Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2...
Uloženo v:
| Vydáno v: | Atmospheric chemistry and physics Ročník 19; číslo 12; s. 8339 - 8361 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
28.06.2019
European Geosciences Union Copernicus Publications |
| Témata: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Severe surface ozone pollution over major Chinese cities has become an
emerging air quality concern, raising a new challenge for emission control
measures in China. In this study, we explore the source contributions to
surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017,
the 2 years with the highest surface ozone averaged over Chinese cities in
record. We estimate the contributions of anthropogenic, background, and
individual natural sources to surface ozone over China using the GEOS-Chem
chemical transport model at 0.25∘×0.3125∘
horizontal resolution with the most up-to-date Chinese anthropogenic
emission inventory. Model results are evaluated with concurrent surface
ozone measurements at 169 cities over China and show generally good agreement.
We find that background ozone (defined as ozone that would be present in
the absence of all Chinese anthropogenic emissions) accounts for 90 %
(49.4 ppbv) of the national March–April mean surface MDA8 ozone over China
and 80 % (44.5 ppbv) for May–August. It includes large contributions from
natural sources (80 % in March–April and 72 % in May–August). Among
them, biogenic volatile organic compound (BVOC) emissions enhance MDA8
ozone by more than 15 ppbv in eastern China during July–August, while
lightning NOx emissions and ozone transport from the stratosphere both
lead to ozone enhancements of over 20 ppbv in western China during
March–April. Over major Chinese city clusters, domestic anthropogenic
sources account for about 30 % of the May–August mean surface MDA8 ozone
and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone
> 100 ppbv in the North China Plain, Fenwei Plain, Yangtze
River Delta, and Pearl River Delta city clusters. These high ozone episodes
are usually associated with high temperatures, which induce large BVOC
emissions and enhance ozone chemical production. Our results indicate that
there would be no days with MDA8 ozone > 80 ppbv in these major
Chinese cities in the absence of domestic anthropogenic emissions. We find
that the 2017 ozone increases relative to 2016 are largely due to higher
background ozone driven by hotter and drier weather conditions, while
changes in domestic anthropogenic emissions alone would have led to ozone
decreases in 2017. Meteorological conditions in 2017 favor natural source
contributions (particularly soil NOx and BVOC ozone enhancements) and
ozone chemical production, increase the thermal decomposition of peroxyacetyl
nitrate (PAN), and further decrease ozone dry deposition velocity. More
stringent emission control measures are thus required to offset the adverse
effects of unfavorable meteorology, such as high temperature, on surface ozone
air quality. |
|---|---|
| AbstractList | Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25 ∘× 0.3125 ∘ <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="48299fda1ee4aa48790177179deb280c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-8339-2019-ie00001.svg" width="76pt" height="11pt" src="acp-19-8339-2019-ie00001.png"/></svg:svg> horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone > 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone > 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality. Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25âÃ0.3125â horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March-April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May-August. It includes large contributions from natural sources (80 % in March-April and 72 % in May-August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July-August, while lightning NO.sub.x emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March-April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May-August mean surface MDA8 ozone and reach 39-73 ppbv (38 %-69 %) for days with simulated MDA8 ozone 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NO.sub.x and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality. Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone>100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone >80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality. Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone > 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone > 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality. |
| Audience | Academic |
| Author | Liu, Yiming Zheng, Bo Chen, Youfan Zhou, Mi Li, Ke Zhang, Qiang Lu, Xiao Fu, Tzung-May Lin, Jintai Zhang, Lin |
| Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-5989-0912 surname: Lu fullname: Lu, Xiao – sequence: 2 givenname: Lin surname: Zhang fullname: Zhang, Lin – sequence: 3 givenname: Youfan surname: Chen fullname: Chen, Youfan – sequence: 4 givenname: Mi surname: Zhou fullname: Zhou, Mi – sequence: 5 givenname: Bo orcidid: 0000-0001-8344-3445 surname: Zheng fullname: Zheng, Bo – sequence: 6 givenname: Ke orcidid: 0000-0002-9181-3562 surname: Li fullname: Li, Ke – sequence: 7 givenname: Yiming surname: Liu fullname: Liu, Yiming – sequence: 8 givenname: Jintai orcidid: 0000-0002-2362-2940 surname: Lin fullname: Lin, Jintai – sequence: 9 givenname: Tzung-May surname: Fu fullname: Fu, Tzung-May – sequence: 10 givenname: Qiang surname: Zhang fullname: Zhang, Qiang |
| BackLink | https://insu.hal.science/insu-03721878$$DView record in HAL |
| BookMark | eNp1UsuKFDEULWQEZ0b3LgtcKdSYVF4Vd80wOg0Ngo91uJW61ZMmnbRJ1TC68h_8Q7_E9LSiLUoWN9ycc25ycs6qkxADVtVTSi4E1fwl2F1DddMxppuWUP2gOqWyI41iLT_5Y_-oOst5Q0grCOWnlb-62_mYXFjXhSW_f_1WiqrznEawWMcvZUq9i97Pk4uhjreY6ssbF-BVneOcCsTGMCXX35_nGsJQb3HCmKKPa2fB1y6MfsZgMT-uHo7gMz75Wc-rj6-vPlxeN6u3b5aXi1VjBRVTA7RXIKUmjCOzg-4taKUV7QSTCGPP6MC5El0vR-wt6bkVfFA4aiFh7Fpk59XyoDtE2JhdcltIn00EZ-4bMa0NpMlZjwaFbqXmVssiIiUA9kKMigvad63ltmi9OGjdgD-Sul6sjAt5NoSplnaqu6UF_OwA3qX4acY8mU0xKZS3mrblHRO81eI3ag3lBsWeOCWwW5etWQhNGWedUgV18Q9UWQNuXTEdR1f6R4TnR4T9x-DdtIY5Z7N8_-4YKw9Ym2LOCUdj3QT7LyxDnDeUmH2qTEmVodrsU2X2qSpE8hfxlyf_pfwAQL3QLw |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169762 crossref_primary_10_1016_j_uclim_2023_101790 crossref_primary_10_1016_j_atmosres_2023_106901 crossref_primary_10_1007_s41810_025_00344_x crossref_primary_10_1088_1748_9326_ac8b24 crossref_primary_10_1016_j_atmosenv_2022_119446 crossref_primary_10_1016_j_jes_2024_01_038 crossref_primary_10_1016_j_atmosenv_2020_117384 crossref_primary_10_1016_j_heliyon_2024_e31857 crossref_primary_10_1016_j_mtcomm_2024_109820 crossref_primary_10_1016_j_atmosenv_2021_118753 crossref_primary_10_5194_acp_21_11519_2021 crossref_primary_10_1016_j_envpol_2021_117444 crossref_primary_10_1016_j_envint_2023_108301 crossref_primary_10_1016_j_envpol_2025_125974 crossref_primary_10_1016_j_scitotenv_2021_152654 crossref_primary_10_5194_acp_20_4575_2020 crossref_primary_10_1038_s44407_025_00023_8 crossref_primary_10_5194_acp_19_13933_2019 crossref_primary_10_1016_j_atmosenv_2020_117392 crossref_primary_10_1016_j_jenvman_2021_112368 crossref_primary_10_1016_j_scitotenv_2021_147739 crossref_primary_10_1029_2022JD037121 crossref_primary_10_1007_s11430_022_1128_1 crossref_primary_10_5194_acp_25_2725_2025 crossref_primary_10_1016_j_scitotenv_2023_164065 crossref_primary_10_1007_s00376_021_1257_x crossref_primary_10_1016_j_envpol_2024_124397 crossref_primary_10_1038_s41561_023_01284_2 crossref_primary_10_3390_atmos14050768 crossref_primary_10_3390_rs12030523 crossref_primary_10_1088_1748_9326_ac69fe crossref_primary_10_1016_j_jes_2023_09_001 crossref_primary_10_3390_atmos15080942 crossref_primary_10_1007_s11356_022_22543_6 crossref_primary_10_1016_j_envpol_2024_124036 crossref_primary_10_3389_fenvs_2022_864897 crossref_primary_10_1016_j_epm_2025_08_002 crossref_primary_10_1016_j_atmosenv_2020_118130 crossref_primary_10_3390_rs17183238 crossref_primary_10_1016_j_jes_2022_01_014 crossref_primary_10_1016_j_envpol_2022_118914 crossref_primary_10_5194_acp_21_18589_2021 crossref_primary_10_1016_j_envpol_2021_117547 crossref_primary_10_1016_j_scitotenv_2022_154639 crossref_primary_10_1002_cnma_202400646 crossref_primary_10_3390_atmos13040632 crossref_primary_10_1016_j_scitotenv_2024_172763 crossref_primary_10_1016_j_scitotenv_2024_174821 crossref_primary_10_5194_acp_22_6275_2022 crossref_primary_10_1016_j_envpol_2024_125491 crossref_primary_10_1016_j_envpol_2021_118617 crossref_primary_10_1002_joc_6228 crossref_primary_10_5194_acp_20_9311_2020 crossref_primary_10_1016_j_scitotenv_2022_159592 crossref_primary_10_3390_atmos14040609 crossref_primary_10_1016_j_scitotenv_2024_169909 crossref_primary_10_1016_j_apr_2022_101497 crossref_primary_10_1016_j_chemosphere_2022_134843 crossref_primary_10_1016_j_envpol_2024_123748 crossref_primary_10_1016_j_atmosenv_2020_117730 crossref_primary_10_1016_j_envpol_2020_114366 crossref_primary_10_1029_2020JD032735 crossref_primary_10_1029_2023JD039141 crossref_primary_10_1016_j_envpol_2021_117899 crossref_primary_10_1088_1748_9326_abcee9 crossref_primary_10_1016_j_envint_2024_108731 crossref_primary_10_3390_f13030369 crossref_primary_10_1073_pnas_2015797118 crossref_primary_10_1038_s43016_020_00162_z crossref_primary_10_1016_j_scitotenv_2024_174196 crossref_primary_10_1016_j_apr_2023_102024 crossref_primary_10_5194_acp_21_11531_2021 crossref_primary_10_1007_s10661_024_12489_2 crossref_primary_10_1016_j_envpol_2022_120256 crossref_primary_10_1016_j_jes_2023_09_024 crossref_primary_10_1016_j_jclepro_2019_06_204 crossref_primary_10_5194_acp_24_7793_2024 crossref_primary_10_1007_s11356_022_24809_5 crossref_primary_10_1016_j_heliyon_2024_e36303 crossref_primary_10_5194_acp_20_203_2020 crossref_primary_10_1016_j_chemosphere_2022_137124 crossref_primary_10_1016_j_envpol_2022_119146 crossref_primary_10_1016_j_scitotenv_2022_154218 crossref_primary_10_1016_j_scitotenv_2021_148474 crossref_primary_10_5194_acp_21_9201_2021 crossref_primary_10_1016_j_envpol_2023_123234 crossref_primary_10_1088_1748_9326_ad281f crossref_primary_10_3389_fenvs_2023_1254390 crossref_primary_10_1016_j_apr_2023_101843 crossref_primary_10_1016_j_jclepro_2019_118498 crossref_primary_10_1016_j_jhazmat_2023_133385 crossref_primary_10_1016_j_apr_2021_101054 crossref_primary_10_1016_j_scitotenv_2022_160520 crossref_primary_10_1016_j_atmosenv_2021_118424 crossref_primary_10_1016_j_atmosenv_2024_120919 crossref_primary_10_1016_j_atmosenv_2023_119757 crossref_primary_10_1029_2022JD037961 crossref_primary_10_5194_acp_22_14401_2022 crossref_primary_10_1016_j_atmosenv_2020_117808 crossref_primary_10_3390_rs15194871 crossref_primary_10_1016_j_apr_2025_102643 crossref_primary_10_1016_j_atmosres_2023_106889 crossref_primary_10_3390_rs13234839 crossref_primary_10_1038_s41612_024_00818_8 crossref_primary_10_1038_s41561_021_00726_z crossref_primary_10_1016_j_jhazmat_2025_139811 crossref_primary_10_1016_j_scitotenv_2023_167485 crossref_primary_10_1109_JSTARS_2021_3080843 crossref_primary_10_1007_s10980_024_01838_8 crossref_primary_10_1016_j_jes_2024_06_032 crossref_primary_10_1016_j_atmosenv_2020_117801 crossref_primary_10_3390_f15122183 crossref_primary_10_3390_atmos15070831 crossref_primary_10_1007_s40726_019_00118_3 crossref_primary_10_1016_j_scitotenv_2023_169411 crossref_primary_10_1016_j_scitotenv_2024_172321 crossref_primary_10_1016_j_jenvman_2022_117105 crossref_primary_10_1016_j_jenvman_2023_119942 crossref_primary_10_1007_s11783_023_1738_5 crossref_primary_10_1016_j_scitotenv_2025_179360 crossref_primary_10_7717_peerj_11322 crossref_primary_10_1016_j_scitotenv_2022_158580 crossref_primary_10_1016_j_jes_2023_10_008 crossref_primary_10_1039_D1RA02847B crossref_primary_10_1088_1748_9326_ac3e22 crossref_primary_10_5194_acp_24_8441_2024 crossref_primary_10_1016_j_envpol_2022_119254 crossref_primary_10_3390_atmos11070755 crossref_primary_10_5194_acp_24_345_2024 crossref_primary_10_1016_j_jes_2020_11_030 crossref_primary_10_1016_j_scitotenv_2021_147454 crossref_primary_10_1038_s42949_023_00105_0 crossref_primary_10_5194_acp_20_9837_2020 crossref_primary_10_1038_s41612_024_00855_3 crossref_primary_10_1016_j_atmosres_2024_107314 crossref_primary_10_1016_j_apr_2022_101523 crossref_primary_10_1016_j_chemosphere_2020_127595 crossref_primary_10_5194_acp_19_14477_2019 crossref_primary_10_1021_acs_est_5c01347 crossref_primary_10_1016_j_scitotenv_2020_137493 crossref_primary_10_1038_s41561_019_0464_x crossref_primary_10_1016_j_scitotenv_2022_157785 crossref_primary_10_1016_j_scitotenv_2020_139559 crossref_primary_10_1007_s00484_025_03010_6 crossref_primary_10_5194_acp_21_6365_2021 crossref_primary_10_5194_acp_22_8385_2022 crossref_primary_10_1016_j_scitotenv_2022_153847 crossref_primary_10_5194_essd_17_3741_2025 crossref_primary_10_1080_10962247_2021_1906354 crossref_primary_10_3389_fenvs_2022_894937 crossref_primary_10_3390_atmos14030604 crossref_primary_10_1016_j_atmosenv_2022_119182 crossref_primary_10_3390_atmos12020184 crossref_primary_10_1007_s11356_024_33991_7 crossref_primary_10_1016_j_apr_2022_101638 crossref_primary_10_5194_acp_21_16349_2021 crossref_primary_10_5194_acp_21_2601_2021 crossref_primary_10_1289_EHP9406 crossref_primary_10_1007_s11356_020_09646_8 crossref_primary_10_5194_acp_22_10551_2022 crossref_primary_10_1016_j_envpol_2023_122189 crossref_primary_10_1016_j_scitotenv_2024_175093 crossref_primary_10_1016_j_envres_2021_111457 crossref_primary_10_1016_j_atmosres_2023_106605 crossref_primary_10_5194_acp_20_6305_2020 crossref_primary_10_1016_j_scitotenv_2020_139301 crossref_primary_10_3390_atmos15030262 crossref_primary_10_1016_j_jenvman_2023_117778 crossref_primary_10_1016_j_jes_2024_10_004 crossref_primary_10_5194_acp_23_13107_2023 crossref_primary_10_5194_acp_24_1177_2024 crossref_primary_10_1029_2021JD035963 crossref_primary_10_1007_s42452_022_05045_5 crossref_primary_10_3390_atmos16050505 crossref_primary_10_1016_j_atmosenv_2023_119908 crossref_primary_10_1016_j_jes_2022_03_010 crossref_primary_10_3389_fenvs_2022_1015723 crossref_primary_10_1016_j_envint_2022_107428 crossref_primary_10_1016_j_apr_2025_102449 crossref_primary_10_5194_acp_23_6525_2023 crossref_primary_10_1016_j_chemosphere_2020_127572 crossref_primary_10_1016_j_jes_2024_03_051 crossref_primary_10_1038_s41612_023_00366_7 crossref_primary_10_1016_j_atmosres_2023_106836 crossref_primary_10_3390_atmos14101487 crossref_primary_10_1016_j_chemosphere_2024_141439 crossref_primary_10_3389_fenvs_2022_1024795 crossref_primary_10_1016_j_scitotenv_2021_151722 crossref_primary_10_1016_j_ufug_2025_128841 crossref_primary_10_5194_acp_22_4167_2022 crossref_primary_10_1016_j_scitotenv_2023_166182 crossref_primary_10_1029_2022EF002671 crossref_primary_10_1016_j_geosus_2023_09_008 crossref_primary_10_1016_j_scitotenv_2021_148575 crossref_primary_10_1007_s11869_020_00958_9 crossref_primary_10_1016_j_aosl_2021_100131 crossref_primary_10_1016_j_jhazmat_2025_139468 crossref_primary_10_3390_toxics13080670 crossref_primary_10_1007_s00376_021_0327_4 crossref_primary_10_1051_e3sconf_202340604027 crossref_primary_10_1016_j_uclim_2025_102399 crossref_primary_10_3390_atmos12121557 crossref_primary_10_5194_acp_22_4705_2022 crossref_primary_10_1016_j_atmosenv_2025_121206 crossref_primary_10_1016_j_jes_2024_07_026 crossref_primary_10_1029_2020JD033670 crossref_primary_10_5194_acp_22_2625_2022 crossref_primary_10_1029_2023GL104838 crossref_primary_10_1016_j_envpol_2023_122517 crossref_primary_10_1016_j_jclepro_2019_119881 crossref_primary_10_1016_j_atmosenv_2024_120616 crossref_primary_10_3390_ijerph19137743 crossref_primary_10_1039_d0pp90011g crossref_primary_10_5194_acp_22_7331_2022 crossref_primary_10_3390_atmos13091450 crossref_primary_10_3390_ijerph19148511 crossref_primary_10_3390_atmos15030248 crossref_primary_10_5194_acp_21_11759_2021 crossref_primary_10_1007_s11869_022_01208_w crossref_primary_10_1016_j_apr_2024_102142 crossref_primary_10_1007_s11356_021_16857_0 crossref_primary_10_1016_j_jenvman_2021_113670 crossref_primary_10_1088_1748_9326_ac6ff7 crossref_primary_10_1016_j_heliyon_2024_e40889 crossref_primary_10_1016_j_jes_2024_07_017 crossref_primary_10_1016_j_scitotenv_2021_148868 crossref_primary_10_3389_fenvs_2022_1104013 crossref_primary_10_1016_j_scitotenv_2022_158271 crossref_primary_10_1016_j_atmosenv_2025_121339 crossref_primary_10_3390_su16010123 crossref_primary_10_1016_j_scitotenv_2020_144784 crossref_primary_10_1016_j_atmosenv_2020_117985 crossref_primary_10_5194_acp_25_7991_2025 crossref_primary_10_3389_feart_2022_947001 crossref_primary_10_1021_acsestair_5c00067 crossref_primary_10_1016_j_scitotenv_2021_149603 crossref_primary_10_1016_j_jes_2022_09_032 crossref_primary_10_5194_acp_24_11775_2024 crossref_primary_10_5194_acp_20_11683_2020 crossref_primary_10_1016_j_atmosenv_2025_121346 crossref_primary_10_1080_09638237_2023_2278102 crossref_primary_10_3390_su16062475 crossref_primary_10_1016_j_atmosenv_2024_120514 crossref_primary_10_1016_j_atmosenv_2021_118704 crossref_primary_10_1029_2022EA002742 crossref_primary_10_5194_acp_23_1131_2023 crossref_primary_10_1088_1748_9326_ac54cd crossref_primary_10_3390_s22134854 crossref_primary_10_5194_acp_20_4399_2020 crossref_primary_10_1016_j_atmosres_2021_105599 crossref_primary_10_1007_s00376_022_2039_9 crossref_primary_10_3390_app14125026 crossref_primary_10_3390_atmos12050626 crossref_primary_10_1016_j_aosl_2022_100193 crossref_primary_10_3390_su15032048 crossref_primary_10_1016_j_chemosphere_2023_138474 crossref_primary_10_1016_j_envpol_2020_115804 crossref_primary_10_12677_CCRL_2020_93017 crossref_primary_10_5194_acp_25_9545_2025 crossref_primary_10_1016_j_ecz_2024_100012 crossref_primary_10_1016_j_envpol_2025_126162 crossref_primary_10_1016_j_jclepro_2020_125352 crossref_primary_10_1016_j_atmosenv_2024_120772 crossref_primary_10_1016_j_jes_2025_01_021 crossref_primary_10_5194_acp_21_10689_2021 crossref_primary_10_1038_s41467_021_25147_9 crossref_primary_10_1016_j_atmosenv_2024_120658 crossref_primary_10_1029_2021GL093814 crossref_primary_10_5194_acp_22_7273_2022 crossref_primary_10_1016_j_jhazmat_2025_137369 crossref_primary_10_1016_j_jes_2023_02_025 crossref_primary_10_1029_2020GL089623 crossref_primary_10_1029_2020JD034317 crossref_primary_10_1007_s11783_024_1897_z |
| Cites_doi | 10.5194/acp-17-13103-2017 10.5194/acp-14-10363-2014 10.5194/acp-9-3825-2009 10.1016/j.atmosenv.2010.02.009 10.1029/2008JD011254 10.1002/2017JD027190 10.5194/acp-17-2543-2017 10.1029/2000JD900839 10.1029/2012JD017934 10.1016/S1352-2310(00)00326-5 10.5194/acp-17-2759-2017 10.1029/92JD00719 10.5194/acp-12-1307-2012 10.1073/pnas.1008336107 10.1021/acs.estlett.8b00366 10.5194/acp-12-591-2012 10.1029/98JD00156 10.1029/2018JD030001 10.5194/acp-14-6867-2014 10.1029/2008JD010752 10.5194/acp-18-14095-2018 10.1016/j.envpol.2017.09.017 10.1029/2006JD007538 10.5194/acp-16-14687-2016 10.1021/es2022818 10.1016/j.atmosenv.2017.09.024 10.1029/2002JD002490 10.5194/acp-8-6117-2008 10.1073/pnas.1812168116 10.1029/2003JD004473 10.5194/acp-14-9787-2014 10.5194/acp-11-3511-2011 10.1016/j.scitotenv.2016.10.081 10.1525/elementa.273 10.5194/acp-18-3101-2018 10.1080/10473289.2005.10464648 10.1029/2000JD900124 10.5194/gmd-11-369-2018 10.1016/j.atmosenv.2011.07.054 10.5194/acp-12-2881-2012 10.5194/acp-18-7489-2018 10.5194/acp-19-6107-2019 10.1039/c2cs35095e 10.5194/acp-10-9943-2010 10.5194/acp-19-6125-2019 10.1016/j.scitotenv.2018.01.336 10.1029/2009JD011880 10.1016/j.atmosenv.2017.11.014 10.1002/2015JD023250 10.1016/0004-6981(89)90153-4 10.1164/rccm.201508-1633OC 10.1007/s40726-016-0031-7 10.1029/2006GL027689 10.1525/elementa.309 10.1029/2009JD012714 10.5194/acp-14-5295-2014 10.1016/j.atmosenv.2008.09.051 10.1016/j.scib.2018.07.001 10.5194/acp-14-13175-2014 10.1023/A:1014980619462 10.1038/nclimate2567 10.1029/2001JD000807 10.1029/2006JD007912 10.1029/2005JD006605 10.5194/acp-13-5813-2013 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2 10.1021/acs.est.6b02602 10.5194/acp-18-11447-2018 10.5194/acp-12-7779-2012 10.1016/j.atmosenv.2013.12.004 10.1002/jgrd.50266 10.1002/jgrd.50857 10.5194/gmd-7-1409-2014 10.5194/acp-18-773-2018 10.1016/j.scitotenv.2018.04.286 10.5194/acp-17-935-2017 10.1016/j.atmosenv.2019.05.006 10.5194/acp-19-6551-2019 10.5194/acp-15-8889-2015 10.1016/j.scib.2018.12.021 10.5194/acp-15-13299-2015 10.5194/acp-16-4369-2016 10.1021/jp4107603 10.1175/2007JAMC1681.1 10.1525/elementa.265 10.5194/essd-9-697-2017 10.5194/acp-14-5617-2014 10.1021/acs.est.6b03010 10.1029/2007JD009162 10.1016/j.scitotenv.2017.03.056 10.1002/jgrd.50817 10.1016/j.envint.2018.09.015 10.5194/gmd-5-1471-2012 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Copernicus GmbH 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: COPYRIGHT 2019 Copernicus GmbH – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 1XC VOOES DOA |
| DOI | 10.5194/acp-19-8339-2019 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1680-7324 |
| EndPage | 8361 |
| ExternalDocumentID | oai_doaj_org_article_e592694c96c5466aaeb55f7451b82c4c oai:HAL:insu-03721878v1 A591343877 10_5194_acp_19_8339_2019 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI 1XC C1A IPNFZ RIG VOOES |
| ID | FETCH-LOGICAL-c515t-a1b7a669034e3cd9bca979718536eafb31d44758b6febc0b4c54d7ef956af82e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 302 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473225100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Mon Nov 10 04:32:25 EST 2025 Tue Oct 14 20:07:04 EDT 2025 Fri Jul 25 20:04:58 EDT 2025 Sat Nov 29 13:18:05 EST 2025 Sat Nov 29 10:14:43 EST 2025 Wed Nov 26 10:21:11 EST 2025 Sat Nov 29 05:52:37 EST 2025 Tue Nov 18 21:24:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c515t-a1b7a669034e3cd9bca979718536eafb31d44758b6febc0b4c54d7ef956af82e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9181-3562 0000-0002-5989-0912 0000-0002-2362-2940 0000-0001-8344-3445 |
| OpenAccessLink | https://www.proquest.com/docview/2248354295?pq-origsite=%requestingapplication% |
| PQID | 2248354295 |
| PQPubID | 105744 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e592694c96c5466aaeb55f7451b82c4c hal_primary_oai_HAL_insu_03721878v1 proquest_journals_2248354295 gale_infotracmisc_A591343877 gale_infotracacademiconefile_A591343877 gale_incontextgauss_ISR_A591343877 crossref_citationtrail_10_5194_acp_19_8339_2019 crossref_primary_10_5194_acp_19_8339_2019 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-28 |
| PublicationDateYYYYMMDD | 2019-06-28 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2019 |
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref10 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
| References_xml | – ident: ref19 doi: 10.5194/acp-17-13103-2017 – ident: ref75 doi: 10.5194/acp-14-10363-2014 – ident: ref4 doi: 10.5194/acp-9-3825-2009 – ident: ref38 doi: 10.1016/j.atmosenv.2010.02.009 – ident: ref23 doi: 10.1029/2008JD011254 – ident: ref36 doi: 10.1002/2017JD027190 – ident: ref10 doi: 10.5194/acp-17-2543-2017 – ident: ref24 – ident: ref41 doi: 10.1029/2000JD900839 – ident: ref57 doi: 10.1029/2012JD017934 – ident: ref90 doi: 10.1016/S1352-2310(00)00326-5 – ident: ref32 doi: 10.5194/acp-17-2759-2017 – ident: ref63 doi: 10.1029/92JD00719 – ident: ref62 doi: 10.5194/acp-12-1307-2012 – ident: ref69 doi: 10.1073/pnas.1008336107 – ident: ref46 doi: 10.1021/acs.estlett.8b00366 – ident: ref1 doi: 10.5194/acp-12-591-2012 – ident: ref79 doi: 10.1029/98JD00156 – ident: ref87 doi: 10.1029/2018JD030001 – ident: ref86 doi: 10.5194/acp-14-6867-2014 – ident: ref65 doi: 10.1029/2008JD010752 – ident: ref97 doi: 10.5194/acp-18-14095-2018 – ident: ref5 doi: 10.1016/j.envpol.2017.09.017 – ident: ref80 doi: 10.1029/2006JD007538 – ident: ref45 doi: 10.5194/acp-16-14687-2016 – ident: ref51 doi: 10.1021/es2022818 – ident: ref95 doi: 10.1016/j.atmosenv.2017.09.024 – ident: ref70 doi: 10.1029/2002JD002490 – ident: ref91 doi: 10.5194/acp-8-6117-2008 – ident: ref33 doi: 10.1073/pnas.1812168116 – ident: ref61 doi: 10.1029/2003JD004473 – ident: ref96 doi: 10.5194/acp-14-9787-2014 – ident: ref81 doi: 10.5194/acp-11-3511-2011 – ident: ref78 doi: 10.1016/j.scitotenv.2016.10.081 – ident: ref13 doi: 10.1525/elementa.273 – ident: ref47 doi: 10.5194/acp-18-3101-2018 – ident: ref29 doi: 10.1080/10473289.2005.10464648 – ident: ref52 doi: 10.1029/2000JD900124 – ident: ref17 doi: 10.5194/gmd-11-369-2018 – ident: ref92 doi: 10.1016/j.atmosenv.2011.07.054 – ident: ref39 doi: 10.5194/acp-12-2881-2012 – ident: ref35 doi: 10.5194/acp-18-7489-2018 – ident: ref67 doi: 10.5194/acp-19-6107-2019 – ident: ref12 doi: 10.1039/c2cs35095e – ident: ref21 doi: 10.5194/acp-10-9943-2010 – ident: ref6 doi: 10.5194/acp-19-6125-2019 – ident: ref53 doi: 10.1016/j.scitotenv.2018.01.336 – ident: ref60 doi: 10.1029/2009JD011880 – ident: ref42 doi: 10.1016/j.atmosenv.2017.11.014 – ident: ref27 doi: 10.1002/2015JD023250 – ident: ref18 – ident: ref82 doi: 10.1016/0004-6981(89)90153-4 – ident: ref73 doi: 10.1164/rccm.201508-1633OC – ident: ref56 doi: 10.1007/s40726-016-0031-7 – ident: ref66 – ident: ref77 doi: 10.1029/2006GL027689 – ident: ref26 doi: 10.1525/elementa.309 – ident: ref44 doi: 10.1029/2009JD012714 – ident: ref93 doi: 10.5194/acp-14-5295-2014 – ident: ref25 doi: 10.1016/j.atmosenv.2008.09.051 – ident: ref72 doi: 10.1016/j.scib.2018.07.001 – ident: ref85 doi: 10.5194/acp-14-13175-2014 – ident: ref3 doi: 10.1023/A:1014980619462 – ident: ref14 doi: 10.1038/nclimate2567 – ident: ref2 doi: 10.1029/2001JD000807 – ident: ref20 doi: 10.1029/2006JD007912 – ident: ref83 doi: 10.1029/2005JD006605 – ident: ref8 doi: 10.5194/acp-13-5813-2013 – ident: ref55 doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2 – ident: ref50 doi: 10.1021/acs.est.6b02602 – ident: ref59 doi: 10.5194/acp-18-11447-2018 – ident: ref22 doi: 10.5194/acp-12-7779-2012 – ident: ref43 doi: 10.1016/j.atmosenv.2013.12.004 – ident: ref9 doi: 10.1002/jgrd.50266 – ident: ref58 doi: 10.1002/jgrd.50857 – ident: ref28 doi: 10.5194/gmd-7-1409-2014 – ident: ref84 doi: 10.5194/acp-18-773-2018 – ident: ref7 – ident: ref71 doi: 10.1016/j.scitotenv.2018.04.286 – ident: ref31 doi: 10.5194/acp-17-935-2017 – ident: ref76 doi: 10.1016/j.atmosenv.2019.05.006 – ident: ref68 doi: 10.5194/acp-19-6551-2019 – ident: ref54 doi: 10.5194/acp-15-8889-2015 – ident: ref48 doi: 10.1016/j.scib.2018.12.021 – ident: ref40 doi: 10.5194/acp-15-13299-2015 – ident: ref88 doi: 10.5194/acp-16-4369-2016 – ident: ref30 doi: 10.1021/jp4107603 – ident: ref37 doi: 10.1175/2007JAMC1681.1 – ident: ref89 doi: 10.1525/elementa.265 – ident: ref74 doi: 10.5194/essd-9-697-2017 – ident: ref34 doi: 10.5194/acp-14-5617-2014 – ident: ref94 doi: 10.1021/acs.est.6b03010 – ident: ref11 doi: 10.1029/2007JD009162 – ident: ref64 doi: 10.1016/j.scitotenv.2017.03.056 – ident: ref49 doi: 10.1002/jgrd.50817 – ident: ref15 doi: 10.1016/j.envint.2018.09.015 – ident: ref16 doi: 10.5194/gmd-5-1471-2012 |
| SSID | ssj0025014 |
| Score | 2.678438 |
| Snippet | Severe surface ozone pollution over major Chinese cities has become an
emerging air quality concern, raising a new challenge for emission control
measures in... Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in... Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in... |
| SourceID | doaj hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 8339 |
| SubjectTerms | Air pollution Air quality Air temperature Analysis Anthropogenic factors Atmospheric ozone Chemical transport Chinese history Cities Cities and towns Clusters Computer simulation Dry deposition Emission analysis Emission inventories Emission measurements Emissions Emissions (Pollution) Emissions control Environmental aspects Environmental management Forecasts and trends High temperature Human influences Lightning Measurement Meteorological conditions Meteorology Middle atmosphere Nitrogen compounds Nitrogen oxides Nitrogen oxides emissions Organic chemistry Organic compounds Ozone Ozone episodes Ozone measurements Ozone transport Peroxyacetyl nitrate Photochemicals Pollution Pollution control Rivers Sciences of the Universe Soil Stratosphere Thermal decomposition Thermal degradation Transport VOCs Volatile organic compounds Weather Weather conditions |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgxYELb0RgQRYgEAerSez4wa2sWC3SskK8tDfLduylUkmrpt0DJ_4D_5BfwkySRlsOcIBTlXaSTvxNxjPxeD5CnpqEbk_krNauZCJ4ybyQgSnt89IXsqo7zsjPx-rkRJ-emncXqL6wJqxvD9wP3CRWBjdbBiNDJaR0LvqqSkpUhddlEAH3rYOrxTwdOdyGVAtXyzDVkjpnyM3UL1BCtCImLixZYZjm3ICJYIedCxNS17d_9M6Xv2Bx5G8-upt4Dq__g8o3yLUh2qTT_pSb5FJsbpHsLQTKi1X3Pp0-owfzGUSt3dFtMh9r8ihoLX9-_wEfirabVXIh0sW3RRPpEumREVCK9Z-0o-B-SftlANrVvg8kWi11TU2_jn-HBkFnW1qU9g75dPj648ERGwgZWICwZ81c4ZWTkE9zEXmojQ_OKKNwypfRJc-LGvsHai9T9CH3Au6_VjFBDuaSLiO_S_Ya0PMeoc5pLrWPhaqDMFFpEUKtkpQQgKRU1RmZbFGxYehWjqQZcwtZC-JoAUdbGIs4WsQxIy_GM5Z9p44_yL5C1EY57LHdfQEw2gFG-zcYM_IYzcRiF40Gy3TO3KZt7ZsP7-20woIGrpXKyPNBKC1A_-CGXQ8wCth4a0dyf0cSHvOw8_MTsMYdjY-mxxZ3LNicQx6vlT4v4CJba7WDM2otRGn4eq801f3_cd8PyFUcQ6yXK_U-2VuvNvEhuRLO17N29ah7Dn8BDNAzDw priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BxYELKi9hKGgFCMRhFT_W--AWKqoilQrxUm-rfZZIwYnipIee-A_8Q34JM7ZjNRzgwilKPLY3M-PZmfXs9xHyXCcMezxnQdmSce8Ec1x4JpXLS1eIOnSckV9P5OmpOjvTH65QfWFPWA8P3CtuEmuNmy29Fr7mQlgbXV0nyevCqdJzj9E3l3pbTA2lFr4tw1JLqJwhN1P_ghKyFT6xfskKzVRVaXARRNi5MiF1uP1jdL7-DZsj_4jR3cRztE9uDRkjnfYjvU2uxeYOyd5DsrtYdWvi9AU9nM8g8-y-3SXzsa-Owp3Frx8_4UPSdrNK1ke6uFw0kS6R4hiNQrGHk3Y02q9pv5RPu_71gQirpbYJ9Pt4OzQqnW2pTdp75MvR28-Hx2wgVWAeUpc1s4WTVkBNXPFY-aCdt1pqidO2iDa5qgiIAaicSNH53HFQe5AxQR1lkypjdZ_sNTDOB4RaqyqhXCxk8FxHqbj3QSYhIIlIqQ4ZmWw1a_yAOI7EF3MDlQfawoAtTKEN2sKgLTLyajxj2aNt_EX2DRprlEOc7O4H8B4zeI_5l_dk5Cma2iASRoOtNud207bm3aePZlpjU0KlpMzIy0EoLWD83g47F0ALCJ61I3mwIwmPqt85_Aw8amfEx9MTg7sOTF5BLa6kuijgIluPM0NAaQ1kWrhEV-r64f_434_ITdQh9ryV6oDsrVeb-Jjc8BfrWbt60j1LvwESmSD6 priority: 102 providerName: Directory of Open Access Journals |
| Title | Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences |
| URI | https://www.proquest.com/docview/2248354295 https://insu.hal.science/insu-03721878 https://doaj.org/article/e592694c96c5466aaeb55f7451b82c4c |
| Volume | 19 |
| WOSCitedRecordID | wos000473225100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZIy4ELb9RAqSxAIA6rZF9-cEFJ1aoVTRSFggoXy_baJVLIhmzSAyf-A_-QX8LMxlkIh164xMruJJnsjMcz4_F8hLyQHs1e1o0KoZMos4ZFJmM24sJ0ExOzvKgxIz-e8eFQXFzIUUi4VaGscmMTa0NdlBZz5B1YajBHkcj87fxbhKhRuLsaIDRaZBc7lYGe7_aPhqNxE3LhrhmGXEx0I8RoWm9UgteSdbSdR7GMRJpKUBXstPPXwlT372-sdOsLFkn-Y6vrBej4zv-yfpfcDq4n7a115R654Wb3SXsAXnO5qJPr9CU9nE7Aha3fPSDTpkCPAuvs14-fMHBarRZeW0fL7-XM0TliJaN0KRaD0hqP-w1d7wnQuhA-IGpVVM8K-rX5OdQOOtlgpFQPyYfjo_PDkyigM0QWfKBlpGPDNYPgOs1cagtprJZcclz_mdPepHGBzQSFYd4Z2zWZzbOCOw8BmfYicekjsjMDPvcI1VqkTBgX88Jm0nGRWVtwzxh4I97nRZt0NqJRNrQuRwSNqYIQBoWpQJgqlgqFqVCYbfK6-cR83bbjGto-Sruhw4bb9YVycanC_FUul3jm10oGf4MxrZ3Jc8-zPDYisZltk2eoKwpbasywZudSr6pKnb4fq16O1Q2p4LxNXgUiXwL_VocjEPAUsAvXFuX-FiXMebt1-zmo5BbHJ70zhccXVDeFoF5wcRXDl2z0UQXLVKk_yvj4-ttPyC18OlgWl4h9srNcrNxTctNeLSfV4iBMtIM6hwGvo_wzXBv1zgefcDwdjGBsjd_1fwNJ_Tbc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZ2u0hw4Y0oLGDxFIeoeTi2g4RQWVhttW1VwS5aTsZ2nKVSaUrTLoIT_4H_wY_ilzCTJoFy2NseOFVtJqnjfJ5HZjwfIQ-TDNUe871U6tBj1nDPMG49IY0fmoDHackZ-a4vhkN5dJSMNsjPei8MllXWOrFU1Glu8R15B0wNvqMIk_jF7LOHrFGYXa0pNFaw2Hdfv0DIVjzvvYLn-ygMd18f7Ox5FauAZ8F2LzwdGKE5BIURc5FNE2N1IhKBdos7nZkoSLEJnjQ8c8b6htmYpcJlEEjoTIYugutuki0GYPdbZGvUG4zeNyEeZukwxOPS95ATapUYBS-JdbSdeUHiyShKAJrY2ecvQ1jyBTRWYfMjFmX-YxtKg7d76X-bqsvkYuVa0-5qLVwhG256lbQHEBXk8zJ5QB_TnckYXPTy2zUyaQoQKUwV__X9B3wIWiznmbaO5t_yqaMz5IJG9FIsdqUl3_gzusp50LLQv2IMK6iepvRT83eIfjquOWCK6-TwTG7-BmlNYZw3CdVaRlwaF4jUssQJyaxNRcY5eFtZFqdt0qmhoGzVmh0ZQiYKQjQEjwLwqCBRCB6F4GmTp80Zs1VbklNkXyK6GjlsKF7-kM-PVaWflIsT3NNsEw63wbnWzsRxJlgcGBlaZtvkPmJTYcuQKdYkHetlUaje2zeqG2P1RiSFaJMnlVCWw_itrrZ4wCxgl7E1ye01SdBpdu3wA1gCayPe6_YVbs9QfiTALRXyJICL1PhXleYt1B_w3zr98D1yfu9g0Ff93nD_NrmAM4UlgKHcJq3FfOnukHP2ZDEu5nerRU7Jh7NeLL8BiLqPOA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLZmOghxYUcUBrBYxSFqs3lBQqizVFNNqaph0dyM7dhDpdKUph0EJ_4D_4afwy_hvTQplMPc5sCpavOSOs73tvj5fYQ8lh7NXtIOMqGjILGGBSZhNuDCtCMTsjQrOSPf9_lgII6P5XCD_Kz3wmBZZW0TS0Od5RbfkbfA1eA7ikimLV-VRQz3uq-mnwNkkMKV1ppOYwmRQ_f1C6RvxcveHjzrJ1HU3X-7exBUDAOBBT8-D3RouGaQIMaJi20mjdWSS44-jDntTRxm2BBPGOadsW2T2DTJuPOQVGgvIhfDdTfJFo8h6WmQrZ39wfBole7hih2me0y0A-SHWi6SQsSUtLSdBqEMRBxLgCl2-fnLKZbcASsPsfkRCzT_8ROl8-te-Z-n7Sq5XIXctLPUkWtkw02uk-ZryBbyWbmoQJ_S3fEIQvfy2w0yXhUmUpg29uv7D_jgtFjMvLaO5t_yiaNT5IhGVFMsgqUlD_kLulwLoeUGgIpJrKB6ktFPq79DraCjmhumuEnencvN3yKNCYzzNqFai5gJ40Ke2UQ6LhJrM-4ZgyjM-zRrklYNC2Wrlu3IHDJWkLohkBQASYVSIZAUAqlJnq_OmC7blZwhu4NIW8lho_Hyh3x2oiq7pVwqca-zlQxugzGtnUlTz5M0NCKyiW2Sh4hTha1EJoiuE70oCtV7c6Q6KVZ1xILzJnlWCfkcxm91tfUDZgG7j61Jbq9Jgq2za4cfgTqsjfig01e4bUO1Yw7hKhenIVyk1gVVWeRC_VGEO2cffkAugoaofm9weJdcwonCysBIbJPGfLZw98gFezofFbP7lb5T8uG8deU3ViSX0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+2016-2017+surface+ozone+pollution+over+China%3A+source+contributions+and+meteorological+influences&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Lu%2C+Xiao&rft.au=Zhang%2C+Lin&rft.au=Chen%2C+Youfan&rft.au=Zhou%2C+Mi&rft.date=2019-06-28&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=19&rft.issue=12&rft.spage=8339&rft_id=info:doi/10.5194%2Facp-19-8339-2019&rft.externalDocID=A591343877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |