Management and prediction of river flood utilizing optimization approach of artificial intelligence evolutionary algorithms

Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 22787 - 31
Hauptverfasser: Ikram, Rana Muhammad Adnan, Wang, Mo, Moayedi, Hossein, Dehrashid, Atefeh Ahmadi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 02.07.2025
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms for FSM using machine learning classification. Traditional flood prediction models face limitations due to data complexity and computational constraints. This research incorporates artificial intelligence, particularly evolutionary algorithms, to create more adaptable and robust flood prediction models. Four specific algorithms—black hole algorithm (BHA), future search algorithm (FSA), heap-based optimization (HBO), and multiverse optimization (MVO)—were tested for predicting flood occurrences in the Fars region of Iran. These evolutionary algorithms simulate natural processes like selection, mutation, and crossover to optimize flood predictions and management strategies, improving adaptability in dynamic environments. The novelty of this study lies in using evolutionary AI algorithms to not only predict floods more accurately but also optimize flood management strategies. The ANN was trained with geographical data on eight flood-impacting factors, including elevation, rainfall, slope, NDVI, aspect, geology, land use, and river data. The models were validated with historical flood damage data from the Fars area using metrics like mean square error (MSE), mean absolute error (MAE), and the receiver operating characteristic (ROC) curve. Results showed significant improvements in accuracy for BHA–MLP, FSA–MLP, MVO–MLP, and HBO–MLP, with accuracy indices and AUC values increasing. The study concludes that hybridized models offer an effective and economically viable approach for urban flood vulnerability mapping, providing valuable insights for flood preparedness and emergency response strategies.
AbstractList Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms for FSM using machine learning classification. Traditional flood prediction models face limitations due to data complexity and computational constraints. This research incorporates artificial intelligence, particularly evolutionary algorithms, to create more adaptable and robust flood prediction models. Four specific algorithms-black hole algorithm (BHA), future search algorithm (FSA), heap-based optimization (HBO), and multiverse optimization (MVO)-were tested for predicting flood occurrences in the Fars region of Iran. These evolutionary algorithms simulate natural processes like selection, mutation, and crossover to optimize flood predictions and management strategies, improving adaptability in dynamic environments. The novelty of this study lies in using evolutionary AI algorithms to not only predict floods more accurately but also optimize flood management strategies. The ANN was trained with geographical data on eight flood-impacting factors, including elevation, rainfall, slope, NDVI, aspect, geology, land use, and river data. The models were validated with historical flood damage data from the Fars area using metrics like mean square error (MSE), mean absolute error (MAE), and the receiver operating characteristic (ROC) curve. Results showed significant improvements in accuracy for BHA-MLP, FSA-MLP, MVO-MLP, and HBO-MLP, with accuracy indices and AUC values increasing. The study concludes that hybridized models offer an effective and economically viable approach for urban flood vulnerability mapping, providing valuable insights for flood preparedness and emergency response strategies.
Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms for FSM using machine learning classification. Traditional flood prediction models face limitations due to data complexity and computational constraints. This research incorporates artificial intelligence, particularly evolutionary algorithms, to create more adaptable and robust flood prediction models. Four specific algorithms-black hole algorithm (BHA), future search algorithm (FSA), heap-based optimization (HBO), and multiverse optimization (MVO)-were tested for predicting flood occurrences in the Fars region of Iran. These evolutionary algorithms simulate natural processes like selection, mutation, and crossover to optimize flood predictions and management strategies, improving adaptability in dynamic environments. The novelty of this study lies in using evolutionary AI algorithms to not only predict floods more accurately but also optimize flood management strategies. The ANN was trained with geographical data on eight flood-impacting factors, including elevation, rainfall, slope, NDVI, aspect, geology, land use, and river data. The models were validated with historical flood damage data from the Fars area using metrics like mean square error (MSE), mean absolute error (MAE), and the receiver operating characteristic (ROC) curve. Results showed significant improvements in accuracy for BHA-MLP, FSA-MLP, MVO-MLP, and HBO-MLP, with accuracy indices and AUC values increasing. The study concludes that hybridized models offer an effective and economically viable approach for urban flood vulnerability mapping, providing valuable insights for flood preparedness and emergency response strategies.Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms for FSM using machine learning classification. Traditional flood prediction models face limitations due to data complexity and computational constraints. This research incorporates artificial intelligence, particularly evolutionary algorithms, to create more adaptable and robust flood prediction models. Four specific algorithms-black hole algorithm (BHA), future search algorithm (FSA), heap-based optimization (HBO), and multiverse optimization (MVO)-were tested for predicting flood occurrences in the Fars region of Iran. These evolutionary algorithms simulate natural processes like selection, mutation, and crossover to optimize flood predictions and management strategies, improving adaptability in dynamic environments. The novelty of this study lies in using evolutionary AI algorithms to not only predict floods more accurately but also optimize flood management strategies. The ANN was trained with geographical data on eight flood-impacting factors, including elevation, rainfall, slope, NDVI, aspect, geology, land use, and river data. The models were validated with historical flood damage data from the Fars area using metrics like mean square error (MSE), mean absolute error (MAE), and the receiver operating characteristic (ROC) curve. Results showed significant improvements in accuracy for BHA-MLP, FSA-MLP, MVO-MLP, and HBO-MLP, with accuracy indices and AUC values increasing. The study concludes that hybridized models offer an effective and economically viable approach for urban flood vulnerability mapping, providing valuable insights for flood preparedness and emergency response strategies.
Abstract Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become crucial for mitigating flood risks, especially in urban areas. This study evaluates the performance of artificial neural network (ANN) algorithms for FSM using machine learning classification. Traditional flood prediction models face limitations due to data complexity and computational constraints. This research incorporates artificial intelligence, particularly evolutionary algorithms, to create more adaptable and robust flood prediction models. Four specific algorithms—black hole algorithm (BHA), future search algorithm (FSA), heap-based optimization (HBO), and multiverse optimization (MVO)—were tested for predicting flood occurrences in the Fars region of Iran. These evolutionary algorithms simulate natural processes like selection, mutation, and crossover to optimize flood predictions and management strategies, improving adaptability in dynamic environments. The novelty of this study lies in using evolutionary AI algorithms to not only predict floods more accurately but also optimize flood management strategies. The ANN was trained with geographical data on eight flood-impacting factors, including elevation, rainfall, slope, NDVI, aspect, geology, land use, and river data. The models were validated with historical flood damage data from the Fars area using metrics like mean square error (MSE), mean absolute error (MAE), and the receiver operating characteristic (ROC) curve. Results showed significant improvements in accuracy for BHA–MLP, FSA–MLP, MVO–MLP, and HBO–MLP, with accuracy indices and AUC values increasing. The study concludes that hybridized models offer an effective and economically viable approach for urban flood vulnerability mapping, providing valuable insights for flood preparedness and emergency response strategies.
ArticleNumber 22787
Author Dehrashid, Atefeh Ahmadi
Moayedi, Hossein
Ikram, Rana Muhammad Adnan
Wang, Mo
Author_xml – sequence: 1
  givenname: Rana Muhammad Adnan
  surname: Ikram
  fullname: Ikram, Rana Muhammad Adnan
  organization: Water Science and Environmental Research Centre, College of Chemistry and Environmental Engineering, Shenzhen University, College of Architecture and Urban Planning, Guangzhou University, Center for Global Health Research, , Saveetha Institute of Medical and Technical Sciences
– sequence: 2
  givenname: Mo
  surname: Wang
  fullname: Wang, Mo
  organization: College of Architecture and Urban Planning, Guangzhou University
– sequence: 3
  givenname: Hossein
  surname: Moayedi
  fullname: Moayedi, Hossein
  organization: Institute of Research and Development, Duy Tan University, School of Engineering and Technology, Duy Tan University
– sequence: 4
  givenname: Atefeh Ahmadi
  surname: Dehrashid
  fullname: Dehrashid, Atefeh Ahmadi
  email: Atefeh.ahmadi@uok.ac.ir
  organization: Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Department of Zrebar Lake Socio-economic Research, Kurdistan Studies Institute, University of Kurdistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594128$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAPKkUvAduzEPiFU8VGpiAucrbf-yHrl2MFOVmL583g3LWo51Bc_2TPznt7My-osxGCq6jVG7zBq-ftMMRO8QYQ1iBKBmsOz6oIgyhrSEnL2oD6vrnLeoXIYERSLF9U5RaxUhF9Uf75BgMGMJsw1BF1PyWinZhdDHW2d3N6k2voYdb3MzruDC0Mdp9mN7gAnFExTiqC2Rzik2VmnHPjahdl47wYTlKnNPvrliIb0uwY_xOTm7ZhfVc8t-Gyu7u7L6ufnTz-uvza337_cXH-8bRTDbG44t1qhjmtroeWcipYyJpBCG4WBCkR66Gkpba8Fp93GEG5Jx4AppbFi0F5WN6uujrCTU3JjmUNGcPL0ENMgj5MrbyRVtgeioOcaFynBme40JZgThIXtNkXrw6o1LZvRaFX2lsA_En38E9xWDnEvMSG4I6gtCm_vFFL8tZg8y9FlVZYFwcQly-JY1zLaCVGgbx42-9fl3r4C4CtApZhzMlYqN598Kb2dlxjJY1jkGhZZwiJPYZGHQiX_Ue_VnyS1KykXcBhMkru4pFDMe4r1F-Tf1hw
CitedBy_id crossref_primary_10_3390_photonics12080823
crossref_primary_10_1016_j_dwt_2025_101378
Cites_doi 10.3390/rs11131589
10.1016/j.asr.2022.02.027
10.1007/s00477-023-02389-1
10.1007/s00703-015-0414-0
10.1038/s41598-018-38071-8
10.1016/j.scitotenv.2019.135161
10.1007/s11356-023-25496-6
10.1007/s12665-024-11696-x
10.1088/1755-1315/491/1/012003
10.1007/s13201-018-0710-1
10.1016/j.jhydrol.2024.131903
10.2166/wst.2009.183
10.1002/rra.3108
10.1080/19475705.2017.1362038
10.1002/2016EF000485
10.1016/j.scitotenv.2018.01.266
10.1016/j.jhydrol.2018.05.065
10.1007/s13201-019-1094-6
10.1007/s11069-019-03816-9
10.1007/s10533-018-0449-7
10.1144/GSL.SP.2005.004.01.11
10.1109/MWSYM.2014.6848664
10.1016/j.jhydrol.2022.128001
10.1016/j.jhydrol.2020.125552
10.3390/w12010255
10.1007/s11069-023-06156-x
10.1016/j.jhydrol.2016.11.033
10.1007/s11069-013-0932-3
10.1016/j.ins.2012.08.023
10.1016/j.eswa.2020.113702
10.1016/j.scitotenv.2019.01.021
10.1016/j.jhydrol.2019.123962
10.1007/s00704-020-03362-6
10.1007/s12065-018-0172-2
10.1007/s11269-022-03325-8
10.1007/s00521-015-1870-7
10.1016/j.ijepes.2014.11.005
10.1007/s11069-004-4538-7
10.1007/s41748-019-00123-y
10.1007/s40996-019-00297-5
10.3390/rs11161943
10.1080/17538947.2024.2313857
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-04290-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 31
ExternalDocumentID oai_doaj_org_article_4cf7a2ca78d146b985d6d42182019f6b
PMC12216203
40594128
10_1038_s41598_025_04290_z
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c515t-88fdc068dffa38849345590c0bc1a49027a74c1af7d9846be28f265a5ccd1c5a3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523011500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:28:49 EST 2025
Tue Nov 04 02:04:49 EST 2025
Tue Aug 26 08:58:44 EDT 2025
Tue Jul 08 01:41:14 EDT 2025
Tue Nov 18 21:22:23 EST 2025
Sat Nov 29 07:45:13 EST 2025
Wed Jul 02 02:43:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spatial statistical analysis
Novel and technical processes
Sustainable development
Optimized neural network
Flood susceptibility map
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-88fdc068dffa38849345590c0bc1a49027a74c1af7d9846be28f265a5ccd1c5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/4cf7a2ca78d146b985d6d42182019f6b
PMID 40594128
PQID 3226354699
PQPubID 23479
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_4cf7a2ca78d146b985d6d42182019f6b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12216203
proquest_miscellaneous_3226354699
pubmed_primary_40594128
crossref_citationtrail_10_1038_s41598_025_04290_z
crossref_primary_10_1038_s41598_025_04290_z
springer_journals_10_1038_s41598_025_04290_z
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References NA Zambri (4290_CR36) 2015; 67
M Panahi (4290_CR44) 2022; 611
K Khosravi (4290_CR27) 2018; 627
V Nourani (4290_CR17) 2017; 544
OM Katipoğlu (4290_CR24) 2023; 30
M Bahrami (4290_CR29) 2023; 13
Z Wang (4290_CR19) 2024; 642
A Hatamlou (4290_CR37) 2013; 222
E Penning-Rowsell (4290_CR2) 2005; 36
M Rahman (4290_CR12) 2019; 3
M Shafapour Tehrany (4290_CR25) 2017; 8
K Adiat (4290_CR20) 2020; 10
Q Askari (4290_CR40) 2020; 161
M Rezaei (4290_CR41) 2020; 100
M Faghih (4290_CR15) 2017; 33
H Tu (4290_CR9) 2020; 12
Y Bhattarai (4290_CR21) 2024; 17
M Naderi (4290_CR30) 2020; 142
S Balica (4290_CR3) 2009; 60
4290_CR13
NTT Linh (4290_CR43) 2022; 69
R Albano (4290_CR33) 2025; 6
S Mirzaee (4290_CR1) 2018; 563
M Wahba (4290_CR8) 2024; 83
V Nourani (4290_CR35) 2014; 71
O Rahmati (4290_CR22) 2019; 11
G Elkiran (4290_CR18) 2019; 577
R Lin (4290_CR34) 2022; 36
D Tien Bui (4290_CR11) 2019; 11
NL Falcon (4290_CR28) 1974; 4
OM Katipoğlu (4290_CR14) 2023; 37
A Arabameri (4290_CR16) 2019; 660
S Mirjalili (4290_CR39) 2016; 27
4290_CR42
K Khosravi (4290_CR26) 2020; 591
M Elsisi (4290_CR38) 2019; 12
L Alfieri (4290_CR6) 2017; 5
FS Hosseini (4290_CR5) 2020; 711
S Samanta (4290_CR10) 2018; 8
V Ghafori (4290_CR31) 2020; 44
J Abolverdi (4290_CR32) 2016; 128
SA Vaghefi (4290_CR7) 2019; 9
M Sarıgöl (4290_CR23) 2023; 119
CJ Talbot (4290_CR4) 2018; 141
References_xml – volume: 11
  start-page: 1589
  issue: 13
  year: 2019
  ident: 4290_CR11
  publication-title: Remote Sensing
  doi: 10.3390/rs11131589
– volume: 69
  start-page: 3301
  issue: 9
  year: 2022
  ident: 4290_CR43
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2022.02.027
– volume: 37
  start-page: 2205
  issue: 6
  year: 2023
  ident: 4290_CR14
  publication-title: Stoch. Env. Res. Risk Assess.
  doi: 10.1007/s00477-023-02389-1
– volume: 128
  start-page: 181
  issue: 2
  year: 2016
  ident: 4290_CR32
  publication-title: Meteorol. Atmos. Phys.
  doi: 10.1007/s00703-015-0414-0
– volume: 9
  start-page: 1464
  issue: 1
  year: 2019
  ident: 4290_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38071-8
– volume: 711
  year: 2020
  ident: 4290_CR5
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135161
– volume: 30
  start-page: 46074
  issue: 16
  year: 2023
  ident: 4290_CR24
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-25496-6
– volume: 6
  start-page: 1
  year: 2025
  ident: 4290_CR33
  publication-title: Nat. Hazards
– volume: 13
  start-page: 121
  issue: 3
  year: 2023
  ident: 4290_CR29
  publication-title: Irrig. Water Eng.
– volume: 83
  start-page: 429
  issue: 14
  year: 2024
  ident: 4290_CR8
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-024-11696-x
– ident: 4290_CR13
  doi: 10.1088/1755-1315/491/1/012003
– volume: 8
  start-page: 66
  issue: 2
  year: 2018
  ident: 4290_CR10
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-018-0710-1
– volume: 642
  year: 2024
  ident: 4290_CR19
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131903
– volume: 60
  start-page: 2571
  issue: 10
  year: 2009
  ident: 4290_CR3
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2009.183
– volume: 33
  start-page: 611
  issue: 4
  year: 2017
  ident: 4290_CR15
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3108
– volume: 8
  start-page: 1538
  issue: 2
  year: 2017
  ident: 4290_CR25
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2017.1362038
– volume: 5
  start-page: 171
  issue: 2
  year: 2017
  ident: 4290_CR6
  publication-title: Earth’s Future
  doi: 10.1002/2016EF000485
– volume: 627
  start-page: 744
  year: 2018
  ident: 4290_CR27
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– volume: 563
  start-page: 33
  year: 2018
  ident: 4290_CR1
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.05.065
– volume: 10
  start-page: 1
  year: 2020
  ident: 4290_CR20
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-019-1094-6
– volume: 100
  start-page: 363
  year: 2020
  ident: 4290_CR41
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03816-9
– volume: 141
  start-page: 439
  year: 2018
  ident: 4290_CR4
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0449-7
– volume: 4
  start-page: 199
  issue: 1
  year: 1974
  ident: 4290_CR28
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/GSL.SP.2005.004.01.11
– ident: 4290_CR42
  doi: 10.1109/MWSYM.2014.6848664
– volume: 611
  year: 2022
  ident: 4290_CR44
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128001
– volume: 591
  year: 2020
  ident: 4290_CR26
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125552
– volume: 12
  start-page: 255
  issue: 1
  year: 2020
  ident: 4290_CR9
  publication-title: Water
  doi: 10.3390/w12010255
– volume: 119
  start-page: 1461
  issue: 3
  year: 2023
  ident: 4290_CR23
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-023-06156-x
– volume: 544
  start-page: 267
  year: 2017
  ident: 4290_CR17
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.033
– volume: 71
  start-page: 523
  year: 2014
  ident: 4290_CR35
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0932-3
– volume: 222
  start-page: 175
  year: 2013
  ident: 4290_CR37
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 161
  year: 2020
  ident: 4290_CR40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113702
– volume: 660
  start-page: 443
  year: 2019
  ident: 4290_CR16
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.021
– volume: 577
  year: 2019
  ident: 4290_CR18
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 142
  start-page: 1221
  issue: 3
  year: 2020
  ident: 4290_CR30
  publication-title: Theoret. Appl. Climatol.
  doi: 10.1007/s00704-020-03362-6
– volume: 12
  start-page: 21
  issue: 1
  year: 2019
  ident: 4290_CR38
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-018-0172-2
– volume: 36
  start-page: 5655
  issue: 14
  year: 2022
  ident: 4290_CR34
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03325-8
– volume: 27
  start-page: 495
  year: 2016
  ident: 4290_CR39
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 67
  start-page: 179
  year: 2015
  ident: 4290_CR36
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.11.005
– volume: 36
  start-page: 43
  year: 2005
  ident: 4290_CR2
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-004-4538-7
– volume: 3
  start-page: 585
  year: 2019
  ident: 4290_CR12
  publication-title: Earth Syst. Environ.
  doi: 10.1007/s41748-019-00123-y
– volume: 44
  start-page: 1223
  issue: 4
  year: 2020
  ident: 4290_CR31
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
  doi: 10.1007/s40996-019-00297-5
– volume: 11
  start-page: 1943
  issue: 16
  year: 2019
  ident: 4290_CR22
  publication-title: Remote Sensing
  doi: 10.3390/rs11161943
– volume: 17
  start-page: 2313857
  issue: 1
  year: 2024
  ident: 4290_CR21
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2024.2313857
SSID ssj0000529419
Score 2.464511
Snippet Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has become...
Abstract Flooding is a devastating natural disaster that causes fatalities and property damage worldwide. Effective flood susceptibility mapping (FSM) has...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22787
SubjectTerms 631/158/1144
704/4111
Flood susceptibility map
Humanities and Social Sciences
multidisciplinary
Novel and technical processes
Optimized neural network
Science
Science (multidisciplinary)
Spatial statistical analysis
Sustainable development
Title Management and prediction of river flood utilizing optimization approach of artificial intelligence evolutionary algorithms
URI https://link.springer.com/article/10.1038/s41598-025-04290-z
https://www.ncbi.nlm.nih.gov/pubmed/40594128
https://www.proquest.com/docview/3226354699
https://pubmed.ncbi.nlm.nih.gov/PMC12216203
https://doaj.org/article/4cf7a2ca78d146b985d6d42182019f6b
Volume 15
WOSCitedRecordID wos001523011500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66q-CLeLdehgi-adk2TXN5dGUXBXcoojA-hTRp3IHZdmlnF3b8854knXFGZX3xJZQ2bZrkyzlfyMkXhF5LzwKKLEtlIVhKG2tSYfMiJQy8gwUCW0YR1098OhWzmay2jvryMWFRHjg23AE1jmtiNIdPUFZLUVpmadAdz6Vjtbe-GZdbk6mo6k0kzeW4SyYrxMEAnsrvJiNl6m1wlq52PFEQ7P8by_wzWPK3FdPgiI7vobsjg8Tv4p_fRzea9gG6Hc-UvHqIfvwKaMG6tfi890sxvvlx53DvwzCw89HqGCC3mK-gDNyB3TgbN2Titcq4z-6bJ0pM4PmWdiduLkfE6v4K68X3rp8vT8-GR-jr8dGX9x_S8YSF1ACPWaZCOGsyJqxzuhCCyoLCDCMzWW1yTSVMWTWncOm4lUBU6oYIR1ipS2NsbkpdPEZ7bdc2TxG2tRF1LQ0wNEE1K-vcOisZEHiRce1kgvJ1ayszyo_7UzAWKiyDF0LFHlLQQyr0kFol6M3mnfMovnFt7kPfiZucXjg73AA4qRFO6l9wStCrNQQUDDS_eqLbprsYFFg-IGeUSajKkwiJTVHUq96Ap0-Q2AHLzr_sPmnnp0HMOyckZyQrEvR2jSs1mpHhmso--x-VfY7ukDAgOIyLF2hv2V80L9Etc7mcD_0E3eQzHlIxQfuHR9Pq8ySMMkhPSOVTDul-9fGk-vYTEXQs6g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Management+and+prediction+of+river+flood+utilizing+optimization+approach+of+artificial+intelligence+evolutionary+algorithms&rft.jtitle=Scientific+reports&rft.au=Ikram%2C+Rana+Muhammad+Adnan&rft.au=Wang%2C+Mo&rft.au=Moayedi%2C+Hossein&rft.au=Dehrashid%2C+Atefeh+Ahmadi&rft.date=2025-07-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=22787&rft_id=info:doi/10.1038%2Fs41598-025-04290-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon