Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers
Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since th...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 108; H. 40; S. 16771 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
04.10.2011
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs. |
|---|---|
| AbstractList | Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs. Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs.Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs. |
| Author | Head, Ian M Daims, Holger Nielsen, Jeppe L Müller, Anneliese Mussmann, Marc Pitcher, Angela Hatzenpichler, Roland Wagner, Michael Richter, Andreas Brito, Ivana Sinninghe Damsté, Jaap S Nielsen, Per Halkjær |
| Author_xml | – sequence: 1 givenname: Marc surname: Mussmann fullname: Mussmann, Marc organization: Department of Microbial Ecology, University of Vienna, 1090 Vienna, Austria – sequence: 2 givenname: Ivana surname: Brito fullname: Brito, Ivana – sequence: 3 givenname: Angela surname: Pitcher fullname: Pitcher, Angela – sequence: 4 givenname: Jaap S surname: Sinninghe Damsté fullname: Sinninghe Damsté, Jaap S – sequence: 5 givenname: Roland surname: Hatzenpichler fullname: Hatzenpichler, Roland – sequence: 6 givenname: Andreas surname: Richter fullname: Richter, Andreas – sequence: 7 givenname: Jeppe L surname: Nielsen fullname: Nielsen, Jeppe L – sequence: 8 givenname: Per Halkjær surname: Nielsen fullname: Nielsen, Per Halkjær – sequence: 9 givenname: Anneliese surname: Müller fullname: Müller, Anneliese – sequence: 10 givenname: Holger surname: Daims fullname: Daims, Holger – sequence: 11 givenname: Michael surname: Wagner fullname: Wagner, Michael – sequence: 12 givenname: Ian M surname: Head fullname: Head, Ian M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21930919$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0DtPwzAUBWALFdEHzGzIG1PKtfNoPFYVL6kSS5kjx7lpjRI7-CFafj2RKBLTPdL9dIYzJxNjDRJyy2DJYJU-DEb6JWNQZHzFoLwgMwaCJUUmYPIvT8nc-w8AEHkJV2TKmUjHn5iRr91Bxl46dZBoA3oq62gaaQLVhjpstUF3okYHp9uTNnvqu9jsR4fHwaEffW_XtI6BSofU2EBt3em9DEhlDDY4Oxy0GlVvjZbUHnWjv9H5a3LZys7jzfkuyPvT427zkmzfnl83622icpaHpMlzDow3nAMveMF4W0pRSFlzUWZZm7K8hrLFRhWAWdNCrrhQoMao0rZAyRfk_rd3cPYzog9Vr73CrpMGbfSVAF7CSohylHdnGesem2pwetzlVP1txX8AB2xwyg |
| CitedBy_id | crossref_primary_10_1128_AEM_03319_16 crossref_primary_10_1186_s13568_016_0245_5 crossref_primary_10_1073_pnas_1605501113 crossref_primary_10_1111_1574_6976_12024 crossref_primary_10_1155_2018_8429145 crossref_primary_10_1371_journal_pone_0104427 crossref_primary_10_1111_1462_2920_70110 crossref_primary_10_3389_fmicb_2020_572017 crossref_primary_10_1016_j_watres_2016_10_070 crossref_primary_10_1111_gcb_14877 crossref_primary_10_1111_1462_2920_13682 crossref_primary_10_3389_fmicb_2018_00028 crossref_primary_10_1099_ijs_0_063172_0 crossref_primary_10_1007_s00253_016_7902_0 crossref_primary_10_1007_s00449_012_0823_0 crossref_primary_10_1080_19443994_2015_1123196 crossref_primary_10_3389_fmicb_2022_960608 crossref_primary_10_1007_s00300_015_1829_2 crossref_primary_10_1038_s41579_018_0046_8 crossref_primary_10_1038_ismej_2013_35 crossref_primary_10_1093_femsmc_xtac019 crossref_primary_10_1128_AEM_03204_12 crossref_primary_10_1111_1574_6941_12188 crossref_primary_10_1038_s41396_021_01167_7 crossref_primary_10_1007_s13213_014_0811_5 crossref_primary_10_3390_ijms140918572 crossref_primary_10_1016_j_ibiod_2021_105289 crossref_primary_10_1155_2014_196140 crossref_primary_10_1016_j_wasman_2020_03_009 crossref_primary_10_1007_s00248_012_0081_3 crossref_primary_10_1128_AEM_00432_12 crossref_primary_10_1016_j_biortech_2020_124205 crossref_primary_10_1016_j_scitotenv_2021_145901 crossref_primary_10_3389_fmicb_2019_01571 crossref_primary_10_1007_s00253_012_4512_3 crossref_primary_10_1146_annurev_marine_121916_063141 crossref_primary_10_1038_srep23747 crossref_primary_10_3389_fmicb_2023_1076342 crossref_primary_10_1111_1462_2920_14518 crossref_primary_10_1007_s00253_014_5833_1 crossref_primary_10_1016_j_biortech_2018_02_012 crossref_primary_10_1016_j_biortech_2015_03_072 crossref_primary_10_1093_femsle_fnw052 crossref_primary_10_5194_bg_19_1723_2022 crossref_primary_10_1016_j_watres_2013_07_056 crossref_primary_10_1111_jam_12651 crossref_primary_10_1016_j_watres_2023_119931 crossref_primary_10_1093_femsec_fiv084 crossref_primary_10_3389_fmicb_2014_00429 crossref_primary_10_1016_j_watres_2024_122949 crossref_primary_10_1038_ismej_2013_234 crossref_primary_10_1111_1758_2229_12115 crossref_primary_10_1111_1758_2229_12477 crossref_primary_10_1016_j_biotechadv_2016_04_003 crossref_primary_10_1038_ismej_2012_33 crossref_primary_10_3389_fmicb_2017_01508 crossref_primary_10_1016_j_syapm_2018_04_003 crossref_primary_10_1093_femsle_fnaa025 crossref_primary_10_1021_acs_est_5b06016 crossref_primary_10_1016_j_watres_2021_117003 crossref_primary_10_1111_1758_2229_12802 crossref_primary_10_1111_j_1462_2920_2012_02740_x crossref_primary_10_1111_j_1462_2920_2012_02786_x crossref_primary_10_1111_jam_12091 crossref_primary_10_3389_fmicb_2018_00193 crossref_primary_10_1016_j_biortech_2013_03_176 crossref_primary_10_3389_fmicb_2016_00854 crossref_primary_10_1128_msphere_00686_20 crossref_primary_10_1016_j_envpol_2019_113258 crossref_primary_10_3389_fmars_2019_00789 crossref_primary_10_1016_j_biortech_2025_132621 crossref_primary_10_1016_j_jenvman_2022_115271 crossref_primary_10_1111_1462_2920_12481 crossref_primary_10_5004_dwt_2017_21598 crossref_primary_10_1007_s00253_012_4650_7 crossref_primary_10_1038_s41467_020_19132_x crossref_primary_10_1111_1574_6941_12264 crossref_primary_10_1128_AEM_01430_18 crossref_primary_10_1093_femsec_fix128 crossref_primary_10_1016_j_jes_2020_09_039 crossref_primary_10_1146_annurev_earth_050212_123947 crossref_primary_10_1007_s13762_014_0551_x crossref_primary_10_1128_AEM_01960_12 crossref_primary_10_1016_j_watres_2019_115268 crossref_primary_10_1111_1574_6941_12370 crossref_primary_10_1007_s00248_012_0122_y crossref_primary_10_1186_s12866_020_1698_x crossref_primary_10_1007_s00253_018_8865_0 crossref_primary_10_1371_journal_pone_0080835 crossref_primary_10_1111_1574_6941_12376 crossref_primary_10_1111_1758_2229_12109 crossref_primary_10_1016_j_watres_2018_08_066 crossref_primary_10_1016_j_watres_2012_05_007 crossref_primary_10_1093_ismejo_wrae086 crossref_primary_10_5194_bg_10_1775_2013 crossref_primary_10_1016_j_watres_2020_116798 crossref_primary_10_3389_fmicb_2014_00786 crossref_primary_10_1371_journal_pone_0130116 crossref_primary_10_1111_1462_2920_16299 crossref_primary_10_1016_j_biortech_2013_02_038 crossref_primary_10_1111_1462_2920_12930 crossref_primary_10_7717_peerj_1733 crossref_primary_10_1038_s41598_017_04197_4 crossref_primary_10_1038_ismej_2015_77 crossref_primary_10_3389_fmicb_2017_00101 crossref_primary_10_1038_s41396_019_0538_1 crossref_primary_10_1016_j_envres_2022_114432 crossref_primary_10_1002_eco_2139 crossref_primary_10_1007_s10482_014_0363_5 crossref_primary_10_1016_j_orggeochem_2012_04_007 crossref_primary_10_1128_AEM_03408_12 crossref_primary_10_1016_j_apsoil_2021_103972 crossref_primary_10_1073_pnas_1419329112 crossref_primary_10_1111_1462_2920_12507 crossref_primary_10_1016_j_scitotenv_2019_07_131 crossref_primary_10_1007_s00253_013_5213_2 crossref_primary_10_1016_j_orggeochem_2015_02_009 crossref_primary_10_1007_s00248_020_01639_x crossref_primary_10_1016_j_apsoil_2023_105119 crossref_primary_10_3389_fmicb_2015_01367 crossref_primary_10_1080_01490451_2018_1482386 crossref_primary_10_1111_1574_6941_12119 crossref_primary_10_1038_srep42469 crossref_primary_10_1016_j_scitotenv_2023_161633 crossref_primary_10_1016_j_copbio_2018_01_015 crossref_primary_10_1016_j_soilbio_2022_108641 crossref_primary_10_1007_s11783_014_0635_3 crossref_primary_10_1016_j_eti_2025_104381 crossref_primary_10_1080_01490451_2012_737089 crossref_primary_10_1002_rcm_7549 crossref_primary_10_1038_ismej_2014_137 crossref_primary_10_1038_ismej_2014_81 crossref_primary_10_1146_annurev_micro_092611_150128 crossref_primary_10_1371_journal_pone_0097068 crossref_primary_10_1002_mbo3_475 crossref_primary_10_3389_fmicb_2015_00064 crossref_primary_10_1007_s11356_017_1155_z crossref_primary_10_1186_1471_2180_12_140 crossref_primary_10_3389_fmicb_2021_746524 crossref_primary_10_1111_1574_6941_12103 crossref_primary_10_1016_j_soilbio_2022_108638 crossref_primary_10_1007_s13131_015_0710_z crossref_primary_10_1007_s12649_013_9275_2 crossref_primary_10_1038_s41467_018_03861_1 crossref_primary_10_1134_S0026261721030140 crossref_primary_10_3389_fmicb_2020_02060 crossref_primary_10_1007_s00374_023_01700_0 crossref_primary_10_1016_j_watres_2019_05_031 crossref_primary_10_1128_AEM_01681_12 crossref_primary_10_1111_j_1462_2920_2012_02893_x crossref_primary_10_1111_1462_2920_14354 crossref_primary_10_1016_j_envint_2019_105354 crossref_primary_10_1038_ismej_2016_192 crossref_primary_10_1007_s00248_015_0601_z crossref_primary_10_1371_journal_pone_0065388 crossref_primary_10_1007_s00253_014_6188_3 crossref_primary_10_1007_s13213_017_1272_4 crossref_primary_10_3389_fmicb_2022_950677 crossref_primary_10_1038_nature14856 crossref_primary_10_1073_pnas_1207574109 crossref_primary_10_1038_s41598_018_32059_0 crossref_primary_10_1016_S1002_0160_21_60048_6 crossref_primary_10_1111_1462_2920_14840 crossref_primary_10_1038_ismej_2013_193 crossref_primary_10_1099_ijsem_0_002926 crossref_primary_10_1016_j_cej_2016_01_024 crossref_primary_10_1016_j_jwpe_2024_105208 crossref_primary_10_1007_s00253_012_4239_1 crossref_primary_10_1093_femsec_fiv001 crossref_primary_10_1007_s00128_024_03945_3 crossref_primary_10_1128_AEM_06845_11 crossref_primary_10_1007_s00248_014_0464_8 crossref_primary_10_1128_AEM_01083_18 crossref_primary_10_1016_j_soilbio_2022_108611 crossref_primary_10_1128_AEM_00061_13 crossref_primary_10_1016_j_scitotenv_2018_11_435 crossref_primary_10_1371_journal_pone_0113603 crossref_primary_10_1016_j_scitotenv_2012_07_047 crossref_primary_10_1007_s42770_023_01130_y crossref_primary_10_1038_s41396_022_01199_7 crossref_primary_10_1128_AEM_03035_13 crossref_primary_10_1073_pnas_1601212113 crossref_primary_10_1016_j_biortech_2017_08_060 crossref_primary_10_1016_j_watres_2020_116372 crossref_primary_10_1007_s00253_018_9436_0 crossref_primary_10_1016_j_biortech_2014_01_116 crossref_primary_10_1080_01490451_2016_1225861 crossref_primary_10_1146_annurev_micro_092412_155614 crossref_primary_10_1093_femsle_fny058 crossref_primary_10_1016_j_biortech_2018_09_089 crossref_primary_10_1111_1462_2920_12677 crossref_primary_10_1111_1462_2920_14732 crossref_primary_10_1371_journal_pone_0077139 crossref_primary_10_3389_fmicb_2015_01350 crossref_primary_10_1038_ismej_2014_218 crossref_primary_10_1007_s00253_014_6352_9 crossref_primary_10_3389_fmars_2017_00253 crossref_primary_10_1016_j_soilbio_2013_08_014 crossref_primary_10_1128_AEM_03426_12 crossref_primary_10_1128_spectrum_02571_22 crossref_primary_10_5194_bg_11_201_2014 crossref_primary_10_1016_j_dsr2_2019_06_018 crossref_primary_10_1007_s00253_013_5428_2 crossref_primary_10_1038_s41396_021_01064_z crossref_primary_10_1128_AEM_01928_13 