article-title: Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach publication-title: Ocean Eng. – year: 1978 ident: b0025 article-title: A dynamic program for minimum cost ship routing under uncertainty – reference: Simonsen, M.H., Larsson, E., Mao, W., Ringsberg, J., 2015. State-of-the-art within ship weather routing. Proceeding of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety and Reliability. – volume: 123 start-page: 1 year: 2016 end-page: 14 ident: b0170 article-title: Development of a ship weather routing system publication-title: Ocean Eng. – year: 1990 ident: b0020 article-title: Optimal weather routeing procedures for vessels on trans-oceanic voyages – reference: ABB (2020). Shipping 4.0 Navigating the 4th industrial revolution. ABB. – year: 2016 ident: 10.1016/j.trd.2020.102670_b9005 – volume: 123 start-page: 1 year: 2016 ident: 10.1016/j.trd.2020.102670_b0170 article-title: Development of a ship weather routing system publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.06.035 – ident: 10.1016/j.trd.2020.102670_b0005 – ident: 10.1016/j.trd.2020.102670_b0030 – ident: 10.1016/j.trd.2020.102670_b0055 – volume: 31 start-page: 61 year: 2014 ident: 10.1016/j.trd.2020.102670_b0100 article-title: The Green ship routing and scheduling problem (GSRSP): A conceptual approach publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2014.05.014 – volume: 62 start-page: 619 year: 2018 ident: 10.1016/j.trd.2020.102670_b0145 article-title: In-site data vs. Bottom-up approaches in estimations of marine fuel consumptions and emissions publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2018.04.014 – volume: 48 start-page: 701 issue: 3 year: 2012 ident: 10.1016/j.trd.2020.102670_b0190 article-title: Sailings speed optimization for container ships in a liner shipping network publication-title: Transp. Res. Part E doi: 10.1016/j.tre.2011.12.003 – ident: 10.1016/j.trd.2020.102670_b0135 – volume: 175 start-page: 301 year: 2018 ident: 10.1016/j.trd.2020.102670_b0115 article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.068 – volume: 52 start-page: 408 year: 2017 ident: 10.1016/j.trd.2020.102670_b0015 article-title: State-of-the-art technologies, measures and potential for reducing GHG emissions from shipping – A review publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2017.03.022 – volume: 43 start-page: 184 year: 2013 ident: 10.1016/j.trd.2020.102670_b0125 article-title: The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2013.07.010 – ident: 10.1016/j.trd.2020.102670_b0205 doi: 10.1287/mnsc.17.11.712 – volume: 231 start-page: 649 issue: 2 year: 2017 ident: 10.1016/j.trd.2020.102670_b9000 article-title: A generic energy system model for efficient ship design and operation publication-title: J. Eng. Marit. Environ. – volume: 126 start-page: 152 year: 2016 ident: 10.1016/j.trd.2020.102670_b0140 article-title: Statistical models for the speed prediction of a container ship publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.08.033 – volume: 52 start-page: 303 year: 2017 ident: 10.1016/j.trd.2020.102670_b0200 article-title: A multiple ship routing and speed optimization problem under time, cost and environmental objectives publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2017.03.009 – year: 1990 ident: 10.1016/j.trd.2020.102670_b0020 – volume: 6 start-page: 79 issue: 1 year: 2012 ident: 10.1016/j.trd.2020.102670_b0155 article-title: Development of a 3D dynamic programming method for weather routing publication-title: Int. J. Mar. Navig. Saf. Sea Transport. – ident: 10.1016/j.trd.2020.102670_b0035 doi: 10.5962/bhl.title.68064 – year: 2020 ident: 10.1016/j.trd.2020.102670_b0080 – ident: 10.1016/j.trd.2020.102670_b0120 – volume: 186 start-page: No.106131 year: 2019 ident: 10.1016/j.trd.2020.102670_b0180 article-title: A three-dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106131 – volume: Vol. 209, No. 107494 year: 2020 ident: 10.1016/j.trd.2020.102670_b0110 article-title: A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements publication-title: Ocean Eng. – volume: 54 start-page: 142 year: 2017 ident: 10.1016/j.trd.2020.102670_b0165 article-title: The multi-port berth allocation problem with speed optimization and emission considerations publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2017.05.002 – volume: 70 start-page: 541 issue: 4 year: 2019 ident: 10.1016/j.trd.2020.102670_b0150 article-title: Vessel speed optimisation in container shipping: A new look publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2018.1447253 – year: 1978 ident: 10.1016/j.trd.2020.102670_b0025 – year: 1989 ident: 10.1016/j.trd.2020.102670_b0070 – year: 1989 ident: 10.1016/j.trd.2020.102670_b0065 – volume: 15016 year: 2015 ident: 10.1016/j.trd.2020.102670_b0090 article-title: Ships and marine technology, Guidelines for the assessment of speed and power performance by analysis of speed trial data publication-title: ISO – volume: 153 start-page: 215 year: 2018 ident: 10.1016/j.trd.2020.102670_b0210 article-title: Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.01.100 – year: 2008 ident: 10.1016/j.trd.2020.102670_b0075 – volume: 65 start-page: 817 year: 2018 ident: 10.1016/j.trd.2020.102670_b0195 article-title: Predicting ship fuel consumption based on LARSSO regression publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2017.09.014 – volume: 16 start-page: 311 year: 2011 ident: 10.1016/j.trd.2020.102670_b0130 article-title: A new weather routing system that accounts for ship stability based on a real coded genetic algorithm publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-011-0128-z – ident: 10.1016/j.trd.2020.102670_b0160 doi: 10.1115/OMAE2015-41939 – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.trd.2020.102670_b0045 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – ident: 10.1016/j.trd.2020.102670_b0175 – volume: Vol. 200, No. 107063 year: 2020 ident: 10.1016/j.trd.2020.102670_b0185 article-title: Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions publication-title: Ocean Eng. – ident: 10.1016/j.trd.2020.102670_b0085 – year: 2015 ident: 10.1016/j.trd.2020.102670_b0050 |
| SSID | ssj0005556 |
| Score | 2.551501 |
| Snippet | •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming... Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 102670 |
| SubjectTerms | Dynamic programming Emission reduction Expected Time of Arrival (ETA) Fuel-saving Genetic algorithm Voyage optimization |
| Title | Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction |
| URI | https://dx.doi.org/10.1016/j.trd.2020.102670 https://research.chalmers.se/publication/521558 |
| Volume | 90 |
| WOSCitedRecordID | wos000613178200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2340 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005556 issn: 1361-9209 databaseCode: AIEXJ dateStart: 19960901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1FKRKwQBCoWl6aBSsql9ieydjLCoIAoYpFBNmN7Hk0qVK7st2qm_5777wci0cFAjZWZI1fOcfXZ2bunIvQq5iylBFFInjRzDSjTiPoq-io1FMhGTG8krbYBDs-zpbL_MtodB3WwlxuWFVlV1f5-X-FGvYB2Gbp7B_A3Z8UdsBvAB22ADtsfwv4r9aX4qCGWHDmF1maxPHSVoIwFZOV9WjdnNTNulu5ChnS1aUP2VpnIb1SX5hJfGNAYpJlKzPFIJ3d7FDU9gbp7mLeP2h1CPK06Q7eWUqEJvZyg9V12wF9F3TgM1j7j6m1g3R7l-ui3o6d29Hdb6o6KXxLP2rhFkH7EJvO4ihPpvkwBruSoT-EczeycHrYNcbUNbFGEzNXaOQnLtnh8bhY2dozLW8Vl6UCxThTXOiUcMKykmekVDyGUMeUmKq4BHm9kzDoWY3RztHH-fLTNkeI2vK__S2HaXGbIPjdTf1S2AwdaK1qWTxED3x3Ax85mjxCI1VN0N2wGr2doPsDQ8oJ2p1vkYHDfOBvHyPpWIWHrMI9q7BnFe5ZhQFm7FmFB6zCwCpsWPWm5xTuOfUELd7PF28_RL5ARyRABneRooUiItZSszIriRQpSXQiY6oyyWgBynuqQeBCn11qULpS0URT6ECLRDMBQnkXjau6UnsIa_js5GWm0kTkRGiVZTShWtM8Tos4F3ofTcOfy4U3rzc1VDY8ZCmecsCDGzy4w2Mfve4POXfOLbc1JgEx7qWnk5QcqHjbYZ8duv0V_oqHT__t6Z6he-bVcwOGz9G4ay7UC3RHXHbrtnnpuX4D4f7Ulw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voyage+optimization+combining+genetic+algorithm+and+dynamic+programming+for+fuel%2Femissions+reduction&rft.jtitle=Transportation+research.+Part+D%2C+Transport+and+environment&rft.au=Wang%2C+Helong&rft.au=Lang%2C+Xiao&rft.au=Mao%2C+Wengang&rft.date=2021&rft.issn=1361-9209&rft.volume=90&rft_id=info:doi/10.1016%2Fj.trd.2020.102670&rft.externalDocID=oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-9209&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-9209&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-9209&client=summon |