Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction

•A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transportation research. Part D, Transport and environment Ročník 90; s. 102670
Hlavní autoři: Wang, Helong, Lang, Xiao, Mao, Wengang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2021
Témata:
ISSN:1361-9209, 1879-2340
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and air emissions is achieved by the method than the measured fuel cost.•About 275 tons of GHG emission can be reduced by the proposed method for the six voyages. Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages.
AbstractList •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming concepts.•The proposed method is capable of multi-objective global optimization to reduce fuel and air emissions.•About 5% fuel-saving and air emissions is achieved by the method than the measured fuel cost.•About 275 tons of GHG emission can be reduced by the proposed method for the six voyages. Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages.
Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because dynamic sea environments lead to continuous speed variation. In this paper, a voyage optimization method is proposed to optimize ship engine power to reduce fuel and air emissions. It is a combination of dynamic programming and genetic algorithm to solve voyage planning in three-dimensions. In this method, the engine power is discretized into several levels. The potential benefit of using this algorithm is investigated by a medium-size chemical tanker. A ship's actual sailing is used to demonstrate benefits of the proposed method. On average 3.4% of fuel-saving and emission reduction can be achieved than state-of-the-art deterministic methods. If compared with the actual full-scale measurements, on average 5.6% reduction of fuel consumption and GHG emissions (about 275 tons) can be expected by the proposed method for the six case study voyages.
ArticleNumber 102670
Author Wang, Helong
Lang, Xiao
Mao, Wengang
Author_xml – sequence: 1
  givenname: Helong
  surname: Wang
  fullname: Wang, Helong
– sequence: 2
  givenname: Xiao
  surname: Lang
  fullname: Lang, Xiao
– sequence: 3
  givenname: Wengang
  surname: Mao
  fullname: Mao, Wengang
  email: wengang.mao@chalmers.se
BackLink https://research.chalmers.se/publication/521558$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kE1v3CAQQFGVSk3S_oDe_Ae8AQzGVk9V1C8pUg-Jch1hGLysDKyAbbX99bW7VQ895DTMiPcO74ZcxRSRkPeM7hhl_d1hV7Pdccq3nfeKviLXbFBjyztBr9Z317N25HR8Q25KOVBKpZT9NbHP6axnbNKx-uB_6epTbEwKk48-zs2MEas3jV7mlH3dh0ZH29hz1GG9HnOasw5h--lSbtwJlzsMvpTVUpqM9mQ24Vvy2uml4Lu_85Y8ff70dP-1ffj-5dv9x4fWSCZri1KjMMxZp6ZhEtZ0gjtumcTBKqlHPlInB8GEsK6Xg0XJneQ9NdwpM4zdLXm8aMtPPJ4mOGYfdD5D0h4yFtTZ7MHs9RIwFygIdkLBux7BuE6AUMMEg5gQmKKdQkORTXq1sovV5FRKRvfPyyhs7eEAa3vY2sOl_cqo_xjj65-2NWu_vEh-uJC4dvrhMUMxHqNB6zOaCjb5F-jfHvqkIg
CitedBy_id crossref_primary_10_1007_s43069_022_00140_0
crossref_primary_10_12716_1001_19_01_13
crossref_primary_10_1016_j_jii_2024_100570
crossref_primary_10_1016_j_iswa_2023_200243
crossref_primary_10_1016_j_fuel_2023_129086
crossref_primary_10_1080_17445302_2025_2502694
crossref_primary_10_1109_ACCESS_2024_3478783
crossref_primary_10_3390_jmse12050817
crossref_primary_10_1016_j_tre_2022_102966
crossref_primary_10_1016_j_tre_2021_102489
crossref_primary_10_1016_j_tre_2024_103786
crossref_primary_10_1080_23302674_2025_2535688
crossref_primary_10_1016_j_trd_2025_104841
crossref_primary_10_3390_electricity6030038
crossref_primary_10_1016_j_trc_2025_105015
crossref_primary_10_1155_2022_5333171
crossref_primary_10_1109_TITS_2024_3416349
crossref_primary_10_12716_1001_19_02_36
crossref_primary_10_1016_j_ifacol_2024_09_038
crossref_primary_10_1016_j_oceaneng_2021_110261
crossref_primary_10_3390_sym17060817
crossref_primary_10_3390_jmse12010107
crossref_primary_10_1016_j_marpolbul_2025_117579
crossref_primary_10_1080_17445302_2023_2231200
crossref_primary_10_3390_forecast6010006
crossref_primary_10_1016_j_trd_2021_102755
crossref_primary_10_1177_03611981221150922
crossref_primary_10_3390_app14178029
crossref_primary_10_2478_ttj_2023_0028
crossref_primary_10_1080_17445302_2024_2329011
crossref_primary_10_1007_s40722_024_00341_1
crossref_primary_10_1007_s11356_024_33210_3
crossref_primary_10_3390_su16072766
crossref_primary_10_1109_TFUZZ_2022_3205045
crossref_primary_10_1016_j_etran_2023_100251
crossref_primary_10_1007_s40722_024_00363_9
crossref_primary_10_1007_s43069_023_00241_4
crossref_primary_10_1016_j_oceaneng_2024_120050
Cites_doi 10.1016/j.oceaneng.2016.06.035
10.1016/j.trd.2014.05.014
10.1016/j.trd.2018.04.014
10.1016/j.tre.2011.12.003
10.1016/j.oceaneng.2018.03.068
10.1016/j.trd.2017.03.022
10.1016/j.apor.2013.07.010
10.1287/mnsc.17.11.712
10.1016/j.oceaneng.2016.08.033
10.1016/j.trd.2017.03.009
10.5962/bhl.title.68064
10.1016/j.oceaneng.2019.106131
10.1016/j.trd.2017.05.002
10.1080/01605682.2018.1447253
10.1016/j.oceaneng.2018.01.100
10.1016/j.trd.2017.09.014
10.1007/s00773-011-0128-z
10.1115/OMAE2015-41939
10.1007/BF01386390
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.trd.2020.102670
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
EISSN 1879-2340
ExternalDocumentID oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba
10_1016_j_trd_2020_102670
S1361920920308555
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
PZZ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSB
SSJ
SSO
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c515t-e5ae4c1fdf7b8b4dc342f2d15e8d75a9290f584144df658de52f5260c2f7c893
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613178200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-9209
IngestDate Wed Nov 05 04:22:39 EST 2025
Tue Nov 18 22:10:44 EST 2025
Sat Nov 29 07:03:42 EST 2025
Fri Feb 23 02:48:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Voyage optimization
Emission reduction
Dynamic programming
Expected Time of Arrival (ETA)
Genetic algorithm
Fuel-saving
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-e5ae4c1fdf7b8b4dc342f2d15e8d75a9290f584144df658de52f5260c2f7c893
OpenAccessLink https://research.chalmers.se/publication/521558
ParticipantIDs swepub_primary_oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba
crossref_primary_10_1016_j_trd_2020_102670
crossref_citationtrail_10_1016_j_trd_2020_102670
elsevier_sciencedirect_doi_10_1016_j_trd_2020_102670
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Transportation research. Part D, Transport and environment
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hinnenthal (b0075) 2008
DNVGL (b0050) 2015
Wen, Pacino, Kontovas, Psaraftis (b0200) 2017; 52
ECMWF (2019). Accessed at
Wang, H., Mao, W. and Eriksson, L., 2018. Metocean data driven voyage optimization using genetic algorithm. Proceeding of the 28th ISOPE, Sapporo, Japan.
Wang, Lang, Mao, Zhang, Storhaug (b0185) 2020; Vol. 200, No. 107063
Vettor, Guedes Soares (b0170) 2016; 123
Zaccone, Ottaviani, Figari, Altosole (b0210) 2018; 153
IMO MEPC72 (2018). MEPC 72 adopted resolution MEPC.304 (72) on Initial IMO Strategy on reduction of GHG emissions from ships. International Maritime Organization (IMO).
Lee, Roh, Kim, Jung, Park (b0115) 2018; 175
Shao, Zhou (b0155) 2012; 6
IMO (b0080) 2020
Mao, W., Lanaers, P., Salomonsson, H. and Brandholm, P. (2016). Machine Learning to predict a ship's fuel consumption in seaways. Proceeding of PRADS, in Copenhagen, Denmark, 4-8 September 2016.
Merien-Paul, Enshaei, Jayasinghe (b0145) 2018; 62
Lin, Fang, Yeung (b0125) 2013; 43
Kontovas (b0100) 2014; 31
ABB (2020). Shipping 4.0 Navigating the 4th industrial revolution. ABB.
Chen (b0025) 1978
Ng (b0150) 2019; 70
Wang, Mao, Eriksson (b0180) 2019; 186
Goldberg (b0065) 1989
ISO (b0090) 2015; 15016
Lewis, E. V. (1988). Principles of Naval Architecture (2nd edition). Vol. 2, The Society of Naval Architects and Marine Engineers, Jersey City, US.
Simonsen, M.H., Larsson, E., Mao, W., Ringsberg, J., 2015. State-of-the-art within ship weather routing. Proceeding of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety and Reliability.
Skoglund (b9005) 2016
Copernicus (2019). Accessed at
Hagiwara (b0070) 1989
Mao, Rychlik, Wallin, Storhaug (b0140) 2016; 126
Venturini, Iris, Kontovas, Larsen (b0165) 2017; 54
Calvert (b0020) 1990
Wang, Ji, Zhao, Liu, Xu (b0195) 2018; 65
.
Lang, Mao (b0110) 2020; Vol. 209, No. 107494
Tillig, Ringsberg, Mao, Ramne (b9000) 2017; 231
Yen, J.Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17 (11), Theory Series, pp. 712–716.
Dijkstra (b0045) 1959; 1
Maki (b0130) 2011; 16
Bouman, Lindstad, Rialland, Strømman (b0015) 2017; 52
Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, p. 162.
Wang, Meng (b0190) 2012; 48
DNVGL (10.1016/j.trd.2020.102670_b0050) 2015
Lee (10.1016/j.trd.2020.102670_b0115) 2018; 175
Ng (10.1016/j.trd.2020.102670_b0150) 2019; 70
Venturini (10.1016/j.trd.2020.102670_b0165) 2017; 54
Dijkstra (10.1016/j.trd.2020.102670_b0045) 1959; 1
Skoglund (10.1016/j.trd.2020.102670_b9005) 2016
Merien-Paul (10.1016/j.trd.2020.102670_b0145) 2018; 62
Hinnenthal (10.1016/j.trd.2020.102670_b0075) 2008
Kontovas (10.1016/j.trd.2020.102670_b0100) 2014; 31
Shao (10.1016/j.trd.2020.102670_b0155) 2012; 6
Wang (10.1016/j.trd.2020.102670_b0195) 2018; 65
10.1016/j.trd.2020.102670_b0175
10.1016/j.trd.2020.102670_b0055
Mao (10.1016/j.trd.2020.102670_b0140) 2016; 126
10.1016/j.trd.2020.102670_b0035
Lang (10.1016/j.trd.2020.102670_b0110) 2020; Vol. 209, No. 107494
Calvert (10.1016/j.trd.2020.102670_b0020) 1990
Chen (10.1016/j.trd.2020.102670_b0025) 1978
10.1016/j.trd.2020.102670_b0135
Bouman (10.1016/j.trd.2020.102670_b0015) 2017; 52
Wen (10.1016/j.trd.2020.102670_b0200) 2017; 52
Lin (10.1016/j.trd.2020.102670_b0125) 2013; 43
Wang (10.1016/j.trd.2020.102670_b0190) 2012; 48
10.1016/j.trd.2020.102670_b0030
Goldberg (10.1016/j.trd.2020.102670_b0065) 1989
Hagiwara (10.1016/j.trd.2020.102670_b0070) 1989
Vettor (10.1016/j.trd.2020.102670_b0170) 2016; 123
IMO (10.1016/j.trd.2020.102670_b0080) 2020
10.1016/j.trd.2020.102670_b0205
ISO (10.1016/j.trd.2020.102670_b0090) 2015; 15016
Zaccone (10.1016/j.trd.2020.102670_b0210) 2018; 153
Maki (10.1016/j.trd.2020.102670_b0130) 2011; 16
Wang (10.1016/j.trd.2020.102670_b0185) 2020; Vol. 200, No. 107063
10.1016/j.trd.2020.102670_b0120
Tillig (10.1016/j.trd.2020.102670_b9000) 2017; 231
10.1016/j.trd.2020.102670_b0005
Wang (10.1016/j.trd.2020.102670_b0180) 2019; 186
10.1016/j.trd.2020.102670_b0160
10.1016/j.trd.2020.102670_b0085
References_xml – volume: 70
  start-page: 541
  year: 2019
  end-page: 547
  ident: b0150
  article-title: Vessel speed optimisation in container shipping: A new look
  publication-title: J. Oper. Res. Soc.
– volume: Vol. 200, No. 107063
  year: 2020
  ident: b0185
  article-title: Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions
  publication-title: Ocean Eng.
– volume: Vol. 209, No. 107494
  year: 2020
  ident: b0110
  article-title: A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements
  publication-title: Ocean Eng.
– reference: Lewis, E. V. (1988). Principles of Naval Architecture (2nd edition). Vol. 2, The Society of Naval Architects and Marine Engineers, Jersey City, US.
– reference: Copernicus (2019). Accessed at
– volume: 43
  start-page: 184
  year: 2013
  end-page: 194
  ident: b0125
  article-title: The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements
  publication-title: Appl. Ocean Res.
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: b0045
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 6
  start-page: 79
  year: 2012
  end-page: 85
  ident: b0155
  article-title: Development of a 3D dynamic programming method for weather routing
  publication-title: Int. J. Mar. Navig. Saf. Sea Transport.
– volume: 186
  start-page: No.106131
  year: 2019
  ident: b0180
  article-title: A three-dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization
  publication-title: Ocean Eng.
– reference: Wang, H., Mao, W. and Eriksson, L., 2018. Metocean data driven voyage optimization using genetic algorithm. Proceeding of the 28th ISOPE, Sapporo, Japan.
– volume: 52
  start-page: 408
  year: 2017
  end-page: 421
  ident: b0015
  article-title: State-of-the-art technologies, measures and potential for reducing GHG emissions from shipping – A review
  publication-title: Transp. Res. Part D
– volume: 231
  start-page: 649
  year: 2017
  end-page: 666
  ident: b9000
  article-title: A generic energy system model for efficient ship design and operation
  publication-title: J. Eng. Marit. Environ.
– year: 1989
  ident: b0065
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– volume: 54
  start-page: 142
  year: 2017
  end-page: 159
  ident: b0165
  article-title: The multi-port berth allocation problem with speed optimization and emission considerations
  publication-title: Transp. Res. Part D
– volume: 48
  start-page: 701
  year: 2012
  end-page: 714
  ident: b0190
  article-title: Sailings speed optimization for container ships in a liner shipping network
  publication-title: Transp. Res. Part E
– volume: 16
  start-page: 311
  year: 2011
  end-page: 322
  ident: b0130
  article-title: A new weather routing system that accounts for ship stability based on a real coded genetic algorithm
  publication-title: J. Mar. Sci. Technol.
– volume: 62
  start-page: 619
  year: 2018
  end-page: 632
  ident: b0145
  article-title: In-site data vs. Bottom-up approaches in estimations of marine fuel consumptions and emissions
  publication-title: Transp. Res. Part D
– volume: 175
  start-page: 301
  year: 2018
  end-page: 312
  ident: b0115
  article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems
  publication-title: Ocean Eng.
– reference: Mao, W., Lanaers, P., Salomonsson, H. and Brandholm, P. (2016). Machine Learning to predict a ship's fuel consumption in seaways. Proceeding of PRADS, in Copenhagen, Denmark, 4-8 September 2016.
– volume: 15016
  year: 2015
  ident: b0090
  article-title: Ships and marine technology, Guidelines for the assessment of speed and power performance by analysis of speed trial data
  publication-title: ISO
– reference: IMO MEPC72 (2018). MEPC 72 adopted resolution MEPC.304 (72) on Initial IMO Strategy on reduction of GHG emissions from ships. International Maritime Organization (IMO).
– year: 2008
  ident: b0075
  article-title: Robust Pareto optimum routing of ships utilizing deterministic and ensemble weather forecasts
– volume: 65
  start-page: 817
  year: 2018
  end-page: 824
  ident: b0195
  article-title: Predicting ship fuel consumption based on LARSSO regression
  publication-title: Transp. Res. Part D
– volume: 31
  start-page: 61
  year: 2014
  end-page: 69
  ident: b0100
  article-title: The Green ship routing and scheduling problem (GSRSP): A conceptual approach
  publication-title: Transp. Res. Part D
– volume: 52
  start-page: 303
  year: 2017
  end-page: 321
  ident: b0200
  article-title: A multiple ship routing and speed optimization problem under time, cost and environmental objectives
  publication-title: Transp. Res. Part D
– year: 2020
  ident: b0080
  article-title: Fourth IMO GHG Study 2020
– reference: Yen, J.Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17 (11), Theory Series, pp. 712–716.
– volume: 126
  start-page: 152
  year: 2016
  end-page: 162
  ident: b0140
  article-title: Statistical models for the speed prediction of a container ship
  publication-title: Ocean Eng.
– reference: .
– reference: ECMWF (2019). Accessed at
– year: 1989
  ident: b0070
  article-title: Weather routing of (sail assisted) motor vessels
– year: 2015
  ident: b0050
  article-title: Energy Management Study 2015
– year: 2016
  ident: b9005
  article-title: Optimal weather routing using ensemble weather forecasts
– reference: Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, p. 162.
– volume: 153
  start-page: 215
  year: 2018
  end-page: 224
  ident: b0210
  article-title: Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach
  publication-title: Ocean Eng.
– year: 1978
  ident: b0025
  article-title: A dynamic program for minimum cost ship routing under uncertainty
– reference: Simonsen, M.H., Larsson, E., Mao, W., Ringsberg, J., 2015. State-of-the-art within ship weather routing. Proceeding of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety and Reliability.
– volume: 123
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0170
  article-title: Development of a ship weather routing system
  publication-title: Ocean Eng.
– year: 1990
  ident: b0020
  article-title: Optimal weather routeing procedures for vessels on trans-oceanic voyages
– reference: ABB (2020). Shipping 4.0 Navigating the 4th industrial revolution. ABB.
– year: 2016
  ident: 10.1016/j.trd.2020.102670_b9005
– volume: 123
  start-page: 1
  year: 2016
  ident: 10.1016/j.trd.2020.102670_b0170
  article-title: Development of a ship weather routing system
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.06.035
– ident: 10.1016/j.trd.2020.102670_b0005
– ident: 10.1016/j.trd.2020.102670_b0030
– ident: 10.1016/j.trd.2020.102670_b0055
– volume: 31
  start-page: 61
  year: 2014
  ident: 10.1016/j.trd.2020.102670_b0100
  article-title: The Green ship routing and scheduling problem (GSRSP): A conceptual approach
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2014.05.014
– volume: 62
  start-page: 619
  year: 2018
  ident: 10.1016/j.trd.2020.102670_b0145
  article-title: In-site data vs. Bottom-up approaches in estimations of marine fuel consumptions and emissions
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2018.04.014
– volume: 48
  start-page: 701
  issue: 3
  year: 2012
  ident: 10.1016/j.trd.2020.102670_b0190
  article-title: Sailings speed optimization for container ships in a liner shipping network
  publication-title: Transp. Res. Part E
  doi: 10.1016/j.tre.2011.12.003
– ident: 10.1016/j.trd.2020.102670_b0135
– volume: 175
  start-page: 301
  year: 2018
  ident: 10.1016/j.trd.2020.102670_b0115
  article-title: Method for a simultaneous determination of the path and the speed for ship route planning problems
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.068
– volume: 52
  start-page: 408
  year: 2017
  ident: 10.1016/j.trd.2020.102670_b0015
  article-title: State-of-the-art technologies, measures and potential for reducing GHG emissions from shipping – A review
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2017.03.022
– volume: 43
  start-page: 184
  year: 2013
  ident: 10.1016/j.trd.2020.102670_b0125
  article-title: The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2013.07.010
– ident: 10.1016/j.trd.2020.102670_b0205
  doi: 10.1287/mnsc.17.11.712
– volume: 231
  start-page: 649
  issue: 2
  year: 2017
  ident: 10.1016/j.trd.2020.102670_b9000
  article-title: A generic energy system model for efficient ship design and operation
  publication-title: J. Eng. Marit. Environ.
– volume: 126
  start-page: 152
  year: 2016
  ident: 10.1016/j.trd.2020.102670_b0140
  article-title: Statistical models for the speed prediction of a container ship
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.08.033
– volume: 52
  start-page: 303
  year: 2017
  ident: 10.1016/j.trd.2020.102670_b0200
  article-title: A multiple ship routing and speed optimization problem under time, cost and environmental objectives
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2017.03.009
– year: 1990
  ident: 10.1016/j.trd.2020.102670_b0020
– volume: 6
  start-page: 79
  issue: 1
  year: 2012
  ident: 10.1016/j.trd.2020.102670_b0155
  article-title: Development of a 3D dynamic programming method for weather routing
  publication-title: Int. J. Mar. Navig. Saf. Sea Transport.
– ident: 10.1016/j.trd.2020.102670_b0035
  doi: 10.5962/bhl.title.68064
– year: 2020
  ident: 10.1016/j.trd.2020.102670_b0080
– ident: 10.1016/j.trd.2020.102670_b0120
– volume: 186
  start-page: No.106131
  year: 2019
  ident: 10.1016/j.trd.2020.102670_b0180
  article-title: A three-dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106131
– volume: Vol. 209, No. 107494
  year: 2020
  ident: 10.1016/j.trd.2020.102670_b0110
  article-title: A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements
  publication-title: Ocean Eng.
– volume: 54
  start-page: 142
  year: 2017
  ident: 10.1016/j.trd.2020.102670_b0165
  article-title: The multi-port berth allocation problem with speed optimization and emission considerations
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2017.05.002
– volume: 70
  start-page: 541
  issue: 4
  year: 2019
  ident: 10.1016/j.trd.2020.102670_b0150
  article-title: Vessel speed optimisation in container shipping: A new look
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2018.1447253
– year: 1978
  ident: 10.1016/j.trd.2020.102670_b0025
– year: 1989
  ident: 10.1016/j.trd.2020.102670_b0070
– year: 1989
  ident: 10.1016/j.trd.2020.102670_b0065
– volume: 15016
  year: 2015
  ident: 10.1016/j.trd.2020.102670_b0090
  article-title: Ships and marine technology, Guidelines for the assessment of speed and power performance by analysis of speed trial data
  publication-title: ISO
– volume: 153
  start-page: 215
  year: 2018
  ident: 10.1016/j.trd.2020.102670_b0210
  article-title: Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.01.100
– year: 2008
  ident: 10.1016/j.trd.2020.102670_b0075
– volume: 65
  start-page: 817
  year: 2018
  ident: 10.1016/j.trd.2020.102670_b0195
  article-title: Predicting ship fuel consumption based on LARSSO regression
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2017.09.014
– volume: 16
  start-page: 311
  year: 2011
  ident: 10.1016/j.trd.2020.102670_b0130
  article-title: A new weather routing system that accounts for ship stability based on a real coded genetic algorithm
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-011-0128-z
– ident: 10.1016/j.trd.2020.102670_b0160
  doi: 10.1115/OMAE2015-41939
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.trd.2020.102670_b0045
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– ident: 10.1016/j.trd.2020.102670_b0175
– volume: Vol. 200, No. 107063
  year: 2020
  ident: 10.1016/j.trd.2020.102670_b0185
  article-title: Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions
  publication-title: Ocean Eng.
– ident: 10.1016/j.trd.2020.102670_b0085
– year: 2015
  ident: 10.1016/j.trd.2020.102670_b0050
SSID ssj0005556
Score 2.551501
Snippet •A voyage optimization method is proposed to take engine powers ship voyage planning.•The proposed method combines a genetic algorithm with dynamic programming...
Deterministic optimization algorithms generate optimal routes/paths and speeds along ship voyages. However, a ship can rarely follow pre-defined speeds because...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102670
SubjectTerms Dynamic programming
Emission reduction
Expected Time of Arrival (ETA)
Fuel-saving
Genetic algorithm
Voyage optimization
Title Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction
URI https://dx.doi.org/10.1016/j.trd.2020.102670
https://research.chalmers.se/publication/521558
Volume 90
WOSCitedRecordID wos000613178200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2340
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005556
  issn: 1361-9209
  databaseCode: AIEXJ
  dateStart: 19960901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1FKRKwQBCoWl6aBSsql9ieydjLCoIAoYpFBNmN7Hk0qVK7st2qm_5777wci0cFAjZWZI1fOcfXZ2bunIvQq5iylBFFInjRzDSjTiPoq-io1FMhGTG8krbYBDs-zpbL_MtodB3WwlxuWFVlV1f5-X-FGvYB2Gbp7B_A3Z8UdsBvAB22ADtsfwv4r9aX4qCGWHDmF1maxPHSVoIwFZOV9WjdnNTNulu5ChnS1aUP2VpnIb1SX5hJfGNAYpJlKzPFIJ3d7FDU9gbp7mLeP2h1CPK06Q7eWUqEJvZyg9V12wF9F3TgM1j7j6m1g3R7l-ui3o6d29Hdb6o6KXxLP2rhFkH7EJvO4ihPpvkwBruSoT-EczeycHrYNcbUNbFGEzNXaOQnLtnh8bhY2dozLW8Vl6UCxThTXOiUcMKykmekVDyGUMeUmKq4BHm9kzDoWY3RztHH-fLTNkeI2vK__S2HaXGbIPjdTf1S2AwdaK1qWTxED3x3Ax85mjxCI1VN0N2wGr2doPsDQ8oJ2p1vkYHDfOBvHyPpWIWHrMI9q7BnFe5ZhQFm7FmFB6zCwCpsWPWm5xTuOfUELd7PF28_RL5ARyRABneRooUiItZSszIriRQpSXQiY6oyyWgBynuqQeBCn11qULpS0URT6ECLRDMBQnkXjau6UnsIa_js5GWm0kTkRGiVZTShWtM8Tos4F3ofTcOfy4U3rzc1VDY8ZCmecsCDGzy4w2Mfve4POXfOLbc1JgEx7qWnk5QcqHjbYZ8duv0V_oqHT__t6Z6he-bVcwOGz9G4ay7UC3RHXHbrtnnpuX4D4f7Ulw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voyage+optimization+combining+genetic+algorithm+and+dynamic+programming+for+fuel%2Femissions+reduction&rft.jtitle=Transportation+research.+Part+D%2C+Transport+and+environment&rft.au=Wang%2C+Helong&rft.au=Lang%2C+Xiao&rft.au=Mao%2C+Wengang&rft.date=2021&rft.issn=1361-9209&rft.volume=90&rft_id=info:doi/10.1016%2Fj.trd.2020.102670&rft.externalDocID=oai_research_chalmers_se_dbe4236e_cf34_478b_84be_17037ec0e1ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-9209&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-9209&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-9209&client=summon