crossref_primary_10_1111_1462_2920_12098 crossref_primary_10_1016_j_apsoil_2017_02_019 crossref_primary_10_1038_ismej_2014_208 crossref_primary_10_1007_s00248_018_01314_2 crossref_primary_10_1111_1462_2920_14391 crossref_primary_10_1007_s12275_014_4114_0 crossref_primary_10_1016_j_orggeochem_2013_04_012 crossref_primary_10_1038_s41396_018_0296_5 crossref_primary_10_1007_s00248_013_0288_y crossref_primary_10_1016_j_tim_2014_07_007 crossref_primary_10_1007_s00253_013_5318_7 crossref_primary_10_1038_s41396_023_01493_y crossref_primary_10_1111_1462_2920_12533 crossref_primary_10_1016_j_apsoil_2016_05_012 crossref_primary_10_1186_1471_2180_12_203 crossref_primary_10_1371_journal_pone_0113515 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1106427108 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 21930919 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Europe |
| GeographicLocations_xml | – name: Europe |
| GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: I 44 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c515t-d552012d220262612f8a96aab29844f315b08fedc60e4df05c29c0c4dfc3f6ea2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 253 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295536000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 10:47:29 EDT 2025 Sat May 31 02:10:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c515t-d552012d220262612f8a96aab29844f315b08fedc60e4df05c29c0c4dfc3f6ea2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21930919 |
| PQID | 902807998 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_902807998 pubmed_primary_21930919 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-04 |
| PublicationDateYYYYMMDD | 2011-10-04 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2011 |
| SSID | ssj0009580 |
| Score | 2.5079417 |
| Snippet | Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 16771 |
| SubjectTerms | Ammonia - metabolism Archaea - enzymology Autoradiography Base Sequence Cluster Analysis DNA Primers - genetics Europe Extraction and Processing Industry Glyceryl Ethers - metabolism In Situ Hybridization, Fluorescence Likelihood Functions Models, Genetic Molecular Sequence Data Oxidation-Reduction Oxidoreductases - genetics Oxidoreductases - metabolism Polymerase Chain Reaction RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Waste Products - analysis Water Purification |
| Title | Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21930919 https://www.proquest.com/docview/902807998 |
| Volume | 108 |
| WOSCitedRecordID | wos000295536000058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy83w_dwABDRGo7iT2hCoFYqBhA6lY5tqNGgjg0KRR-Pec0QSyIgSXKEEuW7-z7Lv7uO0LOBDUcYX0acCkwQTEsCxSPWJCIkKaYN9Me102ziWQwEMOhfGi5OVVLq-zOxOagNk77f-SXjcpIgsnBVfka-KZR_nK17aCxSJYZIhnv1MlQ_NDcFXMxAtkLYi7DTtknYZdloSrPgEf0jSFW_A4vmzBzu_7PCW6QtRZfQn_uEJtkwRZbZLPdwRWctzLTF9vk_XGsPL_a0-YdAk5Qqa8KKWrIC8C46asCPwB3_CRvaqGgep56RQiws4Y8C-rF9SGd1qAmFgpXg0ufvWCHBTWtXT1x5TjX-BXOLFfgZrnJPxFs7pCn25vH67ugbcMQaAQ7dWCiCFECNZRivuYVxzKhZKxUSqXgPGO9KA1FZo2OQ8tNFkaaSh1qfNUsi62iu2SpcIXdJ6AzjjDZMs1kxK324u9onSj1GoncSHFAoFvbEbq5v7tQhXXTavS9ugdkb26fUTmX4xjhmcvQxPLw78FHZJV2HD5-TJYz3OL2hKzotzqvJqeN--Bz8HD_BUrD0Us |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thaumarchaeotes+abundant+in+refinery+nitrifying+sludges+express+amoA+but+are+not+obligate+autotrophic+ammonia+oxidizers&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mussmann%2C+Marc&rft.au=Brito%2C+Ivana&rft.au=Pitcher%2C+Angela&rft.au=Sinninghe+Damst%C3%A9%2C+Jaap+S&rft.date=2011-10-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=40&rft.spage=16771&rft_id=info:doi/10.1073%2Fpnas.1106427108&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |