Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss o...
Uložené v:
| Vydané v: | Biomaterials Ročník 277; s. 121110 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2021
|
| Predmet: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system. |
|---|---|
| AbstractList | Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system. Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system. |
| ArticleNumber | 121110 |
| Author | Liao, Kaixin Zhou, Yixian Wu, Chuanbin Wen, Ting Pan, Xin Quan, Guilan Niu, Boyi |
| Author_xml | – sequence: 1 givenname: Boyi surname: Niu fullname: Niu, Boyi organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China – sequence: 2 givenname: Kaixin surname: Liao fullname: Liao, Kaixin organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China – sequence: 3 givenname: Yixian surname: Zhou fullname: Zhou, Yixian organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China – sequence: 4 givenname: Ting surname: Wen fullname: Wen, Ting organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China – sequence: 5 givenname: Guilan surname: Quan fullname: Quan, Guilan organization: College of Pharmacy, Jinan University, Guangzhou, 510632, China – sequence: 6 givenname: Xin surname: Pan fullname: Pan, Xin email: panxin2@mail.sysu.edu.cn organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China – sequence: 7 givenname: Chuanbin orcidid: 0000-0003-1661-0201 surname: Wu fullname: Wu, Chuanbin email: wuchuanb@mail.sysu.edu.cn organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China |
| BookMark | eNqNUk1vGyEURFUq1Un6H1BPPWRdYJePzalpmraRIkVq0jPC8LbGxcsGcCT_--LYhyqX-gTvzbzRY4ZTdDLGERD6QMmcEio-reYLH9emQPIm5DkjjM4po5SSN2hGlVQN7wk_QTNCO9b0grJ36DTnFak16dgMPV1NU_DWFB9HHAf8O2yKKctaAXYwBXgB_IitGS0kXJaQzLS9xDfjctdx-Of9Q7Mwud4O2AUeIKU4lZh9vsBmdNguYR0P8Dl6O9Rd4f3hPEO_vt08Xv9o7u6_315f3TWWU14aOThQQjrOgRvVGmYcG9reSmKFkgCSdIaooSXCWtl39Zm1rTqpescWxi3aM_Rxrzul-LSBXPTaZwshmBHiJmsmWiGoJKr9P5WLah0XXFTq5z3VpphzgkFbX17cK8n4oCnRu2D0Sv8bjN4Fo_fBVInLVxJT8muTtscNf90PQ7Xu2UPS2XrYBeET2KJd9MfJfHklY4Mf6z8If2B7rMhfUZnLQA |
| CitedBy_id | crossref_primary_10_1002_smll_202309431 crossref_primary_10_1016_j_jconrel_2025_113887 crossref_primary_10_1002_anie_202202843 crossref_primary_10_1002_ange_202419800 crossref_primary_10_1016_j_ijbiomac_2023_129117 crossref_primary_10_3762_bjnano_14_24 crossref_primary_10_1002_adfm_202422357 crossref_primary_10_34133_research_0880 crossref_primary_10_1002_advs_202401095 crossref_primary_10_1002_adhm_202404612 crossref_primary_10_1097_MD_0000000000043390 crossref_primary_10_3390_pharmaceutics16091130 crossref_primary_10_1002_adhm_202404737 crossref_primary_10_1002_adfm_202112000 crossref_primary_10_1016_j_molstruc_2025_142744 crossref_primary_10_3389_fcell_2025_1559423 crossref_primary_10_1002_adfm_202309524 crossref_primary_10_1021_acsami_5c05523 crossref_primary_10_3389_fphar_2023_1215020 crossref_primary_10_1016_j_ijpharm_2024_124582 crossref_primary_10_1021_acs_analchem_5c02897 crossref_primary_10_1016_j_cej_2022_141186 crossref_primary_10_1021_acsanm_5c02035 crossref_primary_10_1080_17435889_2024_2446138 crossref_primary_10_3390_ijms23094934 crossref_primary_10_1016_j_bios_2023_115200 crossref_primary_10_3892_mmr_2025_13483 crossref_primary_10_1038_s41388_024_03025_0 crossref_primary_10_1039_D2BM02032G crossref_primary_10_1002_adfm_202501271 crossref_primary_10_1016_j_ecoenv_2025_118246 crossref_primary_10_1016_j_freeradbiomed_2023_09_002 crossref_primary_10_2147_JIR_S420676 crossref_primary_10_1002_adhm_202102365 crossref_primary_10_1016_j_ccr_2025_216642 crossref_primary_10_1016_j_ccr_2025_216643 crossref_primary_10_1016_j_jphotobiol_2023_112796 crossref_primary_10_3389_fimmu_2025_1591123 crossref_primary_10_1016_j_mattod_2025_02_004 crossref_primary_10_1002_adhm_202300530 crossref_primary_10_1016_j_ijbiomac_2024_138215 crossref_primary_10_1016_j_biomaterials_2023_122458 crossref_primary_10_3389_fcell_2025_1639772 crossref_primary_10_1016_j_ejphar_2024_176528 crossref_primary_10_1016_j_biomaterials_2023_122454 crossref_primary_10_3390_cancers17061008 crossref_primary_10_1089_ars_2023_0371 crossref_primary_10_1002_anie_202300379 crossref_primary_10_1016_j_drup_2024_101057 crossref_primary_10_1016_j_matdes_2022_111282 crossref_primary_10_1016_j_bmc_2025_118241 crossref_primary_10_1186_s12951_024_02921_7 crossref_primary_10_1002_adfm_202404822 crossref_primary_10_1088_2515_7639_ad4d1e crossref_primary_10_1016_j_redox_2025_103522 crossref_primary_10_1002_smll_202402669 crossref_primary_10_3390_ijms25063164 crossref_primary_10_1016_j_apmt_2024_102341 crossref_primary_10_1016_j_ccr_2025_216899 crossref_primary_10_3390_pathogens11020212 crossref_primary_10_1039_D5TB00318K crossref_primary_10_1186_s12951_024_02419_2 crossref_primary_10_3389_fgene_2025_1658299 crossref_primary_10_3892_or_2024_8816 crossref_primary_10_1016_j_actbio_2023_03_017 crossref_primary_10_1016_j_toxicon_2022_106957 crossref_primary_10_1002_mco2_70116 crossref_primary_10_1002_mco2_70358 crossref_primary_10_1016_j_jcis_2025_138692 crossref_primary_10_1016_j_freeradbiomed_2025_05_388 crossref_primary_10_1016_j_matdes_2024_112809 crossref_primary_10_3390_nano15100748 crossref_primary_10_1186_s13020_023_00839_0 crossref_primary_10_1002_anie_202505041 crossref_primary_10_3389_fcell_2024_1506492 crossref_primary_10_2147_BCTT_S475860 crossref_primary_10_3390_antiox13080988 crossref_primary_10_1002_ange_202508544 crossref_primary_10_1016_j_mtbio_2025_102260 crossref_primary_10_1097_HJH_0000000000004085 crossref_primary_10_1002_cnma_202400642 crossref_primary_10_1007_s12274_023_5385_8 crossref_primary_10_1016_j_ijbiomac_2025_144168 crossref_primary_10_1002_adhm_202300748 crossref_primary_10_1080_19476337_2024_2303450 crossref_primary_10_1002_smll_202206688 crossref_primary_10_1016_j_fct_2023_114322 crossref_primary_10_1016_j_jconrel_2025_113895 crossref_primary_10_1021_jasms_4c00512 crossref_primary_10_1186_s12967_024_05803_6 crossref_primary_10_1002_smll_202205354 crossref_primary_10_1016_j_colsurfb_2022_112408 crossref_primary_10_1002_btm2_70031 crossref_primary_10_1016_j_phymed_2024_155348 crossref_primary_10_1016_j_ccr_2025_216542 crossref_primary_10_3748_wjg_v30_i32_3730 crossref_primary_10_1186_s40779_025_00610_6 crossref_primary_10_1016_j_jconrel_2025_113772 crossref_primary_10_1002_adhm_202402349 crossref_primary_10_1096_fj_202400373RR crossref_primary_10_1039_D1BM01876K crossref_primary_10_1002_adhm_202402474 crossref_primary_10_1002_anie_202508544 crossref_primary_10_1016_j_jcis_2022_05_059 crossref_primary_10_1097_CAD_0000000000001724 crossref_primary_10_1167_iovs_65_12_24 crossref_primary_10_1093_rb_rbae082 crossref_primary_10_1002_ange_202505041 crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_1016_j_jpha_2025_101223 crossref_primary_10_1016_j_phymed_2024_156306 crossref_primary_10_1002_adhm_202404895 crossref_primary_10_1186_s12951_023_01841_2 crossref_primary_10_3390_microorganisms11122849 crossref_primary_10_1016_j_freeradbiomed_2024_05_043 crossref_primary_10_1016_j_apsb_2024_02_024 crossref_primary_10_1016_j_carbpol_2024_122489 crossref_primary_10_1097_CAD_0000000000001630 crossref_primary_10_1016_j_cej_2022_135309 crossref_primary_10_1016_j_tranon_2025_102351 crossref_primary_10_1021_acs_chemrev_5c00129 crossref_primary_10_1016_j_matbio_2023_03_007 crossref_primary_10_1016_j_cej_2025_167375 crossref_primary_10_3390_md23010049 crossref_primary_10_1016_j_xphs_2023_11_027 crossref_primary_10_1186_s12951_022_01604_5 crossref_primary_10_1002_bit_70056 crossref_primary_10_1016_j_biomaterials_2023_122023 crossref_primary_10_1016_j_ejphar_2023_176220 crossref_primary_10_1002_mabi_202300238 crossref_primary_10_1016_j_jcis_2024_02_160 crossref_primary_10_1186_s12958_024_01310_x crossref_primary_10_1186_s13046_023_02686_1 crossref_primary_10_1021_jacs_2c12942 crossref_primary_10_1016_j_cej_2022_135311 crossref_primary_10_1016_j_cej_2025_160516 crossref_primary_10_1002_advs_202416143 crossref_primary_10_1016_j_apmt_2024_102059 crossref_primary_10_1038_s41419_024_06789_1 crossref_primary_10_1016_j_cbi_2024_111121 crossref_primary_10_1002_adfm_202407153 crossref_primary_10_1016_j_jep_2025_119916 crossref_primary_10_2147_IJN_S444815 crossref_primary_10_1002_adma_202309719 crossref_primary_10_1016_j_actbio_2025_01_044 crossref_primary_10_1002_smll_202404402 crossref_primary_10_2147_CMAR_S503932 crossref_primary_10_1126_sciadv_adt8451 crossref_primary_10_1016_j_snb_2023_133609 crossref_primary_10_1002_anie_202317773 crossref_primary_10_1016_j_molstruc_2025_141633 crossref_primary_10_1039_D4RA00610K crossref_primary_10_3389_fphar_2025_1658493 crossref_primary_10_3389_fcell_2023_1219840 crossref_primary_10_1016_j_bcp_2025_116763 crossref_primary_10_1016_j_carbon_2025_120099 crossref_primary_10_1016_j_cej_2022_135567 crossref_primary_10_1021_acsomega_4c08564 crossref_primary_10_1016_j_actbio_2025_01_050 crossref_primary_10_1002_adfm_202205013 crossref_primary_10_3389_fonc_2025_1555858 crossref_primary_10_1016_j_cej_2024_151839 crossref_primary_10_1016_j_heliyon_2024_e33258 crossref_primary_10_1038_s41467_023_40954_y crossref_primary_10_1016_j_jep_2025_119945 crossref_primary_10_1002_anie_202419800 crossref_primary_10_1016_j_matdes_2023_112535 crossref_primary_10_1007_s11033_022_08090_w crossref_primary_10_1016_j_fsi_2024_109418 crossref_primary_10_1002_adtp_202400309 crossref_primary_10_34133_bmr_0254 crossref_primary_10_1186_s12951_023_02212_7 crossref_primary_10_7717_peerj_15004 crossref_primary_10_3390_cells11203232 crossref_primary_10_1016_j_biomaterials_2023_122157 crossref_primary_10_1039_D5MH01000D crossref_primary_10_1016_j_cej_2023_148268 crossref_primary_10_1007_s12035_024_04443_7 crossref_primary_10_1016_j_chroma_2023_464236 crossref_primary_10_1038_s42003_024_07117_1 crossref_primary_10_1039_D5SC01987G crossref_primary_10_3390_cancers14143410 crossref_primary_10_1016_j_eurpolymj_2024_113431 crossref_primary_10_1016_j_intimp_2024_112367 crossref_primary_10_1186_s12935_025_03782_2 crossref_primary_10_1016_j_freeradbiomed_2025_08_051 crossref_primary_10_1016_j_jcis_2025_137545 crossref_primary_10_1007_s12274_022_4925_y crossref_primary_10_1007_s00210_024_03469_x crossref_primary_10_1016_j_colsurfa_2025_137972 crossref_primary_10_1002_smll_202402362 crossref_primary_10_1002_adhm_202302787 crossref_primary_10_1016_j_cej_2025_161356 crossref_primary_10_1016_j_phrs_2025_107924 crossref_primary_10_1016_j_watres_2024_123033 crossref_primary_10_1007_s00011_023_01800_5 crossref_primary_10_1002_cbic_202300323 crossref_primary_10_1002_adhm_202501587 crossref_primary_10_1016_j_cej_2025_161351 crossref_primary_10_1002_jbt_23789 crossref_primary_10_1016_j_actbio_2022_06_017 crossref_primary_10_1016_j_cej_2023_144688 crossref_primary_10_3389_fonc_2023_1183405 crossref_primary_10_3389_fbioe_2025_1595772 crossref_primary_10_3389_fphar_2024_1500527 crossref_primary_10_1002_adma_202506349 crossref_primary_10_1016_j_actbio_2023_08_021 crossref_primary_10_1038_s41427_023_00469_w crossref_primary_10_1186_s12964_024_01871_9 crossref_primary_10_1016_j_procbio_2024_07_007 crossref_primary_10_1186_s12951_024_02925_3 crossref_primary_10_1186_s11658_024_00570_0 crossref_primary_10_1016_j_cej_2023_142496 crossref_primary_10_3389_fonc_2025_1582116 crossref_primary_10_1007_s00109_025_02543_y crossref_primary_10_1002_pc_70020 crossref_primary_10_3389_fbioe_2023_1208693 crossref_primary_10_3892_mmr_2024_13402 crossref_primary_10_1111_jcmm_70278 crossref_primary_10_1039_D2NR05869C crossref_primary_10_3389_fphar_2023_1324764 crossref_primary_10_1002_smll_202406860 crossref_primary_10_2147_IJN_S459710 crossref_primary_10_1089_rej_2023_0013 crossref_primary_10_1002_jmv_28480 crossref_primary_10_1016_j_jprot_2023_105055 crossref_primary_10_1186_s12951_024_02574_6 crossref_primary_10_1016_j_cej_2023_142370 crossref_primary_10_1016_j_pestbp_2024_106021 crossref_primary_10_1016_j_phrs_2022_106218 crossref_primary_10_1177_00368504251370676 crossref_primary_10_3390_brainsci15080884 crossref_primary_10_1038_s41467_024_50405_x crossref_primary_10_1007_s11356_022_22268_6 crossref_primary_10_3390_biom13121785 crossref_primary_10_1016_j_lfs_2025_123688 crossref_primary_10_1039_D3BM02133E crossref_primary_10_1039_D3RA04074G crossref_primary_10_1186_s13287_024_03644_0 crossref_primary_10_1016_j_jconrel_2024_02_036 crossref_primary_10_1016_j_biomaterials_2022_121495 crossref_primary_10_1016_j_freeradbiomed_2023_03_006 crossref_primary_10_1016_j_freeradbiomed_2023_03_002 crossref_primary_10_1002_ange_202202843 crossref_primary_10_1016_j_canlet_2024_216732 crossref_primary_10_1002_smll_202301402 crossref_primary_10_1021_acsapm_5c00737 crossref_primary_10_1016_j_drudis_2023_103668 crossref_primary_10_3390_molecules26226766 crossref_primary_10_1039_D5BM00189G crossref_primary_10_1007_s12274_022_4913_2 crossref_primary_10_1016_j_jconrel_2022_05_018 crossref_primary_10_1002_adhm_202200665 crossref_primary_10_1155_2024_7632408 crossref_primary_10_3390_cancers16010059 crossref_primary_10_1016_j_bbrc_2021_11_101 crossref_primary_10_1016_j_jddst_2025_106987 crossref_primary_10_1080_15376516_2025_2479000 crossref_primary_10_1016_j_exer_2024_110156 crossref_primary_10_1016_j_jcis_2025_138311 crossref_primary_10_1016_j_lfs_2023_122166 crossref_primary_10_1021_jacs_3c09339 crossref_primary_10_1016_j_intimp_2025_114866 crossref_primary_10_1016_j_ccr_2025_216554 crossref_primary_10_1016_j_envres_2025_121208 crossref_primary_10_1002_ange_202300379 crossref_primary_10_1016_j_bcab_2023_102819 crossref_primary_10_1016_j_microc_2024_110502 crossref_primary_10_1016_j_nantod_2023_101984 crossref_primary_10_1002_INMD_20220005 crossref_primary_10_1186_s13048_024_01366_8 crossref_primary_10_1002_vjch_202300042 crossref_primary_10_1016_j_cej_2024_156921 crossref_primary_10_1007_s12033_023_01017_1 crossref_primary_10_1016_j_biomaterials_2023_122409 crossref_primary_10_1016_j_bios_2025_117384 crossref_primary_10_1021_jacs_2c09139 crossref_primary_10_1016_j_tem_2024_05_010 crossref_primary_10_1016_j_jcis_2023_05_099 crossref_primary_10_1002_ctd2_70080 crossref_primary_10_1016_j_jep_2024_118139 crossref_primary_10_1016_j_jep_2025_119643 crossref_primary_10_3390_molecules30132779 crossref_primary_10_1002_adfm_202424108 crossref_primary_10_1016_j_jep_2024_118135 crossref_primary_10_1007_s12633_023_02662_6 crossref_primary_10_1038_s41419_024_06807_2 crossref_primary_10_1016_j_cej_2024_159189 crossref_primary_10_1002_ange_202411725 crossref_primary_10_1002_adhm_202303568 crossref_primary_10_1016_j_nantod_2022_101459 crossref_primary_10_1016_j_nantod_2022_101574 crossref_primary_10_1038_s41401_025_01609_4 crossref_primary_10_3390_toxics11060529 crossref_primary_10_1016_j_celrep_2025_116139 crossref_primary_10_1039_D3BM00738C crossref_primary_10_1016_j_mtbio_2025_101844 crossref_primary_10_1038_s41419_025_07527_x crossref_primary_10_1002_slct_202406168 crossref_primary_10_1016_j_ijbiomac_2022_11_103 crossref_primary_10_1038_s41418_025_01505_8 crossref_primary_10_1016_j_snb_2025_138800 crossref_primary_10_3389_fonc_2023_1231460 crossref_primary_10_1002_asia_202500540 crossref_primary_10_1016_j_jcis_2025_138534 crossref_primary_10_1038_s41420_025_02532_7 crossref_primary_10_3389_fcell_2025_1547582 crossref_primary_10_1039_D4NA01004C crossref_primary_10_3389_fimmu_2025_1555910 crossref_primary_10_1016_j_jcis_2023_03_057 crossref_primary_10_1186_s12951_024_02688_x crossref_primary_10_1007_s10735_024_10186_5 crossref_primary_10_3389_fcimb_2025_1560152 crossref_primary_10_1007_s00018_025_05788_5 crossref_primary_10_1016_j_bios_2024_116906 crossref_primary_10_3389_fonc_2025_1586515 crossref_primary_10_1016_j_actbio_2024_01_007 crossref_primary_10_1016_j_jcis_2023_04_185 crossref_primary_10_1021_acsami_5c07923 crossref_primary_10_1002_adhm_202303533 crossref_primary_10_1002_adhm_202303896 crossref_primary_10_1016_j_cellsig_2025_111869 crossref_primary_10_3390_molecules27248712 crossref_primary_10_2147_JIR_S528667 crossref_primary_10_1002_cbdv_202301959 crossref_primary_10_1016_j_cancergen_2025_06_009 crossref_primary_10_1186_s13046_025_03404_9 crossref_primary_10_1002_anie_202413661 crossref_primary_10_1016_j_intimp_2025_114615 crossref_primary_10_1016_j_actbio_2024_01_010 crossref_primary_10_1002_adma_202418800 crossref_primary_10_1016_j_cej_2024_150124 crossref_primary_10_1039_D4SC02129K crossref_primary_10_1186_s13018_023_04448_3 crossref_primary_10_1016_j_ccr_2022_214861 crossref_primary_10_1016_j_cej_2025_161305 crossref_primary_10_1016_j_colsurfa_2024_135223 crossref_primary_10_1002_adhm_202400809 crossref_primary_10_1016_j_compbiomed_2023_106740 crossref_primary_10_37489_2587_7836_2025_1_17_26 crossref_primary_10_1002_adhm_202304639 crossref_primary_10_3389_fbioe_2023_1161472 crossref_primary_10_1016_j_pdpdt_2024_104463 crossref_primary_10_2174_0109298673251025230919105818 crossref_primary_10_1007_s11426_024_2268_7 crossref_primary_10_1016_j_snb_2023_135200 crossref_primary_10_2147_IJN_S526497 crossref_primary_10_3389_fonc_2023_1192192 crossref_primary_10_1007_s10787_024_01519_7 crossref_primary_10_1002_cbic_202500057 crossref_primary_10_3390_cells12020311 crossref_primary_10_1002_smll_202200330 crossref_primary_10_1007_s12013_024_01408_4 crossref_primary_10_1016_j_nantod_2025_102640 crossref_primary_10_1038_s41588_024_01662_5 crossref_primary_10_1016_j_talanta_2025_128769 crossref_primary_10_3390_ijms241310420 crossref_primary_10_1002_advs_202207507 crossref_primary_10_1002_idm2_12130 crossref_primary_10_1016_j_cej_2024_155592 crossref_primary_10_3390_pharmaceutics17020268 crossref_primary_10_1016_j_biteb_2023_101508 crossref_primary_10_1007_s10904_025_03691_x crossref_primary_10_1016_j_ijpx_2024_100315 crossref_primary_10_1002_adhm_202302023 crossref_primary_10_1016_j_jconrel_2024_01_066 crossref_primary_10_1038_s41420_025_02670_y crossref_primary_10_1002_EXP_20230127 crossref_primary_10_1016_j_bbrc_2024_150117 crossref_primary_10_1111_andr_13786 crossref_primary_10_1002_adtp_202400160 crossref_primary_10_1002_adfm_202312253 crossref_primary_10_1002_mco2_342 crossref_primary_10_1111_1759_7714_15037 crossref_primary_10_1007_s11010_024_05068_z crossref_primary_10_1021_acsanm_5c01747 crossref_primary_10_1007_s00432_024_05789_0 crossref_primary_10_1016_j_cej_2023_147437 crossref_primary_10_1016_j_mtbio_2025_101649 crossref_primary_10_1016_j_humimm_2024_111221 crossref_primary_10_1007_s12274_022_4359_6 crossref_primary_10_1186_s13098_025_01773_x crossref_primary_10_1016_j_ijbiomac_2024_134532 crossref_primary_10_1016_j_gendis_2025_101801 crossref_primary_10_1016_j_nantod_2025_102757 crossref_primary_10_1186_s12951_025_03264_7 crossref_primary_10_1016_j_jece_2025_116428 crossref_primary_10_1016_j_cej_2024_157645 crossref_primary_10_3390_pharmaceutics14122561 crossref_primary_10_1039_D5TB01249J crossref_primary_10_1016_j_mtcomm_2023_107116 crossref_primary_10_1016_j_cej_2024_157405 crossref_primary_10_1016_j_ajpath_2025_04_003 crossref_primary_10_3389_fphar_2023_1243286 crossref_primary_10_1038_s41420_024_01863_1 crossref_primary_10_1016_j_freeradbiomed_2025_02_032 crossref_primary_10_1080_10286020_2025_2530748 crossref_primary_10_1016_j_biomaterials_2022_121746 crossref_primary_10_1016_j_ijbiomac_2025_144870 crossref_primary_10_1002_smll_202301148 crossref_primary_10_1016_j_jconrel_2024_01_051 crossref_primary_10_1002_wnan_70001 crossref_primary_10_1038_s41598_025_08968_2 crossref_primary_10_1002_jbt_70223 crossref_primary_10_1002_cam4_6806 crossref_primary_10_1016_j_colsurfb_2025_114918 crossref_primary_10_1016_j_carbpol_2022_120365 crossref_primary_10_3389_fcell_2025_1551003 crossref_primary_10_3892_ijo_2024_5660 crossref_primary_10_1186_s40170_025_00380_8 crossref_primary_10_1080_15376516_2022_2103479 crossref_primary_10_1016_j_freeradbiomed_2025_02_002 crossref_primary_10_1016_j_gendis_2025_101806 crossref_primary_10_3390_antiox13060697 crossref_primary_10_1016_j_colsurfb_2023_113220 crossref_primary_10_3892_ijo_2024_5652 crossref_primary_10_1021_jacs_5c14257 crossref_primary_10_1039_D5DT00899A crossref_primary_10_3389_fimmu_2025_1608407 crossref_primary_10_3389_fphar_2024_1509172 crossref_primary_10_1002_mco2_562 crossref_primary_10_1142_S0192415X23500337 crossref_primary_10_1016_j_nantod_2023_102050 crossref_primary_10_3390_antiox14030258 crossref_primary_10_1002_smtd_202400697 crossref_primary_10_1002_anie_202205429 crossref_primary_10_1016_j_ccr_2023_215536 crossref_primary_10_1016_j_nantod_2024_102594 crossref_primary_10_1016_j_talanta_2022_123364 crossref_primary_10_1155_2022_3353740 crossref_primary_10_1016_j_jcis_2025_137811 crossref_primary_10_1038_s41392_024_01969_z crossref_primary_10_1186_s12885_025_14134_8 crossref_primary_10_1186_s12951_025_03626_1 crossref_primary_10_1007_s11030_025_11221_7 crossref_primary_10_1016_j_freeradbiomed_2025_03_049 crossref_primary_10_3389_fonc_2023_1186659 crossref_primary_10_1002_smll_202404299 crossref_primary_10_1007_s00210_024_03488_8 crossref_primary_10_3389_fchem_2023_1290745 crossref_primary_10_1002_smll_202407555 crossref_primary_10_1039_D5BM00791G crossref_primary_10_1007_s12094_024_03724_w crossref_primary_10_1038_s41392_025_02217_8 crossref_primary_10_1002_cmdc_202300720 crossref_primary_10_1002_mco2_559 crossref_primary_10_1016_j_ejmech_2024_116363 crossref_primary_10_1016_j_biomaterials_2025_123523 crossref_primary_10_1016_j_molstruc_2024_138786 crossref_primary_10_3389_fmolb_2025_1557218 crossref_primary_10_1016_j_molimm_2024_05_008 crossref_primary_10_3390_molecules30183706 crossref_primary_10_1002_advs_202403858 crossref_primary_10_1002_mco2_791 crossref_primary_10_1515_biol_2022_0932 crossref_primary_10_1002_mabi_202200359 crossref_primary_10_1186_s12951_024_03027_w crossref_primary_10_1016_j_cej_2025_160181 crossref_primary_10_1155_2022_4930643 crossref_primary_10_1016_j_colsurfb_2025_114819 crossref_primary_10_3389_fphys_2025_1641323 crossref_primary_10_3390_ijms242417238 crossref_primary_10_3390_ijms252413279 crossref_primary_10_1002_ange_202317773 crossref_primary_10_1016_j_ejpb_2024_114525 crossref_primary_10_1016_j_biopha_2023_115036 crossref_primary_10_1016_j_jconrel_2025_114130 crossref_primary_10_1039_D1SC06315D crossref_primary_10_3389_fimmu_2023_1196054 crossref_primary_10_1016_j_matlet_2023_135609 crossref_primary_10_3390_cells12121564 crossref_primary_10_1016_j_bbrc_2025_151923 crossref_primary_10_3390_ijms25115675 crossref_primary_10_1016_j_matdes_2023_112063 crossref_primary_10_1016_j_nantod_2022_101620 crossref_primary_10_1002_adma_202312316 crossref_primary_10_1016_j_ejmech_2024_117165 crossref_primary_10_1111_rda_14474 crossref_primary_10_1007_s12274_024_6552_2 crossref_primary_10_1002_adhm_202500610 crossref_primary_10_1016_j_bcp_2022_115258 crossref_primary_10_1016_j_jddst_2021_103022 crossref_primary_10_3390_ijms241814108 crossref_primary_10_1039_D5NJ00944H crossref_primary_10_1002_EXP_20230163 crossref_primary_10_1007_s12011_025_04603_3 crossref_primary_10_2147_IJN_S470315 crossref_primary_10_1002_adhm_202401836 crossref_primary_10_3389_fbioe_2025_1582659 crossref_primary_10_1002_advs_202504860 crossref_primary_10_1039_D5NR00880H crossref_primary_10_1002_tox_23770 crossref_primary_10_1016_j_jconrel_2025_02_072 crossref_primary_10_1016_j_cej_2024_153363 crossref_primary_10_1002_smll_202412802 crossref_primary_10_1016_j_cej_2025_162259 crossref_primary_10_1016_j_lfs_2024_122682 crossref_primary_10_1002_smll_202312191 crossref_primary_10_1007_s10853_025_11491_4 crossref_primary_10_1016_j_jinorgbio_2023_112134 crossref_primary_10_1186_s40364_025_00748_4 crossref_primary_10_1016_j_cej_2023_143386 crossref_primary_10_4103_ijpvm_ijpvm_380_24 crossref_primary_10_1016_j_heliyon_2024_e37298 crossref_primary_10_1016_j_jep_2023_116983 crossref_primary_10_1002_anie_202208849 crossref_primary_10_1016_j_jpha_2024_01_003 crossref_primary_10_1016_j_nantod_2024_102386 crossref_primary_10_1016_j_jot_2025_03_011 crossref_primary_10_1016_j_ejps_2022_106338 crossref_primary_10_1007_s10565_025_10067_x crossref_primary_10_1002_adfm_202300575 crossref_primary_10_1007_s11010_024_04978_2 crossref_primary_10_1021_jacs_1c11856 crossref_primary_10_1016_j_ejmech_2024_116290 crossref_primary_10_1016_j_cclet_2023_108300 crossref_primary_10_2147_IJN_S508767 crossref_primary_10_3390_polym17172279 crossref_primary_10_1007_s10853_023_08156_5 crossref_primary_10_1039_D4BM00647J crossref_primary_10_1038_s41467_025_62880_x crossref_primary_10_1038_s41392_023_01679_y crossref_primary_10_1016_j_cej_2024_153595 crossref_primary_10_1016_j_cej_2024_154204 crossref_primary_10_1016_j_cej_2024_154566 crossref_primary_10_1016_j_jes_2025_08_040 crossref_primary_10_1002_adtp_202300329 crossref_primary_10_1631_bdm_2500021 crossref_primary_10_1038_s41598_024_84290_7 crossref_primary_10_1158_0008_5472_CAN_23_1167 crossref_primary_10_1016_j_actbio_2022_12_067 crossref_primary_10_1002_adhm_202402827 crossref_primary_10_1186_s12935_023_03207_y crossref_primary_10_1016_j_marpolbul_2024_116204 crossref_primary_10_1021_acs_jafc_5c01065 crossref_primary_10_3389_fchem_2022_908892 crossref_primary_10_1016_j_envpol_2023_121747 crossref_primary_10_1039_D3BM00861D crossref_primary_10_3389_fonc_2024_1344290 crossref_primary_10_1002_smll_202306616 crossref_primary_10_1186_s12935_024_03568_y crossref_primary_10_1186_s12967_024_05404_3 crossref_primary_10_1016_j_colsurfb_2022_113095 crossref_primary_10_1016_j_microc_2024_111466 crossref_primary_10_1039_D5BM00202H crossref_primary_10_1016_j_cej_2025_163326 crossref_primary_10_3390_cells13050441 crossref_primary_10_1039_D2SC02597C crossref_primary_10_1016_j_cbi_2023_110793 crossref_primary_10_1039_D4RA02468K crossref_primary_10_3390_pharmaceutics17010034 crossref_primary_10_1016_j_ccr_2023_215027 crossref_primary_10_1016_j_ejpb_2022_10_010 crossref_primary_10_1002_adhm_202300929 crossref_primary_10_1016_j_jece_2024_111881 crossref_primary_10_1002_med_22007 crossref_primary_10_3390_antiox12071445 crossref_primary_10_1002_adhm_202401743 crossref_primary_10_1093_carcin_bgad011 crossref_primary_10_1039_D5RA00032G crossref_primary_10_2147_IJN_S365570 crossref_primary_10_1002_adhm_202500933 crossref_primary_10_1016_j_biomaterials_2022_121916 crossref_primary_10_1186_s43556_024_00239_2 crossref_primary_10_1016_j_actbio_2024_07_043 crossref_primary_10_1016_j_surfin_2025_106075 crossref_primary_10_1016_j_carbpol_2024_123123 crossref_primary_10_1016_j_cej_2024_149518 crossref_primary_10_2147_IJN_S436160 crossref_primary_10_1002_ange_202208849 crossref_primary_10_1016_j_fct_2024_114445 crossref_primary_10_3389_fonc_2024_1424218 crossref_primary_10_2147_CMAR_S402572 crossref_primary_10_1038_s41419_023_06033_2 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1002_adfm_202502999 crossref_primary_10_3390_biomedicines11082226 crossref_primary_10_1016_j_cej_2022_138621 crossref_primary_10_1093_rb_rbac045 crossref_primary_10_1002_smll_202411879 crossref_primary_10_1016_j_actbio_2023_05_048 crossref_primary_10_1002_bit_28152 crossref_primary_10_3389_fphar_2024_1360030 crossref_primary_10_1002_ange_202413661 crossref_primary_10_1039_D3RA03246A crossref_primary_10_1016_j_jddst_2023_104305 crossref_primary_10_1016_j_jbc_2023_103039 crossref_primary_10_1002_lpor_202400777 crossref_primary_10_1002_bmm2_70019 crossref_primary_10_1016_j_bioorg_2023_107021 crossref_primary_10_1016_j_cej_2024_158682 crossref_primary_10_1186_s13046_022_02485_0 crossref_primary_10_1016_j_bioactmat_2024_04_016 crossref_primary_10_1186_s12645_024_00295_x crossref_primary_10_1002_smll_202207825 crossref_primary_10_1016_j_jare_2025_03_052 crossref_primary_10_1080_15287394_2024_2448663 crossref_primary_10_3390_cells12162061 crossref_primary_10_1016_j_cclet_2025_110977 crossref_primary_10_1186_s12935_024_03559_z crossref_primary_10_1016_j_lddd_2025_100013 crossref_primary_10_1007_s12274_024_6838_4 crossref_primary_10_3390_md22040187 crossref_primary_10_1016_j_jcis_2023_09_042 crossref_primary_10_1186_s40824_023_00464_w crossref_primary_10_3390_ijms25063315 crossref_primary_10_1016_j_isci_2025_111769 crossref_primary_10_1111_jnc_15831 crossref_primary_10_1186_s10020_025_01180_y crossref_primary_10_1016_j_cej_2025_167568 crossref_primary_10_1186_s12951_024_02658_3 crossref_primary_10_1016_j_phymed_2024_155503 crossref_primary_10_1016_j_saa_2024_124248 crossref_primary_10_3390_antiox13070778 crossref_primary_10_1016_j_omtn_2025_102649 crossref_primary_10_1002_adtp_202100227 crossref_primary_10_1002_anie_202411725 crossref_primary_10_1016_j_dyepig_2024_112338 crossref_primary_10_1002_advs_202409442 crossref_primary_10_1016_j_jep_2023_117482 crossref_primary_10_1073_pnas_2404668121 crossref_primary_10_1016_j_canlet_2025_217697 crossref_primary_10_1016_j_cej_2024_155048 crossref_primary_10_1186_s12933_024_02514_6 crossref_primary_10_1016_j_scitotenv_2023_167039 crossref_primary_10_1002_smll_202305567 crossref_primary_10_1021_acsanm_4c06718 crossref_primary_10_1002_adma_202409663 crossref_primary_10_1016_j_intimp_2024_112605 crossref_primary_10_1021_acsanm_5c02865 crossref_primary_10_1002_adfm_202404169 crossref_primary_10_1002_adfm_202500491 crossref_primary_10_1002_asia_202401647 crossref_primary_10_1016_j_biomaterials_2025_123344 crossref_primary_10_1186_s12943_024_01977_1 crossref_primary_10_1002_adfm_202212977 crossref_primary_10_1007_s11010_025_05339_3 crossref_primary_10_1002_ange_202205429 crossref_primary_10_1002_sstr_202200329 crossref_primary_10_2147_IJN_S399026 crossref_primary_10_1002_smll_202202558 crossref_primary_10_1186_s12951_025_03311_3 crossref_primary_10_1016_j_biomaterials_2022_121832 crossref_primary_10_1002_advs_202306580 crossref_primary_10_1186_s12951_024_02626_x crossref_primary_10_1016_j_jcis_2023_07_134 crossref_primary_10_1016_j_jconrel_2023_03_030 crossref_primary_10_1016_j_jconrel_2024_05_045 crossref_primary_10_1016_j_eurpolymj_2022_111340 crossref_primary_10_1186_s12964_024_01790_9 crossref_primary_10_3389_fmats_2025_1534127 crossref_primary_10_1002_adma_202407378 crossref_primary_10_1002_advs_202505310 crossref_primary_10_3389_fphar_2024_1413530 crossref_primary_10_1016_j_ccr_2023_215230 crossref_primary_10_1016_j_biopha_2024_116935 crossref_primary_10_1016_j_ejphar_2024_176965 crossref_primary_10_1002_adfm_202212740 crossref_primary_10_1016_j_cclet_2024_109538 crossref_primary_10_1016_j_cej_2022_136125 crossref_primary_10_1016_j_bioadv_2024_213771 crossref_primary_10_1007_s10147_025_02851_w crossref_primary_10_2174_0115672018286563240223072702 crossref_primary_10_1002_adhm_202301824 crossref_primary_10_1016_j_biomaterials_2022_121706 crossref_primary_10_1016_j_biomaterials_2022_121944 crossref_primary_10_1016_j_ejmech_2023_115952 crossref_primary_10_1002_agt2_70149 crossref_primary_10_1016_j_colsurfa_2024_133748 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1016_j_actbio_2024_06_029 crossref_primary_10_1080_17435889_2025_2476386 crossref_primary_10_3389_fmed_2024_1356225 crossref_primary_10_3390_molecules29133125 crossref_primary_10_7717_peerj_13238 crossref_primary_10_1016_j_bioactmat_2023_10_003 crossref_primary_10_1039_D4SC01625D crossref_primary_10_1016_j_ejpb_2024_114348 crossref_primary_10_1021_acsapm_5c02155 crossref_primary_10_1002_adma_202411967 crossref_primary_10_1016_j_cclet_2024_109626 crossref_primary_10_1093_etojnl_vgaf126 crossref_primary_10_3390_antiox12040834 crossref_primary_10_1016_j_jconrel_2024_06_059 crossref_primary_10_1186_s12951_024_02515_3 crossref_primary_10_1016_j_mtbio_2025_102228 crossref_primary_10_1016_j_ijbiomac_2023_123821 crossref_primary_10_1007_s10735_025_10450_2 crossref_primary_10_1016_j_jpha_2023_12_018 crossref_primary_10_3390_toxics13030221 crossref_primary_10_1002_adhm_202300821 crossref_primary_10_1016_j_jddst_2023_104454 crossref_primary_10_3389_fimmu_2025_1673783 crossref_primary_10_1002_jbt_70387 crossref_primary_10_1016_j_redox_2025_103693 crossref_primary_10_1002_adma_202210464 crossref_primary_10_1016_j_colsurfb_2022_112853 crossref_primary_10_1016_j_ecoenv_2025_118668 crossref_primary_10_1002_cam4_70947 crossref_primary_10_1111_cts_70201 crossref_primary_10_1002_smll_202409250 crossref_primary_10_1016_j_colsurfb_2024_114394 crossref_primary_10_1016_j_indcrop_2025_120559 crossref_primary_10_1016_j_yexcr_2025_114727 crossref_primary_10_1016_j_yexcr_2025_114726 crossref_primary_10_1371_journal_pbio_3001862 crossref_primary_10_1002_adma_202209589 crossref_primary_10_1016_j_actbio_2023_10_015 crossref_primary_10_1016_j_jinsphys_2025_104881 crossref_primary_10_1002_smll_202307309 crossref_primary_10_1089_ars_2023_0272 crossref_primary_10_1016_j_snb_2023_133457 crossref_primary_10_1016_j_jddst_2024_105715 crossref_primary_10_1016_j_eurpolymj_2025_114295 |
| Cites_doi | 10.1038/s41586-019-1426-6 10.1021/acsnano.0c06290 10.1016/j.jphotobiol.2020.111955 10.1021/acsami.0c12756 10.1089/ars.2011.4391 10.1016/j.tiv.2017.04.028 10.1021/acsnano.8b01893 10.1158/1078-0432.CCR-06-2642 10.1002/adfm.202002753 10.1002/biof.1476 10.1016/j.biomaterials.2020.120079 10.1016/j.colsurfb.2018.06.029 10.1097/00132580-200101000-00008 10.1002/anie.201706964 10.1021/acsami.9b16124 10.1096/fj.09-149997 10.1021/jacs.9b12873 10.1016/j.cub.2014.03.034 10.1002/adma.201808200 10.1165/rcmb.2009-0169TR 10.7150/thno.46076 10.1016/j.toxlet.2010.12.010 10.1002/pros.20508 10.1021/acsnano.0c05499 10.1158/0008-5472.CAN-12-3150 10.1016/j.cej.2020.125667 10.1002/mnfr.201300684 10.1002/ppsc.201900018 10.1038/s41420-020-00314-x 10.1007/s11010-005-9098-y 10.1002/anie.201710800 10.1021/acsami.9b09323 10.1073/pnas.0911351106 10.1196/annals.1297.059 10.1016/0014-5793(71)80459-3 10.1073/pnas.67.3.1248 10.1016/j.taap.2011.08.004 10.1016/j.bcp.2007.02.005 10.1006/bbrc.2001.5648 10.1038/s41467-018-03119-w 10.1002/anie.202003653 10.1016/j.bcp.2005.10.005 10.1016/j.ejmech.2017.02.064 10.1016/j.freeradbiomed.2018.07.025 10.1002/advs.201900848 10.1002/adma.202002439 10.1186/s12951-018-0398-2 10.1016/j.bcp.2004.08.010 10.3109/03602532.2015.1105253 10.1021/tx100226n 10.3390/antiox10060967 10.1021/acsnano.0c03781 10.2147/IJN.S249205 10.1021/acsami.8b00207 10.1039/C8NR08141G 10.1021/acsnano.9b00300 10.1016/j.cej.2020.125294 10.1016/j.ccr.2018.12.015 10.1016/j.dyepig.2020.108207 10.1002/adfm.201901417 10.1002/adfm.201907954 10.1074/jbc.R114.609248 10.1021/acsnano.8b06399 10.1039/D0SC02889D 10.1002/adfm.202006216 10.1021/acsnano.0c05541 10.3390/antiox9020133 10.1016/j.toxlet.2008.04.009 10.1080/1061186X.2018.1519029 10.1124/dmd.31.1.11 10.1016/j.ecoenv.2018.10.013 10.1158/0008-5472.CAN-04-0143 10.1016/j.biopha.2017.09.026 10.1016/j.pdpdt.2010.02.001 10.1039/D0TB01357A 10.1002/anie.201907388 10.1016/j.jconrel.2020.03.007 10.1016/j.bmc.2010.07.031 10.1016/j.freeradbiomed.2009.04.022 10.1038/s41598-018-19213-4 10.1016/j.colsurfb.2020.110810 10.1039/C9CC01957J 10.1016/S0304-3835(97)04639-9 10.1021/jacs.8b08714 10.1016/j.bmcl.2015.07.018 10.1016/j.biomaterials.2020.120278 10.1021/acsnano.8b06400 10.1002/adfm.202006098 10.1021/jp712087m 10.1021/acs.nanolett.8b01924 10.1038/sj.cdd.4400959 10.1002/adfm.201905013 10.3390/cells9051161 10.1002/anie.201903981 10.3109/15376516.2013.869783 10.1002/adfm.201903850 10.1083/jcb.201804161 10.1016/j.biomaterials.2020.120140 10.1002/anie.202008868 10.1002/jcp.27497 10.1126/science.aaw9872 10.1016/j.drup.2016.03.001 10.1016/j.nantod.2020.100981 10.1158/1078-0432.CCR-10-1983 10.1016/j.carbpol.2019.03.064 10.3109/1354750X.2012.715672 10.1002/jat.3106 10.1016/j.tips.2006.06.008 10.1016/j.cej.2019.122369 10.1016/j.apsb.2020.07.018 10.1007/s10863-015-9631-y 10.1016/j.biomaterials.2018.09.043 10.1039/C9NJ05427H 10.1016/j.bbagen.2012.09.008 10.1016/j.bcp.2016.10.013 10.1038/s41467-020-15591-4 10.1021/acs.nanolett.9b02904 10.1039/D0DT01742F 10.1039/C9CC06040E 10.1126/sciadv.abc4373 10.1016/j.cej.2020.126305 10.1039/C9NR01306G 10.1039/C9SC01070J 10.1158/0008-5472.CAN-11-0882 10.1002/adfm.201800706 10.1016/0014-5793(70)80063-1 10.1021/acsnano.9b07032 10.1038/s41419-019-1897-2 10.1021/acsami.0c01539 10.1016/j.biomaterials.2020.120456 10.1016/j.ejmech.2018.08.034 10.1089/ars.2017.7134 10.1007/s10863-015-9637-5 10.1016/j.cej.2020.127212 10.1016/j.biopha.2018.06.111 10.2147/JPR.S125045 10.1016/j.cbi.2005.10.044 10.7554/eLife.02523 10.1016/j.ejphar.2010.03.048 10.1351/PAC-REC-12-11-20 10.1038/s41419-018-0635-5 10.1039/C9BM01354G 10.1016/S0016-5085(98)70034-4 10.1016/j.cell.2012.03.042 10.1089/ars.2014.6142 10.1242/jeb.132142 10.1002/anie.201712027 10.1016/j.canlet.2015.07.031 10.1039/D0NR03135F 10.1016/j.ccell.2014.11.019 10.1039/C8BM01042K 10.1007/BF01870891 10.1002/anie.201510748 10.1074/jbc.M504604200 10.1016/j.ijpharm.2019.118782 10.1016/j.celrep.2017.02.054 10.1039/D0NR03661G 10.1111/cbdd.13621 10.1186/s13046-019-1459-6 10.7150/thno.46771 10.1016/j.bbagen.2020.129539 10.1016/j.jconrel.2018.01.034 10.1039/C9BM00797K 10.1016/j.mam.2008.08.004 10.1002/adfm.201904056 10.1021/cr400532z 10.1159/000485089 10.1021/jp2025413 10.1021/acs.nanolett.8b03905 10.1111/cas.14181 10.1038/s41565-019-0499-6 10.1002/smll.201904870 10.1093/jnci/88.3-4.193 10.1007/s00280-003-0609-9 10.1002/adma.201900730 10.3390/nu11081926 10.1039/C9NR03052B 10.3892/ol.2015.3879 10.1016/j.jconrel.2020.04.026 10.3390/antiox7050062 10.1111/cas.13309 10.2174/157340811796575308 10.1074/jbc.M807061200 10.1002/anie.200903924 10.1016/j.biomaterials.2020.120279 10.1016/j.bcp.2008.09.011 10.1093/jn/134.3.489 10.1016/j.ejmech.2019.02.065 10.1089/ars.2007.1901 10.1002/adhm.202000864 10.1016/j.jmb.2008.04.066 10.1016/j.freeradbiomed.2017.01.004 10.1021/bi00813a003 10.1016/j.canlet.2018.04.021 10.1021/acsnano.9b05493 10.1002/anie.201801378 10.1113/expphysiol.1997.sp004024 10.1155/2018/2469486 10.1016/j.bbagen.2019.01.007 10.1371/journal.pone.0054044 10.1016/j.mam.2008.05.005 10.1039/D0NR03138K 10.1039/C9TB02120E 10.1021/acsami.9b10685 10.1021/acsami.7b08347 10.1073/pnas.89.7.3070 10.1038/nature07733 10.1016/j.biopha.2018.05.117 10.18632/oncotarget.4945 10.3892/ijmm.2012.895 10.1016/j.tcb.2020.03.002 10.3389/fonc.2019.01525 10.1002/smll.202001251 10.1155/2012/736837 10.1002/iub.1756 10.1002/anie.201605509 10.7150/thno.28344 10.1021/acsnano.8b09387 10.1002/adfm.201906195 10.1021/acsnano.9b01665 10.1021/acsnano.0c03080 10.15252/embj.201696151 10.1186/s13045-019-0720-y 10.1016/j.pdpdt.2021.102418 10.1016/j.jconrel.2018.01.019 10.1016/j.bcp.2014.05.017 10.1038/s41389-017-0025-3 10.1016/j.freeradbiomed.2018.06.021 10.1038/s41598-019-54065-6 10.1074/jbc.M110.116210 10.1016/j.tiv.2011.12.004 10.1021/acsami.9b23325 10.1021/acs.bioconjchem.0c00209 10.1155/2013/972913 10.1016/j.cej.2021.130094 10.1007/s13402-019-00474-8 10.1016/j.biomaterials.2020.120457 10.1016/j.biomaterials.2019.119498 10.1124/jpet.102.040220 10.1016/j.biomaterials.2020.120329 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2021.121110 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 10_1016_j_biomaterials_2021_121110 S014296122100466X |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c515t-7fde867d55e5a83a2ad2f39c70c687ee704a08f306cc79459068784789d2badb3 |
| ISICitedReferencesCount | 878 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701903900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sat Sep 27 19:56:26 EDT 2025 Sun Sep 28 07:59:08 EDT 2025 Tue Nov 18 21:28:32 EST 2025 Sat Nov 29 07:28:59 EST 2025 Fri Feb 23 02:43:55 EST 2024 Tue Oct 14 19:30:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ferroptosis Nanomaterials Reactive oxygen species Glutathione depletion Drug resistance Cancer therapy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c515t-7fde867d55e5a83a2ad2f39c70c687ee704a08f306cc79459068784789d2badb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1661-0201 |
| PQID | 2569615656 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636617083 proquest_miscellaneous_2569615656 crossref_citationtrail_10_1016_j_biomaterials_2021_121110 crossref_primary_10_1016_j_biomaterials_2021_121110 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_121110 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_121110 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomaterials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ballatori, Krance, Marchan, Hammond (bib168) 2009; 30 Yang, Li, Chen, Zhang, Qiao, Tan, Chen, Pan (bib11) 2020; 15 Zhu, Xiao, Zhang, Che, Shi, Shi, van Hest (bib64) 2020; 14 Liu, Wang, Zhang, Cheng, Yang, Xing, Xu, Dong, Zhang (bib76) 2019; 13 Li, Bey, Dong, Meng, Patra, Yan, Xie, Brekken, Barnett, Bornmann (bib222) 2011; 17 Liu, Zhen, Jin, Zhang, Sun, Zhang, Xu, Song, Wang, Liu, Zhang (bib102) 2018; 12 Ma, Chen, Wang, Lu, Zhu, Song, Yang, Wen, Xu, Hu (bib172) 2015; 368 Batten, Champness, Chen, Garcia-Martinez, Kitagawa, Ohrstrom, O'Keeffe, Suh, Reedijk (bib235) 2013; 85 Majumder, Dutta, Mookerjee, Choudhuri (bib145) 2006; 159 Zhong, Wang, Cheng, Tang, Zhan, Gong, Zhang, Hu, Liu, Yang (bib80) 2020; 30 Hu, Chen, Yang, Huang, Wu, Wu, Li, Yi, Xiao, Li (bib60) 2019; 11 Zhang, Lu, Gao, Li, Zhang, Ma, Wang, Tang (bib33) 2018; 57 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib150) 2012; 149 Yang, Liu, Ma, Xu, Chen, Wang, Xiao, Li, Liang, Yu, Yu (bib108) 2021; 265 Wu, Chen, Gu, You, Sun (bib67) 2020; 12 Fu, Yang, Zhang, Liu, Du, Cao, Xu, Cui, Kang, Xue (bib70) 2020; 257 Li, Yan, Xu, Liu, Wu, Zhao (bib175) 2019; 19 Wang, Wang, Li, Tong, Wang, Huang, Xu, Huang, Li, Wu, Zhao, Yin (bib142) 2020; 12 Debiton, Madelmont, Legault, Barthomeuf (bib234) 2003; 51 Liu, Song, Zhang, Chan, Guo, Shen (bib251) 2020; 11 Song, Yang, Xu, Lu, Li, Ren, Liu, Wang, Zhu, Tan, Li (bib119) 2020; 254 Cao, Zhong, Wang, Chen, Tian, Zhang (bib58) 2020; 8 De Souza, Schmitz, Silva, De Oliveira, Nedel, Tasca, De Bem, Farina, Dafre (bib224) 2017; 42 Huang, Huang, Chen, Chen, Zeng, Xu, Huang, Luo, Xiao, Ding, Zhao (bib71) 2020; 399 Gu, An, He, Wu, Gao, Li, Chen, Cheng, Zhang, You (bib111) 2020; 189 Xiao, Lu, Feng, Dong, Cao, Zhang, Chen, Liu (bib104) 2020; 396 Zhou, Wu, Yang, Xu, Zhang, Dong, Qian, Sun (bib113) 2020; 6 Henderson, Ritchie, Mclaren, Chakravarty, Wolf (bib48) 2011; 71 Zou, Hu, Xu, Tong, Jing, Xi, Zhou, Lu, Wang, Yang (bib28) 2018; 41 Sun, Deng, Kang, Sun, Ren, Qu (bib31) 2020; 14 Ling, Chen, Riddell, Tao, Wang, Hollett, Lippard, Farokhzad, Shi, Wu (bib30) 2018; 18 Lian, Huang, Zhu, Fang, Zhao, Joseph, Li, Pellois, Zhou (bib122) 2018; 57 Stoner, Morse (bib230) 1997; 114 Pu, Zhou, Xiang, Wu, Yin, Yue, Yin, Li, Chen, Xu (bib121) 2020; 259 Lu (bib156) 2013; 1830 Laskar, Somani, Altwaijry, Mullin, Bowering, Warzecha, Keating, Tate, Leung, Dufes (bib14) 2018; 10 Ritchie, Walsh, Sansom, Henderson, Wolf (bib49) 2009; 106 Li, Wang, Yang, Lei, Yang, Liang, Chen, Xia, Wang, Tang (bib50) 2019; 38 Scire, Cianfruglia, Minnelli, Bartolini, Torquato, Principato, Galli, Armeni (bib39) 2019; 45 Galadari, Rahman, Pallichankandy, Thayyullathil (bib46) 2017; 104 Zhao, Wang, Wu, Wang, Gu, Chen, Jana, Wang, Xu, Guo, Chen, Feng, Liu (bib73) 2021; 60 Liu, Gong, Shen, He, Liang, Shu, Wang, Ma, Li, Zhang, Wu, Gong (bib95) 2021; 403 Doxsee, Gout, Kurita, Lo, Buckley, Wang, Xue, Karp, Cutz, Cunha (bib219) 2007; 67 Fletcher, Williams, Henderson, Norris, Haber (bib241) 2016; 26 Cruz, Mota, Ramos, Pires, Mendes, Silva, Nunes, Bonifacio, Serpa (bib129) 2020; 9 Wang, Liu, Sun, Dong, Kuang, Dong, He, Gai, Yang (bib100) 2020; 12 Deng, Liu, Wang, An, Gao, Wang, Zhao (bib90) 2019; 7 Brechbuhl, Kachadourian, Min, Chan, Day (bib213) 2012; 258 Wei, Huang, Jiang, Shen, Huang, Huang, Sun, Zhao (bib132) 2019; 169 Gong, Cheng, Yang, Betzer, Feng, Zhou, Li, Chen, Popovtzer, Liu (bib21) 2019; 31 Hu, Deng, Jia, Jin, Ji (bib248) 2020; 14 Fazzari, Balenko, Zacal, Singh (bib176) 2017; 10 Guo, Cheng, Zhao, Luo, Chen, Yuan (bib238) 2018; 16 Traverso, Ricciarelli, Nitti, Marengo, Furfaro, Pronzato, Marinari, Domenicotti (bib53) 2013; 2013 Chen, Wang, Zhang, Zhang, Liu, Zhang, Feng, Li, Wu, Gao, Yang (bib68) 2021; 266 Bannai, Tateishi (bib155) 1986; 89 Dixon, Patel, Welsch, Skouta, Lee, Hayano, Thomas, Gleason, Tatonetti, Slusher (bib220) 2014; 3 Gaucher, Boudier, Bonetti, Clarot, Leroy, Parent (bib35) 2018; 7 Zheng, Zhou, Zhu, Wang, Li, Chen, Chen, Che, Xie (bib197) 2018; 106 Wang, Li, Qiao, Hu, Liao, Chen, Wu, Wu, Zhao, Liu (bib135) 2018; 12 Dong, Feng, Hao, Li, Chen, Yang, Zhao, Liu (bib74) 2020; 6 An, Fan, Gu, Gao, Hossain, Sun (bib84) 2020; 321 Wang, Yang, Cho, Chueng, Zhang, Zhang, Lee (bib112) 2019; 224 Li, Dirisala, Ge, Wang, Yin, Ke, Toh, Xie, Matsumoto, Anraku (bib118) 2017; 56 Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang (bib97) 2018; 57 Larraufie, Yang, Jiang, Thomas, Slusher, Stockwell (bib218) 2015; 25 Zhu, Chen, Yang, Wu, Tian, Hao, Cao, Gao, Zhang (bib83) 2020; 12 Mateo, Morales, Avalos, Haza (bib205) 2014; 24 Kohler, Barrach, Neubert (bib191) 1970; 6 Mukherjee, Oclaonadh, Casey, Chambers (bib184) 2012; 26 Zhang, Gao, Ma, He, Du, Yang, Xie, Xie, Deng (bib249) 2021; 422 Zhang, Forman (bib164) 2009; 41 Poursaitidis, Wang, Crighton, Labuschagne, Mason, Cramer, Triplett, Roy, Pardo, Seckl (bib181) 2017; 18 Otsubo, Nosaki, Imamura, Ogata, Fujita, Sakata, Hirai, Toyokawa, Iwama, Harada (bib174) 2017; 108 Zhao, Wang, Li, Zhang, Yu, Wu, Zhao, Liu, Liu, Yu (bib106) 2019; 29 Catanzaro, Gaude, Orso, Giordano, Guzzo, Rasola, Ragazzi, Caparrotta, Frezza, Montopoli (bib190) 2015; 6 Luo, Zhou, Zhou, Xing, Cui, Sun, Jin, Lu, Jiang (bib130) 2018; 274 Arora, Jain, Rajwade, Paknikar (bib185) 2008; 179 He, Du, Guo, An, Lu, Chen, Wang, Zhong, Shen, Wu, Shuai (bib139) 2020; 16 Shi, Wang, You, Akhtar, Liu, Han, Li, Wang (bib89) 2019; 11 Chen, Zhou, Chen, Luo, Xu, Song (bib20) 2019; 11 Chen, Kuo (bib148) 2010; 2010 Franco, Dehaven, Sifre, Bortner, Cidlowski (bib16) 2008; 283 Hatemelie (bib6) 2017; 27 Lorendeau, Dury, Genouxbastide, Lecerfschmidt, Simoespires, Carrupt, Terreux, Magnard, Pietro, Boumendjel (bib215) 2014; 90 Liu, Wang, Shenvi, Hagen, Liu (bib44) 2004; 1019 Wu, Zhang, Chen, Yu, Ma, Liu (bib131) 2019; 167 Leslie, Deeley, Cole (bib210) 2003; 31 Wan, Cheng, Zeng, Zhang (bib57) 2019; 13 Pathania, Bhatia, Baldi, Singh, Rawal (bib25) 2018; 105 Shen, Ma, Huang, Chen, Xu, Li, Meng, Fan, Xi, Yan, Koo, Yang, Jiang, Gao (bib250) 2020; 35 Pompella, De Tata, Paolicchi, Zunino (bib228) 2006; 71 Liu, Zhou, Liu, Li, Huang, Qian, Sun (bib59) 2019; 7 Li, Zhao, Gong, Wang, Jiang, Cheng, Liu, Wu, Bu (bib72) 2020; 59 Cheng, Yang, Zhang, Zhang, Cao, Liu, Lu, Dong, Zhang (bib116) 2019; 29 Li, Wu, Zhang, Chen (bib223) 2018; 129 Xu, Han, Li, Min, Zhao, Zhang, Qi, Shi, Qi, Bao (bib29) 2019; 13 Mena, Benlloch, Ortega, Carretero, Obrador, Asensi, Petschen, Brown, Estrela (bib194) 2007; 13 Luo, Han, Zhao, Pan, Tian, Ding, Zhang (bib12) 2019; 215 Kwiatkowska, Wojtala, Gajewska, Soszynski, Bartosz, Sadowskabartosz (bib200) 2016; 48 Liu, Guo, Zeng, Ye, Wang, Li, Sun, Cheng, Zhang (bib87) 2020; 30 Hu, Wang, Zhou, Wei (bib161) 2020; 209 An, Gao, Sun, Gu, Wu, You, Li, Cheng, Zhang, Wang (bib140) 2019; 11 Liu, Liu, Liu, Du, Wang, He (bib153) 2019; 382 He, He, Farrar, Ji, Liu, Ma (bib7) 2017; 44 Xie, Liang, Cai, Ding, Huang, Hou, Ma, Cheng, Lin (bib77) 2019; 11 Badgley, Kremer, Maurer, DelGiorno, Lee, Purohit, Sagalovskiy, Ma, Kapilian, Firl, Decker, Sastra, Palermo, Andrade, Sajjakulnukit, Zhang, Tolstyka, Hirschhorn, Lamb, Liu, Gu, Seeley, Stone, Georgiou, Manor, Iuga, Wahl, Stockwell, Lyssiotis, Olive (bib180) 2020; 368 Shi, Zhao, Li, Pan, Ma, Ding (bib199) 2015; 35 Zhou, Niu, Wu, Luo, Fu, Zhao, Quan, Pan, Wu (bib236) 2020; 10 Farina, Aschner (bib23) 2019; 1863 Lan, Liu, Zeng, Qin, Hou, Xie, Yue, Yang, Ho, Ding, Zhang (bib92) 2020; 407 Bohme, Thaens, Schramm, Paschke, Schuurmann (bib231) 2010; 23 Zhou, Li, Cheng, Zhang, Sun, Du, Cao, Liu, Huang (bib62) 2020; 8 Li, Li, Shi, Ahmed, Liu, Guo, Tang, Guo, Zhang (bib198) 2020; 9 Zhu, Chu, Li, Pang, Zheng, Wang, Shi, Zhang, Cheng, Ren (bib110) 2019; 29 Krejsa, Franklin, White, Ledbetter, Schieven, Kavanagh (bib159) 2010; 285 Shen, Xia, Ma, Zhu, Gao, Han, Liang, Cao, Sun (bib107) 2020; 10 Gao, Liu, Wei, Liu, Xu, Guo, Li, Jiang, Wu (bib196) 2012; 29 Zhang, Pavlova, Thompson (bib157) 2017; 36 Loschen, Flohe, Chance (bib3) 1971; 18 Orlowski, Meister (bib165) 1970; 67 Lu (bib41) 2009; 30 Chen, Shertzer, Schneider, Nebert, Dalton (bib158) 2005; 280 Tao, Ren, Yi, Zhou, Xiong, Ge, Chen, Yang (bib75) 2019; 36 Schieber, Chandel (bib52) 2014; 24 Tang, Li, Zhang, Zheng, Cheng, Zhu, Chen, Zhu, Piao, Li (bib137) 2020; 10 Lewerenz, Hewett, Huang, Lambros, Gout, Kalivas, Massie, Smolders, Methner, Pergande, Smith, Ganapathy, Maher (bib154) 2013; 18 Wu, Guo, Qiu, Lin, Yao, Lian, Lin, Song, Yang (bib114) 2019; 10 Zhang, Chen, Jiang, Ma, Xia, Cheng, Jia, Liu, Gu, Chen (bib204) 2018; 10 Raineri, Levy (bib192) 1970; 9 Zhang, Tan, Daniels, Zandkarimi, Liu, Brown, Uchida, Oconnor, Stockwell (bib171) 2019; 26 del Valle, Yeh, Huang (bib138) 2020; 9 Liao, Xiang, Wang, Wang, Ding (bib189) 2017; 95 Godwin, Meister, Odwyer, Huang, Hamilton, Anderson (bib26) 1992; 89 Li, Yang, Xu (bib13) 2019; 27 Allocati, Masulli, Di Ilio, Federici (bib37) 2018; 7 Wang, Wu, Yang, Qian, Gu, Wang, Zhou, Liu, Wu, Zhang, Guo, Chen, Jana, Zhao (bib63) 2020; 14 Wu, Fang, Yang, Lupton, Turner (bib8) 2004; 134 Ju, Dong, Chen, Liu, Liu, Huang, Wang, Pu, Ren, Qu (bib22) 2016; 55 Fatehihassanabad, Chan, Furman (bib43) 2010; 636 Salerno, Loechariyakul, Saengkhae, Garniersuillerot (bib217) 2004; 68 Jiang, Du, Zheng (bib24) 2019; 14 Jawaid, Rehman, Zhao, Misawa, Ishikawa, Hori, Shimizu, Saitoh, Noguchi, Kondo (bib120) 2020; 6 Zhang, Meng, Yang, Dong, Zhang (bib82) 2020; 258 Mou, Wang, Wu, He, Zhang, Duan, Li (bib151) 2019; 12 Wu, Liu, Ren, Qu (bib141) 2019; 15 Gupta, Kim, Kim, Srivastava (bib229) 2014; 58 Gong, Chen, Yang, Dong, Tian, Hao, Zhuo, Liu, Chen, Cheng (bib99) 2020; 30 Wang, Cao, Ruan, Jia, Zhen, Jiang (bib115) 2019; 58 Hochwald, Harrison, Rose, Anderson, Burt (bib226) 1996; 88 Joycebrady, Hiratake (bib227) 2011; 7 Walters, Cho, Kleeberger (bib45) 2008; 10 Lu, Pokharel, Bebawy (bib240) 2015; 47 Harris, DeNicola (bib47) 2020; 30 Raza, Hayat, Rasheed, Bilal, Iqbal (bib9) 2018; 157 Bachhawat, Yadav (bib166) 2018; 70 Cao, Li, Gao, Li, Li, Cao, Dai, Mao, Wang, Tai (bib69) 2020; 49 Gamcsik, Kasibhatla, Teeter, Colvin (bib147) 2012; 17 Tang, Chen, Li, Zheng, Wu, Zhang, Song, Fei (bib134) 2019; 572 Diehn, Cho, Lobo, Kalisky, Liu (10.1016/j.biomaterials.2021.121110_bib102) 2018; 12 Bannai (10.1016/j.biomaterials.2021.121110_bib155) 1986; 89 Xu (10.1016/j.biomaterials.2021.121110_bib29) 2019; 13 Zou (10.1016/j.biomaterials.2021.121110_bib28) 2018; 41 Prisant (10.1016/j.biomaterials.2021.121110_bib243) 2001; 3 Fu (10.1016/j.biomaterials.2021.121110_bib81) 2019; 29 Armstrong (10.1016/j.biomaterials.2021.121110_bib239) 2002; 9 Dong (10.1016/j.biomaterials.2021.121110_bib96) 2019; 19 Wang (10.1016/j.biomaterials.2021.121110_bib135) 2018; 12 Wang (10.1016/j.biomaterials.2021.121110_bib177) 2018; 428 Sies (10.1016/j.biomaterials.2021.121110_bib5) 1997; 82 Wang (10.1016/j.biomaterials.2021.121110_bib55) 2019; 13 Zhao (10.1016/j.biomaterials.2021.121110_bib225) 2009; 47 Lash (10.1016/j.biomaterials.2021.121110_bib162) 2002; 303 Lin (10.1016/j.biomaterials.2021.121110_bib97) 2018; 57 Stoner (10.1016/j.biomaterials.2021.121110_bib230) 1997; 114 Yu (10.1016/j.biomaterials.2021.121110_bib10) 2018; 9 Leslie (10.1016/j.biomaterials.2021.121110_bib210) 2003; 31 Gaucher (10.1016/j.biomaterials.2021.121110_bib35) 2018; 7 Galadari (10.1016/j.biomaterials.2021.121110_bib46) 2017; 104 Li (10.1016/j.biomaterials.2021.121110_bib118) 2017; 56 Shen (10.1016/j.biomaterials.2021.121110_bib107) 2020; 10 Fan (10.1016/j.biomaterials.2021.121110_bib19) 2016; 55 Walters (10.1016/j.biomaterials.2021.121110_bib45) 2008; 10 Li (10.1016/j.biomaterials.2021.121110_bib223) 2018; 129 Cheng (10.1016/j.biomaterials.2021.121110_bib116) 2019; 29 Gamcsik (10.1016/j.biomaterials.2021.121110_bib147) 2012; 17 Guo (10.1016/j.biomaterials.2021.121110_bib238) 2018; 16 Barrett (10.1016/j.biomaterials.2021.121110_bib51) 2013; 73 Ju (10.1016/j.biomaterials.2021.121110_bib22) 2016; 55 Barattin (10.1016/j.biomaterials.2021.121110_bib209) 2010; 18 Zhou (10.1016/j.biomaterials.2021.121110_bib236) 2020; 10 Ma (10.1016/j.biomaterials.2021.121110_bib172) 2015; 368 Zhou (10.1016/j.biomaterials.2021.121110_bib62) 2020; 8 Li (10.1016/j.biomaterials.2021.121110_bib72) 2020; 59 Bachhawat (10.1016/j.biomaterials.2021.121110_bib166) 2018; 70 De Souza (10.1016/j.biomaterials.2021.121110_bib224) 2017; 42 Schieber (10.1016/j.biomaterials.2021.121110_bib52) 2014; 24 Tang (10.1016/j.biomaterials.2021.121110_bib221) 2015; 22 Hu (10.1016/j.biomaterials.2021.121110_bib60) 2019; 11 Fu (10.1016/j.biomaterials.2021.121110_bib70) 2020; 257 Otsubo (10.1016/j.biomaterials.2021.121110_bib174) 2017; 108 Li (10.1016/j.biomaterials.2021.121110_bib13) 2019; 27 Zhang (10.1016/j.biomaterials.2021.121110_bib91) 2020; 12 Pu (10.1016/j.biomaterials.2021.121110_bib121) 2020; 259 Wu (10.1016/j.biomaterials.2021.121110_bib131) 2019; 167 Gupta (10.1016/j.biomaterials.2021.121110_bib229) 2014; 58 Min (10.1016/j.biomaterials.2021.121110_bib93) 2019; 31 Zhang (10.1016/j.biomaterials.2021.121110_bib249) 2021; 422 Zhu (10.1016/j.biomaterials.2021.121110_bib83) 2020; 12 Wu (10.1016/j.biomaterials.2021.121110_bib114) 2019; 10 Cole (10.1016/j.biomaterials.2021.121110_bib242) 2014; 289 Meng (10.1016/j.biomaterials.2021.121110_bib136) 2019; 19 Wei (10.1016/j.biomaterials.2021.121110_bib246) 2020; 1864 Zhang (10.1016/j.biomaterials.2021.121110_bib82) 2020; 258 Hochwald (10.1016/j.biomaterials.2021.121110_bib226) 1996; 88 Salerno (10.1016/j.biomaterials.2021.121110_bib217) 2004; 68 Hu (10.1016/j.biomaterials.2021.121110_bib161) 2020; 209 Lewerenz (10.1016/j.biomaterials.2021.121110_bib154) 2013; 18 Mukherjee (10.1016/j.biomaterials.2021.121110_bib184) 2012; 26 Majumder (10.1016/j.biomaterials.2021.121110_bib145) 2006; 159 Jawaid (10.1016/j.biomaterials.2021.121110_bib120) 2020; 6 Piao (10.1016/j.biomaterials.2021.121110_bib187) 2011; 201 Liao (10.1016/j.biomaterials.2021.121110_bib189) 2017; 95 Gu (10.1016/j.biomaterials.2021.121110_bib111) 2020; 189 Jiang (10.1016/j.biomaterials.2021.121110_bib24) 2019; 14 Wang (10.1016/j.biomaterials.2021.121110_bib115) 2019; 58 Lan (10.1016/j.biomaterials.2021.121110_bib92) 2020; 407 Deng (10.1016/j.biomaterials.2021.121110_bib90) 2019; 7 Desideri (10.1016/j.biomaterials.2021.121110_bib167) 2019; 11 Zheng (10.1016/j.biomaterials.2021.121110_bib197) 2018; 106 Lee (10.1016/j.biomaterials.2021.121110_bib15) 2010; 24 Dixon (10.1016/j.biomaterials.2021.121110_bib220) 2014; 3 Zhang (10.1016/j.biomaterials.2021.121110_bib157) 2017; 36 Shi (10.1016/j.biomaterials.2021.121110_bib199) 2015; 35 Zhao (10.1016/j.biomaterials.2021.121110_bib73) 2021; 60 Wu (10.1016/j.biomaterials.2021.121110_bib152) 2019; 572 Scire (10.1016/j.biomaterials.2021.121110_bib39) 2019; 45 Sun (10.1016/j.biomaterials.2021.121110_bib31) 2020; 14 Hu (10.1016/j.biomaterials.2021.121110_bib248) 2020; 14 Fatehihassanabad (10.1016/j.biomaterials.2021.121110_bib43) 2010; 636 Lu (10.1016/j.biomaterials.2021.121110_bib41) 2009; 30 Xie (10.1016/j.biomaterials.2021.121110_bib77) 2019; 11 Catanzaro (10.1016/j.biomaterials.2021.121110_bib190) 2015; 6 Dong (10.1016/j.biomaterials.2021.121110_bib85) 2020; 32 Zhu (10.1016/j.biomaterials.2021.121110_bib178) 2020; 27 Chen (10.1016/j.biomaterials.2021.121110_bib158) 2005; 280 Loschen (10.1016/j.biomaterials.2021.121110_bib3) 1971; 18 Wu (10.1016/j.biomaterials.2021.121110_bib67) 2020; 12 Badgley (10.1016/j.biomaterials.2021.121110_bib180) 2020; 368 He (10.1016/j.biomaterials.2021.121110_bib139) 2020; 16 Wu (10.1016/j.biomaterials.2021.121110_bib141) 2019; 15 Wan (10.1016/j.biomaterials.2021.121110_bib57) 2019; 13 Dong (10.1016/j.biomaterials.2021.121110_bib74) 2020; 6 Wu (10.1016/j.biomaterials.2021.121110_bib8) 2004; 134 Cheng (10.1016/j.biomaterials.2021.121110_bib143) 2014; 114 Hatemelie (10.1016/j.biomaterials.2021.121110_bib6) 2017; 27 Gao (10.1016/j.biomaterials.2021.121110_bib196) 2012; 29 Han (10.1016/j.biomaterials.2021.121110_bib126) 2018; 273 Raineri (10.1016/j.biomaterials.2021.121110_bib192) 1970; 9 Harris (10.1016/j.biomaterials.2021.121110_bib47) 2020; 30 Zhang (10.1016/j.biomaterials.2021.121110_bib204) 2018; 10 Yin (10.1016/j.biomaterials.2021.121110_bib195) 2017; 9 Munro (10.1016/j.biomaterials.2021.121110_bib2) 2017; 220 Csala (10.1016/j.biomaterials.2021.121110_bib163) 2001; 287 Tao (10.1016/j.biomaterials.2021.121110_bib75) 2019; 36 Arora (10.1016/j.biomaterials.2021.121110_bib185) 2008; 179 Lian (10.1016/j.biomaterials.2021.121110_bib122) 2018; 57 Debiton (10.1016/j.biomaterials.2021.121110_bib234) 2003; 51 Gong (10.1016/j.biomaterials.2021.121110_bib99) 2020; 30 Zhu (10.1016/j.biomaterials.2021.121110_bib64) 2020; 14 Tang (10.1016/j.biomaterials.2021.121110_bib134) 2019; 572 An (10.1016/j.biomaterials.2021.121110_bib140) 2019; 11 Dixon (10.1016/j.biomaterials.2021.121110_bib150) 2012; 149 Allison (10.1016/j.biomaterials.2021.121110_bib18) 2010; 7 Yang (10.1016/j.biomaterials.2021.121110_bib117) 2018; 28 Tenório (10.1016/j.biomaterials.2021.121110_bib244) 2021; 10 Mele (10.1016/j.biomaterials.2021.121110_bib188) 2018; 9 Wang (10.1016/j.biomaterials.2021.121110_bib100) 2020; 12 Wang (10.1016/j.biomaterials.2021.121110_bib63) 2020; 14 Yu (10.1016/j.biomaterials.2021.121110_bib170) 2019; 110 Hoyle (10.1016/j.biomaterials.2021.121110_bib233) 2010; 49 Wang (10.1016/j.biomaterials.2021.121110_bib112) 2019; 224 Ballatori (10.1016/j.biomaterials.2021.121110_bib168) 2009; 30 Liu (10.1016/j.biomaterials.2021.121110_bib79) 2020; 11 del Valle (10.1016/j.biomaterials.2021.121110_bib138) 2020; 9 Liu (10.1016/j.biomaterials.2021.121110_bib87) 2020; 30 Luo (10.1016/j.biomaterials.2021.121110_bib12) 2019; 215 Liu (10.1016/j.biomaterials.2021.121110_bib59) 2019; 7 Bao (10.1016/j.biomaterials.2021.121110_bib206) 2020; 152 Sang (10.1016/j.biomaterials.2021.121110_bib32) 2020; 142 Carlson (10.1016/j.biomaterials.2021.121110_bib186) 2008; 112 Zheng (10.1016/j.biomaterials.2021.121110_bib86) 2020; 12 Joycebrady (10.1016/j.biomaterials.2021.121110_bib227) 2011; 7 Li (10.1016/j.biomaterials.2021.121110_bib193) 2019; 234 Zheng (10.1016/j.biomaterials.2021.121110_bib173) 2020; 43 Hu (10.1016/j.biomaterials.2021.121110_bib109) 2020; 31 Harris (10.1016/j.biomaterials.2021.121110_bib54) 2015; 27 Mena (10.1016/j.biomaterials.2021.121110_bib194) 2007; 13 Li (10.1016/j.biomaterials.2021.121110_bib198) 2020; 9 Bi (10.1016/j.biomaterials.2021.121110_bib179) 2019; 10 Orlowski (10.1016/j.biomaterials.2021.121110_bib165) 1970; 67 Brechbuhl (10.1016/j.biomaterials.2021.121110_bib213) 2012; 258 Cruz (10.1016/j.biomaterials.2021.121110_bib129) 2020; 9 Pathania (10.1016/j.biomaterials.2021.121110_bib25) 2018; 105 Kohler (10.1016/j.biomaterials.2021.121110_bib191) 1970; 6 Lu (10.1016/j.biomaterials.2021.121110_bib240) 2015; 47 Cao (10.1016/j.biomaterials.2021.121110_bib69) 2020; 49 Laskar (10.1016/j.biomaterials.2021.121110_bib14) 2018; 10 Sies (10.1016/j.biomaterials.2021.121110_bib4) 1985 Lv (10.1016/j.biomaterials.2021.121110_bib17) 2019 Li (10.1016/j.biomaterials.2021.121110_bib50) 2019; 38 Mou (10.1016/j.biomaterials.2021.121110_bib151) 2019; 12 Ling (10.1016/j.biomaterials.2021.121110_bib30) 2018; 18 Sarkhoshinanlou (10.1016/j.biomaterials.2021.121110_bib123) 2020; 95 Bansal (10.1016/j.biomaterials.2021.121110_bib40) 2018; 217 Li (10.1016/j.biomaterials.2021.121110_bib175) 2019; 19 Huang (10.1016/j.biomaterials.2021.121110_bib71) 2020; 399 Bohme (10.1016/j.biomaterials.2021.121110_bib231) 2010; 23 Lu (10.1016/j.biomaterials.2021.121110_bib156) 2013; 1830 Ling (10.1016/j.biomaterials.2021.121110_bib125) 2019; 13 Tian (10.1016/j.biomaterials.2021.121110_bib88) 2019; 55 Wan (10.1016/j.biomaterials.2021.121110_bib105) 2019; 58 Chen (10.1016/j.biomaterials.2021.121110_bib20) 2019; 11 Cole (10.1016/j.biomaterials.2021.121110_bib38) 2006; 27 Shi (10.1016/j.biomaterials.2021.121110_bib89) 2019; 11 Zhong (10.1016/j.biomaterials.2021.121110_bib80) 2020; 30 Li (10.1016/j.biomaterials.2021.121110_bib222) 2011; 17 Poursaitidis (10.1016/j.biomaterials.2021.121110_bib181) 2017; 18 Zhou (10.1016/j.biomaterials.2021.121110_bib113) 2020; 6 Chen (10.1016/j.biomaterials.2021.121110_bib148) 2010; 2010 Zhao (10.1016/j.biomaterials.2021.121110_bib106) 2019; 29 Huang (10.1016/j.biomaterials.2021.121110_bib78) 2020; 380 Wang (10.1016/j.biomaterials.2021.121110_bib142) 2020; 12 Liu (10.1016/j.biomaterials.2021.12111 |
| References_xml | – volume: 14 start-page: 11225 year: 2020 end-page: 11237 ident: bib64 article-title: Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy publication-title: ACS Nano – volume: 57 start-page: 4902 year: 2018 end-page: 4906 ident: bib97 article-title: Simultaneous fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 1808200 year: 2019 ident: bib93 article-title: Biomimetic metal–organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy publication-title: Adv. Mater. – volume: 380 start-page: 122369 year: 2020 ident: bib78 article-title: Three birds with one stone: a ferric pyrophosphate based nanoagent for synergetic NIR-triggered photo/chemodynamic therapy with glutathione depletion publication-title: Chem. Eng. J. – volume: 382 start-page: 160 year: 2019 end-page: 180 ident: bib153 article-title: Nanomaterial-induced ferroptosis for cancer specific therapy publication-title: Coord. Chem. Rev. – volume: 29 start-page: 649 year: 2012 end-page: 655 ident: bib196 article-title: Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells publication-title: Int. J. Mol. Med. – volume: 18 start-page: 6265 year: 2010 end-page: 6274 ident: bib209 article-title: Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1 publication-title: Bioorg. Med. Chem. – volume: 283 start-page: 36071 year: 2008 end-page: 36087 ident: bib16 article-title: Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis publication-title: J. Biol. Chem. – volume: 8 year: 2013 ident: bib183 article-title: Purine nucleoside analog-sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines publication-title: PloS One – volume: 12 start-page: 15767 year: 2020 end-page: 15774 ident: bib142 article-title: Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy publication-title: Nanoscale – volume: 10 start-page: 321 year: 2008 end-page: 332 ident: bib45 article-title: Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2 publication-title: Antioxidants Redox Signal. – volume: 19 start-page: 323 year: 2019 end-page: 333 ident: bib175 article-title: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway publication-title: Oncol. Lett. – volume: 73 start-page: 1245 year: 2013 end-page: 1255 ident: bib51 article-title: Tumor suppressor function of the plasma glutathione peroxidase Gpx 3 in colitis-associated carcinoma publication-title: Canc. Res. – volume: 11 start-page: 8495 year: 2020 end-page: 8501 ident: bib251 article-title: A ratiometric fluorescent probe for real-time monitoring of intracellular glutathione fluctuations in response to cisplatin publication-title: Chem. Sci. – volume: 396 start-page: 125294 year: 2020 ident: bib104 article-title: Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging publication-title: Chem. Eng. J. – volume: 17 start-page: 671 year: 2012 end-page: 691 ident: bib147 article-title: Glutathione levels in human tumors publication-title: Biomarkers – volume: 368 start-page: 85 year: 2020 end-page: + ident: bib180 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science – volume: 50 start-page: 2424 year: 2007 end-page: 2431 ident: bib232 article-title: Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin publication-title: J. Mater. Chem. – volume: 35 start-page: 102418 year: 2021 ident: bib247 article-title: Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: a redox and pH-responsive antimicrobial agent with photocatalytic activity publication-title: Photodiagn. Photodyn. – volume: 41 start-page: 989 year: 2018 end-page: 998 ident: bib28 article-title: Glutathione S-transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer publication-title: Oncol. Rep. – volume: 73 start-page: 1727 year: 2007 end-page: 1737 ident: bib211 article-title: Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress publication-title: Biochem. Pharmacol. – volume: 10 start-page: 967 year: 2021 ident: bib244 article-title: N-acetylcysteine (NAC): impacts on human health publication-title: Antioxidants – volume: 368 start-page: 88 year: 2015 end-page: 96 ident: bib172 article-title: Xc - inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism publication-title: Canc. Lett. – volume: 57 start-page: 5725 year: 2018 end-page: 5730 ident: bib122 article-title: Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy publication-title: Angew. Chem. Int. Ed. – volume: 572 start-page: 402 year: 2019 end-page: 406 ident: bib152 article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling publication-title: Nature – volume: 176 start-page: 108207 year: 2020 ident: bib182 article-title: Lowering glutathione level by buthionine sulfoximine enhances in vivo photodynamic therapy using chlorin e6-loaded nanoparticles publication-title: Dyes Pigments – volume: 24 start-page: 2533 year: 2010 end-page: 2545 ident: bib15 article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases publication-title: Faseb. J. – volume: 49 start-page: 1540 year: 2010 end-page: 1573 ident: bib233 article-title: Thiol–ene click chemistry publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 347 year: 2020 end-page: 359 ident: bib248 article-title: Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms publication-title: ACS Nano – volume: 12 start-page: 12380 year: 2018 end-page: 12392 ident: bib135 article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics publication-title: ACS Nano – volume: 30 start-page: 42 year: 2009 end-page: 59 ident: bib41 article-title: Regulation of glutathione synthesis publication-title: Mol. Aspect. Med. – volume: 8 start-page: 9251 year: 2020 end-page: 9257 ident: bib62 article-title: A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion publication-title: J. Mater. Chem. B – volume: 18 start-page: 522 year: 2013 end-page: 555 ident: bib154 article-title: The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities publication-title: Antioxidants Redox Signal. – volume: 7 start-page: 5359 year: 2019 end-page: 5368 ident: bib59 article-title: H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy publication-title: Biomater. Sci. – volume: 14 start-page: 13500 year: 2020 end-page: 13511 ident: bib63 article-title: Metal–organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy publication-title: ACS Nano – volume: 12 start-page: 17319 year: 2020 end-page: 17331 ident: bib67 article-title: A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy publication-title: Nanoscale – volume: 29 start-page: 1905013 year: 2019 ident: bib106 article-title: Reactive oxygen species–activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies publication-title: Adv. Funct. Mater. – volume: 114 start-page: 113 year: 1997 end-page: 119 ident: bib230 article-title: Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer publication-title: Canc. Lett. – volume: 24 start-page: R453 year: 2014 end-page: R462 ident: bib52 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. – volume: 179 start-page: 93 year: 2008 end-page: 100 ident: bib185 article-title: Cellular responses induced by silver nanoparticles: in vitro studies publication-title: Toxicol. Lett. – volume: 55 start-page: 12956 year: 2019 end-page: 12959 ident: bib66 article-title: A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion publication-title: Chem. Commun. – volume: 273 start-page: 30 year: 2018 end-page: 39 ident: bib126 article-title: Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers publication-title: J. Contr. Release – volume: 130 start-page: 346 year: 2017 end-page: 353 ident: bib214 article-title: Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity publication-title: Eur. J. Med. Chem. – volume: 12 start-page: 5680 year: 2020 end-page: 5694 ident: bib91 article-title: Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH publication-title: ACS Appl. Mater. Interfaces – volume: 266 start-page: 120457 year: 2021 ident: bib68 article-title: A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy publication-title: Biomaterials – volume: 10 start-page: 9865 year: 2020 end-page: 9887 ident: bib137 article-title: Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis publication-title: Theranostics – volume: 47 start-page: 493 year: 2015 end-page: 506 ident: bib201 article-title: 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system publication-title: J. Bioenerg. Biomembr. – volume: 31 start-page: 1900730 year: 2019 ident: bib21 article-title: Ultrasmall oxygen‐deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy publication-title: Adv. Mater. – volume: 31 start-page: 2006216 year: 2021 ident: bib103 article-title: An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1525 year: 2020 ident: bib198 article-title: Involvement of glutathione depletion in selective cytotoxicity of oridonin to p53-mutant esophageal squamous carcinoma cells publication-title: Front. Oncol. – volume: 189 start-page: 110810 year: 2020 ident: bib111 article-title: A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy publication-title: Colloids Surf., B – volume: 18 start-page: 4618 year: 2018 end-page: 4625 ident: bib30 article-title: Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance publication-title: Nano Lett. – volume: 58 start-page: 1685 year: 2014 end-page: 1707 ident: bib229 article-title: Molecular targets of isothiocyanates in cancer: recent advances publication-title: Mol. Nutr. Food Res. – volume: 251 start-page: 120079 year: 2020 ident: bib101 article-title: A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy publication-title: Biomaterials – volume: 12 start-page: 4886 year: 2018 end-page: 4893 ident: bib102 article-title: All-in-One theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication publication-title: ACS Nano – volume: 7 start-page: 429 year: 2019 end-page: 441 ident: bib90 article-title: Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production publication-title: Biomater. Sci. – volume: 85 start-page: 1715 year: 2013 end-page: 1724 ident: bib235 article-title: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013) publication-title: Pure Appl. Chem. – volume: 43 start-page: 95 year: 2020 end-page: 106 ident: bib173 article-title: The Xc− inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism publication-title: Cell. Oncol. – volume: 9 start-page: 2233 year: 1970 end-page: 2243 ident: bib192 article-title: On the specificity of steroid interaction with mammary glucose 6-phosphate dehydrogenase publication-title: Biochemistry – volume: 170 start-page: 293 year: 2018 end-page: 302 ident: bib133 article-title: Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: the depletion of intracellular GSH contents arouses chemosensitizing effects publication-title: Colloids Surf., B – volume: 56 start-page: 14025 year: 2017 end-page: 14030 ident: bib118 article-title: Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation publication-title: Angew. Chem. Int. Ed. – volume: 157 start-page: 705 year: 2018 end-page: 715 ident: bib9 article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems publication-title: Eur. J. Med. Chem. – volume: 27 start-page: 423 year: 2019 end-page: 433 ident: bib13 article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy publication-title: J. Drug Target. – volume: 10 start-page: 9132 year: 2020 end-page: 9152 ident: bib107 article-title: Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy publication-title: Theranostics – volume: 234 start-page: 7384 year: 2019 end-page: 7394 ident: bib193 article-title: Exogenous glutathione improves intracellular glutathione synthesis via the gamma-glutamyl cycle in bovine zygotes and cleavage embryos publication-title: J. Cell. Physiol. – volume: 67 start-page: 1248 year: 1970 end-page: 1255 ident: bib165 article-title: The gamma-glutamyl cycle: a possible transport system for amino acids publication-title: P. Natl. Acad. Sci. USA – volume: 16 start-page: 2001251 year: 2020 ident: bib139 article-title: Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy publication-title: Small – volume: 30 start-page: 1907954 year: 2020 ident: bib80 article-title: GSH‐Depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1 year: 2016 end-page: 9 ident: bib241 article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology publication-title: Drug Resist. Updates – volume: 258 start-page: 1 year: 2012 end-page: 9 ident: bib213 article-title: Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione publication-title: Toxicol. Appl. Pharmacol. – volume: 13 start-page: 6879 year: 2019 end-page: 6890 ident: bib55 article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal–organic framework publication-title: ACS Nano – volume: 124 start-page: 10 year: 2017 end-page: 18 ident: bib212 article-title: Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1 publication-title: Biochem. Pharmacol. – volume: 141 start-page: 849 year: 2019 end-page: 857 ident: bib34 article-title: Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 422 start-page: 130094 year: 2021 ident: bib249 article-title: Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy publication-title: Chem. Eng. J. – volume: 10 start-page: 22830 year: 2018 end-page: 22847 ident: bib14 article-title: Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells publication-title: Nanoscale – volume: 38 start-page: 438 year: 2019 ident: bib50 article-title: GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway publication-title: J. Exp. Clin. Canc. Res. – volume: 380 start-page: 131 year: 2008 end-page: 144 ident: bib146 article-title: The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants publication-title: J. Mol. Biol. – volume: 70 start-page: 585 year: 2018 end-page: 592 ident: bib166 article-title: The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle publication-title: IUBMB Life – volume: 115 start-page: 1541 year: 1998 end-page: 1551 ident: bib42 article-title: Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor publication-title: Gastroenterology – volume: 9 start-page: 133 year: 2020 ident: bib129 article-title: Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance publication-title: Antioxidants – volume: 303 start-page: 476 year: 2002 end-page: 486 ident: bib162 article-title: Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter publication-title: J. Pharmacol. Exp. Therapeut. – volume: 399 start-page: 125667 year: 2020 ident: bib71 article-title: Bone-targeted oxidative stress nanoamplifier for synergetic chemo/chemodynamic therapy of bone metastases through increasing generation and reducing elimination of ROS publication-title: Chem. Eng. J. – volume: 42 start-page: 273 year: 2017 end-page: 280 ident: bib224 article-title: Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells publication-title: Toxicol. Vitro – volume: 19 start-page: 805 year: 2019 end-page: 815 ident: bib96 article-title: Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy publication-title: Nano Lett. – volume: 58 start-page: 9846 year: 2019 end-page: 9850 ident: bib115 article-title: Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu‐TCPP nanosheets for cancer therapy publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2404 year: 2020 end-page: 2416 ident: bib236 article-title: A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility publication-title: Acta Pharm. Sin. B – volume: 8 start-page: 478 year: 2020 end-page: 483 ident: bib58 article-title: Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release publication-title: J. Mater. Chem. B – volume: 13 start-page: 2658 year: 2007 end-page: 2666 ident: bib194 article-title: Bcl-2 and glutathione depletion sensitizes B16 melanoma to combination therapy and eliminates metastatic disease publication-title: Clin. Canc. Res. – volume: 7 start-page: 61 year: 2010 end-page: 75 ident: bib18 article-title: Oncologic photodynamic therapy photosensitizers: a clinical review publication-title: Photodiagn. Photodyn. – volume: 17 start-page: 275 year: 2011 end-page: 285 ident: bib222 article-title: Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy publication-title: Clin. Canc. Res. – volume: 6 start-page: 30102 year: 2015 end-page: 30114 ident: bib190 article-title: Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death publication-title: Oncotarget – volume: 1830 start-page: 3143 year: 2013 end-page: 3153 ident: bib156 article-title: Glutathione synthesis publication-title: BBA-Gen. Subjects – volume: 47 start-page: 176 year: 2009 end-page: 183 ident: bib225 article-title: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation publication-title: Free Radic. Biol. Med. – volume: 13 start-page: 357 year: 2019 end-page: 370 ident: bib125 article-title: Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy publication-title: ACS Nano – volume: 26 start-page: 623 year: 2019 ident: bib171 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Chem. Biol. – volume: 36 start-page: 1900018 year: 2019 ident: bib75 article-title: Self-assemble polymeric nanoparticle with GSH exhaustion for SPECT imaging–guided enhanced radioisotope therapy publication-title: Part. Part. Syst. Char. – volume: 35 start-page: 1372 year: 2015 end-page: 1380 ident: bib199 article-title: Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A‐mediated ortho‐benzoquinone metabolite formation and glutathione depletion publication-title: J. Appl. Toxicol. – volume: 77 start-page: 76 year: 2009 end-page: 85 ident: bib216 article-title: The role OF GSH efflux IN staurosporine-induced apoptosis IN colonic epithelial cells publication-title: Biochem. Pharmacol. – volume: 13 start-page: 6561 year: 2019 end-page: 6571 ident: bib57 article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano – volume: 44 start-page: 2578 year: 2020 end-page: 2586 ident: bib98 article-title: Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent publication-title: New J. Chem. – volume: 10 start-page: 7068 year: 2019 end-page: 7075 ident: bib114 article-title: An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy publication-title: Chem. Sci. – volume: 9 start-page: 252 year: 2002 end-page: 263 ident: bib239 article-title: Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line publication-title: Cell Death Differ. – volume: 289 start-page: 30880 year: 2014 end-page: 30888 ident: bib242 article-title: Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter publication-title: J. Biol. Chem. – volume: 12 start-page: 44523 year: 2020 end-page: 44533 ident: bib83 article-title: Inhibiting radiative transition-mediated multifunctional polymeric nanoplatforms for highly efficient tumor phototherapeutics publication-title: ACS Appl. Mater. Interfaces – volume: 95 start-page: 1177 year: 2017 end-page: 1186 ident: bib189 article-title: Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress publication-title: Biomed. Pharmacother. – volume: 19 start-page: 7866 year: 2019 end-page: 7876 ident: bib136 article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy publication-title: Nano Lett. – volume: 18 start-page: 261 year: 1971 end-page: 264 ident: bib3 article-title: Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria publication-title: FEBS Lett. – volume: 36 start-page: 1302 year: 2017 end-page: 1315 ident: bib157 article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine publication-title: EMBO J. – volume: 286 start-page: 95 year: 2006 end-page: 101 ident: bib160 article-title: Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes publication-title: Mol. Cell. Biochem. – volume: 57 start-page: 4891 year: 2018 end-page: 4896 ident: bib33 article-title: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center publication-title: Angew. Chem. Int. Ed. – volume: 285 start-page: 16116 year: 2010 end-page: 16124 ident: bib159 article-title: Rapid activation of glutamate cysteine ligase following oxidative stress publication-title: J. Biol. Chem. – volume: 9 start-page: 17639 year: 2019 ident: bib27 article-title: The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells publication-title: Sci. Rep. – volume: 129 start-page: 256 year: 2018 end-page: 267 ident: bib223 article-title: Glutathione reductase-mediated thiol oxidative stress suppresses metastasis of murine melanoma cells publication-title: Free Radic. Biol. Med. – volume: 12 start-page: 1 year: 2019 end-page: 16 ident: bib151 article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer publication-title: J. Hematol. Oncol. – volume: 32 start-page: 2002439 year: 2020 ident: bib85 article-title: GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy publication-title: Adv. Mater. – volume: 12 start-page: 17254 year: 2020 end-page: 17267 ident: bib100 article-title: Fusiform-like copper(II)-Based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 682 year: 2019 ident: bib179 article-title: Metadherin enhances vulnerability of cancer cells to ferroptosis publication-title: Cell Death Dis. – volume: 18 start-page: 2547 year: 2017 end-page: 2556 ident: bib181 article-title: Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine publication-title: Cell Rep. – volume: 71 start-page: 231 year: 2006 end-page: 238 ident: bib228 article-title: Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance publication-title: Biochem. Pharmacol. – volume: 259 start-page: 120329 year: 2020 ident: bib121 article-title: Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment publication-title: Biomaterials – volume: 55 start-page: 11467 year: 2016 end-page: 11471 ident: bib22 article-title: Copper(II)–Graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy publication-title: Angew. Chem. Int. Ed. – volume: 254 start-page: 120140 year: 2020 ident: bib119 article-title: Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation publication-title: Biomaterials – volume: 7 start-page: 62 year: 2018 ident: bib35 article-title: Glutathione: antioxidant properties dedicated to nanotechnologies publication-title: Antioxidants – volume: 257 start-page: 120279 year: 2020 ident: bib70 article-title: Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy publication-title: Biomaterials – volume: 6 year: 2020 ident: bib113 article-title: GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer publication-title: Sci. Adv. – volume: 280 start-page: 33766 year: 2005 end-page: 33774 ident: bib158 article-title: Glutamate cysteine ligase catalysis dependence ON ATP and modifier subunit for regulation OF tissue glutathione levels publication-title: J. Biol. Chem. – start-page: 3150145 year: 2019 ident: bib17 article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy publication-title: Oxid. Med. Cell. Longev. – volume: 95 start-page: 215 year: 2020 end-page: 223 ident: bib123 article-title: Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells publication-title: Chem. Biol. Drug Des. – volume: 8 start-page: 968 year: 2018 ident: bib169 article-title: The ferroptosis inducer erastin irreversibly inhibits system x(c)- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells publication-title: Sci. Rep. – volume: 169 start-page: 53 year: 2019 end-page: 64 ident: bib132 article-title: Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion publication-title: Eur. J. Med. Chem. – volume: 10 start-page: 915 year: 2017 end-page: 925 ident: bib176 article-title: Identification of capsazepine as a novel inhibitor of system x(c)(-) and cancer-induced bone pain publication-title: J. Pain Res. – volume: 45 start-page: 152 year: 2019 end-page: 168 ident: bib39 article-title: Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways publication-title: Biofactors – volume: 152 start-page: 597 year: 2020 end-page: 608 ident: bib206 article-title: A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells, Free Radical Bio publication-title: Med – volume: 10 start-page: 10601 year: 2018 end-page: 10606 ident: bib204 article-title: Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 23 year: 2016 end-page: 32 ident: bib200 article-title: Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells publication-title: J. Bioenerg. Biomembr. – volume: 105 start-page: 53 year: 2018 end-page: 65 ident: bib25 article-title: Drug metabolizing enzymes and their inhibitors' role in cancer resistance, Biomed publication-title: Pharmacother – volume: 11 start-page: 1735 year: 2020 ident: bib79 article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy publication-title: Nat. Commun. – volume: 30 start-page: 440 year: 2020 end-page: 451 ident: bib47 article-title: The complex interplay between antioxidants and ROS in cancer publication-title: Trends Cell Biol. – volume: 30 start-page: 13 year: 2009 end-page: 28 ident: bib168 article-title: Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology publication-title: Mol. Aspect. Med. – volume: 1019 start-page: 346 year: 2004 end-page: 349 ident: bib44 article-title: Glutathione metabolism during aging and in alzheimer disease publication-title: Ann. NY Acad. Sci. – volume: 3 year: 2014 ident: bib220 article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis publication-title: eLife – volume: 29 start-page: 1904056 year: 2019 ident: bib110 article-title: Fe(III)‐Porphyrin sonotheranostics: a green triple‐regulated ROS generation nanoplatform for enhanced cancer imaging and therapy publication-title: Adv. Funct. Mater. – volume: 11 start-page: 30551 year: 2019 end-page: 30565 ident: bib20 article-title: Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2020 ident: bib178 article-title: Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy publication-title: Curr. Med. Chem. – volume: 201 start-page: 92 year: 2011 end-page: 100 ident: bib187 article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis publication-title: Toxicol. Lett. – volume: 8 start-page: 5059 year: 2018 end-page: 5071 ident: bib61 article-title: Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy publication-title: Theranostics – volume: 29 start-page: 1903850 year: 2019 ident: bib116 article-title: Non-fenton-type hydroxyl radical generation and photothermal effect by mitochondria-targeted WSSe/MnO2 nanocomposite loaded with isoniazid for synergistic anticancer treatment publication-title: Adv. Funct. Mater. – volume: 2018 start-page: 2469486 year: 2018 ident: bib245 article-title: N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence publication-title: BioMed Res. Int. – volume: 14 start-page: 13894 year: 2020 end-page: 13904 ident: bib31 article-title: A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy publication-title: ACS Nano – volume: 82 start-page: 291 year: 1997 end-page: 295 ident: bib5 article-title: Oxidative stress: oxidants and antioxidants publication-title: Exp. Physiol. – volume: 30 start-page: 2002753 year: 2020 ident: bib99 article-title: Bimetallic oxide FeWOX nanosheets as multifunctional cascade bioreactors for tumor microenvironment-modulation and enhanced multimodal cancer therapy publication-title: Adv. Funct. Mater. – volume: 287 start-page: 696 year: 2001 end-page: 700 ident: bib163 article-title: Ryanodine receptor channel-dependent glutathione transport in the sarcoplasmic reticulum of skeletal muscle publication-title: Biochem. Bioph. Res. Co. – volume: 321 start-page: 734 year: 2020 end-page: 743 ident: bib84 article-title: Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy publication-title: J. Contr. Release – volume: 187 start-page: 55 year: 2018 end-page: 65 ident: bib94 article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: hypoxia relief, glutathione depletion and reactive nitrogen species generation publication-title: Biomaterials – volume: 13 start-page: 4267 year: 2019 end-page: 4277 ident: bib76 article-title: Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief publication-title: ACS Nano – volume: 124 start-page: 342 year: 2018 end-page: 352 ident: bib207 article-title: Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone publication-title: Free Radic. Biol. Med. – volume: 68 start-page: 2159 year: 2004 end-page: 2165 ident: bib217 article-title: Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin publication-title: Biochem. Pharmacol. – volume: 6 start-page: 1391 year: 2020 end-page: 1407 ident: bib74 article-title: Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress publication-title: Inside Chem. – volume: 110 start-page: 3173 year: 2019 end-page: 3182 ident: bib170 article-title: Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells publication-title: Canc. Sci. – volume: 41 start-page: 509 year: 2009 end-page: 515 ident: bib164 article-title: Redox regulation of gamma-glutamyl transpeptidase publication-title: Am. J. Resp. Cell Mol. – volume: 24 start-page: 161 year: 2014 end-page: 172 ident: bib205 article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells publication-title: Toxicol. Mech. Methods – volume: 1864 start-page: 129539 year: 2020 ident: bib246 article-title: Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy publication-title: BBA-Gen. Subjects – volume: 7 start-page: 8 year: 2018 ident: bib37 article-title: Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases publication-title: Oncogenesis – volume: 11 start-page: 1926 year: 2019 ident: bib167 article-title: Targeting glutathione metabolism: partner in crime in anticancer therapy publication-title: Nutrients – volume: 108 start-page: 1843 year: 2017 end-page: 1849 ident: bib174 article-title: Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non‐small‐cell lung cancer publication-title: Canc. Sci. – volume: 114 start-page: 10869 year: 2014 end-page: 10939 ident: bib143 article-title: Functional nanomaterials for phototherapies of cancer publication-title: Chem. Rev. – volume: 265 start-page: 120456 year: 2021 ident: bib108 article-title: Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy publication-title: Biomaterials – volume: 13 start-page: 13445 year: 2019 end-page: 13455 ident: bib29 article-title: Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity publication-title: ACS Nano – volume: 159 start-page: 90 year: 2006 end-page: 103 ident: bib145 article-title: The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo publication-title: Chem. Biol. Interact. – volume: 22 start-page: 744 year: 2015 end-page: 759 ident: bib221 article-title: Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance publication-title: Antioxidants Redox Signal. – volume: 64 start-page: 4950 year: 2004 end-page: 4956 ident: bib208 article-title: Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1 publication-title: Canc. Res. – volume: 209 start-page: 111955 year: 2020 ident: bib161 article-title: A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition publication-title: J. Photochem. Photobiol., B – volume: 2012 start-page: 736837 year: 2012 ident: bib36 article-title: Glutathione homeostasis and functions: potential targets for medical interventions publication-title: J. Amino Acids – volume: 6 start-page: 1900848 year: 2019 ident: bib65 article-title: Monodispersed copper(I)‐Based nano metal–organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy publication-title: Adv. Sci. – volume: 55 start-page: 5477 year: 2016 end-page: 5482 ident: bib19 article-title: A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 1800706 year: 2018 ident: bib117 article-title: Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy publication-title: Adv. Funct. Mater. – volume: 9 start-page: 766 year: 2018 ident: bib10 article-title: Polyrotaxane-based supramolecular theranostics publication-title: Nat. Commun. – volume: 2013 start-page: 972913 year: 2013 ident: bib53 article-title: Role of glutathione in cancer progression and chemoresistance publication-title: Oxid. Med. Cell. Longev. – volume: 142 start-page: 5177 year: 2020 end-page: 5183 ident: bib32 article-title: Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 175 year: 2018 end-page: 182 ident: bib197 article-title: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death, Biomed publication-title: Pharmacother – volume: 220 start-page: 1170 year: 2017 end-page: 1180 ident: bib2 article-title: A radical shift in perspective: mitochondria as regulators of reactive oxygen species publication-title: J. Exp. Biol. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bib150 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 403 start-page: 126305 year: 2021 ident: bib95 article-title: A glutathione-activatable nanoplatform for enhanced photodynamic therapy with simultaneous hypoxia relief and glutathione depletion publication-title: Chem. Eng. J. – volume: 27 start-page: 211 year: 2015 end-page: 222 ident: bib54 article-title: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression publication-title: Canc. Cell – volume: 167 start-page: 301 year: 2019 end-page: 308 ident: bib131 article-title: Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux, Ecotox publication-title: Environ. Safe. – volume: 26 start-page: 238 year: 2012 end-page: 251 ident: bib184 article-title: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines publication-title: Toxicol. Vitro – volume: 30 start-page: 2006098 year: 2020 ident: bib87 article-title: Yolk-shell structured nanoflowers induced intracellular oxidative/thermal stress damage for cancer treatment publication-title: Adv. Funct. Mater. – volume: 112 start-page: 13608 year: 2008 end-page: 13619 ident: bib186 article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B – volume: 47 start-page: 406 year: 2015 end-page: 419 ident: bib240 article-title: MRP1 and its role in anticancer drug resistance publication-title: Drug Metab. Rev. – volume: 29 year: 2019 ident: bib56 article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal-organic frameworks for enhanced photodynamic therapy publication-title: Adv. Funct. Mater. – volume: 35 start-page: 100981 year: 2020 ident: bib250 article-title: Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy publication-title: Nano Today – volume: 407 start-page: 127212 year: 2020 ident: bib92 article-title: Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy publication-title: Chem. Eng. J. – volume: 12 start-page: 15845 year: 2020 end-page: 15856 ident: bib86 article-title: Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation publication-title: Nanoscale – volume: 428 start-page: 21 year: 2018 end-page: 33 ident: bib177 article-title: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox 4 and inhibition of xCT publication-title: Canc. Lett. – volume: 115 start-page: 12797 year: 2011 end-page: 12802 ident: bib203 article-title: Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells publication-title: J. Phys. Chem. C – volume: 15 start-page: 2885 year: 2020 end-page: 2902 ident: bib11 article-title: Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy publication-title: Int. J. Nanomed. – volume: 7 start-page: 4260 year: 2019 end-page: 4272 ident: bib124 article-title: Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment publication-title: Biomater. Sci. – volume: 6 start-page: 83 year: 2020 ident: bib120 article-title: Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress publication-title: Cell Death Dis. – volume: 1863 start-page: 129285 year: 2019 ident: bib23 article-title: Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay publication-title: BBA-Gen. Subjects – volume: 25 start-page: 4787 year: 2015 end-page: 4792 ident: bib218 article-title: Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility publication-title: Bioorg. Med. Chem. Lett – volume: 7 start-page: 71 year: 2011 end-page: 78 ident: bib227 article-title: Inhibiting glutathione metabolism in lung lining fluid as a strategy to augment antioxidant defense publication-title: Curr. Enzym. Inhib. – volume: 274 start-page: 56 year: 2018 end-page: 68 ident: bib130 article-title: Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy publication-title: J. Contr. Release – volume: 58 start-page: 14134 year: 2019 end-page: 14139 ident: bib105 article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework publication-title: Angew. Chem. Int. Ed. – volume: 89 start-page: 3070 year: 1992 end-page: 3074 ident: bib26 article-title: High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis publication-title: P. Natl. Acad. Sci. USA – volume: 31 start-page: 11 year: 2003 end-page: 15 ident: bib210 article-title: Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1) publication-title: Drug Metab. Dispos. – volume: 458 start-page: 780 year: 2009 end-page: 783 ident: bib144 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature – volume: 90 start-page: 235 year: 2014 end-page: 245 ident: bib215 article-title: Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux publication-title: Biochem. Pharmacol. – volume: 23 start-page: 1905 year: 2010 end-page: 1912 ident: bib231 article-title: Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters publication-title: Chem. Res. Toxicol. – volume: 89 start-page: 1 year: 1986 end-page: 8 ident: bib155 article-title: Role of membrane transport in metabolism and function of glutathione in mammals publication-title: J. Membr. Biol. – volume: 51 start-page: 474 year: 2003 end-page: 482 ident: bib234 article-title: Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion publication-title: Canc. Chemother. Pharmacol. – volume: 11 start-page: 13078 year: 2019 end-page: 13088 ident: bib89 article-title: Enhancement of ultralow-intensity NIR light-triggered photodynamic therapy based on exo- and endogenous synergistic effects through combined glutathione-depletion chemotherapy publication-title: Nanoscale – volume: 27 start-page: 438 year: 2006 end-page: 446 ident: bib38 article-title: Transport of glutathione and glutathione conjugates by MRP1 publication-title: Trends Pharmacol. Sci. – volume: 16 start-page: 74 year: 2018 ident: bib238 article-title: Advances in redox-responsive drug delivery systems of tumor microenvironment publication-title: J. Nanobiotechnol. – volume: 2010 start-page: 430939 year: 2010 ident: bib148 article-title: Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy publication-title: Met. Base. Drugs – volume: 217 start-page: 2291 year: 2018 end-page: 2298 ident: bib40 article-title: Glutathione metabolism in cancer progression and treatment resistance publication-title: J. Cell Biol. – volume: 55 start-page: 6241 year: 2019 end-page: 6244 ident: bib88 article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework publication-title: Chem. Commun. – start-page: 1 year: 1985 end-page: 8 ident: bib4 article-title: 1 - oxidative stress: introductory remarks publication-title: Oxidative Stress – volume: 11 start-page: 474 year: 2016 end-page: 480 ident: bib149 article-title: The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine publication-title: Oncol. Lett. – volume: 6 start-page: 225 year: 1970 end-page: 228 ident: bib191 article-title: Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP publication-title: FEBS Lett. – volume: 60 start-page: 3001 year: 2021 end-page: 3007 ident: bib73 article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 1661 year: 2020 end-page: 1670 ident: bib109 article-title: Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy publication-title: Bioconjugate Chem. – volume: 88 start-page: 193 year: 1996 end-page: 197 ident: bib226 article-title: Gamma-Glutamyl transpeptidase mediation of tumor glutathione utilization in vivo publication-title: J. Natl. Cancer Inst. – volume: 11 start-page: 6384 year: 2019 end-page: 6393 ident: bib60 article-title: Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC publication-title: Nanoscale – volume: 104 start-page: 144 year: 2017 end-page: 164 ident: bib46 article-title: Reactive oxygen species and cancer paradox: to promote or to suppress? publication-title: Free Radic. Biol. Med. – volume: 9 start-page: 1161 year: 2020 ident: bib202 article-title: The anticancer drug 3-bromopyruvate induces DNA damage potentially through reactive oxygen species in yeast and in human cancer cells publication-title: Cells – volume: 3 start-page: 55 year: 2001 end-page: 62 ident: bib243 article-title: Verapamil revisited: a transition in novel drug delivery systems and outcomes publication-title: Heart Dis. – volume: 49 start-page: 11851 year: 2020 end-page: 11858 ident: bib69 article-title: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy publication-title: Dalton Trans. – volume: 215 start-page: 8 year: 2019 end-page: 19 ident: bib12 article-title: Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy publication-title: Carbohydr. Polym. – volume: 9 start-page: 572 year: 2018 ident: bib188 article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo publication-title: Cell Death Dis. – volume: 636 start-page: 8 year: 2010 end-page: 17 ident: bib43 article-title: Reactive oxygen species and endothelial function in diabetes publication-title: Eur. J. Pharmacol. – volume: 11 start-page: 42988 year: 2019 end-page: 42997 ident: bib140 article-title: Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor publication-title: ACS Appl. Mater. Interfaces – start-page: 1 year: 2018 end-page: 18 ident: bib237 article-title: Current developments in Pt(IV) prodrugs conjugated with bioactive ligands publication-title: Bioinorgan. Chem. Appl. – volume: 323 start-page: 203 year: 2020 end-page: 224 ident: bib1 article-title: Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges publication-title: J. Contr. Release – volume: 9 start-page: 29538 year: 2017 end-page: 29546 ident: bib195 article-title: Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 489 year: 2004 end-page: 492 ident: bib8 article-title: Glutathione metabolism and its implications for health publication-title: J. Nutr. – volume: 71 start-page: 7048 year: 2011 end-page: 7060 ident: bib48 article-title: Increased skin papilloma formation in mice lacking glutathione transferase GSTP publication-title: Canc. Res. – volume: 11 start-page: 31671 year: 2019 end-page: 31680 ident: bib77 article-title: O-2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy publication-title: ACS Appl. Mater. Interfaces – volume: 67 start-page: 162 year: 2007 end-page: 171 ident: bib219 article-title: Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy publication-title: Prostate – volume: 14 start-page: 874 year: 2019 end-page: 882 ident: bib24 article-title: Glutathione-mediated biotransformation in the liver modulates nanoparticle transport publication-title: Nat. Nanotechnol. – volume: 14 start-page: 14831 year: 2020 end-page: 14845 ident: bib128 article-title: Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy publication-title: ACS Nano – volume: 9 start-page: 2000864 year: 2020 ident: bib138 article-title: Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance publication-title: Adv. Healthc. Mater. – volume: 44 start-page: 532 year: 2017 end-page: 553 ident: bib7 article-title: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species publication-title: Cell. Physiol. Biochem. – volume: 572 start-page: 118782 year: 2019 ident: bib134 article-title: Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells publication-title: Int. J. Pharm. – volume: 106 start-page: 20859 year: 2009 end-page: 20864 ident: bib49 article-title: Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi publication-title: P. Natl. Acad. Sci. USA – volume: 59 start-page: 22537 year: 2020 end-page: 22543 ident: bib72 article-title: Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1906195 year: 2019 ident: bib81 article-title: Ultrasound-activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors publication-title: Adv. Funct. Mater. – volume: 14 start-page: 13536 year: 2020 end-page: 13547 ident: bib127 article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging publication-title: ACS Nano – volume: 258 start-page: 120278 year: 2020 ident: bib82 article-title: Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem publication-title: Biomaterials – volume: 15 start-page: 1904870 year: 2019 ident: bib141 article-title: Glutathione depletion in a benign manner by MoS2‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy publication-title: Small – volume: 27 start-page: 1217 year: 2017 end-page: 1234 ident: bib6 article-title: Huangmenger, multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance publication-title: Antioxidants Redox Signal. – volume: 224 start-page: 119498 year: 2019 ident: bib112 article-title: Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy publication-title: Biomaterials – volume: 572 start-page: 402 issue: 7769 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib152 article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling publication-title: Nature doi: 10.1038/s41586-019-1426-6 – volume: 41 start-page: 989 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib28 article-title: Glutathione S-transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer publication-title: Oncol. Rep. – volume: 14 start-page: 13894 issue: 10 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib31 article-title: A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c06290 – volume: 209 start-page: 111955 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib161 article-title: A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2020.111955 – volume: 12 start-page: 44523 issue: 40 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib83 article-title: Inhibiting radiative transition-mediated multifunctional polymeric nanoplatforms for highly efficient tumor phototherapeutics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12756 – volume: 18 start-page: 522 issue: 5 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib154 article-title: The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2011.4391 – volume: 42 start-page: 273 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib224 article-title: Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2017.04.028 – volume: 12 start-page: 4886 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib102 article-title: All-in-One theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication publication-title: ACS Nano doi: 10.1021/acsnano.8b01893 – volume: 13 start-page: 2658 issue: 9 year: 2007 ident: 10.1016/j.biomaterials.2021.121110_bib194 article-title: Bcl-2 and glutathione depletion sensitizes B16 melanoma to combination therapy and eliminates metastatic disease publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-06-2642 – volume: 30 start-page: 2002753 issue: 49 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib99 article-title: Bimetallic oxide FeWOX nanosheets as multifunctional cascade bioreactors for tumor microenvironment-modulation and enhanced multimodal cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002753 – volume: 45 start-page: 152 issue: 2 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib39 article-title: Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways publication-title: Biofactors doi: 10.1002/biof.1476 – volume: 26 start-page: 623 issue: 5 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib171 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Chem. Biol. – volume: 251 start-page: 120079 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib101 article-title: A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120079 – volume: 170 start-page: 293 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib133 article-title: Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: the depletion of intracellular GSH contents arouses chemosensitizing effects publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2018.06.029 – volume: 3 start-page: 55 issue: 1 year: 2001 ident: 10.1016/j.biomaterials.2021.121110_bib243 article-title: Verapamil revisited: a transition in novel drug delivery systems and outcomes publication-title: Heart Dis. doi: 10.1097/00132580-200101000-00008 – volume: 56 start-page: 14025 issue: 45 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib118 article-title: Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706964 – volume: 11 start-page: 42988 issue: 46 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib140 article-title: Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16124 – volume: 24 start-page: 2533 issue: 7 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib15 article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases publication-title: Faseb. J. doi: 10.1096/fj.09-149997 – volume: 19 start-page: 323 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib175 article-title: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway publication-title: Oncol. Lett. – volume: 142 start-page: 5177 issue: 11 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib32 article-title: Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12873 – volume: 24 start-page: R453 issue: 10 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib52 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.034 – volume: 31 start-page: 1808200 issue: 15 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib93 article-title: Biomimetic metal–organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy publication-title: Adv. Mater. doi: 10.1002/adma.201808200 – volume: 41 start-page: 509 issue: 5 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib164 article-title: Redox regulation of gamma-glutamyl transpeptidase publication-title: Am. J. Resp. Cell Mol. doi: 10.1165/rcmb.2009-0169TR – volume: 10 start-page: 9132 issue: 20 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib107 article-title: Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy publication-title: Theranostics doi: 10.7150/thno.46076 – volume: 201 start-page: 92 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2021.121110_bib187 article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.12.010 – volume: 67 start-page: 162 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2021.121110_bib219 article-title: Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy publication-title: Prostate doi: 10.1002/pros.20508 – volume: 14 start-page: 13500 issue: 10 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib63 article-title: Metal–organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c05499 – volume: 73 start-page: 1245 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib51 article-title: Tumor suppressor function of the plasma glutathione peroxidase Gpx 3 in colitis-associated carcinoma publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-12-3150 – volume: 399 start-page: 125667 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib71 article-title: Bone-targeted oxidative stress nanoamplifier for synergetic chemo/chemodynamic therapy of bone metastases through increasing generation and reducing elimination of ROS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125667 – volume: 58 start-page: 1685 issue: 8 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib229 article-title: Molecular targets of isothiocyanates in cancer: recent advances publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201300684 – volume: 36 start-page: 1900018 issue: 6 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib75 article-title: Self-assemble polymeric nanoparticle with GSH exhaustion for SPECT imaging–guided enhanced radioisotope therapy publication-title: Part. Part. Syst. Char. doi: 10.1002/ppsc.201900018 – volume: 6 start-page: 83 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib120 article-title: Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress publication-title: Cell Death Dis. doi: 10.1038/s41420-020-00314-x – volume: 286 start-page: 95 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2021.121110_bib160 article-title: Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-005-9098-y – volume: 57 start-page: 4891 issue: 18 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib33 article-title: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710800 – volume: 11 start-page: 30551 issue: 34 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib20 article-title: Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09323 – volume: 106 start-page: 20859 issue: 49 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib49 article-title: Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911351106 – volume: 1019 start-page: 346 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2021.121110_bib44 article-title: Glutathione metabolism during aging and in alzheimer disease publication-title: Ann. NY Acad. Sci. doi: 10.1196/annals.1297.059 – volume: 18 start-page: 261 issue: 2 year: 1971 ident: 10.1016/j.biomaterials.2021.121110_bib3 article-title: Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria publication-title: FEBS Lett. doi: 10.1016/0014-5793(71)80459-3 – volume: 67 start-page: 1248 issue: 3 year: 1970 ident: 10.1016/j.biomaterials.2021.121110_bib165 article-title: The gamma-glutamyl cycle: a possible transport system for amino acids publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.67.3.1248 – volume: 258 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib213 article-title: Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2011.08.004 – volume: 73 start-page: 1727 issue: 11 year: 2007 ident: 10.1016/j.biomaterials.2021.121110_bib211 article-title: Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.02.005 – volume: 287 start-page: 696 issue: 3 year: 2001 ident: 10.1016/j.biomaterials.2021.121110_bib163 article-title: Ryanodine receptor channel-dependent glutathione transport in the sarcoplasmic reticulum of skeletal muscle publication-title: Biochem. Bioph. Res. Co. doi: 10.1006/bbrc.2001.5648 – volume: 9 start-page: 766 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib10 article-title: Polyrotaxane-based supramolecular theranostics publication-title: Nat. Commun. doi: 10.1038/s41467-018-03119-w – volume: 59 start-page: 22537 issue: 50 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib72 article-title: Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003653 – volume: 71 start-page: 231 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2021.121110_bib228 article-title: Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2005.10.005 – volume: 130 start-page: 346 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib214 article-title: Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.02.064 – volume: 129 start-page: 256 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib223 article-title: Glutathione reductase-mediated thiol oxidative stress suppresses metastasis of murine melanoma cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.07.025 – volume: 6 start-page: 1900848 issue: 15 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib65 article-title: Monodispersed copper(I)‐Based nano metal–organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy publication-title: Adv. Sci. doi: 10.1002/advs.201900848 – volume: 32 start-page: 2002439 issue: 42 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib85 article-title: GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202002439 – volume: 16 start-page: 74 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib238 article-title: Advances in redox-responsive drug delivery systems of tumor microenvironment publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0398-2 – volume: 68 start-page: 2159 issue: 11 year: 2004 ident: 10.1016/j.biomaterials.2021.121110_bib217 article-title: Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.08.010 – volume: 47 start-page: 406 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib240 article-title: MRP1 and its role in anticancer drug resistance publication-title: Drug Metab. Rev. doi: 10.3109/03602532.2015.1105253 – volume: 23 start-page: 1905 issue: 12 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib231 article-title: Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters publication-title: Chem. Res. Toxicol. doi: 10.1021/tx100226n – volume: 10 start-page: 967 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib244 article-title: N-acetylcysteine (NAC): impacts on human health publication-title: Antioxidants doi: 10.3390/antiox10060967 – volume: 14 start-page: 14831 issue: 11 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib128 article-title: Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy publication-title: ACS Nano doi: 10.1021/acsnano.0c03781 – volume: 15 start-page: 2885 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib11 article-title: Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S249205 – volume: 10 start-page: 10601 issue: 13 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib204 article-title: Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00207 – volume: 10 start-page: 22830 issue: 48 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib14 article-title: Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells publication-title: Nanoscale doi: 10.1039/C8NR08141G – volume: 13 start-page: 6561 issue: 6 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib57 article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics publication-title: ACS Nano doi: 10.1021/acsnano.9b00300 – volume: 396 start-page: 125294 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib104 article-title: Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125294 – volume: 382 start-page: 160 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib153 article-title: Nanomaterial-induced ferroptosis for cancer specific therapy publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.12.015 – volume: 176 start-page: 108207 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib182 article-title: Lowering glutathione level by buthionine sulfoximine enhances in vivo photodynamic therapy using chlorin e6-loaded nanoparticles publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2020.108207 – volume: 29 issue: 25 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib56 article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal-organic frameworks for enhanced photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901417 – volume: 30 start-page: 1907954 issue: 4 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib80 article-title: GSH‐Depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907954 – volume: 289 start-page: 30880 issue: 45 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib242 article-title: Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter publication-title: J. Biol. Chem. doi: 10.1074/jbc.R114.609248 – volume: 12 start-page: 12380 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib135 article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics publication-title: ACS Nano doi: 10.1021/acsnano.8b06399 – volume: 11 start-page: 8495 issue: 32 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib251 article-title: A ratiometric fluorescent probe for real-time monitoring of intracellular glutathione fluctuations in response to cisplatin publication-title: Chem. Sci. doi: 10.1039/D0SC02889D – volume: 31 start-page: 2006216 issue: 5 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib103 article-title: An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006216 – volume: 14 start-page: 13536 issue: 10 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib127 article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging publication-title: ACS Nano doi: 10.1021/acsnano.0c05541 – volume: 9 start-page: 133 issue: 2 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib129 article-title: Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance publication-title: Antioxidants doi: 10.3390/antiox9020133 – volume: 50 start-page: 2424 issue: 10 year: 2007 ident: 10.1016/j.biomaterials.2021.121110_bib232 article-title: Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin publication-title: J. Mater. Chem. – volume: 179 start-page: 93 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2021.121110_bib185 article-title: Cellular responses induced by silver nanoparticles: in vitro studies publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2008.04.009 – volume: 27 start-page: 423 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib13 article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy publication-title: J. Drug Target. doi: 10.1080/1061186X.2018.1519029 – volume: 31 start-page: 11 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2021.121110_bib210 article-title: Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1) publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.31.1.11 – volume: 167 start-page: 301 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib131 article-title: Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux, Ecotox publication-title: Environ. Safe. doi: 10.1016/j.ecoenv.2018.10.013 – volume: 64 start-page: 4950 issue: 14 year: 2004 ident: 10.1016/j.biomaterials.2021.121110_bib208 article-title: Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1 publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-04-0143 – volume: 95 start-page: 1177 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib189 article-title: Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.09.026 – volume: 7 start-page: 61 issue: 2 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib18 article-title: Oncologic photodynamic therapy photosensitizers: a clinical review publication-title: Photodiagn. Photodyn. doi: 10.1016/j.pdpdt.2010.02.001 – volume: 8 start-page: 9251 issue: 40 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib62 article-title: A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01357A – volume: 58 start-page: 14134 issue: 40 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib105 article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907388 – volume: 321 start-page: 734 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib84 article-title: Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.03.007 – volume: 18 start-page: 6265 issue: 17 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib209 article-title: Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2010.07.031 – volume: 47 start-page: 176 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib225 article-title: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.04.022 – volume: 8 start-page: 968 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib169 article-title: The ferroptosis inducer erastin irreversibly inhibits system x(c)- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells publication-title: Sci. Rep. doi: 10.1038/s41598-018-19213-4 – volume: 189 start-page: 110810 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib111 article-title: A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2020.110810 – volume: 2010 start-page: 430939 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib148 article-title: Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy publication-title: Met. Base. Drugs – volume: 55 start-page: 6241 issue: 44 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib88 article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework publication-title: Chem. Commun. doi: 10.1039/C9CC01957J – volume: 114 start-page: 113 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2021.121110_bib230 article-title: Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer publication-title: Canc. Lett. doi: 10.1016/S0304-3835(97)04639-9 – volume: 141 start-page: 849 issue: 2 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib34 article-title: Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08714 – volume: 25 start-page: 4787 issue: 21 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib218 article-title: Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2015.07.018 – volume: 258 start-page: 120278 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib82 article-title: Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120278 – volume: 13 start-page: 357 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib125 article-title: Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.8b06400 – volume: 30 start-page: 2006098 issue: 51 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib87 article-title: Yolk-shell structured nanoflowers induced intracellular oxidative/thermal stress damage for cancer treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006098 – volume: 112 start-page: 13608 issue: 43 year: 2008 ident: 10.1016/j.biomaterials.2021.121110_bib186 article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B doi: 10.1021/jp712087m – volume: 18 start-page: 4618 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib30 article-title: Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01924 – volume: 6 start-page: 1391 issue: 6 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib74 article-title: Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress publication-title: Inside Chem. – volume: 9 start-page: 252 issue: 3 year: 2002 ident: 10.1016/j.biomaterials.2021.121110_bib239 article-title: Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400959 – start-page: 1 year: 1985 ident: 10.1016/j.biomaterials.2021.121110_bib4 article-title: 1 - oxidative stress: introductory remarks – volume: 29 start-page: 1905013 issue: 44 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib106 article-title: Reactive oxygen species–activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905013 – volume: 9 start-page: 1161 issue: 5 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib202 article-title: The anticancer drug 3-bromopyruvate induces DNA damage potentially through reactive oxygen species in yeast and in human cancer cells publication-title: Cells doi: 10.3390/cells9051161 – volume: 58 start-page: 9846 issue: 29 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib115 article-title: Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu‐TCPP nanosheets for cancer therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903981 – volume: 24 start-page: 161 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib205 article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells publication-title: Toxicol. Mech. Methods doi: 10.3109/15376516.2013.869783 – volume: 29 start-page: 1903850 issue: 45 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib116 article-title: Non-fenton-type hydroxyl radical generation and photothermal effect by mitochondria-targeted WSSe/MnO2 nanocomposite loaded with isoniazid for synergistic anticancer treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903850 – volume: 217 start-page: 2291 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib40 article-title: Glutathione metabolism in cancer progression and treatment resistance publication-title: J. Cell Biol. doi: 10.1083/jcb.201804161 – volume: 254 start-page: 120140 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib119 article-title: Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120140 – volume: 60 start-page: 3001 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib73 article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008868 – volume: 234 start-page: 7384 issue: 5 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib193 article-title: Exogenous glutathione improves intracellular glutathione synthesis via the gamma-glutamyl cycle in bovine zygotes and cleavage embryos publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27497 – volume: 368 start-page: 85 issue: 6486 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib180 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science doi: 10.1126/science.aaw9872 – volume: 26 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.121110_bib241 article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology publication-title: Drug Resist. Updates doi: 10.1016/j.drup.2016.03.001 – volume: 35 start-page: 100981 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib250 article-title: Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy publication-title: Nano Today doi: 10.1016/j.nantod.2020.100981 – volume: 17 start-page: 275 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2021.121110_bib222 article-title: Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-10-1983 – volume: 215 start-page: 8 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib12 article-title: Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.03.064 – volume: 17 start-page: 671 issue: 8 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib147 article-title: Glutathione levels in human tumors publication-title: Biomarkers doi: 10.3109/1354750X.2012.715672 – volume: 35 start-page: 1372 issue: 11 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib199 article-title: Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A‐mediated ortho‐benzoquinone metabolite formation and glutathione depletion publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3106 – volume: 27 start-page: 438 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2021.121110_bib38 article-title: Transport of glutathione and glutathione conjugates by MRP1 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2006.06.008 – volume: 380 start-page: 122369 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib78 article-title: Three birds with one stone: a ferric pyrophosphate based nanoagent for synergetic NIR-triggered photo/chemodynamic therapy with glutathione depletion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122369 – volume: 10 start-page: 2404 issue: 12 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib236 article-title: A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2020.07.018 – volume: 47 start-page: 493 issue: 6 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib201 article-title: 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-015-9631-y – volume: 187 start-page: 55 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib94 article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: hypoxia relief, glutathione depletion and reactive nitrogen species generation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.043 – volume: 44 start-page: 2578 issue: 6 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib98 article-title: Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent publication-title: New J. Chem. doi: 10.1039/C9NJ05427H – volume: 1830 start-page: 3143 issue: 5 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib156 article-title: Glutathione synthesis publication-title: BBA-Gen. Subjects doi: 10.1016/j.bbagen.2012.09.008 – volume: 124 start-page: 10 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib212 article-title: Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2016.10.013 – volume: 11 start-page: 1735 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib79 article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-020-15591-4 – volume: 19 start-page: 7866 issue: 11 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib136 article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02904 – volume: 49 start-page: 11851 issue: 34 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib69 article-title: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy publication-title: Dalton Trans. doi: 10.1039/D0DT01742F – volume: 55 start-page: 12956 issue: 86 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib66 article-title: A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion publication-title: Chem. Commun. doi: 10.1039/C9CC06040E – volume: 6 issue: 36 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib113 article-title: GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer publication-title: Sci. Adv. doi: 10.1126/sciadv.abc4373 – volume: 403 start-page: 126305 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib95 article-title: A glutathione-activatable nanoplatform for enhanced photodynamic therapy with simultaneous hypoxia relief and glutathione depletion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126305 – volume: 11 start-page: 6384 issue: 13 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib60 article-title: Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC publication-title: Nanoscale doi: 10.1039/C9NR01306G – volume: 10 start-page: 7068 issue: 29 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib114 article-title: An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy publication-title: Chem. Sci. doi: 10.1039/C9SC01070J – volume: 71 start-page: 7048 issue: 22 year: 2011 ident: 10.1016/j.biomaterials.2021.121110_bib48 article-title: Increased skin papilloma formation in mice lacking glutathione transferase GSTP publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-11-0882 – volume: 28 start-page: 1800706 issue: 28 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib117 article-title: Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800706 – volume: 6 start-page: 225 issue: 3 year: 1970 ident: 10.1016/j.biomaterials.2021.121110_bib191 article-title: Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP publication-title: FEBS Lett. doi: 10.1016/0014-5793(70)80063-1 – volume: 13 start-page: 13445 issue: 11 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib29 article-title: Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity publication-title: ACS Nano doi: 10.1021/acsnano.9b07032 – volume: 10 start-page: 682 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib179 article-title: Metadherin enhances vulnerability of cancer cells to ferroptosis publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1897-2 – volume: 12 start-page: 17254 issue: 15 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib100 article-title: Fusiform-like copper(II)-Based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01539 – volume: 265 start-page: 120456 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib108 article-title: Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120456 – volume: 157 start-page: 705 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib9 article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.08.034 – volume: 27 start-page: 1217 issue: 15 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib6 article-title: Huangmenger, multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7134 – volume: 48 start-page: 23 issue: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.121110_bib200 article-title: Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-015-9637-5 – volume: 407 start-page: 127212 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib92 article-title: Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127212 – volume: 106 start-page: 175 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib197 article-title: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death, Biomed publication-title: Pharmacother doi: 10.1016/j.biopha.2018.06.111 – volume: 10 start-page: 915 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib176 article-title: Identification of capsazepine as a novel inhibitor of system x(c)(-) and cancer-induced bone pain publication-title: J. Pain Res. doi: 10.2147/JPR.S125045 – volume: 159 start-page: 90 issue: 2 year: 2006 ident: 10.1016/j.biomaterials.2021.121110_bib145 article-title: The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2005.10.044 – volume: 3 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib220 article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis publication-title: eLife doi: 10.7554/eLife.02523 – volume: 636 start-page: 8 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib43 article-title: Reactive oxygen species and endothelial function in diabetes publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2010.03.048 – volume: 85 start-page: 1715 issue: 8 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib235 article-title: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013) publication-title: Pure Appl. Chem. doi: 10.1351/PAC-REC-12-11-20 – volume: 9 start-page: 572 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib188 article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0635-5 – volume: 7 start-page: 5359 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib59 article-title: H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy publication-title: Biomater. Sci. doi: 10.1039/C9BM01354G – volume: 115 start-page: 1541 issue: 6 year: 1998 ident: 10.1016/j.biomaterials.2021.121110_bib42 article-title: Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor publication-title: Gastroenterology doi: 10.1016/S0016-5085(98)70034-4 – volume: 149 start-page: 1060 issue: 5 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib150 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 22 start-page: 744 issue: 9 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib221 article-title: Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2014.6142 – volume: 220 start-page: 1170 issue: 7 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib2 article-title: A radical shift in perspective: mitochondria as regulators of reactive oxygen species publication-title: J. Exp. Biol. doi: 10.1242/jeb.132142 – volume: 57 start-page: 4902 issue: 18 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib97 article-title: Simultaneous fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712027 – volume: 368 start-page: 88 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib172 article-title: Xc - inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism publication-title: Canc. Lett. doi: 10.1016/j.canlet.2015.07.031 – volume: 12 start-page: 17319 issue: 33 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib67 article-title: A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy publication-title: Nanoscale doi: 10.1039/D0NR03135F – volume: 27 start-page: 211 issue: 2 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib54 article-title: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression publication-title: Canc. Cell doi: 10.1016/j.ccell.2014.11.019 – volume: 7 start-page: 429 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib90 article-title: Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production publication-title: Biomater. Sci. doi: 10.1039/C8BM01042K – volume: 89 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.biomaterials.2021.121110_bib155 article-title: Role of membrane transport in metabolism and function of glutathione in mammals publication-title: J. Membr. Biol. doi: 10.1007/BF01870891 – start-page: 3150145 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib17 article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy publication-title: Oxid. Med. Cell. Longev. – volume: 55 start-page: 5477 issue: 18 year: 2016 ident: 10.1016/j.biomaterials.2021.121110_bib19 article-title: A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510748 – volume: 280 start-page: 33766 issue: 40 year: 2005 ident: 10.1016/j.biomaterials.2021.121110_bib158 article-title: Glutamate cysteine ligase catalysis dependence ON ATP and modifier subunit for regulation OF tissue glutathione levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504604200 – volume: 572 start-page: 118782 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib134 article-title: Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118782 – volume: 18 start-page: 2547 issue: 11 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib181 article-title: Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.02.054 – volume: 12 start-page: 15845 issue: 29 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib86 article-title: Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation publication-title: Nanoscale doi: 10.1039/D0NR03661G – volume: 95 start-page: 215 issue: 2 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib123 article-title: Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13621 – volume: 38 start-page: 438 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib50 article-title: GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway publication-title: J. Exp. Clin. Canc. Res. doi: 10.1186/s13046-019-1459-6 – volume: 10 start-page: 9865 issue: 21 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib137 article-title: Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis publication-title: Theranostics doi: 10.7150/thno.46771 – volume: 1864 start-page: 129539 issue: 4 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib246 article-title: Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy publication-title: BBA-Gen. Subjects doi: 10.1016/j.bbagen.2020.129539 – volume: 274 start-page: 56 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib130 article-title: Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.01.034 – volume: 7 start-page: 4260 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib124 article-title: Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment publication-title: Biomater. Sci. doi: 10.1039/C9BM00797K – volume: 30 start-page: 13 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib168 article-title: Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2008.08.004 – volume: 29 start-page: 1904056 issue: 36 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib110 article-title: Fe(III)‐Porphyrin sonotheranostics: a green triple‐regulated ROS generation nanoplatform for enhanced cancer imaging and therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904056 – volume: 114 start-page: 10869 issue: 21 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib143 article-title: Functional nanomaterials for phototherapies of cancer publication-title: Chem. Rev. doi: 10.1021/cr400532z – volume: 44 start-page: 532 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib7 article-title: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species publication-title: Cell. Physiol. Biochem. doi: 10.1159/000485089 – volume: 115 start-page: 12797 issue: 26 year: 2011 ident: 10.1016/j.biomaterials.2021.121110_bib203 article-title: Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells publication-title: J. Phys. Chem. C doi: 10.1021/jp2025413 – volume: 19 start-page: 805 issue: 2 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib96 article-title: Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03905 – volume: 110 start-page: 3173 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib170 article-title: Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells publication-title: Canc. Sci. doi: 10.1111/cas.14181 – volume: 14 start-page: 874 issue: 9 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib24 article-title: Glutathione-mediated biotransformation in the liver modulates nanoparticle transport publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0499-6 – volume: 15 start-page: 1904870 issue: 51 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib141 article-title: Glutathione depletion in a benign manner by MoS2‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy publication-title: Small doi: 10.1002/smll.201904870 – volume: 88 start-page: 193 issue: 3–4 year: 1996 ident: 10.1016/j.biomaterials.2021.121110_bib226 article-title: Gamma-Glutamyl transpeptidase mediation of tumor glutathione utilization in vivo publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/88.3-4.193 – volume: 51 start-page: 474 issue: 6 year: 2003 ident: 10.1016/j.biomaterials.2021.121110_bib234 article-title: Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion publication-title: Canc. Chemother. Pharmacol. doi: 10.1007/s00280-003-0609-9 – volume: 31 start-page: 1900730 issue: 23 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib21 article-title: Ultrasmall oxygen‐deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201900730 – volume: 11 start-page: 1926 issue: 8 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib167 article-title: Targeting glutathione metabolism: partner in crime in anticancer therapy publication-title: Nutrients doi: 10.3390/nu11081926 – volume: 11 start-page: 13078 issue: 27 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib89 article-title: Enhancement of ultralow-intensity NIR light-triggered photodynamic therapy based on exo- and endogenous synergistic effects through combined glutathione-depletion chemotherapy publication-title: Nanoscale doi: 10.1039/C9NR03052B – volume: 11 start-page: 474 issue: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.121110_bib149 article-title: The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine publication-title: Oncol. Lett. doi: 10.3892/ol.2015.3879 – volume: 323 start-page: 203 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib1 article-title: Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.04.026 – volume: 7 start-page: 62 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib35 article-title: Glutathione: antioxidant properties dedicated to nanotechnologies publication-title: Antioxidants doi: 10.3390/antiox7050062 – volume: 108 start-page: 1843 issue: 9 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib174 article-title: Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non‐small‐cell lung cancer publication-title: Canc. Sci. doi: 10.1111/cas.13309 – volume: 7 start-page: 71 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2021.121110_bib227 article-title: Inhibiting glutathione metabolism in lung lining fluid as a strategy to augment antioxidant defense publication-title: Curr. Enzym. Inhib. doi: 10.2174/157340811796575308 – volume: 152 start-page: 597 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib206 article-title: A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells, Free Radical Bio publication-title: Med – volume: 283 start-page: 36071 issue: 52 year: 2008 ident: 10.1016/j.biomaterials.2021.121110_bib16 article-title: Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807061200 – volume: 49 start-page: 1540 issue: 9 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib233 article-title: Thiol–ene click chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200903924 – volume: 257 start-page: 120279 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib70 article-title: Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120279 – volume: 77 start-page: 76 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib216 article-title: The role OF GSH efflux IN staurosporine-induced apoptosis IN colonic epithelial cells publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.09.011 – volume: 134 start-page: 489 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2021.121110_bib8 article-title: Glutathione metabolism and its implications for health publication-title: J. Nutr. doi: 10.1093/jn/134.3.489 – volume: 169 start-page: 53 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib132 article-title: Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.02.065 – volume: 10 start-page: 321 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2021.121110_bib45 article-title: Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2 publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2007.1901 – volume: 9 start-page: 2000864 issue: 20 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib138 article-title: Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202000864 – volume: 380 start-page: 131 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2021.121110_bib146 article-title: The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.04.066 – volume: 104 start-page: 144 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib46 article-title: Reactive oxygen species and cancer paradox: to promote or to suppress? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.01.004 – volume: 9 start-page: 2233 issue: 11 year: 1970 ident: 10.1016/j.biomaterials.2021.121110_bib192 article-title: On the specificity of steroid interaction with mammary glucose 6-phosphate dehydrogenase publication-title: Biochemistry doi: 10.1021/bi00813a003 – volume: 428 start-page: 21 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib177 article-title: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox 4 and inhibition of xCT publication-title: Canc. Lett. doi: 10.1016/j.canlet.2018.04.021 – volume: 14 start-page: 347 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib248 article-title: Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms publication-title: ACS Nano doi: 10.1021/acsnano.9b05493 – volume: 27 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib178 article-title: Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy publication-title: Curr. Med. Chem. – volume: 57 start-page: 5725 issue: 20 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib122 article-title: Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801378 – volume: 82 start-page: 291 issue: 2 year: 1997 ident: 10.1016/j.biomaterials.2021.121110_bib5 article-title: Oxidative stress: oxidants and antioxidants publication-title: Exp. Physiol. doi: 10.1113/expphysiol.1997.sp004024 – volume: 2018 start-page: 2469486 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib245 article-title: N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence publication-title: BioMed Res. Int. doi: 10.1155/2018/2469486 – volume: 1863 start-page: 129285 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib23 article-title: Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay publication-title: BBA-Gen. Subjects doi: 10.1016/j.bbagen.2019.01.007 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib183 article-title: Purine nucleoside analog-sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines publication-title: PloS One doi: 10.1371/journal.pone.0054044 – volume: 30 start-page: 42 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib41 article-title: Regulation of glutathione synthesis publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2008.05.005 – volume: 12 start-page: 15767 issue: 29 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib142 article-title: Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy publication-title: Nanoscale doi: 10.1039/D0NR03138K – volume: 8 start-page: 478 issue: 3 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib58 article-title: Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02120E – volume: 11 start-page: 31671 issue: 35 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib77 article-title: O-2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10685 – volume: 9 start-page: 29538 issue: 35 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib195 article-title: Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08347 – volume: 89 start-page: 3070 issue: 7 year: 1992 ident: 10.1016/j.biomaterials.2021.121110_bib26 article-title: High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.7.3070 – volume: 458 start-page: 780 issue: 7239 year: 2009 ident: 10.1016/j.biomaterials.2021.121110_bib144 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature doi: 10.1038/nature07733 – volume: 105 start-page: 53 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib25 article-title: Drug metabolizing enzymes and their inhibitors' role in cancer resistance, Biomed publication-title: Pharmacother doi: 10.1016/j.biopha.2018.05.117 – volume: 6 start-page: 30102 issue: 30 year: 2015 ident: 10.1016/j.biomaterials.2021.121110_bib190 article-title: Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death publication-title: Oncotarget doi: 10.18632/oncotarget.4945 – volume: 29 start-page: 649 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib196 article-title: Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2012.895 – volume: 30 start-page: 440 issue: 6 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib47 article-title: The complex interplay between antioxidants and ROS in cancer publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.03.002 – volume: 9 start-page: 1525 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib198 article-title: Involvement of glutathione depletion in selective cytotoxicity of oridonin to p53-mutant esophageal squamous carcinoma cells publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01525 – volume: 16 start-page: 2001251 issue: 33 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib139 article-title: Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy publication-title: Small doi: 10.1002/smll.202001251 – volume: 2012 start-page: 736837 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib36 article-title: Glutathione homeostasis and functions: potential targets for medical interventions publication-title: J. Amino Acids doi: 10.1155/2012/736837 – volume: 70 start-page: 585 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib166 article-title: The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle publication-title: IUBMB Life doi: 10.1002/iub.1756 – volume: 55 start-page: 11467 issue: 38 year: 2016 ident: 10.1016/j.biomaterials.2021.121110_bib22 article-title: Copper(II)–Graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605509 – volume: 8 start-page: 5059 issue: 18 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib61 article-title: Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy publication-title: Theranostics doi: 10.7150/thno.28344 – volume: 13 start-page: 4267 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib76 article-title: Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief publication-title: ACS Nano doi: 10.1021/acsnano.8b09387 – volume: 29 start-page: 1906195 issue: 51 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib81 article-title: Ultrasound-activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906195 – start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib237 article-title: Current developments in Pt(IV) prodrugs conjugated with bioactive ligands publication-title: Bioinorgan. Chem. Appl. – volume: 13 start-page: 6879 issue: 6 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib55 article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal–organic framework publication-title: ACS Nano doi: 10.1021/acsnano.9b01665 – volume: 14 start-page: 11225 issue: 9 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib64 article-title: Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c03080 – volume: 36 start-page: 1302 issue: 10 year: 2017 ident: 10.1016/j.biomaterials.2021.121110_bib157 article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine publication-title: EMBO J. doi: 10.15252/embj.201696151 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib151 article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0720-y – volume: 35 start-page: 102418 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib247 article-title: Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: a redox and pH-responsive antimicrobial agent with photocatalytic activity publication-title: Photodiagn. Photodyn. doi: 10.1016/j.pdpdt.2021.102418 – volume: 273 start-page: 30 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib126 article-title: Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.01.019 – volume: 90 start-page: 235 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2021.121110_bib215 article-title: Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.05.017 – volume: 7 start-page: 8 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib37 article-title: Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases publication-title: Oncogenesis doi: 10.1038/s41389-017-0025-3 – volume: 124 start-page: 342 year: 2018 ident: 10.1016/j.biomaterials.2021.121110_bib207 article-title: Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.06.021 – volume: 9 start-page: 17639 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib27 article-title: The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells publication-title: Sci. Rep. doi: 10.1038/s41598-019-54065-6 – volume: 285 start-page: 16116 issue: 21 year: 2010 ident: 10.1016/j.biomaterials.2021.121110_bib159 article-title: Rapid activation of glutamate cysteine ligase following oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.116210 – volume: 26 start-page: 238 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2021.121110_bib184 article-title: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2011.12.004 – volume: 12 start-page: 5680 issue: 5 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib91 article-title: Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23325 – volume: 31 start-page: 1661 issue: 6 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib109 article-title: Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.0c00209 – volume: 2013 start-page: 972913 year: 2013 ident: 10.1016/j.biomaterials.2021.121110_bib53 article-title: Role of glutathione in cancer progression and chemoresistance publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2013/972913 – volume: 422 start-page: 130094 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib249 article-title: Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130094 – volume: 43 start-page: 95 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib173 article-title: The Xc− inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism publication-title: Cell. Oncol. doi: 10.1007/s13402-019-00474-8 – volume: 266 start-page: 120457 year: 2021 ident: 10.1016/j.biomaterials.2021.121110_bib68 article-title: A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120457 – volume: 224 start-page: 119498 year: 2019 ident: 10.1016/j.biomaterials.2021.121110_bib112 article-title: Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119498 – volume: 303 start-page: 476 issue: 2 year: 2002 ident: 10.1016/j.biomaterials.2021.121110_bib162 article-title: Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter publication-title: J. Pharmacol. Exp. Therapeut. doi: 10.1124/jpet.102.040220 – volume: 259 start-page: 120329 year: 2020 ident: 10.1016/j.biomaterials.2021.121110_bib121 article-title: Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120329 |
| SSID | ssj0014042 |
| Score | 2.74476 |
| SecondaryResourceType | review_article |
| Snippet | Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121110 |
| SubjectTerms | biocompatible materials Cancer therapy drug delivery systems Drug resistance Ferroptosis glutathione Glutathione depletion metabolism Nanomaterials oxidative stress photochemotherapy Reactive oxygen species xenobiotics |
| Title | Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S014296122100466X https://dx.doi.org/10.1016/j.biomaterials.2021.121110 https://www.proquest.com/docview/2569615656 https://www.proquest.com/docview/2636617083 |
| Volume | 277 |
| WOSCitedRecordID | wos000701903900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7urog-iK4urpclgo_bpZO0Tar4MMiICq6gI46-lLRNnC5uOzsXGf-9J82lHWVlRHwpJU2att-X5DT5cg5CT7gsWBrHKmB5TIKoCGmQi1wFZUKEYooOilK1wSbY6SmfTFK3ortowwmwuubrdTr7r1BDGoCtt87-Bdz-ppAA5wA6HAF2OG4F_LBbktaW4FeoSysMm1rvkJppX9tG3VhovFuJoXYroGcGRvXU6AHev_sQ6OGt9FcBCCXn82a2bBbGK0G7H24qz-0Ors3V4aoBQ9i8bLfwsWq51PyovAioEo1RdFTrypP0y7Rpc36GxI66n0z3OHYjrZ2oIAMvebOzZ24HTSdXMhOaJEiTwUaPTExkl996dzPRcHaS997iRFelfWQMrDx203u2Fq8RfX-iXeMlyWQH7REWp9AB7g1fjyZv_JJTFLaRlvwDOQ-1rRjwshovs2Z-GddbY2V8C920fxl4aNhxG12R9T660fM9uY-uvbWqijvookcZ3Cjcowz2lMFVjQ1lsEX8KXaEwZ4w7tox7tHlGANZcJ8sd9HHl6Pxi1eBDcURFGDwLgOmSskTVsaxjAWngoiSKJoWLCwSzqRkYSRCruD_s4C2H8VpCMlg-PC0JLkoc3qAdmt46nsIS0GhTCoopzSKIsVLSEk4nAlWMpUfotR90qywfup1uJRvmRMknmV9ODINR2bgOETUl50Zby1blXrmkMvcfmQYQTOg3Valn_vS1mo11ujW5R87smTQtev1OlHLZgWZ4gSIqP-4_pAnoYmOqcDp_X96iwfoetdmH6Ld5XwlH6GrxfdltZgfoR024Ue2xfwEupXf-Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+glutathione+depletion+in+cancer+therapy%3A+Enhanced+ROS-based+therapy%2C+ferroptosis%2C+and+chemotherapy&rft.jtitle=Biomaterials&rft.au=Niu%2C+Boyi&rft.au=Liao%2C+Kaixin&rft.au=Zhou%2C+Yixian&rft.au=Wen%2C+Ting&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=277&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.121110&rft.externalDocID=S014296122100466X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |