Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences

Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmospheric chemistry and physics Ročník 19; číslo 12; s. 8339 - 8361
Hlavní autoři: Lu, Xiao, Zhang, Lin, Chen, Youfan, Zhou, Mi, Zheng, Bo, Li, Ke, Liu, Yiming, Lin, Jintai, Fu, Tzung-May, Zhang, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 28.06.2019
European Geosciences Union
Copernicus Publications
Témata:
ISSN:1680-7324, 1680-7316, 1680-7324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone > 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone > 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality.
AbstractList Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25 ∘× 0.3125 ∘ <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="48299fda1ee4aa48790177179deb280c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-8339-2019-ie00001.svg" width="76pt" height="11pt" src="acp-19-8339-2019-ie00001.png"/></svg:svg> horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone > 100  ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone > 80  ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality.
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March-April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May-August. It includes large contributions from natural sources (80 % in March-April and 72 % in May-August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July-August, while lightning NO.sub.x emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March-April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May-August mean surface MDA8 ozone and reach 39-73 ppbv (38 %-69 %) for days with simulated MDA8 ozone 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NO.sub.x and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality.
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone>100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone >80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality.
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in China. In this study, we explore the source contributions to surface daily maximum 8 h average (MDA8) ozone over China in 2016 and 2017, the 2 years with the highest surface ozone averaged over Chinese cities in record. We estimate the contributions of anthropogenic, background, and individual natural sources to surface ozone over China using the GEOS-Chem chemical transport model at 0.25∘×0.3125∘ horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory. Model results are evaluated with concurrent surface ozone measurements at 169 cities over China and show generally good agreement. We find that background ozone (defined as ozone that would be present in the absence of all Chinese anthropogenic emissions) accounts for 90 % (49.4 ppbv) of the national March–April mean surface MDA8 ozone over China and 80 % (44.5 ppbv) for May–August. It includes large contributions from natural sources (80 % in March–April and 72 % in May–August). Among them, biogenic volatile organic compound (BVOC) emissions enhance MDA8 ozone by more than 15 ppbv in eastern China during July–August, while lightning NOx emissions and ozone transport from the stratosphere both lead to ozone enhancements of over 20 ppbv in western China during March–April. Over major Chinese city clusters, domestic anthropogenic sources account for about 30 % of the May–August mean surface MDA8 ozone and reach 39–73 ppbv (38 %–69 %) for days with simulated MDA8 ozone > 100 ppbv in the North China Plain, Fenwei Plain, Yangtze River Delta, and Pearl River Delta city clusters. These high ozone episodes are usually associated with high temperatures, which induce large BVOC emissions and enhance ozone chemical production. Our results indicate that there would be no days with MDA8 ozone > 80 ppbv in these major Chinese cities in the absence of domestic anthropogenic emissions. We find that the 2017 ozone increases relative to 2016 are largely due to higher background ozone driven by hotter and drier weather conditions, while changes in domestic anthropogenic emissions alone would have led to ozone decreases in 2017. Meteorological conditions in 2017 favor natural source contributions (particularly soil NOx and BVOC ozone enhancements) and ozone chemical production, increase the thermal decomposition of peroxyacetyl nitrate (PAN), and further decrease ozone dry deposition velocity. More stringent emission control measures are thus required to offset the adverse effects of unfavorable meteorology, such as high temperature, on surface ozone air quality.
Audience Academic
Author Liu, Yiming
Zheng, Bo
Chen, Youfan
Zhou, Mi
Li, Ke
Zhang, Qiang
Lu, Xiao
Fu, Tzung-May
Lin, Jintai
Zhang, Lin
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0002-5989-0912
  surname: Lu
  fullname: Lu, Xiao
– sequence: 2
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
– sequence: 3
  givenname: Youfan
  surname: Chen
  fullname: Chen, Youfan
– sequence: 4
  givenname: Mi
  surname: Zhou
  fullname: Zhou, Mi
– sequence: 5
  givenname: Bo
  orcidid: 0000-0001-8344-3445
  surname: Zheng
  fullname: Zheng, Bo
– sequence: 6
  givenname: Ke
  orcidid: 0000-0002-9181-3562
  surname: Li
  fullname: Li, Ke
– sequence: 7
  givenname: Yiming
  surname: Liu
  fullname: Liu, Yiming
– sequence: 8
  givenname: Jintai
  orcidid: 0000-0002-2362-2940
  surname: Lin
  fullname: Lin, Jintai
– sequence: 9
  givenname: Tzung-May
  surname: Fu
  fullname: Fu, Tzung-May
– sequence: 10
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
BackLink https://insu.hal.science/insu-03721878$$DView record in HAL
BookMark eNp1UsuKFDEULWQEZ0b3LgtcKdSYVF4Vd80wOg0Ngo91uJW61ZMmnbRJ1TC68h_8Q7_E9LSiLUoWN9ycc25ycs6qkxADVtVTSi4E1fwl2F1DddMxppuWUP2gOqWyI41iLT_5Y_-oOst5Q0grCOWnlb-62_mYXFjXhSW_f_1WiqrznEawWMcvZUq9i97Pk4uhjreY6ssbF-BVneOcCsTGMCXX35_nGsJQb3HCmKKPa2fB1y6MfsZgMT-uHo7gMz75Wc-rj6-vPlxeN6u3b5aXi1VjBRVTA7RXIKUmjCOzg-4taKUV7QSTCGPP6MC5El0vR-wt6bkVfFA4aiFh7Fpk59XyoDtE2JhdcltIn00EZ-4bMa0NpMlZjwaFbqXmVssiIiUA9kKMigvad63ltmi9OGjdgD-Sul6sjAt5NoSplnaqu6UF_OwA3qX4acY8mU0xKZS3mrblHRO81eI3ag3lBsWeOCWwW5etWQhNGWedUgV18Q9UWQNuXTEdR1f6R4TnR4T9x-DdtIY5Z7N8_-4YKw9Ym2LOCUdj3QT7LyxDnDeUmH2qTEmVodrsU2X2qSpE8hfxlyf_pfwAQL3QLw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169762
crossref_primary_10_1016_j_uclim_2023_101790
crossref_primary_10_1016_j_atmosres_2023_106901
crossref_primary_10_1007_s41810_025_00344_x
crossref_primary_10_1088_1748_9326_ac8b24
crossref_primary_10_1016_j_atmosenv_2022_119446
crossref_primary_10_1016_j_jes_2024_01_038
crossref_primary_10_1016_j_atmosenv_2020_117384
crossref_primary_10_1016_j_heliyon_2024_e31857
crossref_primary_10_1016_j_mtcomm_2024_109820
crossref_primary_10_1016_j_atmosenv_2021_118753
crossref_primary_10_5194_acp_21_11519_2021
crossref_primary_10_1016_j_envpol_2021_117444
crossref_primary_10_1016_j_envint_2023_108301
crossref_primary_10_1016_j_envpol_2025_125974
crossref_primary_10_1016_j_scitotenv_2021_152654
crossref_primary_10_5194_acp_20_4575_2020
crossref_primary_10_1038_s44407_025_00023_8
crossref_primary_10_5194_acp_19_13933_2019
crossref_primary_10_1016_j_atmosenv_2020_117392
crossref_primary_10_1016_j_jenvman_2021_112368
crossref_primary_10_1016_j_scitotenv_2021_147739
crossref_primary_10_1029_2022JD037121
crossref_primary_10_1007_s11430_022_1128_1
crossref_primary_10_5194_acp_25_2725_2025
crossref_primary_10_1016_j_scitotenv_2023_164065
crossref_primary_10_1007_s00376_021_1257_x
crossref_primary_10_1016_j_envpol_2024_124397
crossref_primary_10_1038_s41561_023_01284_2
crossref_primary_10_3390_atmos14050768
crossref_primary_10_3390_rs12030523
crossref_primary_10_1088_1748_9326_ac69fe
crossref_primary_10_1016_j_jes_2023_09_001
crossref_primary_10_3390_atmos15080942
crossref_primary_10_1007_s11356_022_22543_6
crossref_primary_10_1016_j_envpol_2024_124036
crossref_primary_10_3389_fenvs_2022_864897
crossref_primary_10_1016_j_epm_2025_08_002
crossref_primary_10_1016_j_atmosenv_2020_118130
crossref_primary_10_3390_rs17183238
crossref_primary_10_1016_j_jes_2022_01_014
crossref_primary_10_1016_j_envpol_2022_118914
crossref_primary_10_5194_acp_21_18589_2021
crossref_primary_10_1016_j_envpol_2021_117547
crossref_primary_10_1016_j_scitotenv_2022_154639
crossref_primary_10_1002_cnma_202400646
crossref_primary_10_3390_atmos13040632
crossref_primary_10_1016_j_scitotenv_2024_172763
crossref_primary_10_1016_j_scitotenv_2024_174821
crossref_primary_10_5194_acp_22_6275_2022
crossref_primary_10_1016_j_envpol_2024_125491
crossref_primary_10_1016_j_envpol_2021_118617
crossref_primary_10_1002_joc_6228
crossref_primary_10_5194_acp_20_9311_2020
crossref_primary_10_1016_j_scitotenv_2022_159592
crossref_primary_10_3390_atmos14040609
crossref_primary_10_1016_j_scitotenv_2024_169909
crossref_primary_10_1016_j_apr_2022_101497
crossref_primary_10_1016_j_chemosphere_2022_134843
crossref_primary_10_1016_j_envpol_2024_123748
crossref_primary_10_1016_j_atmosenv_2020_117730
crossref_primary_10_1016_j_envpol_2020_114366
crossref_primary_10_1029_2020JD032735
crossref_primary_10_1029_2023JD039141
crossref_primary_10_1016_j_envpol_2021_117899
crossref_primary_10_1088_1748_9326_abcee9
crossref_primary_10_1016_j_envint_2024_108731
crossref_primary_10_3390_f13030369
crossref_primary_10_1073_pnas_2015797118
crossref_primary_10_1038_s43016_020_00162_z
crossref_primary_10_1016_j_scitotenv_2024_174196
crossref_primary_10_1016_j_apr_2023_102024
crossref_primary_10_5194_acp_21_11531_2021
crossref_primary_10_1007_s10661_024_12489_2
crossref_primary_10_1016_j_envpol_2022_120256
crossref_primary_10_1016_j_jes_2023_09_024
crossref_primary_10_1016_j_jclepro_2019_06_204
crossref_primary_10_5194_acp_24_7793_2024
crossref_primary_10_1007_s11356_022_24809_5
crossref_primary_10_1016_j_heliyon_2024_e36303
crossref_primary_10_5194_acp_20_203_2020
crossref_primary_10_1016_j_chemosphere_2022_137124
crossref_primary_10_1016_j_envpol_2022_119146
crossref_primary_10_1016_j_scitotenv_2022_154218
crossref_primary_10_1016_j_scitotenv_2021_148474
crossref_primary_10_5194_acp_21_9201_2021
crossref_primary_10_1016_j_envpol_2023_123234
crossref_primary_10_1088_1748_9326_ad281f
crossref_primary_10_3389_fenvs_2023_1254390
crossref_primary_10_1016_j_apr_2023_101843
crossref_primary_10_1016_j_jclepro_2019_118498
crossref_primary_10_1016_j_jhazmat_2023_133385
crossref_primary_10_1016_j_apr_2021_101054
crossref_primary_10_1016_j_scitotenv_2022_160520
crossref_primary_10_1016_j_atmosenv_2021_118424
crossref_primary_10_1016_j_atmosenv_2024_120919
crossref_primary_10_1016_j_atmosenv_2023_119757
crossref_primary_10_1029_2022JD037961
crossref_primary_10_5194_acp_22_14401_2022
crossref_primary_10_1016_j_atmosenv_2020_117808
crossref_primary_10_3390_rs15194871
crossref_primary_10_1016_j_apr_2025_102643
crossref_primary_10_1016_j_atmosres_2023_106889
crossref_primary_10_3390_rs13234839
crossref_primary_10_1038_s41612_024_00818_8
crossref_primary_10_1038_s41561_021_00726_z
crossref_primary_10_1016_j_jhazmat_2025_139811
crossref_primary_10_1016_j_scitotenv_2023_167485
crossref_primary_10_1109_JSTARS_2021_3080843
crossref_primary_10_1007_s10980_024_01838_8
crossref_primary_10_1016_j_jes_2024_06_032
crossref_primary_10_1016_j_atmosenv_2020_117801
crossref_primary_10_3390_f15122183
crossref_primary_10_3390_atmos15070831
crossref_primary_10_1007_s40726_019_00118_3
crossref_primary_10_1016_j_scitotenv_2023_169411
crossref_primary_10_1016_j_scitotenv_2024_172321
crossref_primary_10_1016_j_jenvman_2022_117105
crossref_primary_10_1016_j_jenvman_2023_119942
crossref_primary_10_1007_s11783_023_1738_5
crossref_primary_10_1016_j_scitotenv_2025_179360
crossref_primary_10_7717_peerj_11322
crossref_primary_10_1016_j_scitotenv_2022_158580
crossref_primary_10_1016_j_jes_2023_10_008
crossref_primary_10_1039_D1RA02847B
crossref_primary_10_1088_1748_9326_ac3e22
crossref_primary_10_5194_acp_24_8441_2024
crossref_primary_10_1016_j_envpol_2022_119254
crossref_primary_10_3390_atmos11070755
crossref_primary_10_5194_acp_24_345_2024
crossref_primary_10_1016_j_jes_2020_11_030
crossref_primary_10_1016_j_scitotenv_2021_147454
crossref_primary_10_1038_s42949_023_00105_0
crossref_primary_10_5194_acp_20_9837_2020
crossref_primary_10_1038_s41612_024_00855_3
crossref_primary_10_1016_j_atmosres_2024_107314
crossref_primary_10_1016_j_apr_2022_101523
crossref_primary_10_1016_j_chemosphere_2020_127595
crossref_primary_10_5194_acp_19_14477_2019
crossref_primary_10_1021_acs_est_5c01347
crossref_primary_10_1016_j_scitotenv_2020_137493
crossref_primary_10_1038_s41561_019_0464_x
crossref_primary_10_1016_j_scitotenv_2022_157785
crossref_primary_10_1016_j_scitotenv_2020_139559
crossref_primary_10_1007_s00484_025_03010_6
crossref_primary_10_5194_acp_21_6365_2021
crossref_primary_10_5194_acp_22_8385_2022
crossref_primary_10_1016_j_scitotenv_2022_153847
crossref_primary_10_5194_essd_17_3741_2025
crossref_primary_10_1080_10962247_2021_1906354
crossref_primary_10_3389_fenvs_2022_894937
crossref_primary_10_3390_atmos14030604
crossref_primary_10_1016_j_atmosenv_2022_119182
crossref_primary_10_3390_atmos12020184
crossref_primary_10_1007_s11356_024_33991_7
crossref_primary_10_1016_j_apr_2022_101638
crossref_primary_10_5194_acp_21_16349_2021
crossref_primary_10_5194_acp_21_2601_2021
crossref_primary_10_1289_EHP9406
crossref_primary_10_1007_s11356_020_09646_8
crossref_primary_10_5194_acp_22_10551_2022
crossref_primary_10_1016_j_envpol_2023_122189
crossref_primary_10_1016_j_scitotenv_2024_175093
crossref_primary_10_1016_j_envres_2021_111457
crossref_primary_10_1016_j_atmosres_2023_106605
crossref_primary_10_5194_acp_20_6305_2020
crossref_primary_10_1016_j_scitotenv_2020_139301
crossref_primary_10_3390_atmos15030262
crossref_primary_10_1016_j_jenvman_2023_117778
crossref_primary_10_1016_j_jes_2024_10_004
crossref_primary_10_5194_acp_23_13107_2023
crossref_primary_10_5194_acp_24_1177_2024
crossref_primary_10_1029_2021JD035963
crossref_primary_10_1007_s42452_022_05045_5
crossref_primary_10_3390_atmos16050505
crossref_primary_10_1016_j_atmosenv_2023_119908
crossref_primary_10_1016_j_jes_2022_03_010
crossref_primary_10_3389_fenvs_2022_1015723
crossref_primary_10_1016_j_envint_2022_107428
crossref_primary_10_1016_j_apr_2025_102449
crossref_primary_10_5194_acp_23_6525_2023
crossref_primary_10_1016_j_chemosphere_2020_127572
crossref_primary_10_1016_j_jes_2024_03_051
crossref_primary_10_1038_s41612_023_00366_7
crossref_primary_10_1016_j_atmosres_2023_106836
crossref_primary_10_3390_atmos14101487
crossref_primary_10_1016_j_chemosphere_2024_141439
crossref_primary_10_3389_fenvs_2022_1024795
crossref_primary_10_1016_j_scitotenv_2021_151722
crossref_primary_10_1016_j_ufug_2025_128841
crossref_primary_10_5194_acp_22_4167_2022
crossref_primary_10_1016_j_scitotenv_2023_166182
crossref_primary_10_1029_2022EF002671
crossref_primary_10_1016_j_geosus_2023_09_008
crossref_primary_10_1016_j_scitotenv_2021_148575
crossref_primary_10_1007_s11869_020_00958_9
crossref_primary_10_1016_j_aosl_2021_100131
crossref_primary_10_1016_j_jhazmat_2025_139468
crossref_primary_10_3390_toxics13080670
crossref_primary_10_1007_s00376_021_0327_4
crossref_primary_10_1051_e3sconf_202340604027
crossref_primary_10_1016_j_uclim_2025_102399
crossref_primary_10_3390_atmos12121557
crossref_primary_10_5194_acp_22_4705_2022
crossref_primary_10_1016_j_atmosenv_2025_121206
crossref_primary_10_1016_j_jes_2024_07_026
crossref_primary_10_1029_2020JD033670
crossref_primary_10_5194_acp_22_2625_2022
crossref_primary_10_1029_2023GL104838
crossref_primary_10_1016_j_envpol_2023_122517
crossref_primary_10_1016_j_jclepro_2019_119881
crossref_primary_10_1016_j_atmosenv_2024_120616
crossref_primary_10_3390_ijerph19137743
crossref_primary_10_1039_d0pp90011g
crossref_primary_10_5194_acp_22_7331_2022
crossref_primary_10_3390_atmos13091450
crossref_primary_10_3390_ijerph19148511
crossref_primary_10_3390_atmos15030248
crossref_primary_10_5194_acp_21_11759_2021
crossref_primary_10_1007_s11869_022_01208_w
crossref_primary_10_1016_j_apr_2024_102142
crossref_primary_10_1007_s11356_021_16857_0
crossref_primary_10_1016_j_jenvman_2021_113670
crossref_primary_10_1088_1748_9326_ac6ff7
crossref_primary_10_1016_j_heliyon_2024_e40889
crossref_primary_10_1016_j_jes_2024_07_017
crossref_primary_10_1016_j_scitotenv_2021_148868
crossref_primary_10_3389_fenvs_2022_1104013
crossref_primary_10_1016_j_scitotenv_2022_158271
crossref_primary_10_1016_j_atmosenv_2025_121339
crossref_primary_10_3390_su16010123
crossref_primary_10_1016_j_scitotenv_2020_144784
crossref_primary_10_1016_j_atmosenv_2020_117985
crossref_primary_10_5194_acp_25_7991_2025
crossref_primary_10_3389_feart_2022_947001
crossref_primary_10_1021_acsestair_5c00067
crossref_primary_10_1016_j_scitotenv_2021_149603
crossref_primary_10_1016_j_jes_2022_09_032
crossref_primary_10_5194_acp_24_11775_2024
crossref_primary_10_5194_acp_20_11683_2020
crossref_primary_10_1016_j_atmosenv_2025_121346
crossref_primary_10_1080_09638237_2023_2278102
crossref_primary_10_3390_su16062475
crossref_primary_10_1016_j_atmosenv_2024_120514
crossref_primary_10_1016_j_atmosenv_2021_118704
crossref_primary_10_1029_2022EA002742
crossref_primary_10_5194_acp_23_1131_2023
crossref_primary_10_1088_1748_9326_ac54cd
crossref_primary_10_3390_s22134854
crossref_primary_10_5194_acp_20_4399_2020
crossref_primary_10_1016_j_atmosres_2021_105599
crossref_primary_10_1007_s00376_022_2039_9
crossref_primary_10_3390_app14125026
crossref_primary_10_3390_atmos12050626
crossref_primary_10_1016_j_aosl_2022_100193
crossref_primary_10_3390_su15032048
crossref_primary_10_1016_j_chemosphere_2023_138474
crossref_primary_10_1016_j_envpol_2020_115804
crossref_primary_10_12677_CCRL_2020_93017
crossref_primary_10_5194_acp_25_9545_2025
crossref_primary_10_1016_j_ecz_2024_100012
crossref_primary_10_1016_j_envpol_2025_126162
crossref_primary_10_1016_j_jclepro_2020_125352
crossref_primary_10_1016_j_atmosenv_2024_120772
crossref_primary_10_1016_j_jes_2025_01_021
crossref_primary_10_5194_acp_21_10689_2021
crossref_primary_10_1038_s41467_021_25147_9
crossref_primary_10_1016_j_atmosenv_2024_120658
crossref_primary_10_1029_2021GL093814
crossref_primary_10_5194_acp_22_7273_2022
crossref_primary_10_1016_j_jhazmat_2025_137369
crossref_primary_10_1016_j_jes_2023_02_025
crossref_primary_10_1029_2020GL089623
crossref_primary_10_1029_2020JD034317
crossref_primary_10_1007_s11783_024_1897_z
Cites_doi 10.5194/acp-17-13103-2017
10.5194/acp-14-10363-2014
10.5194/acp-9-3825-2009
10.1016/j.atmosenv.2010.02.009
10.1029/2008JD011254
10.1002/2017JD027190
10.5194/acp-17-2543-2017
10.1029/2000JD900839
10.1029/2012JD017934
10.1016/S1352-2310(00)00326-5
10.5194/acp-17-2759-2017
10.1029/92JD00719
10.5194/acp-12-1307-2012
10.1073/pnas.1008336107
10.1021/acs.estlett.8b00366
10.5194/acp-12-591-2012
10.1029/98JD00156
10.1029/2018JD030001
10.5194/acp-14-6867-2014
10.1029/2008JD010752
10.5194/acp-18-14095-2018
10.1016/j.envpol.2017.09.017
10.1029/2006JD007538
10.5194/acp-16-14687-2016
10.1021/es2022818
10.1016/j.atmosenv.2017.09.024
10.1029/2002JD002490
10.5194/acp-8-6117-2008
10.1073/pnas.1812168116
10.1029/2003JD004473
10.5194/acp-14-9787-2014
10.5194/acp-11-3511-2011
10.1016/j.scitotenv.2016.10.081
10.1525/elementa.273
10.5194/acp-18-3101-2018
10.1080/10473289.2005.10464648
10.1029/2000JD900124
10.5194/gmd-11-369-2018
10.1016/j.atmosenv.2011.07.054
10.5194/acp-12-2881-2012
10.5194/acp-18-7489-2018
10.5194/acp-19-6107-2019
10.1039/c2cs35095e
10.5194/acp-10-9943-2010
10.5194/acp-19-6125-2019
10.1016/j.scitotenv.2018.01.336
10.1029/2009JD011880
10.1016/j.atmosenv.2017.11.014
10.1002/2015JD023250
10.1016/0004-6981(89)90153-4
10.1164/rccm.201508-1633OC
10.1007/s40726-016-0031-7
10.1029/2006GL027689
10.1525/elementa.309
10.1029/2009JD012714
10.5194/acp-14-5295-2014
10.1016/j.atmosenv.2008.09.051
10.1016/j.scib.2018.07.001
10.5194/acp-14-13175-2014
10.1023/A:1014980619462
10.1038/nclimate2567
10.1029/2001JD000807
10.1029/2006JD007912
10.1029/2005JD006605
10.5194/acp-13-5813-2013
10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
10.1021/acs.est.6b02602
10.5194/acp-18-11447-2018
10.5194/acp-12-7779-2012
10.1016/j.atmosenv.2013.12.004
10.1002/jgrd.50266
10.1002/jgrd.50857
10.5194/gmd-7-1409-2014
10.5194/acp-18-773-2018
10.1016/j.scitotenv.2018.04.286
10.5194/acp-17-935-2017
10.1016/j.atmosenv.2019.05.006
10.5194/acp-19-6551-2019
10.5194/acp-15-8889-2015
10.1016/j.scib.2018.12.021
10.5194/acp-15-13299-2015
10.5194/acp-16-4369-2016
10.1021/jp4107603
10.1175/2007JAMC1681.1
10.1525/elementa.265
10.5194/essd-9-697-2017
10.5194/acp-14-5617-2014
10.1021/acs.est.6b03010
10.1029/2007JD009162
10.1016/j.scitotenv.2017.03.056
10.1002/jgrd.50817
10.1016/j.envint.2018.09.015
10.5194/gmd-5-1471-2012
ContentType Journal Article
Copyright COPYRIGHT 2019 Copernicus GmbH
2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2019 Copernicus GmbH
– notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
1XC
VOOES
DOA
DOI 10.5194/acp-19-8339-2019
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 8361
ExternalDocumentID oai_doaj_org_article_e592694c96c5466aaeb55f7451b82c4c
oai:HAL:insu-03721878v1
A591343877
10_5194_acp_19_8339_2019
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
1XC
C1A
IPNFZ
RIG
VOOES
ID FETCH-LOGICAL-c515t-a1b7a669034e3cd9bca979718536eafb31d44758b6febc0b4c54d7ef956af82e3
IEDL.DBID BENPR
ISICitedReferencesCount 302
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473225100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Mon Nov 10 04:32:25 EST 2025
Tue Oct 14 20:07:04 EDT 2025
Fri Jul 25 20:04:58 EDT 2025
Sat Nov 29 13:18:05 EST 2025
Sat Nov 29 10:14:43 EST 2025
Wed Nov 26 10:21:11 EST 2025
Sat Nov 29 05:52:37 EST 2025
Tue Nov 18 21:24:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-a1b7a669034e3cd9bca979718536eafb31d44758b6febc0b4c54d7ef956af82e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9181-3562
0000-0002-5989-0912
0000-0002-2362-2940
0000-0001-8344-3445
OpenAccessLink https://www.proquest.com/docview/2248354295?pq-origsite=%requestingapplication%
PQID 2248354295
PQPubID 105744
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_e592694c96c5466aaeb55f7451b82c4c
hal_primary_oai_HAL_insu_03721878v1
proquest_journals_2248354295
gale_infotracmisc_A591343877
gale_infotracacademiconefile_A591343877
gale_incontextgauss_ISR_A591343877
crossref_citationtrail_10_5194_acp_19_8339_2019
crossref_primary_10_5194_acp_19_8339_2019
PublicationCentury 2000
PublicationDate 2019-06-28
PublicationDateYYYYMMDD 2019-06-28
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-28
  day: 28
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2019
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref10
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref19
  doi: 10.5194/acp-17-13103-2017
– ident: ref75
  doi: 10.5194/acp-14-10363-2014
– ident: ref4
  doi: 10.5194/acp-9-3825-2009
– ident: ref38
  doi: 10.1016/j.atmosenv.2010.02.009
– ident: ref23
  doi: 10.1029/2008JD011254
– ident: ref36
  doi: 10.1002/2017JD027190
– ident: ref10
  doi: 10.5194/acp-17-2543-2017
– ident: ref24
– ident: ref41
  doi: 10.1029/2000JD900839
– ident: ref57
  doi: 10.1029/2012JD017934
– ident: ref90
  doi: 10.1016/S1352-2310(00)00326-5
– ident: ref32
  doi: 10.5194/acp-17-2759-2017
– ident: ref63
  doi: 10.1029/92JD00719
– ident: ref62
  doi: 10.5194/acp-12-1307-2012
– ident: ref69
  doi: 10.1073/pnas.1008336107
– ident: ref46
  doi: 10.1021/acs.estlett.8b00366
– ident: ref1
  doi: 10.5194/acp-12-591-2012
– ident: ref79
  doi: 10.1029/98JD00156
– ident: ref87
  doi: 10.1029/2018JD030001
– ident: ref86
  doi: 10.5194/acp-14-6867-2014
– ident: ref65
  doi: 10.1029/2008JD010752
– ident: ref97
  doi: 10.5194/acp-18-14095-2018
– ident: ref5
  doi: 10.1016/j.envpol.2017.09.017
– ident: ref80
  doi: 10.1029/2006JD007538
– ident: ref45
  doi: 10.5194/acp-16-14687-2016
– ident: ref51
  doi: 10.1021/es2022818
– ident: ref95
  doi: 10.1016/j.atmosenv.2017.09.024
– ident: ref70
  doi: 10.1029/2002JD002490
– ident: ref91
  doi: 10.5194/acp-8-6117-2008
– ident: ref33
  doi: 10.1073/pnas.1812168116
– ident: ref61
  doi: 10.1029/2003JD004473
– ident: ref96
  doi: 10.5194/acp-14-9787-2014
– ident: ref81
  doi: 10.5194/acp-11-3511-2011
– ident: ref78
  doi: 10.1016/j.scitotenv.2016.10.081
– ident: ref13
  doi: 10.1525/elementa.273
– ident: ref47
  doi: 10.5194/acp-18-3101-2018
– ident: ref29
  doi: 10.1080/10473289.2005.10464648
– ident: ref52
  doi: 10.1029/2000JD900124
– ident: ref17
  doi: 10.5194/gmd-11-369-2018
– ident: ref92
  doi: 10.1016/j.atmosenv.2011.07.054
– ident: ref39
  doi: 10.5194/acp-12-2881-2012
– ident: ref35
  doi: 10.5194/acp-18-7489-2018
– ident: ref67
  doi: 10.5194/acp-19-6107-2019
– ident: ref12
  doi: 10.1039/c2cs35095e
– ident: ref21
  doi: 10.5194/acp-10-9943-2010
– ident: ref6
  doi: 10.5194/acp-19-6125-2019
– ident: ref53
  doi: 10.1016/j.scitotenv.2018.01.336
– ident: ref60
  doi: 10.1029/2009JD011880
– ident: ref42
  doi: 10.1016/j.atmosenv.2017.11.014
– ident: ref27
  doi: 10.1002/2015JD023250
– ident: ref18
– ident: ref82
  doi: 10.1016/0004-6981(89)90153-4
– ident: ref73
  doi: 10.1164/rccm.201508-1633OC
– ident: ref56
  doi: 10.1007/s40726-016-0031-7
– ident: ref66
– ident: ref77
  doi: 10.1029/2006GL027689
– ident: ref26
  doi: 10.1525/elementa.309
– ident: ref44
  doi: 10.1029/2009JD012714
– ident: ref93
  doi: 10.5194/acp-14-5295-2014
– ident: ref25
  doi: 10.1016/j.atmosenv.2008.09.051
– ident: ref72
  doi: 10.1016/j.scib.2018.07.001
– ident: ref85
  doi: 10.5194/acp-14-13175-2014
– ident: ref3
  doi: 10.1023/A:1014980619462
– ident: ref14
  doi: 10.1038/nclimate2567
– ident: ref2
  doi: 10.1029/2001JD000807
– ident: ref20
  doi: 10.1029/2006JD007912
– ident: ref83
  doi: 10.1029/2005JD006605
– ident: ref8
  doi: 10.5194/acp-13-5813-2013
– ident: ref55
  doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
– ident: ref50
  doi: 10.1021/acs.est.6b02602
– ident: ref59
  doi: 10.5194/acp-18-11447-2018
– ident: ref22
  doi: 10.5194/acp-12-7779-2012
– ident: ref43
  doi: 10.1016/j.atmosenv.2013.12.004
– ident: ref9
  doi: 10.1002/jgrd.50266
– ident: ref58
  doi: 10.1002/jgrd.50857
– ident: ref28
  doi: 10.5194/gmd-7-1409-2014
– ident: ref84
  doi: 10.5194/acp-18-773-2018
– ident: ref7
– ident: ref71
  doi: 10.1016/j.scitotenv.2018.04.286
– ident: ref31
  doi: 10.5194/acp-17-935-2017
– ident: ref76
  doi: 10.1016/j.atmosenv.2019.05.006
– ident: ref68
  doi: 10.5194/acp-19-6551-2019
– ident: ref54
  doi: 10.5194/acp-15-8889-2015
– ident: ref48
  doi: 10.1016/j.scib.2018.12.021
– ident: ref40
  doi: 10.5194/acp-15-13299-2015
– ident: ref88
  doi: 10.5194/acp-16-4369-2016
– ident: ref30
  doi: 10.1021/jp4107603
– ident: ref37
  doi: 10.1175/2007JAMC1681.1
– ident: ref89
  doi: 10.1525/elementa.265
– ident: ref74
  doi: 10.5194/essd-9-697-2017
– ident: ref34
  doi: 10.5194/acp-14-5617-2014
– ident: ref94
  doi: 10.1021/acs.est.6b03010
– ident: ref11
  doi: 10.1029/2007JD009162
– ident: ref64
  doi: 10.1016/j.scitotenv.2017.03.056
– ident: ref49
  doi: 10.1002/jgrd.50817
– ident: ref15
  doi: 10.1016/j.envint.2018.09.015
– ident: ref16
  doi: 10.5194/gmd-5-1471-2012
SSID ssj0025014
Score 2.678438
Snippet Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in...
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in...
Severe surface ozone pollution over major Chinese cities has become an emerging air quality concern, raising a new challenge for emission control measures in...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8339
SubjectTerms Air pollution
Air quality
Air temperature
Analysis
Anthropogenic factors
Atmospheric ozone
Chemical transport
Chinese history
Cities
Cities and towns
Clusters
Computer simulation
Dry deposition
Emission analysis
Emission inventories
Emission measurements
Emissions
Emissions (Pollution)
Emissions control
Environmental aspects
Environmental management
Forecasts and trends
High temperature
Human influences
Lightning
Measurement
Meteorological conditions
Meteorology
Middle atmosphere
Nitrogen compounds
Nitrogen oxides
Nitrogen oxides emissions
Organic chemistry
Organic compounds
Ozone
Ozone episodes
Ozone measurements
Ozone transport
Peroxyacetyl nitrate
Photochemicals
Pollution
Pollution control
Rivers
Sciences of the Universe
Soil
Stratosphere
Thermal decomposition
Thermal degradation
Transport
VOCs
Volatile organic compounds
Weather
Weather conditions
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgxYELb0RgQRYgEAerSez4wa2sWC3SskK8tDfLduylUkmrpt0DJ_4D_5BfwkySRlsOcIBTlXaSTvxNxjPxeD5CnpqEbk_krNauZCJ4ybyQgSnt89IXsqo7zsjPx-rkRJ-emncXqL6wJqxvD9wP3CRWBjdbBiNDJaR0LvqqSkpUhddlEAH3rYOrxTwdOdyGVAtXyzDVkjpnyM3UL1BCtCImLixZYZjm3ICJYIedCxNS17d_9M6Xv2Bx5G8-upt4Dq__g8o3yLUh2qTT_pSb5FJsbpHsLQTKi1X3Pp0-owfzGUSt3dFtMh9r8ihoLX9-_wEfirabVXIh0sW3RRPpEumREVCK9Z-0o-B-SftlANrVvg8kWi11TU2_jn-HBkFnW1qU9g75dPj648ERGwgZWICwZ81c4ZWTkE9zEXmojQ_OKKNwypfRJc-LGvsHai9T9CH3Au6_VjFBDuaSLiO_S_Ya0PMeoc5pLrWPhaqDMFFpEUKtkpQQgKRU1RmZbFGxYehWjqQZcwtZC-JoAUdbGIs4WsQxIy_GM5Z9p44_yL5C1EY57LHdfQEw2gFG-zcYM_IYzcRiF40Gy3TO3KZt7ZsP7-20woIGrpXKyPNBKC1A_-CGXQ8wCth4a0dyf0cSHvOw8_MTsMYdjY-mxxZ3LNicQx6vlT4v4CJba7WDM2otRGn4eq801f3_cd8PyFUcQ6yXK_U-2VuvNvEhuRLO17N29ah7Dn8BDNAzDw
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BxYELKi9hKGgFCMRhFT_W--AWKqoilQrxUm-rfZZIwYnipIee-A_8Q34JM7ZjNRzgwilKPLY3M-PZmfXs9xHyXCcMezxnQdmSce8Ec1x4JpXLS1eIOnSckV9P5OmpOjvTH65QfWFPWA8P3CtuEmuNmy29Fr7mQlgbXV0nyevCqdJzj9E3l3pbTA2lFr4tw1JLqJwhN1P_ghKyFT6xfskKzVRVaXARRNi5MiF1uP1jdL7-DZsj_4jR3cRztE9uDRkjnfYjvU2uxeYOyd5DsrtYdWvi9AU9nM8g8-y-3SXzsa-Owp3Frx8_4UPSdrNK1ke6uFw0kS6R4hiNQrGHk3Y02q9pv5RPu_71gQirpbYJ9Pt4OzQqnW2pTdp75MvR28-Hx2wgVWAeUpc1s4WTVkBNXPFY-aCdt1pqidO2iDa5qgiIAaicSNH53HFQe5AxQR1lkypjdZ_sNTDOB4RaqyqhXCxk8FxHqbj3QSYhIIlIqQ4ZmWw1a_yAOI7EF3MDlQfawoAtTKEN2sKgLTLyajxj2aNt_EX2DRprlEOc7O4H8B4zeI_5l_dk5Cma2iASRoOtNud207bm3aePZlpjU0KlpMzIy0EoLWD83g47F0ALCJ61I3mwIwmPqt85_Aw8amfEx9MTg7sOTF5BLa6kuijgIluPM0NAaQ1kWrhEV-r64f_434_ITdQh9ryV6oDsrVeb-Jjc8BfrWbt60j1LvwESmSD6
  priority: 102
  providerName: Directory of Open Access Journals
Title Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences
URI https://www.proquest.com/docview/2248354295
https://insu.hal.science/insu-03721878
https://doaj.org/article/e592694c96c5466aaeb55f7451b82c4c
Volume 19
WOSCitedRecordID wos000473225100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZIy4ELb9RAqSxAIA6rZF9-cEFJ1aoVTRSFggoXy_baJVLIhmzSAyf-A_-QX8LMxlkIh164xMruJJnsjMcz4_F8hLyQHs1e1o0KoZMos4ZFJmM24sJ0ExOzvKgxIz-e8eFQXFzIUUi4VaGscmMTa0NdlBZz5B1YajBHkcj87fxbhKhRuLsaIDRaZBc7lYGe7_aPhqNxE3LhrhmGXEx0I8RoWm9UgteSdbSdR7GMRJpKUBXstPPXwlT372-sdOsLFkn-Y6vrBej4zv-yfpfcDq4n7a115R654Wb3SXsAXnO5qJPr9CU9nE7Aha3fPSDTpkCPAuvs14-fMHBarRZeW0fL7-XM0TliJaN0KRaD0hqP-w1d7wnQuhA-IGpVVM8K-rX5OdQOOtlgpFQPyYfjo_PDkyigM0QWfKBlpGPDNYPgOs1cagtprJZcclz_mdPepHGBzQSFYd4Z2zWZzbOCOw8BmfYicekjsjMDPvcI1VqkTBgX88Jm0nGRWVtwzxh4I97nRZt0NqJRNrQuRwSNqYIQBoWpQJgqlgqFqVCYbfK6-cR83bbjGto-Sruhw4bb9YVycanC_FUul3jm10oGf4MxrZ3Jc8-zPDYisZltk2eoKwpbasywZudSr6pKnb4fq16O1Q2p4LxNXgUiXwL_VocjEPAUsAvXFuX-FiXMebt1-zmo5BbHJ70zhccXVDeFoF5wcRXDl2z0UQXLVKk_yvj4-ttPyC18OlgWl4h9srNcrNxTctNeLSfV4iBMtIM6hwGvo_wzXBv1zgefcDwdjGBsjd_1fwNJ_Tbc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZ2u0hw4Y0oLGDxFIeoeTi2g4RQWVhttW1VwS5aTsZ2nKVSaUrTLoIT_4H_wY_ilzCTJoFy2NseOFVtJqnjfJ5HZjwfIQ-TDNUe871U6tBj1nDPMG49IY0fmoDHackZ-a4vhkN5dJSMNsjPei8MllXWOrFU1Glu8R15B0wNvqMIk_jF7LOHrFGYXa0pNFaw2Hdfv0DIVjzvvYLn-ygMd18f7Ox5FauAZ8F2LzwdGKE5BIURc5FNE2N1IhKBdos7nZkoSLEJnjQ8c8b6htmYpcJlEEjoTIYugutuki0GYPdbZGvUG4zeNyEeZukwxOPS95ATapUYBS-JdbSdeUHiyShKAJrY2ecvQ1jyBTRWYfMjFmX-YxtKg7d76X-bqsvkYuVa0-5qLVwhG256lbQHEBXk8zJ5QB_TnckYXPTy2zUyaQoQKUwV__X9B3wIWiznmbaO5t_yqaMz5IJG9FIsdqUl3_gzusp50LLQv2IMK6iepvRT83eIfjquOWCK6-TwTG7-BmlNYZw3CdVaRlwaF4jUssQJyaxNRcY5eFtZFqdt0qmhoGzVmh0ZQiYKQjQEjwLwqCBRCB6F4GmTp80Zs1VbklNkXyK6GjlsKF7-kM-PVaWflIsT3NNsEw63wbnWzsRxJlgcGBlaZtvkPmJTYcuQKdYkHetlUaje2zeqG2P1RiSFaJMnlVCWw_itrrZ4wCxgl7E1ye01SdBpdu3wA1gCayPe6_YVbs9QfiTALRXyJICL1PhXleYt1B_w3zr98D1yfu9g0Ff93nD_NrmAM4UlgKHcJq3FfOnukHP2ZDEu5nerRU7Jh7NeLL8BiLqPOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLZmOghxYUcUBrBYxSFqs3lBQqizVFNNqaph0dyM7dhDpdKUph0EJ_4D_4afwy_hvTQplMPc5sCpavOSOs73tvj5fYQ8lh7NXtIOMqGjILGGBSZhNuDCtCMTsjQrOSPf9_lgII6P5XCD_Kz3wmBZZW0TS0Od5RbfkbfA1eA7ikimLV-VRQz3uq-mnwNkkMKV1ppOYwmRQ_f1C6RvxcveHjzrJ1HU3X-7exBUDAOBBT8-D3RouGaQIMaJi20mjdWSS44-jDntTRxm2BBPGOadsW2T2DTJuPOQVGgvIhfDdTfJFo8h6WmQrZ39wfBole7hih2me0y0A-SHWi6SQsSUtLSdBqEMRBxLgCl2-fnLKZbcASsPsfkRCzT_8ROl8-te-Z-n7Sq5XIXctLPUkWtkw02uk-ZryBbyWbmoQJ_S3fEIQvfy2w0yXhUmUpg29uv7D_jgtFjMvLaO5t_yiaNT5IhGVFMsgqUlD_kLulwLoeUGgIpJrKB6ktFPq79DraCjmhumuEnencvN3yKNCYzzNqFai5gJ40Ke2UQ6LhJrM-4ZgyjM-zRrklYNC2Wrlu3IHDJWkLohkBQASYVSIZAUAqlJnq_OmC7blZwhu4NIW8lho_Hyh3x2oiq7pVwqca-zlQxugzGtnUlTz5M0NCKyiW2Sh4hTha1EJoiuE70oCtV7c6Q6KVZ1xILzJnlWCfkcxm91tfUDZgG7j61Jbq9Jgq2za4cfgTqsjfig01e4bUO1Yw7hKhenIVyk1gVVWeRC_VGEO2cffkAugoaofm9weJdcwonCysBIbJPGfLZw98gFezofFbP7lb5T8uG8deU3ViSX0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+2016-2017+surface+ozone+pollution+over+China%3A+source+contributions+and+meteorological+influences&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Lu%2C+Xiao&rft.au=Zhang%2C+Lin&rft.au=Chen%2C+Youfan&rft.au=Zhou%2C+Mi&rft.date=2019-06-28&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=19&rft.issue=12&rft.spage=8339&rft_id=info:doi/10.5194%2Facp-19-8339-2019&rft.externalDocID=A591343877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon