Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy

Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials Ročník 277; s. 121110
Hlavní autoři: Niu, Boyi, Liao, Kaixin, Zhou, Yixian, Wen, Ting, Quan, Guilan, Pan, Xin, Wu, Chuanbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2021
Témata:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
AbstractList Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
ArticleNumber 121110
Author Liao, Kaixin
Zhou, Yixian
Wu, Chuanbin
Wen, Ting
Pan, Xin
Quan, Guilan
Niu, Boyi
Author_xml – sequence: 1
  givenname: Boyi
  surname: Niu
  fullname: Niu, Boyi
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
– sequence: 2
  givenname: Kaixin
  surname: Liao
  fullname: Liao, Kaixin
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
– sequence: 3
  givenname: Yixian
  surname: Zhou
  fullname: Zhou, Yixian
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
– sequence: 4
  givenname: Ting
  surname: Wen
  fullname: Wen, Ting
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
– sequence: 5
  givenname: Guilan
  surname: Quan
  fullname: Quan, Guilan
  organization: College of Pharmacy, Jinan University, Guangzhou, 510632, China
– sequence: 6
  givenname: Xin
  surname: Pan
  fullname: Pan, Xin
  email: panxin2@mail.sysu.edu.cn
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
– sequence: 7
  givenname: Chuanbin
  orcidid: 0000-0003-1661-0201
  surname: Wu
  fullname: Wu, Chuanbin
  email: wuchuanb@mail.sysu.edu.cn
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
BookMark eNqNUk1vGyEURFUq1Un6H1BPPWRdYJePzalpmraRIkVq0jPC8LbGxcsGcCT_--LYhyqX-gTvzbzRY4ZTdDLGERD6QMmcEio-reYLH9emQPIm5DkjjM4po5SSN2hGlVQN7wk_QTNCO9b0grJ36DTnFak16dgMPV1NU_DWFB9HHAf8O2yKKctaAXYwBXgB_IitGS0kXJaQzLS9xDfjctdx-Of9Q7Mwud4O2AUeIKU4lZh9vsBmdNguYR0P8Dl6O9Rd4f3hPEO_vt08Xv9o7u6_315f3TWWU14aOThQQjrOgRvVGmYcG9reSmKFkgCSdIaooSXCWtl39Zm1rTqpescWxi3aM_Rxrzul-LSBXPTaZwshmBHiJmsmWiGoJKr9P5WLah0XXFTq5z3VpphzgkFbX17cK8n4oCnRu2D0Sv8bjN4Fo_fBVInLVxJT8muTtscNf90PQ7Xu2UPS2XrYBeET2KJd9MfJfHklY4Mf6z8If2B7rMhfUZnLQA
CitedBy_id crossref_primary_10_1002_smll_202309431
crossref_primary_10_1016_j_jconrel_2025_113887
crossref_primary_10_1002_anie_202202843
crossref_primary_10_1002_ange_202419800
crossref_primary_10_1016_j_ijbiomac_2023_129117
crossref_primary_10_3762_bjnano_14_24
crossref_primary_10_1002_adfm_202422357
crossref_primary_10_34133_research_0880
crossref_primary_10_1002_advs_202401095
crossref_primary_10_1002_adhm_202404612
crossref_primary_10_1097_MD_0000000000043390
crossref_primary_10_3390_pharmaceutics16091130
crossref_primary_10_1002_adhm_202404737
crossref_primary_10_1002_adfm_202112000
crossref_primary_10_1016_j_molstruc_2025_142744
crossref_primary_10_3389_fcell_2025_1559423
crossref_primary_10_1002_adfm_202309524
crossref_primary_10_1021_acsami_5c05523
crossref_primary_10_3389_fphar_2023_1215020
crossref_primary_10_1016_j_ijpharm_2024_124582
crossref_primary_10_1021_acs_analchem_5c02897
crossref_primary_10_1016_j_cej_2022_141186
crossref_primary_10_1021_acsanm_5c02035
crossref_primary_10_1080_17435889_2024_2446138
crossref_primary_10_3390_ijms23094934
crossref_primary_10_1016_j_bios_2023_115200
crossref_primary_10_3892_mmr_2025_13483
crossref_primary_10_1038_s41388_024_03025_0
crossref_primary_10_1039_D2BM02032G
crossref_primary_10_1002_adfm_202501271
crossref_primary_10_1016_j_ecoenv_2025_118246
crossref_primary_10_1016_j_freeradbiomed_2023_09_002
crossref_primary_10_2147_JIR_S420676
crossref_primary_10_1002_adhm_202102365
crossref_primary_10_1016_j_ccr_2025_216642
crossref_primary_10_1016_j_ccr_2025_216643
crossref_primary_10_1016_j_jphotobiol_2023_112796
crossref_primary_10_3389_fimmu_2025_1591123
crossref_primary_10_1016_j_mattod_2025_02_004
crossref_primary_10_1002_adhm_202300530
crossref_primary_10_1016_j_ijbiomac_2024_138215
crossref_primary_10_1016_j_biomaterials_2023_122458
crossref_primary_10_3389_fcell_2025_1639772
crossref_primary_10_1016_j_ejphar_2024_176528
crossref_primary_10_1016_j_biomaterials_2023_122454
crossref_primary_10_3390_cancers17061008
crossref_primary_10_1089_ars_2023_0371
crossref_primary_10_1002_anie_202300379
crossref_primary_10_1016_j_drup_2024_101057
crossref_primary_10_1016_j_matdes_2022_111282
crossref_primary_10_1016_j_bmc_2025_118241
crossref_primary_10_1186_s12951_024_02921_7
crossref_primary_10_1002_adfm_202404822
crossref_primary_10_1088_2515_7639_ad4d1e
crossref_primary_10_1016_j_redox_2025_103522
crossref_primary_10_1002_smll_202402669
crossref_primary_10_3390_ijms25063164
crossref_primary_10_1016_j_apmt_2024_102341
crossref_primary_10_1016_j_ccr_2025_216899
crossref_primary_10_3390_pathogens11020212
crossref_primary_10_1039_D5TB00318K
crossref_primary_10_1186_s12951_024_02419_2
crossref_primary_10_3389_fgene_2025_1658299
crossref_primary_10_3892_or_2024_8816
crossref_primary_10_1016_j_actbio_2023_03_017
crossref_primary_10_1016_j_toxicon_2022_106957
crossref_primary_10_1002_mco2_70116
crossref_primary_10_1002_mco2_70358
crossref_primary_10_1016_j_jcis_2025_138692
crossref_primary_10_1016_j_freeradbiomed_2025_05_388
crossref_primary_10_1016_j_matdes_2024_112809
crossref_primary_10_3390_nano15100748
crossref_primary_10_1186_s13020_023_00839_0
crossref_primary_10_1002_anie_202505041
crossref_primary_10_3389_fcell_2024_1506492
crossref_primary_10_2147_BCTT_S475860
crossref_primary_10_3390_antiox13080988
crossref_primary_10_1002_ange_202508544
crossref_primary_10_1016_j_mtbio_2025_102260
crossref_primary_10_1097_HJH_0000000000004085
crossref_primary_10_1002_cnma_202400642
crossref_primary_10_1007_s12274_023_5385_8
crossref_primary_10_1016_j_ijbiomac_2025_144168
crossref_primary_10_1002_adhm_202300748
crossref_primary_10_1080_19476337_2024_2303450
crossref_primary_10_1002_smll_202206688
crossref_primary_10_1016_j_fct_2023_114322
crossref_primary_10_1016_j_jconrel_2025_113895
crossref_primary_10_1021_jasms_4c00512
crossref_primary_10_1186_s12967_024_05803_6
crossref_primary_10_1002_smll_202205354
crossref_primary_10_1016_j_colsurfb_2022_112408
crossref_primary_10_1002_btm2_70031
crossref_primary_10_1016_j_phymed_2024_155348
crossref_primary_10_1016_j_ccr_2025_216542
crossref_primary_10_3748_wjg_v30_i32_3730
crossref_primary_10_1186_s40779_025_00610_6
crossref_primary_10_1016_j_jconrel_2025_113772
crossref_primary_10_1002_adhm_202402349
crossref_primary_10_1096_fj_202400373RR
crossref_primary_10_1039_D1BM01876K
crossref_primary_10_1002_adhm_202402474
crossref_primary_10_1002_anie_202508544
crossref_primary_10_1016_j_jcis_2022_05_059
crossref_primary_10_1097_CAD_0000000000001724
crossref_primary_10_1167_iovs_65_12_24
crossref_primary_10_1093_rb_rbae082
crossref_primary_10_1002_ange_202505041
crossref_primary_10_3389_fchem_2022_967337
crossref_primary_10_1016_j_jpha_2025_101223
crossref_primary_10_1016_j_phymed_2024_156306
crossref_primary_10_1002_adhm_202404895
crossref_primary_10_1186_s12951_023_01841_2
crossref_primary_10_3390_microorganisms11122849
crossref_primary_10_1016_j_freeradbiomed_2024_05_043
crossref_primary_10_1016_j_apsb_2024_02_024
crossref_primary_10_1016_j_carbpol_2024_122489
crossref_primary_10_1097_CAD_0000000000001630
crossref_primary_10_1016_j_cej_2022_135309
crossref_primary_10_1016_j_tranon_2025_102351
crossref_primary_10_1021_acs_chemrev_5c00129
crossref_primary_10_1016_j_matbio_2023_03_007
crossref_primary_10_1016_j_cej_2025_167375
crossref_primary_10_3390_md23010049
crossref_primary_10_1016_j_xphs_2023_11_027
crossref_primary_10_1186_s12951_022_01604_5
crossref_primary_10_1002_bit_70056
crossref_primary_10_1016_j_biomaterials_2023_122023
crossref_primary_10_1016_j_ejphar_2023_176220
crossref_primary_10_1002_mabi_202300238
crossref_primary_10_1016_j_jcis_2024_02_160
crossref_primary_10_1186_s12958_024_01310_x
crossref_primary_10_1186_s13046_023_02686_1
crossref_primary_10_1021_jacs_2c12942
crossref_primary_10_1016_j_cej_2022_135311
crossref_primary_10_1016_j_cej_2025_160516
crossref_primary_10_1002_advs_202416143
crossref_primary_10_1016_j_apmt_2024_102059
crossref_primary_10_1038_s41419_024_06789_1
crossref_primary_10_1016_j_cbi_2024_111121
crossref_primary_10_1002_adfm_202407153
crossref_primary_10_1016_j_jep_2025_119916
crossref_primary_10_2147_IJN_S444815
crossref_primary_10_1002_adma_202309719
crossref_primary_10_1016_j_actbio_2025_01_044
crossref_primary_10_1002_smll_202404402
crossref_primary_10_2147_CMAR_S503932
crossref_primary_10_1126_sciadv_adt8451
crossref_primary_10_1016_j_snb_2023_133609
crossref_primary_10_1002_anie_202317773
crossref_primary_10_1016_j_molstruc_2025_141633
crossref_primary_10_1039_D4RA00610K
crossref_primary_10_3389_fphar_2025_1658493
crossref_primary_10_3389_fcell_2023_1219840
crossref_primary_10_1016_j_bcp_2025_116763
crossref_primary_10_1016_j_carbon_2025_120099
crossref_primary_10_1016_j_cej_2022_135567
crossref_primary_10_1021_acsomega_4c08564
crossref_primary_10_1016_j_actbio_2025_01_050
crossref_primary_10_1002_adfm_202205013
crossref_primary_10_3389_fonc_2025_1555858
crossref_primary_10_1016_j_cej_2024_151839
crossref_primary_10_1016_j_heliyon_2024_e33258
crossref_primary_10_1038_s41467_023_40954_y
crossref_primary_10_1016_j_jep_2025_119945
crossref_primary_10_1002_anie_202419800
crossref_primary_10_1016_j_matdes_2023_112535
crossref_primary_10_1007_s11033_022_08090_w
crossref_primary_10_1016_j_fsi_2024_109418
crossref_primary_10_1002_adtp_202400309
crossref_primary_10_34133_bmr_0254
crossref_primary_10_1186_s12951_023_02212_7
crossref_primary_10_7717_peerj_15004
crossref_primary_10_3390_cells11203232
crossref_primary_10_1016_j_biomaterials_2023_122157
crossref_primary_10_1039_D5MH01000D
crossref_primary_10_1016_j_cej_2023_148268
crossref_primary_10_1007_s12035_024_04443_7
crossref_primary_10_1016_j_chroma_2023_464236
crossref_primary_10_1038_s42003_024_07117_1
crossref_primary_10_1039_D5SC01987G
crossref_primary_10_3390_cancers14143410
crossref_primary_10_1016_j_eurpolymj_2024_113431
crossref_primary_10_1016_j_intimp_2024_112367
crossref_primary_10_1186_s12935_025_03782_2
crossref_primary_10_1016_j_freeradbiomed_2025_08_051
crossref_primary_10_1016_j_jcis_2025_137545
crossref_primary_10_1007_s12274_022_4925_y
crossref_primary_10_1007_s00210_024_03469_x
crossref_primary_10_1016_j_colsurfa_2025_137972
crossref_primary_10_1002_smll_202402362
crossref_primary_10_1002_adhm_202302787
crossref_primary_10_1016_j_cej_2025_161356
crossref_primary_10_1016_j_phrs_2025_107924
crossref_primary_10_1016_j_watres_2024_123033
crossref_primary_10_1007_s00011_023_01800_5
crossref_primary_10_1002_cbic_202300323
crossref_primary_10_1002_adhm_202501587
crossref_primary_10_1016_j_cej_2025_161351
crossref_primary_10_1002_jbt_23789
crossref_primary_10_1016_j_actbio_2022_06_017
crossref_primary_10_1016_j_cej_2023_144688
crossref_primary_10_3389_fonc_2023_1183405
crossref_primary_10_3389_fbioe_2025_1595772
crossref_primary_10_3389_fphar_2024_1500527
crossref_primary_10_1002_adma_202506349
crossref_primary_10_1016_j_actbio_2023_08_021
crossref_primary_10_1038_s41427_023_00469_w
crossref_primary_10_1186_s12964_024_01871_9
crossref_primary_10_1016_j_procbio_2024_07_007
crossref_primary_10_1186_s12951_024_02925_3
crossref_primary_10_1186_s11658_024_00570_0
crossref_primary_10_1016_j_cej_2023_142496
crossref_primary_10_3389_fonc_2025_1582116
crossref_primary_10_1007_s00109_025_02543_y
crossref_primary_10_1002_pc_70020
crossref_primary_10_3389_fbioe_2023_1208693
crossref_primary_10_3892_mmr_2024_13402
crossref_primary_10_1111_jcmm_70278
crossref_primary_10_1039_D2NR05869C
crossref_primary_10_3389_fphar_2023_1324764
crossref_primary_10_1002_smll_202406860
crossref_primary_10_2147_IJN_S459710
crossref_primary_10_1089_rej_2023_0013
crossref_primary_10_1002_jmv_28480
crossref_primary_10_1016_j_jprot_2023_105055
crossref_primary_10_1186_s12951_024_02574_6
crossref_primary_10_1016_j_cej_2023_142370
crossref_primary_10_1016_j_pestbp_2024_106021
crossref_primary_10_1016_j_phrs_2022_106218
crossref_primary_10_1177_00368504251370676
crossref_primary_10_3390_brainsci15080884
crossref_primary_10_1038_s41467_024_50405_x
crossref_primary_10_1007_s11356_022_22268_6
crossref_primary_10_3390_biom13121785
crossref_primary_10_1016_j_lfs_2025_123688
crossref_primary_10_1039_D3BM02133E
crossref_primary_10_1039_D3RA04074G
crossref_primary_10_1186_s13287_024_03644_0
crossref_primary_10_1016_j_jconrel_2024_02_036
crossref_primary_10_1016_j_biomaterials_2022_121495
crossref_primary_10_1016_j_freeradbiomed_2023_03_006
crossref_primary_10_1016_j_freeradbiomed_2023_03_002
crossref_primary_10_1002_ange_202202843
crossref_primary_10_1016_j_canlet_2024_216732
crossref_primary_10_1002_smll_202301402
crossref_primary_10_1021_acsapm_5c00737
crossref_primary_10_1016_j_drudis_2023_103668
crossref_primary_10_3390_molecules26226766
crossref_primary_10_1039_D5BM00189G
crossref_primary_10_1007_s12274_022_4913_2
crossref_primary_10_1016_j_jconrel_2022_05_018
crossref_primary_10_1002_adhm_202200665
crossref_primary_10_1155_2024_7632408
crossref_primary_10_3390_cancers16010059
crossref_primary_10_1016_j_bbrc_2021_11_101
crossref_primary_10_1016_j_jddst_2025_106987
crossref_primary_10_1080_15376516_2025_2479000
crossref_primary_10_1016_j_exer_2024_110156
crossref_primary_10_1016_j_jcis_2025_138311
crossref_primary_10_1016_j_lfs_2023_122166
crossref_primary_10_1021_jacs_3c09339
crossref_primary_10_1016_j_intimp_2025_114866
crossref_primary_10_1016_j_ccr_2025_216554
crossref_primary_10_1016_j_envres_2025_121208
crossref_primary_10_1002_ange_202300379
crossref_primary_10_1016_j_bcab_2023_102819
crossref_primary_10_1016_j_microc_2024_110502
crossref_primary_10_1016_j_nantod_2023_101984
crossref_primary_10_1002_INMD_20220005
crossref_primary_10_1186_s13048_024_01366_8
crossref_primary_10_1002_vjch_202300042
crossref_primary_10_1016_j_cej_2024_156921
crossref_primary_10_1007_s12033_023_01017_1
crossref_primary_10_1016_j_biomaterials_2023_122409
crossref_primary_10_1016_j_bios_2025_117384
crossref_primary_10_1021_jacs_2c09139
crossref_primary_10_1016_j_tem_2024_05_010
crossref_primary_10_1016_j_jcis_2023_05_099
crossref_primary_10_1002_ctd2_70080
crossref_primary_10_1016_j_jep_2024_118139
crossref_primary_10_1016_j_jep_2025_119643
crossref_primary_10_3390_molecules30132779
crossref_primary_10_1002_adfm_202424108
crossref_primary_10_1016_j_jep_2024_118135
crossref_primary_10_1007_s12633_023_02662_6
crossref_primary_10_1038_s41419_024_06807_2
crossref_primary_10_1016_j_cej_2024_159189
crossref_primary_10_1002_ange_202411725
crossref_primary_10_1002_adhm_202303568
crossref_primary_10_1016_j_nantod_2022_101459
crossref_primary_10_1016_j_nantod_2022_101574
crossref_primary_10_1038_s41401_025_01609_4
crossref_primary_10_3390_toxics11060529
crossref_primary_10_1016_j_celrep_2025_116139
crossref_primary_10_1039_D3BM00738C
crossref_primary_10_1016_j_mtbio_2025_101844
crossref_primary_10_1038_s41419_025_07527_x
crossref_primary_10_1002_slct_202406168
crossref_primary_10_1016_j_ijbiomac_2022_11_103
crossref_primary_10_1038_s41418_025_01505_8
crossref_primary_10_1016_j_snb_2025_138800
crossref_primary_10_3389_fonc_2023_1231460
crossref_primary_10_1002_asia_202500540
crossref_primary_10_1016_j_jcis_2025_138534
crossref_primary_10_1038_s41420_025_02532_7
crossref_primary_10_3389_fcell_2025_1547582
crossref_primary_10_1039_D4NA01004C
crossref_primary_10_3389_fimmu_2025_1555910
crossref_primary_10_1016_j_jcis_2023_03_057
crossref_primary_10_1186_s12951_024_02688_x
crossref_primary_10_1007_s10735_024_10186_5
crossref_primary_10_3389_fcimb_2025_1560152
crossref_primary_10_1007_s00018_025_05788_5
crossref_primary_10_1016_j_bios_2024_116906
crossref_primary_10_3389_fonc_2025_1586515
crossref_primary_10_1016_j_actbio_2024_01_007
crossref_primary_10_1016_j_jcis_2023_04_185
crossref_primary_10_1021_acsami_5c07923
crossref_primary_10_1002_adhm_202303533
crossref_primary_10_1002_adhm_202303896
crossref_primary_10_1016_j_cellsig_2025_111869
crossref_primary_10_3390_molecules27248712
crossref_primary_10_2147_JIR_S528667
crossref_primary_10_1002_cbdv_202301959
crossref_primary_10_1016_j_cancergen_2025_06_009
crossref_primary_10_1186_s13046_025_03404_9
crossref_primary_10_1002_anie_202413661
crossref_primary_10_1016_j_intimp_2025_114615
crossref_primary_10_1016_j_actbio_2024_01_010
crossref_primary_10_1002_adma_202418800
crossref_primary_10_1016_j_cej_2024_150124
crossref_primary_10_1039_D4SC02129K
crossref_primary_10_1186_s13018_023_04448_3
crossref_primary_10_1016_j_ccr_2022_214861
crossref_primary_10_1016_j_cej_2025_161305
crossref_primary_10_1016_j_colsurfa_2024_135223
crossref_primary_10_1002_adhm_202400809
crossref_primary_10_1016_j_compbiomed_2023_106740
crossref_primary_10_37489_2587_7836_2025_1_17_26
crossref_primary_10_1002_adhm_202304639
crossref_primary_10_3389_fbioe_2023_1161472
crossref_primary_10_1016_j_pdpdt_2024_104463
crossref_primary_10_2174_0109298673251025230919105818
crossref_primary_10_1007_s11426_024_2268_7
crossref_primary_10_1016_j_snb_2023_135200
crossref_primary_10_2147_IJN_S526497
crossref_primary_10_3389_fonc_2023_1192192
crossref_primary_10_1007_s10787_024_01519_7
crossref_primary_10_1002_cbic_202500057
crossref_primary_10_3390_cells12020311
crossref_primary_10_1002_smll_202200330
crossref_primary_10_1007_s12013_024_01408_4
crossref_primary_10_1016_j_nantod_2025_102640
crossref_primary_10_1038_s41588_024_01662_5
crossref_primary_10_1016_j_talanta_2025_128769
crossref_primary_10_3390_ijms241310420
crossref_primary_10_1002_advs_202207507
crossref_primary_10_1002_idm2_12130
crossref_primary_10_1016_j_cej_2024_155592
crossref_primary_10_3390_pharmaceutics17020268
crossref_primary_10_1016_j_biteb_2023_101508
crossref_primary_10_1007_s10904_025_03691_x
crossref_primary_10_1016_j_ijpx_2024_100315
crossref_primary_10_1002_adhm_202302023
crossref_primary_10_1016_j_jconrel_2024_01_066
crossref_primary_10_1038_s41420_025_02670_y
crossref_primary_10_1002_EXP_20230127
crossref_primary_10_1016_j_bbrc_2024_150117
crossref_primary_10_1111_andr_13786
crossref_primary_10_1002_adtp_202400160
crossref_primary_10_1002_adfm_202312253
crossref_primary_10_1002_mco2_342
crossref_primary_10_1111_1759_7714_15037
crossref_primary_10_1007_s11010_024_05068_z
crossref_primary_10_1021_acsanm_5c01747
crossref_primary_10_1007_s00432_024_05789_0
crossref_primary_10_1016_j_cej_2023_147437
crossref_primary_10_1016_j_mtbio_2025_101649
crossref_primary_10_1016_j_humimm_2024_111221
crossref_primary_10_1007_s12274_022_4359_6
crossref_primary_10_1186_s13098_025_01773_x
crossref_primary_10_1016_j_ijbiomac_2024_134532
crossref_primary_10_1016_j_gendis_2025_101801
crossref_primary_10_1016_j_nantod_2025_102757
crossref_primary_10_1186_s12951_025_03264_7
crossref_primary_10_1016_j_jece_2025_116428
crossref_primary_10_1016_j_cej_2024_157645
crossref_primary_10_3390_pharmaceutics14122561
crossref_primary_10_1039_D5TB01249J
crossref_primary_10_1016_j_mtcomm_2023_107116
crossref_primary_10_1016_j_cej_2024_157405
crossref_primary_10_1016_j_ajpath_2025_04_003
crossref_primary_10_3389_fphar_2023_1243286
crossref_primary_10_1038_s41420_024_01863_1
crossref_primary_10_1016_j_freeradbiomed_2025_02_032
crossref_primary_10_1080_10286020_2025_2530748
crossref_primary_10_1016_j_biomaterials_2022_121746
crossref_primary_10_1016_j_ijbiomac_2025_144870
crossref_primary_10_1002_smll_202301148
crossref_primary_10_1016_j_jconrel_2024_01_051
crossref_primary_10_1002_wnan_70001
crossref_primary_10_1038_s41598_025_08968_2
crossref_primary_10_1002_jbt_70223
crossref_primary_10_1002_cam4_6806
crossref_primary_10_1016_j_colsurfb_2025_114918
crossref_primary_10_1016_j_carbpol_2022_120365
crossref_primary_10_3389_fcell_2025_1551003
crossref_primary_10_3892_ijo_2024_5660
crossref_primary_10_1186_s40170_025_00380_8
crossref_primary_10_1080_15376516_2022_2103479
crossref_primary_10_1016_j_freeradbiomed_2025_02_002
crossref_primary_10_1016_j_gendis_2025_101806
crossref_primary_10_3390_antiox13060697
crossref_primary_10_1016_j_colsurfb_2023_113220
crossref_primary_10_3892_ijo_2024_5652
crossref_primary_10_1021_jacs_5c14257
crossref_primary_10_1039_D5DT00899A
crossref_primary_10_3389_fimmu_2025_1608407
crossref_primary_10_3389_fphar_2024_1509172
crossref_primary_10_1002_mco2_562
crossref_primary_10_1142_S0192415X23500337
crossref_primary_10_1016_j_nantod_2023_102050
crossref_primary_10_3390_antiox14030258
crossref_primary_10_1002_smtd_202400697
crossref_primary_10_1002_anie_202205429
crossref_primary_10_1016_j_ccr_2023_215536
crossref_primary_10_1016_j_nantod_2024_102594
crossref_primary_10_1016_j_talanta_2022_123364
crossref_primary_10_1155_2022_3353740
crossref_primary_10_1016_j_jcis_2025_137811
crossref_primary_10_1038_s41392_024_01969_z
crossref_primary_10_1186_s12885_025_14134_8
crossref_primary_10_1186_s12951_025_03626_1
crossref_primary_10_1007_s11030_025_11221_7
crossref_primary_10_1016_j_freeradbiomed_2025_03_049
crossref_primary_10_3389_fonc_2023_1186659
crossref_primary_10_1002_smll_202404299
crossref_primary_10_1007_s00210_024_03488_8
crossref_primary_10_3389_fchem_2023_1290745
crossref_primary_10_1002_smll_202407555
crossref_primary_10_1039_D5BM00791G
crossref_primary_10_1007_s12094_024_03724_w
crossref_primary_10_1038_s41392_025_02217_8
crossref_primary_10_1002_cmdc_202300720
crossref_primary_10_1002_mco2_559
crossref_primary_10_1016_j_ejmech_2024_116363
crossref_primary_10_1016_j_biomaterials_2025_123523
crossref_primary_10_1016_j_molstruc_2024_138786
crossref_primary_10_3389_fmolb_2025_1557218
crossref_primary_10_1016_j_molimm_2024_05_008
crossref_primary_10_3390_molecules30183706
crossref_primary_10_1002_advs_202403858
crossref_primary_10_1002_mco2_791
crossref_primary_10_1515_biol_2022_0932
crossref_primary_10_1002_mabi_202200359
crossref_primary_10_1186_s12951_024_03027_w
crossref_primary_10_1016_j_cej_2025_160181
crossref_primary_10_1155_2022_4930643
crossref_primary_10_1016_j_colsurfb_2025_114819
crossref_primary_10_3389_fphys_2025_1641323
crossref_primary_10_3390_ijms242417238
crossref_primary_10_3390_ijms252413279
crossref_primary_10_1002_ange_202317773
crossref_primary_10_1016_j_ejpb_2024_114525
crossref_primary_10_1016_j_biopha_2023_115036
crossref_primary_10_1016_j_jconrel_2025_114130
crossref_primary_10_1039_D1SC06315D
crossref_primary_10_3389_fimmu_2023_1196054
crossref_primary_10_1016_j_matlet_2023_135609
crossref_primary_10_3390_cells12121564
crossref_primary_10_1016_j_bbrc_2025_151923
crossref_primary_10_3390_ijms25115675
crossref_primary_10_1016_j_matdes_2023_112063
crossref_primary_10_1016_j_nantod_2022_101620
crossref_primary_10_1002_adma_202312316
crossref_primary_10_1016_j_ejmech_2024_117165
crossref_primary_10_1111_rda_14474
crossref_primary_10_1007_s12274_024_6552_2
crossref_primary_10_1002_adhm_202500610
crossref_primary_10_1016_j_bcp_2022_115258
crossref_primary_10_1016_j_jddst_2021_103022
crossref_primary_10_3390_ijms241814108
crossref_primary_10_1039_D5NJ00944H
crossref_primary_10_1002_EXP_20230163
crossref_primary_10_1007_s12011_025_04603_3
crossref_primary_10_2147_IJN_S470315
crossref_primary_10_1002_adhm_202401836
crossref_primary_10_3389_fbioe_2025_1582659
crossref_primary_10_1002_advs_202504860
crossref_primary_10_1039_D5NR00880H
crossref_primary_10_1002_tox_23770
crossref_primary_10_1016_j_jconrel_2025_02_072
crossref_primary_10_1016_j_cej_2024_153363
crossref_primary_10_1002_smll_202412802
crossref_primary_10_1016_j_cej_2025_162259
crossref_primary_10_1016_j_lfs_2024_122682
crossref_primary_10_1002_smll_202312191
crossref_primary_10_1007_s10853_025_11491_4
crossref_primary_10_1016_j_jinorgbio_2023_112134
crossref_primary_10_1186_s40364_025_00748_4
crossref_primary_10_1016_j_cej_2023_143386
crossref_primary_10_4103_ijpvm_ijpvm_380_24
crossref_primary_10_1016_j_heliyon_2024_e37298
crossref_primary_10_1016_j_jep_2023_116983
crossref_primary_10_1002_anie_202208849
crossref_primary_10_1016_j_jpha_2024_01_003
crossref_primary_10_1016_j_nantod_2024_102386
crossref_primary_10_1016_j_jot_2025_03_011
crossref_primary_10_1016_j_ejps_2022_106338
crossref_primary_10_1007_s10565_025_10067_x
crossref_primary_10_1002_adfm_202300575
crossref_primary_10_1007_s11010_024_04978_2
crossref_primary_10_1021_jacs_1c11856
crossref_primary_10_1016_j_ejmech_2024_116290
crossref_primary_10_1016_j_cclet_2023_108300
crossref_primary_10_2147_IJN_S508767
crossref_primary_10_3390_polym17172279
crossref_primary_10_1007_s10853_023_08156_5
crossref_primary_10_1039_D4BM00647J
crossref_primary_10_1038_s41467_025_62880_x
crossref_primary_10_1038_s41392_023_01679_y
crossref_primary_10_1016_j_cej_2024_153595
crossref_primary_10_1016_j_cej_2024_154204
crossref_primary_10_1016_j_cej_2024_154566
crossref_primary_10_1016_j_jes_2025_08_040
crossref_primary_10_1002_adtp_202300329
crossref_primary_10_1631_bdm_2500021
crossref_primary_10_1038_s41598_024_84290_7
crossref_primary_10_1158_0008_5472_CAN_23_1167
crossref_primary_10_1016_j_actbio_2022_12_067
crossref_primary_10_1002_adhm_202402827
crossref_primary_10_1186_s12935_023_03207_y
crossref_primary_10_1016_j_marpolbul_2024_116204
crossref_primary_10_1021_acs_jafc_5c01065
crossref_primary_10_3389_fchem_2022_908892
crossref_primary_10_1016_j_envpol_2023_121747
crossref_primary_10_1039_D3BM00861D
crossref_primary_10_3389_fonc_2024_1344290
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1186_s12935_024_03568_y
crossref_primary_10_1186_s12967_024_05404_3
crossref_primary_10_1016_j_colsurfb_2022_113095
crossref_primary_10_1016_j_microc_2024_111466
crossref_primary_10_1039_D5BM00202H
crossref_primary_10_1016_j_cej_2025_163326
crossref_primary_10_3390_cells13050441
crossref_primary_10_1039_D2SC02597C
crossref_primary_10_1016_j_cbi_2023_110793
crossref_primary_10_1039_D4RA02468K
crossref_primary_10_3390_pharmaceutics17010034
crossref_primary_10_1016_j_ccr_2023_215027
crossref_primary_10_1016_j_ejpb_2022_10_010
crossref_primary_10_1002_adhm_202300929
crossref_primary_10_1016_j_jece_2024_111881
crossref_primary_10_1002_med_22007
crossref_primary_10_3390_antiox12071445
crossref_primary_10_1002_adhm_202401743
crossref_primary_10_1093_carcin_bgad011
crossref_primary_10_1039_D5RA00032G
crossref_primary_10_2147_IJN_S365570
crossref_primary_10_1002_adhm_202500933
crossref_primary_10_1016_j_biomaterials_2022_121916
crossref_primary_10_1186_s43556_024_00239_2
crossref_primary_10_1016_j_actbio_2024_07_043
crossref_primary_10_1016_j_surfin_2025_106075
crossref_primary_10_1016_j_carbpol_2024_123123
crossref_primary_10_1016_j_cej_2024_149518
crossref_primary_10_2147_IJN_S436160
crossref_primary_10_1002_ange_202208849
crossref_primary_10_1016_j_fct_2024_114445
crossref_primary_10_3389_fonc_2024_1424218
crossref_primary_10_2147_CMAR_S402572
crossref_primary_10_1038_s41419_023_06033_2
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1002_adfm_202502999
crossref_primary_10_3390_biomedicines11082226
crossref_primary_10_1016_j_cej_2022_138621
crossref_primary_10_1093_rb_rbac045
crossref_primary_10_1002_smll_202411879
crossref_primary_10_1016_j_actbio_2023_05_048
crossref_primary_10_1002_bit_28152
crossref_primary_10_3389_fphar_2024_1360030
crossref_primary_10_1002_ange_202413661
crossref_primary_10_1039_D3RA03246A
crossref_primary_10_1016_j_jddst_2023_104305
crossref_primary_10_1016_j_jbc_2023_103039
crossref_primary_10_1002_lpor_202400777
crossref_primary_10_1002_bmm2_70019
crossref_primary_10_1016_j_bioorg_2023_107021
crossref_primary_10_1016_j_cej_2024_158682
crossref_primary_10_1186_s13046_022_02485_0
crossref_primary_10_1016_j_bioactmat_2024_04_016
crossref_primary_10_1186_s12645_024_00295_x
crossref_primary_10_1002_smll_202207825
crossref_primary_10_1016_j_jare_2025_03_052
crossref_primary_10_1080_15287394_2024_2448663
crossref_primary_10_3390_cells12162061
crossref_primary_10_1016_j_cclet_2025_110977
crossref_primary_10_1186_s12935_024_03559_z
crossref_primary_10_1016_j_lddd_2025_100013
crossref_primary_10_1007_s12274_024_6838_4
crossref_primary_10_3390_md22040187
crossref_primary_10_1016_j_jcis_2023_09_042
crossref_primary_10_1186_s40824_023_00464_w
crossref_primary_10_3390_ijms25063315
crossref_primary_10_1016_j_isci_2025_111769
crossref_primary_10_1111_jnc_15831
crossref_primary_10_1186_s10020_025_01180_y
crossref_primary_10_1016_j_cej_2025_167568
crossref_primary_10_1186_s12951_024_02658_3
crossref_primary_10_1016_j_phymed_2024_155503
crossref_primary_10_1016_j_saa_2024_124248
crossref_primary_10_3390_antiox13070778
crossref_primary_10_1016_j_omtn_2025_102649
crossref_primary_10_1002_adtp_202100227
crossref_primary_10_1002_anie_202411725
crossref_primary_10_1016_j_dyepig_2024_112338
crossref_primary_10_1002_advs_202409442
crossref_primary_10_1016_j_jep_2023_117482
crossref_primary_10_1073_pnas_2404668121
crossref_primary_10_1016_j_canlet_2025_217697
crossref_primary_10_1016_j_cej_2024_155048
crossref_primary_10_1186_s12933_024_02514_6
crossref_primary_10_1016_j_scitotenv_2023_167039
crossref_primary_10_1002_smll_202305567
crossref_primary_10_1021_acsanm_4c06718
crossref_primary_10_1002_adma_202409663
crossref_primary_10_1016_j_intimp_2024_112605
crossref_primary_10_1021_acsanm_5c02865
crossref_primary_10_1002_adfm_202404169
crossref_primary_10_1002_adfm_202500491
crossref_primary_10_1002_asia_202401647
crossref_primary_10_1016_j_biomaterials_2025_123344
crossref_primary_10_1186_s12943_024_01977_1
crossref_primary_10_1002_adfm_202212977
crossref_primary_10_1007_s11010_025_05339_3
crossref_primary_10_1002_ange_202205429
crossref_primary_10_1002_sstr_202200329
crossref_primary_10_2147_IJN_S399026
crossref_primary_10_1002_smll_202202558
crossref_primary_10_1186_s12951_025_03311_3
crossref_primary_10_1016_j_biomaterials_2022_121832
crossref_primary_10_1002_advs_202306580
crossref_primary_10_1186_s12951_024_02626_x
crossref_primary_10_1016_j_jcis_2023_07_134
crossref_primary_10_1016_j_jconrel_2023_03_030
crossref_primary_10_1016_j_jconrel_2024_05_045
crossref_primary_10_1016_j_eurpolymj_2022_111340
crossref_primary_10_1186_s12964_024_01790_9
crossref_primary_10_3389_fmats_2025_1534127
crossref_primary_10_1002_adma_202407378
crossref_primary_10_1002_advs_202505310
crossref_primary_10_3389_fphar_2024_1413530
crossref_primary_10_1016_j_ccr_2023_215230
crossref_primary_10_1016_j_biopha_2024_116935
crossref_primary_10_1016_j_ejphar_2024_176965
crossref_primary_10_1002_adfm_202212740
crossref_primary_10_1016_j_cclet_2024_109538
crossref_primary_10_1016_j_cej_2022_136125
crossref_primary_10_1016_j_bioadv_2024_213771
crossref_primary_10_1007_s10147_025_02851_w
crossref_primary_10_2174_0115672018286563240223072702
crossref_primary_10_1002_adhm_202301824
crossref_primary_10_1016_j_biomaterials_2022_121706
crossref_primary_10_1016_j_biomaterials_2022_121944
crossref_primary_10_1016_j_ejmech_2023_115952
crossref_primary_10_1002_agt2_70149
crossref_primary_10_1016_j_colsurfa_2024_133748
crossref_primary_10_1002_advs_202308632
crossref_primary_10_1016_j_actbio_2024_06_029
crossref_primary_10_1080_17435889_2025_2476386
crossref_primary_10_3389_fmed_2024_1356225
crossref_primary_10_3390_molecules29133125
crossref_primary_10_7717_peerj_13238
crossref_primary_10_1016_j_bioactmat_2023_10_003
crossref_primary_10_1039_D4SC01625D
crossref_primary_10_1016_j_ejpb_2024_114348
crossref_primary_10_1021_acsapm_5c02155
crossref_primary_10_1002_adma_202411967
crossref_primary_10_1016_j_cclet_2024_109626
crossref_primary_10_1093_etojnl_vgaf126
crossref_primary_10_3390_antiox12040834
crossref_primary_10_1016_j_jconrel_2024_06_059
crossref_primary_10_1186_s12951_024_02515_3
crossref_primary_10_1016_j_mtbio_2025_102228
crossref_primary_10_1016_j_ijbiomac_2023_123821
crossref_primary_10_1007_s10735_025_10450_2
crossref_primary_10_1016_j_jpha_2023_12_018
crossref_primary_10_3390_toxics13030221
crossref_primary_10_1002_adhm_202300821
crossref_primary_10_1016_j_jddst_2023_104454
crossref_primary_10_3389_fimmu_2025_1673783
crossref_primary_10_1002_jbt_70387
crossref_primary_10_1016_j_redox_2025_103693
crossref_primary_10_1002_adma_202210464
crossref_primary_10_1016_j_colsurfb_2022_112853
crossref_primary_10_1016_j_ecoenv_2025_118668
crossref_primary_10_1002_cam4_70947
crossref_primary_10_1111_cts_70201
crossref_primary_10_1002_smll_202409250
crossref_primary_10_1016_j_colsurfb_2024_114394
crossref_primary_10_1016_j_indcrop_2025_120559
crossref_primary_10_1016_j_yexcr_2025_114727
crossref_primary_10_1016_j_yexcr_2025_114726
crossref_primary_10_1371_journal_pbio_3001862
crossref_primary_10_1002_adma_202209589
crossref_primary_10_1016_j_actbio_2023_10_015
crossref_primary_10_1016_j_jinsphys_2025_104881
crossref_primary_10_1002_smll_202307309
crossref_primary_10_1089_ars_2023_0272
crossref_primary_10_1016_j_snb_2023_133457
crossref_primary_10_1016_j_jddst_2024_105715
crossref_primary_10_1016_j_eurpolymj_2025_114295
Cites_doi 10.1038/s41586-019-1426-6
10.1021/acsnano.0c06290
10.1016/j.jphotobiol.2020.111955
10.1021/acsami.0c12756
10.1089/ars.2011.4391
10.1016/j.tiv.2017.04.028
10.1021/acsnano.8b01893
10.1158/1078-0432.CCR-06-2642
10.1002/adfm.202002753
10.1002/biof.1476
10.1016/j.biomaterials.2020.120079
10.1016/j.colsurfb.2018.06.029
10.1097/00132580-200101000-00008
10.1002/anie.201706964
10.1021/acsami.9b16124
10.1096/fj.09-149997
10.1021/jacs.9b12873
10.1016/j.cub.2014.03.034
10.1002/adma.201808200
10.1165/rcmb.2009-0169TR
10.7150/thno.46076
10.1016/j.toxlet.2010.12.010
10.1002/pros.20508
10.1021/acsnano.0c05499
10.1158/0008-5472.CAN-12-3150
10.1016/j.cej.2020.125667
10.1002/mnfr.201300684
10.1002/ppsc.201900018
10.1038/s41420-020-00314-x
10.1007/s11010-005-9098-y
10.1002/anie.201710800
10.1021/acsami.9b09323
10.1073/pnas.0911351106
10.1196/annals.1297.059
10.1016/0014-5793(71)80459-3
10.1073/pnas.67.3.1248
10.1016/j.taap.2011.08.004
10.1016/j.bcp.2007.02.005
10.1006/bbrc.2001.5648
10.1038/s41467-018-03119-w
10.1002/anie.202003653
10.1016/j.bcp.2005.10.005
10.1016/j.ejmech.2017.02.064
10.1016/j.freeradbiomed.2018.07.025
10.1002/advs.201900848
10.1002/adma.202002439
10.1186/s12951-018-0398-2
10.1016/j.bcp.2004.08.010
10.3109/03602532.2015.1105253
10.1021/tx100226n
10.3390/antiox10060967
10.1021/acsnano.0c03781
10.2147/IJN.S249205
10.1021/acsami.8b00207
10.1039/C8NR08141G
10.1021/acsnano.9b00300
10.1016/j.cej.2020.125294
10.1016/j.ccr.2018.12.015
10.1016/j.dyepig.2020.108207
10.1002/adfm.201901417
10.1002/adfm.201907954
10.1074/jbc.R114.609248
10.1021/acsnano.8b06399
10.1039/D0SC02889D
10.1002/adfm.202006216
10.1021/acsnano.0c05541
10.3390/antiox9020133
10.1016/j.toxlet.2008.04.009
10.1080/1061186X.2018.1519029
10.1124/dmd.31.1.11
10.1016/j.ecoenv.2018.10.013
10.1158/0008-5472.CAN-04-0143
10.1016/j.biopha.2017.09.026
10.1016/j.pdpdt.2010.02.001
10.1039/D0TB01357A
10.1002/anie.201907388
10.1016/j.jconrel.2020.03.007
10.1016/j.bmc.2010.07.031
10.1016/j.freeradbiomed.2009.04.022
10.1038/s41598-018-19213-4
10.1016/j.colsurfb.2020.110810
10.1039/C9CC01957J
10.1016/S0304-3835(97)04639-9
10.1021/jacs.8b08714
10.1016/j.bmcl.2015.07.018
10.1016/j.biomaterials.2020.120278
10.1021/acsnano.8b06400
10.1002/adfm.202006098
10.1021/jp712087m
10.1021/acs.nanolett.8b01924
10.1038/sj.cdd.4400959
10.1002/adfm.201905013
10.3390/cells9051161
10.1002/anie.201903981
10.3109/15376516.2013.869783
10.1002/adfm.201903850
10.1083/jcb.201804161
10.1016/j.biomaterials.2020.120140
10.1002/anie.202008868
10.1002/jcp.27497
10.1126/science.aaw9872
10.1016/j.drup.2016.03.001
10.1016/j.nantod.2020.100981
10.1158/1078-0432.CCR-10-1983
10.1016/j.carbpol.2019.03.064
10.3109/1354750X.2012.715672
10.1002/jat.3106
10.1016/j.tips.2006.06.008
10.1016/j.cej.2019.122369
10.1016/j.apsb.2020.07.018
10.1007/s10863-015-9631-y
10.1016/j.biomaterials.2018.09.043
10.1039/C9NJ05427H
10.1016/j.bbagen.2012.09.008
10.1016/j.bcp.2016.10.013
10.1038/s41467-020-15591-4
10.1021/acs.nanolett.9b02904
10.1039/D0DT01742F
10.1039/C9CC06040E
10.1126/sciadv.abc4373
10.1016/j.cej.2020.126305
10.1039/C9NR01306G
10.1039/C9SC01070J
10.1158/0008-5472.CAN-11-0882
10.1002/adfm.201800706
10.1016/0014-5793(70)80063-1
10.1021/acsnano.9b07032
10.1038/s41419-019-1897-2
10.1021/acsami.0c01539
10.1016/j.biomaterials.2020.120456
10.1016/j.ejmech.2018.08.034
10.1089/ars.2017.7134
10.1007/s10863-015-9637-5
10.1016/j.cej.2020.127212
10.1016/j.biopha.2018.06.111
10.2147/JPR.S125045
10.1016/j.cbi.2005.10.044
10.7554/eLife.02523
10.1016/j.ejphar.2010.03.048
10.1351/PAC-REC-12-11-20
10.1038/s41419-018-0635-5
10.1039/C9BM01354G
10.1016/S0016-5085(98)70034-4
10.1016/j.cell.2012.03.042
10.1089/ars.2014.6142
10.1242/jeb.132142
10.1002/anie.201712027
10.1016/j.canlet.2015.07.031
10.1039/D0NR03135F
10.1016/j.ccell.2014.11.019
10.1039/C8BM01042K
10.1007/BF01870891
10.1002/anie.201510748
10.1074/jbc.M504604200
10.1016/j.ijpharm.2019.118782
10.1016/j.celrep.2017.02.054
10.1039/D0NR03661G
10.1111/cbdd.13621
10.1186/s13046-019-1459-6
10.7150/thno.46771
10.1016/j.bbagen.2020.129539
10.1016/j.jconrel.2018.01.034
10.1039/C9BM00797K
10.1016/j.mam.2008.08.004
10.1002/adfm.201904056
10.1021/cr400532z
10.1159/000485089
10.1021/jp2025413
10.1021/acs.nanolett.8b03905
10.1111/cas.14181
10.1038/s41565-019-0499-6
10.1002/smll.201904870
10.1093/jnci/88.3-4.193
10.1007/s00280-003-0609-9
10.1002/adma.201900730
10.3390/nu11081926
10.1039/C9NR03052B
10.3892/ol.2015.3879
10.1016/j.jconrel.2020.04.026
10.3390/antiox7050062
10.1111/cas.13309
10.2174/157340811796575308
10.1074/jbc.M807061200
10.1002/anie.200903924
10.1016/j.biomaterials.2020.120279
10.1016/j.bcp.2008.09.011
10.1093/jn/134.3.489
10.1016/j.ejmech.2019.02.065
10.1089/ars.2007.1901
10.1002/adhm.202000864
10.1016/j.jmb.2008.04.066
10.1016/j.freeradbiomed.2017.01.004
10.1021/bi00813a003
10.1016/j.canlet.2018.04.021
10.1021/acsnano.9b05493
10.1002/anie.201801378
10.1113/expphysiol.1997.sp004024
10.1155/2018/2469486
10.1016/j.bbagen.2019.01.007
10.1371/journal.pone.0054044
10.1016/j.mam.2008.05.005
10.1039/D0NR03138K
10.1039/C9TB02120E
10.1021/acsami.9b10685
10.1021/acsami.7b08347
10.1073/pnas.89.7.3070
10.1038/nature07733
10.1016/j.biopha.2018.05.117
10.18632/oncotarget.4945
10.3892/ijmm.2012.895
10.1016/j.tcb.2020.03.002
10.3389/fonc.2019.01525
10.1002/smll.202001251
10.1155/2012/736837
10.1002/iub.1756
10.1002/anie.201605509
10.7150/thno.28344
10.1021/acsnano.8b09387
10.1002/adfm.201906195
10.1021/acsnano.9b01665
10.1021/acsnano.0c03080
10.15252/embj.201696151
10.1186/s13045-019-0720-y
10.1016/j.pdpdt.2021.102418
10.1016/j.jconrel.2018.01.019
10.1016/j.bcp.2014.05.017
10.1038/s41389-017-0025-3
10.1016/j.freeradbiomed.2018.06.021
10.1038/s41598-019-54065-6
10.1074/jbc.M110.116210
10.1016/j.tiv.2011.12.004
10.1021/acsami.9b23325
10.1021/acs.bioconjchem.0c00209
10.1155/2013/972913
10.1016/j.cej.2021.130094
10.1007/s13402-019-00474-8
10.1016/j.biomaterials.2020.120457
10.1016/j.biomaterials.2019.119498
10.1124/jpet.102.040220
10.1016/j.biomaterials.2020.120329
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2021.121110
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 10_1016_j_biomaterials_2021_121110
S014296122100466X
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
7X8
7S9
L.6
ID FETCH-LOGICAL-c515t-7fde867d55e5a83a2ad2f39c70c687ee704a08f306cc79459068784789d2badb3
ISICitedReferencesCount 878
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701903900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sat Sep 27 19:56:26 EDT 2025
Sun Sep 28 07:59:08 EDT 2025
Tue Nov 18 21:28:32 EST 2025
Sat Nov 29 07:28:59 EST 2025
Fri Feb 23 02:43:55 EST 2024
Tue Oct 14 19:30:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ferroptosis
Nanomaterials
Reactive oxygen species
Glutathione depletion
Drug resistance
Cancer therapy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-7fde867d55e5a83a2ad2f39c70c687ee704a08f306cc79459068784789d2badb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1661-0201
PQID 2569615656
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636617083
proquest_miscellaneous_2569615656
crossref_citationtrail_10_1016_j_biomaterials_2021_121110
crossref_primary_10_1016_j_biomaterials_2021_121110
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_121110
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_121110
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Biomaterials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ballatori, Krance, Marchan, Hammond (bib168) 2009; 30
Yang, Li, Chen, Zhang, Qiao, Tan, Chen, Pan (bib11) 2020; 15
Zhu, Xiao, Zhang, Che, Shi, Shi, van Hest (bib64) 2020; 14
Liu, Wang, Zhang, Cheng, Yang, Xing, Xu, Dong, Zhang (bib76) 2019; 13
Li, Bey, Dong, Meng, Patra, Yan, Xie, Brekken, Barnett, Bornmann (bib222) 2011; 17
Liu, Zhen, Jin, Zhang, Sun, Zhang, Xu, Song, Wang, Liu, Zhang (bib102) 2018; 12
Ma, Chen, Wang, Lu, Zhu, Song, Yang, Wen, Xu, Hu (bib172) 2015; 368
Batten, Champness, Chen, Garcia-Martinez, Kitagawa, Ohrstrom, O'Keeffe, Suh, Reedijk (bib235) 2013; 85
Majumder, Dutta, Mookerjee, Choudhuri (bib145) 2006; 159
Zhong, Wang, Cheng, Tang, Zhan, Gong, Zhang, Hu, Liu, Yang (bib80) 2020; 30
Hu, Chen, Yang, Huang, Wu, Wu, Li, Yi, Xiao, Li (bib60) 2019; 11
Zhang, Lu, Gao, Li, Zhang, Ma, Wang, Tang (bib33) 2018; 57
Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib150) 2012; 149
Yang, Liu, Ma, Xu, Chen, Wang, Xiao, Li, Liang, Yu, Yu (bib108) 2021; 265
Wu, Chen, Gu, You, Sun (bib67) 2020; 12
Fu, Yang, Zhang, Liu, Du, Cao, Xu, Cui, Kang, Xue (bib70) 2020; 257
Li, Yan, Xu, Liu, Wu, Zhao (bib175) 2019; 19
Wang, Wang, Li, Tong, Wang, Huang, Xu, Huang, Li, Wu, Zhao, Yin (bib142) 2020; 12
Debiton, Madelmont, Legault, Barthomeuf (bib234) 2003; 51
Liu, Song, Zhang, Chan, Guo, Shen (bib251) 2020; 11
Song, Yang, Xu, Lu, Li, Ren, Liu, Wang, Zhu, Tan, Li (bib119) 2020; 254
Cao, Zhong, Wang, Chen, Tian, Zhang (bib58) 2020; 8
De Souza, Schmitz, Silva, De Oliveira, Nedel, Tasca, De Bem, Farina, Dafre (bib224) 2017; 42
Huang, Huang, Chen, Chen, Zeng, Xu, Huang, Luo, Xiao, Ding, Zhao (bib71) 2020; 399
Gu, An, He, Wu, Gao, Li, Chen, Cheng, Zhang, You (bib111) 2020; 189
Xiao, Lu, Feng, Dong, Cao, Zhang, Chen, Liu (bib104) 2020; 396
Zhou, Wu, Yang, Xu, Zhang, Dong, Qian, Sun (bib113) 2020; 6
Henderson, Ritchie, Mclaren, Chakravarty, Wolf (bib48) 2011; 71
Zou, Hu, Xu, Tong, Jing, Xi, Zhou, Lu, Wang, Yang (bib28) 2018; 41
Sun, Deng, Kang, Sun, Ren, Qu (bib31) 2020; 14
Ling, Chen, Riddell, Tao, Wang, Hollett, Lippard, Farokhzad, Shi, Wu (bib30) 2018; 18
Lian, Huang, Zhu, Fang, Zhao, Joseph, Li, Pellois, Zhou (bib122) 2018; 57
Stoner, Morse (bib230) 1997; 114
Pu, Zhou, Xiang, Wu, Yin, Yue, Yin, Li, Chen, Xu (bib121) 2020; 259
Lu (bib156) 2013; 1830
Laskar, Somani, Altwaijry, Mullin, Bowering, Warzecha, Keating, Tate, Leung, Dufes (bib14) 2018; 10
Ritchie, Walsh, Sansom, Henderson, Wolf (bib49) 2009; 106
Li, Wang, Yang, Lei, Yang, Liang, Chen, Xia, Wang, Tang (bib50) 2019; 38
Scire, Cianfruglia, Minnelli, Bartolini, Torquato, Principato, Galli, Armeni (bib39) 2019; 45
Galadari, Rahman, Pallichankandy, Thayyullathil (bib46) 2017; 104
Zhao, Wang, Wu, Wang, Gu, Chen, Jana, Wang, Xu, Guo, Chen, Feng, Liu (bib73) 2021; 60
Liu, Gong, Shen, He, Liang, Shu, Wang, Ma, Li, Zhang, Wu, Gong (bib95) 2021; 403
Doxsee, Gout, Kurita, Lo, Buckley, Wang, Xue, Karp, Cutz, Cunha (bib219) 2007; 67
Fletcher, Williams, Henderson, Norris, Haber (bib241) 2016; 26
Cruz, Mota, Ramos, Pires, Mendes, Silva, Nunes, Bonifacio, Serpa (bib129) 2020; 9
Wang, Liu, Sun, Dong, Kuang, Dong, He, Gai, Yang (bib100) 2020; 12
Deng, Liu, Wang, An, Gao, Wang, Zhao (bib90) 2019; 7
Brechbuhl, Kachadourian, Min, Chan, Day (bib213) 2012; 258
Wei, Huang, Jiang, Shen, Huang, Huang, Sun, Zhao (bib132) 2019; 169
Gong, Cheng, Yang, Betzer, Feng, Zhou, Li, Chen, Popovtzer, Liu (bib21) 2019; 31
Hu, Deng, Jia, Jin, Ji (bib248) 2020; 14
Fazzari, Balenko, Zacal, Singh (bib176) 2017; 10
Guo, Cheng, Zhao, Luo, Chen, Yuan (bib238) 2018; 16
Traverso, Ricciarelli, Nitti, Marengo, Furfaro, Pronzato, Marinari, Domenicotti (bib53) 2013; 2013
Chen, Wang, Zhang, Zhang, Liu, Zhang, Feng, Li, Wu, Gao, Yang (bib68) 2021; 266
Bannai, Tateishi (bib155) 1986; 89
Dixon, Patel, Welsch, Skouta, Lee, Hayano, Thomas, Gleason, Tatonetti, Slusher (bib220) 2014; 3
Gaucher, Boudier, Bonetti, Clarot, Leroy, Parent (bib35) 2018; 7
Zheng, Zhou, Zhu, Wang, Li, Chen, Chen, Che, Xie (bib197) 2018; 106
Wang, Li, Qiao, Hu, Liao, Chen, Wu, Wu, Zhao, Liu (bib135) 2018; 12
Dong, Feng, Hao, Li, Chen, Yang, Zhao, Liu (bib74) 2020; 6
An, Fan, Gu, Gao, Hossain, Sun (bib84) 2020; 321
Wang, Yang, Cho, Chueng, Zhang, Zhang, Lee (bib112) 2019; 224
Li, Dirisala, Ge, Wang, Yin, Ke, Toh, Xie, Matsumoto, Anraku (bib118) 2017; 56
Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang (bib97) 2018; 57
Larraufie, Yang, Jiang, Thomas, Slusher, Stockwell (bib218) 2015; 25
Zhu, Chen, Yang, Wu, Tian, Hao, Cao, Gao, Zhang (bib83) 2020; 12
Mateo, Morales, Avalos, Haza (bib205) 2014; 24
Kohler, Barrach, Neubert (bib191) 1970; 6
Mukherjee, Oclaonadh, Casey, Chambers (bib184) 2012; 26
Zhang, Gao, Ma, He, Du, Yang, Xie, Xie, Deng (bib249) 2021; 422
Zhang, Forman (bib164) 2009; 41
Poursaitidis, Wang, Crighton, Labuschagne, Mason, Cramer, Triplett, Roy, Pardo, Seckl (bib181) 2017; 18
Otsubo, Nosaki, Imamura, Ogata, Fujita, Sakata, Hirai, Toyokawa, Iwama, Harada (bib174) 2017; 108
Zhao, Wang, Li, Zhang, Yu, Wu, Zhao, Liu, Liu, Yu (bib106) 2019; 29
Catanzaro, Gaude, Orso, Giordano, Guzzo, Rasola, Ragazzi, Caparrotta, Frezza, Montopoli (bib190) 2015; 6
Luo, Zhou, Zhou, Xing, Cui, Sun, Jin, Lu, Jiang (bib130) 2018; 274
Arora, Jain, Rajwade, Paknikar (bib185) 2008; 179
He, Du, Guo, An, Lu, Chen, Wang, Zhong, Shen, Wu, Shuai (bib139) 2020; 16
Shi, Wang, You, Akhtar, Liu, Han, Li, Wang (bib89) 2019; 11
Chen, Zhou, Chen, Luo, Xu, Song (bib20) 2019; 11
Chen, Kuo (bib148) 2010; 2010
Franco, Dehaven, Sifre, Bortner, Cidlowski (bib16) 2008; 283
Hatemelie (bib6) 2017; 27
Lorendeau, Dury, Genouxbastide, Lecerfschmidt, Simoespires, Carrupt, Terreux, Magnard, Pietro, Boumendjel (bib215) 2014; 90
Liu, Wang, Shenvi, Hagen, Liu (bib44) 2004; 1019
Wu, Zhang, Chen, Yu, Ma, Liu (bib131) 2019; 167
Leslie, Deeley, Cole (bib210) 2003; 31
Wan, Cheng, Zeng, Zhang (bib57) 2019; 13
Pathania, Bhatia, Baldi, Singh, Rawal (bib25) 2018; 105
Shen, Ma, Huang, Chen, Xu, Li, Meng, Fan, Xi, Yan, Koo, Yang, Jiang, Gao (bib250) 2020; 35
Pompella, De Tata, Paolicchi, Zunino (bib228) 2006; 71
Liu, Zhou, Liu, Li, Huang, Qian, Sun (bib59) 2019; 7
Li, Zhao, Gong, Wang, Jiang, Cheng, Liu, Wu, Bu (bib72) 2020; 59
Cheng, Yang, Zhang, Zhang, Cao, Liu, Lu, Dong, Zhang (bib116) 2019; 29
Li, Wu, Zhang, Chen (bib223) 2018; 129
Xu, Han, Li, Min, Zhao, Zhang, Qi, Shi, Qi, Bao (bib29) 2019; 13
Mena, Benlloch, Ortega, Carretero, Obrador, Asensi, Petschen, Brown, Estrela (bib194) 2007; 13
Luo, Han, Zhao, Pan, Tian, Ding, Zhang (bib12) 2019; 215
Kwiatkowska, Wojtala, Gajewska, Soszynski, Bartosz, Sadowskabartosz (bib200) 2016; 48
Liu, Guo, Zeng, Ye, Wang, Li, Sun, Cheng, Zhang (bib87) 2020; 30
Hu, Wang, Zhou, Wei (bib161) 2020; 209
An, Gao, Sun, Gu, Wu, You, Li, Cheng, Zhang, Wang (bib140) 2019; 11
Liu, Liu, Liu, Du, Wang, He (bib153) 2019; 382
He, He, Farrar, Ji, Liu, Ma (bib7) 2017; 44
Xie, Liang, Cai, Ding, Huang, Hou, Ma, Cheng, Lin (bib77) 2019; 11
Badgley, Kremer, Maurer, DelGiorno, Lee, Purohit, Sagalovskiy, Ma, Kapilian, Firl, Decker, Sastra, Palermo, Andrade, Sajjakulnukit, Zhang, Tolstyka, Hirschhorn, Lamb, Liu, Gu, Seeley, Stone, Georgiou, Manor, Iuga, Wahl, Stockwell, Lyssiotis, Olive (bib180) 2020; 368
Shi, Zhao, Li, Pan, Ma, Ding (bib199) 2015; 35
Zhou, Niu, Wu, Luo, Fu, Zhao, Quan, Pan, Wu (bib236) 2020; 10
Farina, Aschner (bib23) 2019; 1863
Lan, Liu, Zeng, Qin, Hou, Xie, Yue, Yang, Ho, Ding, Zhang (bib92) 2020; 407
Bohme, Thaens, Schramm, Paschke, Schuurmann (bib231) 2010; 23
Zhou, Li, Cheng, Zhang, Sun, Du, Cao, Liu, Huang (bib62) 2020; 8
Li, Li, Shi, Ahmed, Liu, Guo, Tang, Guo, Zhang (bib198) 2020; 9
Zhu, Chu, Li, Pang, Zheng, Wang, Shi, Zhang, Cheng, Ren (bib110) 2019; 29
Krejsa, Franklin, White, Ledbetter, Schieven, Kavanagh (bib159) 2010; 285
Shen, Xia, Ma, Zhu, Gao, Han, Liang, Cao, Sun (bib107) 2020; 10
Gao, Liu, Wei, Liu, Xu, Guo, Li, Jiang, Wu (bib196) 2012; 29
Zhang, Pavlova, Thompson (bib157) 2017; 36
Loschen, Flohe, Chance (bib3) 1971; 18
Orlowski, Meister (bib165) 1970; 67
Lu (bib41) 2009; 30
Chen, Shertzer, Schneider, Nebert, Dalton (bib158) 2005; 280
Tao, Ren, Yi, Zhou, Xiong, Ge, Chen, Yang (bib75) 2019; 36
Schieber, Chandel (bib52) 2014; 24
Tang, Li, Zhang, Zheng, Cheng, Zhu, Chen, Zhu, Piao, Li (bib137) 2020; 10
Lewerenz, Hewett, Huang, Lambros, Gout, Kalivas, Massie, Smolders, Methner, Pergande, Smith, Ganapathy, Maher (bib154) 2013; 18
Wu, Guo, Qiu, Lin, Yao, Lian, Lin, Song, Yang (bib114) 2019; 10
Zhang, Chen, Jiang, Ma, Xia, Cheng, Jia, Liu, Gu, Chen (bib204) 2018; 10
Raineri, Levy (bib192) 1970; 9
Zhang, Tan, Daniels, Zandkarimi, Liu, Brown, Uchida, Oconnor, Stockwell (bib171) 2019; 26
del Valle, Yeh, Huang (bib138) 2020; 9
Liao, Xiang, Wang, Wang, Ding (bib189) 2017; 95
Godwin, Meister, Odwyer, Huang, Hamilton, Anderson (bib26) 1992; 89
Li, Yang, Xu (bib13) 2019; 27
Allocati, Masulli, Di Ilio, Federici (bib37) 2018; 7
Wang, Wu, Yang, Qian, Gu, Wang, Zhou, Liu, Wu, Zhang, Guo, Chen, Jana, Zhao (bib63) 2020; 14
Wu, Fang, Yang, Lupton, Turner (bib8) 2004; 134
Ju, Dong, Chen, Liu, Liu, Huang, Wang, Pu, Ren, Qu (bib22) 2016; 55
Fatehihassanabad, Chan, Furman (bib43) 2010; 636
Salerno, Loechariyakul, Saengkhae, Garniersuillerot (bib217) 2004; 68
Jiang, Du, Zheng (bib24) 2019; 14
Jawaid, Rehman, Zhao, Misawa, Ishikawa, Hori, Shimizu, Saitoh, Noguchi, Kondo (bib120) 2020; 6
Zhang, Meng, Yang, Dong, Zhang (bib82) 2020; 258
Mou, Wang, Wu, He, Zhang, Duan, Li (bib151) 2019; 12
Wu, Liu, Ren, Qu (bib141) 2019; 15
Gupta, Kim, Kim, Srivastava (bib229) 2014; 58
Gong, Chen, Yang, Dong, Tian, Hao, Zhuo, Liu, Chen, Cheng (bib99) 2020; 30
Wang, Cao, Ruan, Jia, Zhen, Jiang (bib115) 2019; 58
Hochwald, Harrison, Rose, Anderson, Burt (bib226) 1996; 88
Joycebrady, Hiratake (bib227) 2011; 7
Walters, Cho, Kleeberger (bib45) 2008; 10
Lu, Pokharel, Bebawy (bib240) 2015; 47
Harris, DeNicola (bib47) 2020; 30
Raza, Hayat, Rasheed, Bilal, Iqbal (bib9) 2018; 157
Bachhawat, Yadav (bib166) 2018; 70
Cao, Li, Gao, Li, Li, Cao, Dai, Mao, Wang, Tai (bib69) 2020; 49
Gamcsik, Kasibhatla, Teeter, Colvin (bib147) 2012; 17
Tang, Chen, Li, Zheng, Wu, Zhang, Song, Fei (bib134) 2019; 572
Diehn, Cho, Lobo, Kalisky,
Liu (10.1016/j.biomaterials.2021.121110_bib102) 2018; 12
Bannai (10.1016/j.biomaterials.2021.121110_bib155) 1986; 89
Xu (10.1016/j.biomaterials.2021.121110_bib29) 2019; 13
Zou (10.1016/j.biomaterials.2021.121110_bib28) 2018; 41
Prisant (10.1016/j.biomaterials.2021.121110_bib243) 2001; 3
Fu (10.1016/j.biomaterials.2021.121110_bib81) 2019; 29
Armstrong (10.1016/j.biomaterials.2021.121110_bib239) 2002; 9
Dong (10.1016/j.biomaterials.2021.121110_bib96) 2019; 19
Wang (10.1016/j.biomaterials.2021.121110_bib135) 2018; 12
Wang (10.1016/j.biomaterials.2021.121110_bib177) 2018; 428
Sies (10.1016/j.biomaterials.2021.121110_bib5) 1997; 82
Wang (10.1016/j.biomaterials.2021.121110_bib55) 2019; 13
Zhao (10.1016/j.biomaterials.2021.121110_bib225) 2009; 47
Lash (10.1016/j.biomaterials.2021.121110_bib162) 2002; 303
Lin (10.1016/j.biomaterials.2021.121110_bib97) 2018; 57
Stoner (10.1016/j.biomaterials.2021.121110_bib230) 1997; 114
Yu (10.1016/j.biomaterials.2021.121110_bib10) 2018; 9
Leslie (10.1016/j.biomaterials.2021.121110_bib210) 2003; 31
Gaucher (10.1016/j.biomaterials.2021.121110_bib35) 2018; 7
Galadari (10.1016/j.biomaterials.2021.121110_bib46) 2017; 104
Li (10.1016/j.biomaterials.2021.121110_bib118) 2017; 56
Shen (10.1016/j.biomaterials.2021.121110_bib107) 2020; 10
Fan (10.1016/j.biomaterials.2021.121110_bib19) 2016; 55
Walters (10.1016/j.biomaterials.2021.121110_bib45) 2008; 10
Li (10.1016/j.biomaterials.2021.121110_bib223) 2018; 129
Cheng (10.1016/j.biomaterials.2021.121110_bib116) 2019; 29
Gamcsik (10.1016/j.biomaterials.2021.121110_bib147) 2012; 17
Guo (10.1016/j.biomaterials.2021.121110_bib238) 2018; 16
Barrett (10.1016/j.biomaterials.2021.121110_bib51) 2013; 73
Ju (10.1016/j.biomaterials.2021.121110_bib22) 2016; 55
Barattin (10.1016/j.biomaterials.2021.121110_bib209) 2010; 18
Zhou (10.1016/j.biomaterials.2021.121110_bib236) 2020; 10
Ma (10.1016/j.biomaterials.2021.121110_bib172) 2015; 368
Zhou (10.1016/j.biomaterials.2021.121110_bib62) 2020; 8
Li (10.1016/j.biomaterials.2021.121110_bib72) 2020; 59
Bachhawat (10.1016/j.biomaterials.2021.121110_bib166) 2018; 70
De Souza (10.1016/j.biomaterials.2021.121110_bib224) 2017; 42
Schieber (10.1016/j.biomaterials.2021.121110_bib52) 2014; 24
Tang (10.1016/j.biomaterials.2021.121110_bib221) 2015; 22
Hu (10.1016/j.biomaterials.2021.121110_bib60) 2019; 11
Fu (10.1016/j.biomaterials.2021.121110_bib70) 2020; 257
Otsubo (10.1016/j.biomaterials.2021.121110_bib174) 2017; 108
Li (10.1016/j.biomaterials.2021.121110_bib13) 2019; 27
Zhang (10.1016/j.biomaterials.2021.121110_bib91) 2020; 12
Pu (10.1016/j.biomaterials.2021.121110_bib121) 2020; 259
Wu (10.1016/j.biomaterials.2021.121110_bib131) 2019; 167
Gupta (10.1016/j.biomaterials.2021.121110_bib229) 2014; 58
Min (10.1016/j.biomaterials.2021.121110_bib93) 2019; 31
Zhang (10.1016/j.biomaterials.2021.121110_bib249) 2021; 422
Zhu (10.1016/j.biomaterials.2021.121110_bib83) 2020; 12
Wu (10.1016/j.biomaterials.2021.121110_bib114) 2019; 10
Cole (10.1016/j.biomaterials.2021.121110_bib242) 2014; 289
Meng (10.1016/j.biomaterials.2021.121110_bib136) 2019; 19
Wei (10.1016/j.biomaterials.2021.121110_bib246) 2020; 1864
Zhang (10.1016/j.biomaterials.2021.121110_bib82) 2020; 258
Hochwald (10.1016/j.biomaterials.2021.121110_bib226) 1996; 88
Salerno (10.1016/j.biomaterials.2021.121110_bib217) 2004; 68
Hu (10.1016/j.biomaterials.2021.121110_bib161) 2020; 209
Lewerenz (10.1016/j.biomaterials.2021.121110_bib154) 2013; 18
Mukherjee (10.1016/j.biomaterials.2021.121110_bib184) 2012; 26
Majumder (10.1016/j.biomaterials.2021.121110_bib145) 2006; 159
Jawaid (10.1016/j.biomaterials.2021.121110_bib120) 2020; 6
Piao (10.1016/j.biomaterials.2021.121110_bib187) 2011; 201
Liao (10.1016/j.biomaterials.2021.121110_bib189) 2017; 95
Gu (10.1016/j.biomaterials.2021.121110_bib111) 2020; 189
Jiang (10.1016/j.biomaterials.2021.121110_bib24) 2019; 14
Wang (10.1016/j.biomaterials.2021.121110_bib115) 2019; 58
Lan (10.1016/j.biomaterials.2021.121110_bib92) 2020; 407
Deng (10.1016/j.biomaterials.2021.121110_bib90) 2019; 7
Desideri (10.1016/j.biomaterials.2021.121110_bib167) 2019; 11
Zheng (10.1016/j.biomaterials.2021.121110_bib197) 2018; 106
Lee (10.1016/j.biomaterials.2021.121110_bib15) 2010; 24
Dixon (10.1016/j.biomaterials.2021.121110_bib220) 2014; 3
Zhang (10.1016/j.biomaterials.2021.121110_bib157) 2017; 36
Shi (10.1016/j.biomaterials.2021.121110_bib199) 2015; 35
Zhao (10.1016/j.biomaterials.2021.121110_bib73) 2021; 60
Wu (10.1016/j.biomaterials.2021.121110_bib152) 2019; 572
Scire (10.1016/j.biomaterials.2021.121110_bib39) 2019; 45
Sun (10.1016/j.biomaterials.2021.121110_bib31) 2020; 14
Hu (10.1016/j.biomaterials.2021.121110_bib248) 2020; 14
Fatehihassanabad (10.1016/j.biomaterials.2021.121110_bib43) 2010; 636
Lu (10.1016/j.biomaterials.2021.121110_bib41) 2009; 30
Xie (10.1016/j.biomaterials.2021.121110_bib77) 2019; 11
Catanzaro (10.1016/j.biomaterials.2021.121110_bib190) 2015; 6
Dong (10.1016/j.biomaterials.2021.121110_bib85) 2020; 32
Zhu (10.1016/j.biomaterials.2021.121110_bib178) 2020; 27
Chen (10.1016/j.biomaterials.2021.121110_bib158) 2005; 280
Loschen (10.1016/j.biomaterials.2021.121110_bib3) 1971; 18
Wu (10.1016/j.biomaterials.2021.121110_bib67) 2020; 12
Badgley (10.1016/j.biomaterials.2021.121110_bib180) 2020; 368
He (10.1016/j.biomaterials.2021.121110_bib139) 2020; 16
Wu (10.1016/j.biomaterials.2021.121110_bib141) 2019; 15
Wan (10.1016/j.biomaterials.2021.121110_bib57) 2019; 13
Dong (10.1016/j.biomaterials.2021.121110_bib74) 2020; 6
Wu (10.1016/j.biomaterials.2021.121110_bib8) 2004; 134
Cheng (10.1016/j.biomaterials.2021.121110_bib143) 2014; 114
Hatemelie (10.1016/j.biomaterials.2021.121110_bib6) 2017; 27
Gao (10.1016/j.biomaterials.2021.121110_bib196) 2012; 29
Han (10.1016/j.biomaterials.2021.121110_bib126) 2018; 273
Raineri (10.1016/j.biomaterials.2021.121110_bib192) 1970; 9
Harris (10.1016/j.biomaterials.2021.121110_bib47) 2020; 30
Zhang (10.1016/j.biomaterials.2021.121110_bib204) 2018; 10
Yin (10.1016/j.biomaterials.2021.121110_bib195) 2017; 9
Munro (10.1016/j.biomaterials.2021.121110_bib2) 2017; 220
Csala (10.1016/j.biomaterials.2021.121110_bib163) 2001; 287
Tao (10.1016/j.biomaterials.2021.121110_bib75) 2019; 36
Arora (10.1016/j.biomaterials.2021.121110_bib185) 2008; 179
Lian (10.1016/j.biomaterials.2021.121110_bib122) 2018; 57
Debiton (10.1016/j.biomaterials.2021.121110_bib234) 2003; 51
Gong (10.1016/j.biomaterials.2021.121110_bib99) 2020; 30
Zhu (10.1016/j.biomaterials.2021.121110_bib64) 2020; 14
Tang (10.1016/j.biomaterials.2021.121110_bib134) 2019; 572
An (10.1016/j.biomaterials.2021.121110_bib140) 2019; 11
Dixon (10.1016/j.biomaterials.2021.121110_bib150) 2012; 149
Allison (10.1016/j.biomaterials.2021.121110_bib18) 2010; 7
Yang (10.1016/j.biomaterials.2021.121110_bib117) 2018; 28
Tenório (10.1016/j.biomaterials.2021.121110_bib244) 2021; 10
Mele (10.1016/j.biomaterials.2021.121110_bib188) 2018; 9
Wang (10.1016/j.biomaterials.2021.121110_bib100) 2020; 12
Wang (10.1016/j.biomaterials.2021.121110_bib63) 2020; 14
Yu (10.1016/j.biomaterials.2021.121110_bib170) 2019; 110
Hoyle (10.1016/j.biomaterials.2021.121110_bib233) 2010; 49
Wang (10.1016/j.biomaterials.2021.121110_bib112) 2019; 224
Ballatori (10.1016/j.biomaterials.2021.121110_bib168) 2009; 30
Liu (10.1016/j.biomaterials.2021.121110_bib79) 2020; 11
del Valle (10.1016/j.biomaterials.2021.121110_bib138) 2020; 9
Liu (10.1016/j.biomaterials.2021.121110_bib87) 2020; 30
Luo (10.1016/j.biomaterials.2021.121110_bib12) 2019; 215
Liu (10.1016/j.biomaterials.2021.121110_bib59) 2019; 7
Bao (10.1016/j.biomaterials.2021.121110_bib206) 2020; 152
Sang (10.1016/j.biomaterials.2021.121110_bib32) 2020; 142
Carlson (10.1016/j.biomaterials.2021.121110_bib186) 2008; 112
Zheng (10.1016/j.biomaterials.2021.121110_bib86) 2020; 12
Joycebrady (10.1016/j.biomaterials.2021.121110_bib227) 2011; 7
Li (10.1016/j.biomaterials.2021.121110_bib193) 2019; 234
Zheng (10.1016/j.biomaterials.2021.121110_bib173) 2020; 43
Hu (10.1016/j.biomaterials.2021.121110_bib109) 2020; 31
Harris (10.1016/j.biomaterials.2021.121110_bib54) 2015; 27
Mena (10.1016/j.biomaterials.2021.121110_bib194) 2007; 13
Li (10.1016/j.biomaterials.2021.121110_bib198) 2020; 9
Bi (10.1016/j.biomaterials.2021.121110_bib179) 2019; 10
Orlowski (10.1016/j.biomaterials.2021.121110_bib165) 1970; 67
Brechbuhl (10.1016/j.biomaterials.2021.121110_bib213) 2012; 258
Cruz (10.1016/j.biomaterials.2021.121110_bib129) 2020; 9
Pathania (10.1016/j.biomaterials.2021.121110_bib25) 2018; 105
Kohler (10.1016/j.biomaterials.2021.121110_bib191) 1970; 6
Lu (10.1016/j.biomaterials.2021.121110_bib240) 2015; 47
Cao (10.1016/j.biomaterials.2021.121110_bib69) 2020; 49
Laskar (10.1016/j.biomaterials.2021.121110_bib14) 2018; 10
Sies (10.1016/j.biomaterials.2021.121110_bib4) 1985
Lv (10.1016/j.biomaterials.2021.121110_bib17) 2019
Li (10.1016/j.biomaterials.2021.121110_bib50) 2019; 38
Mou (10.1016/j.biomaterials.2021.121110_bib151) 2019; 12
Ling (10.1016/j.biomaterials.2021.121110_bib30) 2018; 18
Sarkhoshinanlou (10.1016/j.biomaterials.2021.121110_bib123) 2020; 95
Bansal (10.1016/j.biomaterials.2021.121110_bib40) 2018; 217
Li (10.1016/j.biomaterials.2021.121110_bib175) 2019; 19
Huang (10.1016/j.biomaterials.2021.121110_bib71) 2020; 399
Bohme (10.1016/j.biomaterials.2021.121110_bib231) 2010; 23
Lu (10.1016/j.biomaterials.2021.121110_bib156) 2013; 1830
Ling (10.1016/j.biomaterials.2021.121110_bib125) 2019; 13
Tian (10.1016/j.biomaterials.2021.121110_bib88) 2019; 55
Wan (10.1016/j.biomaterials.2021.121110_bib105) 2019; 58
Chen (10.1016/j.biomaterials.2021.121110_bib20) 2019; 11
Cole (10.1016/j.biomaterials.2021.121110_bib38) 2006; 27
Shi (10.1016/j.biomaterials.2021.121110_bib89) 2019; 11
Zhong (10.1016/j.biomaterials.2021.121110_bib80) 2020; 30
Li (10.1016/j.biomaterials.2021.121110_bib222) 2011; 17
Poursaitidis (10.1016/j.biomaterials.2021.121110_bib181) 2017; 18
Zhou (10.1016/j.biomaterials.2021.121110_bib113) 2020; 6
Chen (10.1016/j.biomaterials.2021.121110_bib148) 2010; 2010
Zhao (10.1016/j.biomaterials.2021.121110_bib106) 2019; 29
Huang (10.1016/j.biomaterials.2021.121110_bib78) 2020; 380
Wang (10.1016/j.biomaterials.2021.121110_bib142) 2020; 12
Liu (10.1016/j.biomaterials.2021.12111
References_xml – volume: 14
  start-page: 11225
  year: 2020
  end-page: 11237
  ident: bib64
  article-title: Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy
  publication-title: ACS Nano
– volume: 57
  start-page: 4902
  year: 2018
  end-page: 4906
  ident: bib97
  article-title: Simultaneous fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 1808200
  year: 2019
  ident: bib93
  article-title: Biomimetic metal–organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy
  publication-title: Adv. Mater.
– volume: 380
  start-page: 122369
  year: 2020
  ident: bib78
  article-title: Three birds with one stone: a ferric pyrophosphate based nanoagent for synergetic NIR-triggered photo/chemodynamic therapy with glutathione depletion
  publication-title: Chem. Eng. J.
– volume: 382
  start-page: 160
  year: 2019
  end-page: 180
  ident: bib153
  article-title: Nanomaterial-induced ferroptosis for cancer specific therapy
  publication-title: Coord. Chem. Rev.
– volume: 29
  start-page: 649
  year: 2012
  end-page: 655
  ident: bib196
  article-title: Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells
  publication-title: Int. J. Mol. Med.
– volume: 18
  start-page: 6265
  year: 2010
  end-page: 6274
  ident: bib209
  article-title: Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1
  publication-title: Bioorg. Med. Chem.
– volume: 283
  start-page: 36071
  year: 2008
  end-page: 36087
  ident: bib16
  article-title: Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis
  publication-title: J. Biol. Chem.
– volume: 8
  year: 2013
  ident: bib183
  article-title: Purine nucleoside analog-sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines
  publication-title: PloS One
– volume: 12
  start-page: 15767
  year: 2020
  end-page: 15774
  ident: bib142
  article-title: Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy
  publication-title: Nanoscale
– volume: 10
  start-page: 321
  year: 2008
  end-page: 332
  ident: bib45
  article-title: Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2
  publication-title: Antioxidants Redox Signal.
– volume: 19
  start-page: 323
  year: 2019
  end-page: 333
  ident: bib175
  article-title: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway
  publication-title: Oncol. Lett.
– volume: 73
  start-page: 1245
  year: 2013
  end-page: 1255
  ident: bib51
  article-title: Tumor suppressor function of the plasma glutathione peroxidase Gpx 3 in colitis-associated carcinoma
  publication-title: Canc. Res.
– volume: 11
  start-page: 8495
  year: 2020
  end-page: 8501
  ident: bib251
  article-title: A ratiometric fluorescent probe for real-time monitoring of intracellular glutathione fluctuations in response to cisplatin
  publication-title: Chem. Sci.
– volume: 396
  start-page: 125294
  year: 2020
  ident: bib104
  article-title: Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 671
  year: 2012
  end-page: 691
  ident: bib147
  article-title: Glutathione levels in human tumors
  publication-title: Biomarkers
– volume: 368
  start-page: 85
  year: 2020
  end-page: +
  ident: bib180
  article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice
  publication-title: Science
– volume: 50
  start-page: 2424
  year: 2007
  end-page: 2431
  ident: bib232
  article-title: Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin
  publication-title: J. Mater. Chem.
– volume: 35
  start-page: 102418
  year: 2021
  ident: bib247
  article-title: Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: a redox and pH-responsive antimicrobial agent with photocatalytic activity
  publication-title: Photodiagn. Photodyn.
– volume: 41
  start-page: 989
  year: 2018
  end-page: 998
  ident: bib28
  article-title: Glutathione S-transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer
  publication-title: Oncol. Rep.
– volume: 73
  start-page: 1727
  year: 2007
  end-page: 1737
  ident: bib211
  article-title: Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress
  publication-title: Biochem. Pharmacol.
– volume: 10
  start-page: 967
  year: 2021
  ident: bib244
  article-title: N-acetylcysteine (NAC): impacts on human health
  publication-title: Antioxidants
– volume: 368
  start-page: 88
  year: 2015
  end-page: 96
  ident: bib172
  article-title: Xc - inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism
  publication-title: Canc. Lett.
– volume: 57
  start-page: 5725
  year: 2018
  end-page: 5730
  ident: bib122
  article-title: Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 572
  start-page: 402
  year: 2019
  end-page: 406
  ident: bib152
  article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling
  publication-title: Nature
– volume: 176
  start-page: 108207
  year: 2020
  ident: bib182
  article-title: Lowering glutathione level by buthionine sulfoximine enhances in vivo photodynamic therapy using chlorin e6-loaded nanoparticles
  publication-title: Dyes Pigments
– volume: 24
  start-page: 2533
  year: 2010
  end-page: 2545
  ident: bib15
  article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases
  publication-title: Faseb. J.
– volume: 49
  start-page: 1540
  year: 2010
  end-page: 1573
  ident: bib233
  article-title: Thiol–ene click chemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 347
  year: 2020
  end-page: 359
  ident: bib248
  article-title: Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms
  publication-title: ACS Nano
– volume: 12
  start-page: 12380
  year: 2018
  end-page: 12392
  ident: bib135
  article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics
  publication-title: ACS Nano
– volume: 30
  start-page: 42
  year: 2009
  end-page: 59
  ident: bib41
  article-title: Regulation of glutathione synthesis
  publication-title: Mol. Aspect. Med.
– volume: 8
  start-page: 9251
  year: 2020
  end-page: 9257
  ident: bib62
  article-title: A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion
  publication-title: J. Mater. Chem. B
– volume: 18
  start-page: 522
  year: 2013
  end-page: 555
  ident: bib154
  article-title: The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities
  publication-title: Antioxidants Redox Signal.
– volume: 7
  start-page: 5359
  year: 2019
  end-page: 5368
  ident: bib59
  article-title: H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy
  publication-title: Biomater. Sci.
– volume: 14
  start-page: 13500
  year: 2020
  end-page: 13511
  ident: bib63
  article-title: Metal–organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy
  publication-title: ACS Nano
– volume: 12
  start-page: 17319
  year: 2020
  end-page: 17331
  ident: bib67
  article-title: A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy
  publication-title: Nanoscale
– volume: 29
  start-page: 1905013
  year: 2019
  ident: bib106
  article-title: Reactive oxygen species–activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies
  publication-title: Adv. Funct. Mater.
– volume: 114
  start-page: 113
  year: 1997
  end-page: 119
  ident: bib230
  article-title: Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer
  publication-title: Canc. Lett.
– volume: 24
  start-page: R453
  year: 2014
  end-page: R462
  ident: bib52
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
– volume: 179
  start-page: 93
  year: 2008
  end-page: 100
  ident: bib185
  article-title: Cellular responses induced by silver nanoparticles: in vitro studies
  publication-title: Toxicol. Lett.
– volume: 55
  start-page: 12956
  year: 2019
  end-page: 12959
  ident: bib66
  article-title: A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion
  publication-title: Chem. Commun.
– volume: 273
  start-page: 30
  year: 2018
  end-page: 39
  ident: bib126
  article-title: Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers
  publication-title: J. Contr. Release
– volume: 130
  start-page: 346
  year: 2017
  end-page: 353
  ident: bib214
  article-title: Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity
  publication-title: Eur. J. Med. Chem.
– volume: 12
  start-page: 5680
  year: 2020
  end-page: 5694
  ident: bib91
  article-title: Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH
  publication-title: ACS Appl. Mater. Interfaces
– volume: 266
  start-page: 120457
  year: 2021
  ident: bib68
  article-title: A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy
  publication-title: Biomaterials
– volume: 10
  start-page: 9865
  year: 2020
  end-page: 9887
  ident: bib137
  article-title: Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis
  publication-title: Theranostics
– volume: 47
  start-page: 493
  year: 2015
  end-page: 506
  ident: bib201
  article-title: 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system
  publication-title: J. Bioenerg. Biomembr.
– volume: 31
  start-page: 1900730
  year: 2019
  ident: bib21
  article-title: Ultrasmall oxygen‐deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy
  publication-title: Adv. Mater.
– volume: 31
  start-page: 2006216
  year: 2021
  ident: bib103
  article-title: An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1525
  year: 2020
  ident: bib198
  article-title: Involvement of glutathione depletion in selective cytotoxicity of oridonin to p53-mutant esophageal squamous carcinoma cells
  publication-title: Front. Oncol.
– volume: 189
  start-page: 110810
  year: 2020
  ident: bib111
  article-title: A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy
  publication-title: Colloids Surf., B
– volume: 18
  start-page: 4618
  year: 2018
  end-page: 4625
  ident: bib30
  article-title: Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance
  publication-title: Nano Lett.
– volume: 58
  start-page: 1685
  year: 2014
  end-page: 1707
  ident: bib229
  article-title: Molecular targets of isothiocyanates in cancer: recent advances
  publication-title: Mol. Nutr. Food Res.
– volume: 251
  start-page: 120079
  year: 2020
  ident: bib101
  article-title: A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy
  publication-title: Biomaterials
– volume: 12
  start-page: 4886
  year: 2018
  end-page: 4893
  ident: bib102
  article-title: All-in-One theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication
  publication-title: ACS Nano
– volume: 7
  start-page: 429
  year: 2019
  end-page: 441
  ident: bib90
  article-title: Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production
  publication-title: Biomater. Sci.
– volume: 85
  start-page: 1715
  year: 2013
  end-page: 1724
  ident: bib235
  article-title: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)
  publication-title: Pure Appl. Chem.
– volume: 43
  start-page: 95
  year: 2020
  end-page: 106
  ident: bib173
  article-title: The Xc− inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism
  publication-title: Cell. Oncol.
– volume: 9
  start-page: 2233
  year: 1970
  end-page: 2243
  ident: bib192
  article-title: On the specificity of steroid interaction with mammary glucose 6-phosphate dehydrogenase
  publication-title: Biochemistry
– volume: 170
  start-page: 293
  year: 2018
  end-page: 302
  ident: bib133
  article-title: Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: the depletion of intracellular GSH contents arouses chemosensitizing effects
  publication-title: Colloids Surf., B
– volume: 56
  start-page: 14025
  year: 2017
  end-page: 14030
  ident: bib118
  article-title: Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation
  publication-title: Angew. Chem. Int. Ed.
– volume: 157
  start-page: 705
  year: 2018
  end-page: 715
  ident: bib9
  article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems
  publication-title: Eur. J. Med. Chem.
– volume: 27
  start-page: 423
  year: 2019
  end-page: 433
  ident: bib13
  article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy
  publication-title: J. Drug Target.
– volume: 10
  start-page: 9132
  year: 2020
  end-page: 9152
  ident: bib107
  article-title: Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy
  publication-title: Theranostics
– volume: 234
  start-page: 7384
  year: 2019
  end-page: 7394
  ident: bib193
  article-title: Exogenous glutathione improves intracellular glutathione synthesis via the gamma-glutamyl cycle in bovine zygotes and cleavage embryos
  publication-title: J. Cell. Physiol.
– volume: 67
  start-page: 1248
  year: 1970
  end-page: 1255
  ident: bib165
  article-title: The gamma-glutamyl cycle: a possible transport system for amino acids
  publication-title: P. Natl. Acad. Sci. USA
– volume: 16
  start-page: 2001251
  year: 2020
  ident: bib139
  article-title: Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy
  publication-title: Small
– volume: 30
  start-page: 1907954
  year: 2020
  ident: bib80
  article-title: GSH‐Depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib241
  article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology
  publication-title: Drug Resist. Updates
– volume: 258
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib213
  article-title: Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 13
  start-page: 6879
  year: 2019
  end-page: 6890
  ident: bib55
  article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal–organic framework
  publication-title: ACS Nano
– volume: 124
  start-page: 10
  year: 2017
  end-page: 18
  ident: bib212
  article-title: Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1
  publication-title: Biochem. Pharmacol.
– volume: 141
  start-page: 849
  year: 2019
  end-page: 857
  ident: bib34
  article-title: Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy
  publication-title: J. Am. Chem. Soc.
– volume: 422
  start-page: 130094
  year: 2021
  ident: bib249
  article-title: Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 22830
  year: 2018
  end-page: 22847
  ident: bib14
  article-title: Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells
  publication-title: Nanoscale
– volume: 38
  start-page: 438
  year: 2019
  ident: bib50
  article-title: GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway
  publication-title: J. Exp. Clin. Canc. Res.
– volume: 380
  start-page: 131
  year: 2008
  end-page: 144
  ident: bib146
  article-title: The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants
  publication-title: J. Mol. Biol.
– volume: 70
  start-page: 585
  year: 2018
  end-page: 592
  ident: bib166
  article-title: The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle
  publication-title: IUBMB Life
– volume: 115
  start-page: 1541
  year: 1998
  end-page: 1551
  ident: bib42
  article-title: Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor
  publication-title: Gastroenterology
– volume: 9
  start-page: 133
  year: 2020
  ident: bib129
  article-title: Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance
  publication-title: Antioxidants
– volume: 303
  start-page: 476
  year: 2002
  end-page: 486
  ident: bib162
  article-title: Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter
  publication-title: J. Pharmacol. Exp. Therapeut.
– volume: 399
  start-page: 125667
  year: 2020
  ident: bib71
  article-title: Bone-targeted oxidative stress nanoamplifier for synergetic chemo/chemodynamic therapy of bone metastases through increasing generation and reducing elimination of ROS
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 273
  year: 2017
  end-page: 280
  ident: bib224
  article-title: Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells
  publication-title: Toxicol. Vitro
– volume: 19
  start-page: 805
  year: 2019
  end-page: 815
  ident: bib96
  article-title: Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy
  publication-title: Nano Lett.
– volume: 58
  start-page: 9846
  year: 2019
  end-page: 9850
  ident: bib115
  article-title: Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu‐TCPP nanosheets for cancer therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2404
  year: 2020
  end-page: 2416
  ident: bib236
  article-title: A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility
  publication-title: Acta Pharm. Sin. B
– volume: 8
  start-page: 478
  year: 2020
  end-page: 483
  ident: bib58
  article-title: Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 2658
  year: 2007
  end-page: 2666
  ident: bib194
  article-title: Bcl-2 and glutathione depletion sensitizes B16 melanoma to combination therapy and eliminates metastatic disease
  publication-title: Clin. Canc. Res.
– volume: 7
  start-page: 61
  year: 2010
  end-page: 75
  ident: bib18
  article-title: Oncologic photodynamic therapy photosensitizers: a clinical review
  publication-title: Photodiagn. Photodyn.
– volume: 17
  start-page: 275
  year: 2011
  end-page: 285
  ident: bib222
  article-title: Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy
  publication-title: Clin. Canc. Res.
– volume: 6
  start-page: 30102
  year: 2015
  end-page: 30114
  ident: bib190
  article-title: Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death
  publication-title: Oncotarget
– volume: 1830
  start-page: 3143
  year: 2013
  end-page: 3153
  ident: bib156
  article-title: Glutathione synthesis
  publication-title: BBA-Gen. Subjects
– volume: 47
  start-page: 176
  year: 2009
  end-page: 183
  ident: bib225
  article-title: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation
  publication-title: Free Radic. Biol. Med.
– volume: 13
  start-page: 357
  year: 2019
  end-page: 370
  ident: bib125
  article-title: Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy
  publication-title: ACS Nano
– volume: 26
  start-page: 623
  year: 2019
  ident: bib171
  article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model
  publication-title: Chem. Biol.
– volume: 36
  start-page: 1900018
  year: 2019
  ident: bib75
  article-title: Self-assemble polymeric nanoparticle with GSH exhaustion for SPECT imaging–guided enhanced radioisotope therapy
  publication-title: Part. Part. Syst. Char.
– volume: 35
  start-page: 1372
  year: 2015
  end-page: 1380
  ident: bib199
  article-title: Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A‐mediated ortho‐benzoquinone metabolite formation and glutathione depletion
  publication-title: J. Appl. Toxicol.
– volume: 77
  start-page: 76
  year: 2009
  end-page: 85
  ident: bib216
  article-title: The role OF GSH efflux IN staurosporine-induced apoptosis IN colonic epithelial cells
  publication-title: Biochem. Pharmacol.
– volume: 13
  start-page: 6561
  year: 2019
  end-page: 6571
  ident: bib57
  article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics
  publication-title: ACS Nano
– volume: 44
  start-page: 2578
  year: 2020
  end-page: 2586
  ident: bib98
  article-title: Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent
  publication-title: New J. Chem.
– volume: 10
  start-page: 7068
  year: 2019
  end-page: 7075
  ident: bib114
  article-title: An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy
  publication-title: Chem. Sci.
– volume: 9
  start-page: 252
  year: 2002
  end-page: 263
  ident: bib239
  article-title: Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line
  publication-title: Cell Death Differ.
– volume: 289
  start-page: 30880
  year: 2014
  end-page: 30888
  ident: bib242
  article-title: Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 44523
  year: 2020
  end-page: 44533
  ident: bib83
  article-title: Inhibiting radiative transition-mediated multifunctional polymeric nanoplatforms for highly efficient tumor phototherapeutics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 95
  start-page: 1177
  year: 2017
  end-page: 1186
  ident: bib189
  article-title: Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
  publication-title: Biomed. Pharmacother.
– volume: 19
  start-page: 7866
  year: 2019
  end-page: 7876
  ident: bib136
  article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy
  publication-title: Nano Lett.
– volume: 18
  start-page: 261
  year: 1971
  end-page: 264
  ident: bib3
  article-title: Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria
  publication-title: FEBS Lett.
– volume: 36
  start-page: 1302
  year: 2017
  end-page: 1315
  ident: bib157
  article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine
  publication-title: EMBO J.
– volume: 286
  start-page: 95
  year: 2006
  end-page: 101
  ident: bib160
  article-title: Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes
  publication-title: Mol. Cell. Biochem.
– volume: 57
  start-page: 4891
  year: 2018
  end-page: 4896
  ident: bib33
  article-title: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center
  publication-title: Angew. Chem. Int. Ed.
– volume: 285
  start-page: 16116
  year: 2010
  end-page: 16124
  ident: bib159
  article-title: Rapid activation of glutamate cysteine ligase following oxidative stress
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 17639
  year: 2019
  ident: bib27
  article-title: The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells
  publication-title: Sci. Rep.
– volume: 129
  start-page: 256
  year: 2018
  end-page: 267
  ident: bib223
  article-title: Glutathione reductase-mediated thiol oxidative stress suppresses metastasis of murine melanoma cells
  publication-title: Free Radic. Biol. Med.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib151
  article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer
  publication-title: J. Hematol. Oncol.
– volume: 32
  start-page: 2002439
  year: 2020
  ident: bib85
  article-title: GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy
  publication-title: Adv. Mater.
– volume: 12
  start-page: 17254
  year: 2020
  end-page: 17267
  ident: bib100
  article-title: Fusiform-like copper(II)-Based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 682
  year: 2019
  ident: bib179
  article-title: Metadherin enhances vulnerability of cancer cells to ferroptosis
  publication-title: Cell Death Dis.
– volume: 18
  start-page: 2547
  year: 2017
  end-page: 2556
  ident: bib181
  article-title: Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine
  publication-title: Cell Rep.
– volume: 71
  start-page: 231
  year: 2006
  end-page: 238
  ident: bib228
  article-title: Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance
  publication-title: Biochem. Pharmacol.
– volume: 259
  start-page: 120329
  year: 2020
  ident: bib121
  article-title: Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment
  publication-title: Biomaterials
– volume: 55
  start-page: 11467
  year: 2016
  end-page: 11471
  ident: bib22
  article-title: Copper(II)–Graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 254
  start-page: 120140
  year: 2020
  ident: bib119
  article-title: Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation
  publication-title: Biomaterials
– volume: 7
  start-page: 62
  year: 2018
  ident: bib35
  article-title: Glutathione: antioxidant properties dedicated to nanotechnologies
  publication-title: Antioxidants
– volume: 257
  start-page: 120279
  year: 2020
  ident: bib70
  article-title: Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy
  publication-title: Biomaterials
– volume: 6
  year: 2020
  ident: bib113
  article-title: GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer
  publication-title: Sci. Adv.
– volume: 280
  start-page: 33766
  year: 2005
  end-page: 33774
  ident: bib158
  article-title: Glutamate cysteine ligase catalysis dependence ON ATP and modifier subunit for regulation OF tissue glutathione levels
  publication-title: J. Biol. Chem.
– start-page: 3150145
  year: 2019
  ident: bib17
  article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy
  publication-title: Oxid. Med. Cell. Longev.
– volume: 95
  start-page: 215
  year: 2020
  end-page: 223
  ident: bib123
  article-title: Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells
  publication-title: Chem. Biol. Drug Des.
– volume: 8
  start-page: 968
  year: 2018
  ident: bib169
  article-title: The ferroptosis inducer erastin irreversibly inhibits system x(c)- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells
  publication-title: Sci. Rep.
– volume: 169
  start-page: 53
  year: 2019
  end-page: 64
  ident: bib132
  article-title: Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion
  publication-title: Eur. J. Med. Chem.
– volume: 10
  start-page: 915
  year: 2017
  end-page: 925
  ident: bib176
  article-title: Identification of capsazepine as a novel inhibitor of system x(c)(-) and cancer-induced bone pain
  publication-title: J. Pain Res.
– volume: 45
  start-page: 152
  year: 2019
  end-page: 168
  ident: bib39
  article-title: Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways
  publication-title: Biofactors
– volume: 152
  start-page: ‏597
  year: 2020
  end-page: 608
  ident: bib206
  article-title: A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells, Free Radical Bio
  publication-title: Med
– volume: 10
  start-page: 10601
  year: 2018
  end-page: 10606
  ident: bib204
  article-title: Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 23
  year: 2016
  end-page: 32
  ident: bib200
  article-title: Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells
  publication-title: J. Bioenerg. Biomembr.
– volume: 105
  start-page: 53
  year: 2018
  end-page: 65
  ident: bib25
  article-title: Drug metabolizing enzymes and their inhibitors' role in cancer resistance, Biomed
  publication-title: Pharmacother
– volume: 11
  start-page: 1735
  year: 2020
  ident: bib79
  article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy
  publication-title: Nat. Commun.
– volume: 30
  start-page: 440
  year: 2020
  end-page: 451
  ident: bib47
  article-title: The complex interplay between antioxidants and ROS in cancer
  publication-title: Trends Cell Biol.
– volume: 30
  start-page: 13
  year: 2009
  end-page: 28
  ident: bib168
  article-title: Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology
  publication-title: Mol. Aspect. Med.
– volume: 1019
  start-page: 346
  year: 2004
  end-page: 349
  ident: bib44
  article-title: Glutathione metabolism during aging and in alzheimer disease
  publication-title: Ann. NY Acad. Sci.
– volume: 3
  year: 2014
  ident: bib220
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: eLife
– volume: 29
  start-page: 1904056
  year: 2019
  ident: bib110
  article-title: Fe(III)‐Porphyrin sonotheranostics: a green triple‐regulated ROS generation nanoplatform for enhanced cancer imaging and therapy
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 30551
  year: 2019
  end-page: 30565
  ident: bib20
  article-title: Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2020
  ident: bib178
  article-title: Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy
  publication-title: Curr. Med. Chem.
– volume: 201
  start-page: 92
  year: 2011
  end-page: 100
  ident: bib187
  article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
  publication-title: Toxicol. Lett.
– volume: 8
  start-page: 5059
  year: 2018
  end-page: 5071
  ident: bib61
  article-title: Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy
  publication-title: Theranostics
– volume: 29
  start-page: 1903850
  year: 2019
  ident: bib116
  article-title: Non-fenton-type hydroxyl radical generation and photothermal effect by mitochondria-targeted WSSe/MnO2 nanocomposite loaded with isoniazid for synergistic anticancer treatment
  publication-title: Adv. Funct. Mater.
– volume: 2018
  start-page: 2469486
  year: 2018
  ident: bib245
  article-title: N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence
  publication-title: BioMed Res. Int.
– volume: 14
  start-page: 13894
  year: 2020
  end-page: 13904
  ident: bib31
  article-title: A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy
  publication-title: ACS Nano
– volume: 82
  start-page: 291
  year: 1997
  end-page: 295
  ident: bib5
  article-title: Oxidative stress: oxidants and antioxidants
  publication-title: Exp. Physiol.
– volume: 30
  start-page: 2002753
  year: 2020
  ident: bib99
  article-title: Bimetallic oxide FeWOX nanosheets as multifunctional cascade bioreactors for tumor microenvironment-modulation and enhanced multimodal cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 287
  start-page: 696
  year: 2001
  end-page: 700
  ident: bib163
  article-title: Ryanodine receptor channel-dependent glutathione transport in the sarcoplasmic reticulum of skeletal muscle
  publication-title: Biochem. Bioph. Res. Co.
– volume: 321
  start-page: 734
  year: 2020
  end-page: 743
  ident: bib84
  article-title: Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy
  publication-title: J. Contr. Release
– volume: 187
  start-page: 55
  year: 2018
  end-page: 65
  ident: bib94
  article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: hypoxia relief, glutathione depletion and reactive nitrogen species generation
  publication-title: Biomaterials
– volume: 13
  start-page: 4267
  year: 2019
  end-page: 4277
  ident: bib76
  article-title: Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief
  publication-title: ACS Nano
– volume: 124
  start-page: 342
  year: 2018
  end-page: 352
  ident: bib207
  article-title: Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone
  publication-title: Free Radic. Biol. Med.
– volume: 68
  start-page: 2159
  year: 2004
  end-page: 2165
  ident: bib217
  article-title: Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin
  publication-title: Biochem. Pharmacol.
– volume: 6
  start-page: 1391
  year: 2020
  end-page: 1407
  ident: bib74
  article-title: Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress
  publication-title: Inside Chem.
– volume: 110
  start-page: 3173
  year: 2019
  end-page: 3182
  ident: bib170
  article-title: Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells
  publication-title: Canc. Sci.
– volume: 41
  start-page: 509
  year: 2009
  end-page: 515
  ident: bib164
  article-title: Redox regulation of gamma-glutamyl transpeptidase
  publication-title: Am. J. Resp. Cell Mol.
– volume: 24
  start-page: 161
  year: 2014
  end-page: 172
  ident: bib205
  article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
  publication-title: Toxicol. Mech. Methods
– volume: 1864
  start-page: 129539
  year: 2020
  ident: bib246
  article-title: Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy
  publication-title: BBA-Gen. Subjects
– volume: 7
  start-page: 8
  year: 2018
  ident: bib37
  article-title: Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases
  publication-title: Oncogenesis
– volume: 11
  start-page: 1926
  year: 2019
  ident: bib167
  article-title: Targeting glutathione metabolism: partner in crime in anticancer therapy
  publication-title: Nutrients
– volume: 108
  start-page: 1843
  year: 2017
  end-page: 1849
  ident: bib174
  article-title: Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non‐small‐cell lung cancer
  publication-title: Canc. Sci.
– volume: 114
  start-page: 10869
  year: 2014
  end-page: 10939
  ident: bib143
  article-title: Functional nanomaterials for phototherapies of cancer
  publication-title: Chem. Rev.
– volume: 265
  start-page: 120456
  year: 2021
  ident: bib108
  article-title: Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy
  publication-title: Biomaterials
– volume: 13
  start-page: 13445
  year: 2019
  end-page: 13455
  ident: bib29
  article-title: Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity
  publication-title: ACS Nano
– volume: 159
  start-page: 90
  year: 2006
  end-page: 103
  ident: bib145
  article-title: The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo
  publication-title: Chem. Biol. Interact.
– volume: 22
  start-page: 744
  year: 2015
  end-page: 759
  ident: bib221
  article-title: Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance
  publication-title: Antioxidants Redox Signal.
– volume: 64
  start-page: 4950
  year: 2004
  end-page: 4956
  ident: bib208
  article-title: Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1
  publication-title: Canc. Res.
– volume: 209
  start-page: 111955
  year: 2020
  ident: bib161
  article-title: A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition
  publication-title: J. Photochem. Photobiol., B
– volume: 2012
  start-page: 736837
  year: 2012
  ident: bib36
  article-title: Glutathione homeostasis and functions: potential targets for medical interventions
  publication-title: J. Amino Acids
– volume: 6
  start-page: 1900848
  year: 2019
  ident: bib65
  article-title: Monodispersed copper(I)‐Based nano metal–organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy
  publication-title: Adv. Sci.
– volume: 55
  start-page: 5477
  year: 2016
  end-page: 5482
  ident: bib19
  article-title: A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 1800706
  year: 2018
  ident: bib117
  article-title: Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 766
  year: 2018
  ident: bib10
  article-title: Polyrotaxane-based supramolecular theranostics
  publication-title: Nat. Commun.
– volume: 2013
  start-page: 972913
  year: 2013
  ident: bib53
  article-title: Role of glutathione in cancer progression and chemoresistance
  publication-title: Oxid. Med. Cell. Longev.
– volume: 142
  start-page: 5177
  year: 2020
  end-page: 5183
  ident: bib32
  article-title: Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 175
  year: 2018
  end-page: 182
  ident: bib197
  article-title: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death, Biomed
  publication-title: Pharmacother
– volume: 220
  start-page: 1170
  year: 2017
  end-page: 1180
  ident: bib2
  article-title: A radical shift in perspective: mitochondria as regulators of reactive oxygen species
  publication-title: J. Exp. Biol.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bib150
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 403
  start-page: 126305
  year: 2021
  ident: bib95
  article-title: A glutathione-activatable nanoplatform for enhanced photodynamic therapy with simultaneous hypoxia relief and glutathione depletion
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 211
  year: 2015
  end-page: 222
  ident: bib54
  article-title: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
  publication-title: Canc. Cell
– volume: 167
  start-page: 301
  year: 2019
  end-page: 308
  ident: bib131
  article-title: Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux, Ecotox
  publication-title: Environ. Safe.
– volume: 26
  start-page: 238
  year: 2012
  end-page: 251
  ident: bib184
  article-title: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines
  publication-title: Toxicol. Vitro
– volume: 30
  start-page: 2006098
  year: 2020
  ident: bib87
  article-title: Yolk-shell structured nanoflowers induced intracellular oxidative/thermal stress damage for cancer treatment
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 13608
  year: 2008
  end-page: 13619
  ident: bib186
  article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 406
  year: 2015
  end-page: 419
  ident: bib240
  article-title: MRP1 and its role in anticancer drug resistance
  publication-title: Drug Metab. Rev.
– volume: 29
  year: 2019
  ident: bib56
  article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal-organic frameworks for enhanced photodynamic therapy
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 100981
  year: 2020
  ident: bib250
  article-title: Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy
  publication-title: Nano Today
– volume: 407
  start-page: 127212
  year: 2020
  ident: bib92
  article-title: Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 15845
  year: 2020
  end-page: 15856
  ident: bib86
  article-title: Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation
  publication-title: Nanoscale
– volume: 428
  start-page: 21
  year: 2018
  end-page: 33
  ident: bib177
  article-title: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox 4 and inhibition of xCT
  publication-title: Canc. Lett.
– volume: 115
  start-page: 12797
  year: 2011
  end-page: 12802
  ident: bib203
  article-title: Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 2885
  year: 2020
  end-page: 2902
  ident: bib11
  article-title: Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy
  publication-title: Int. J. Nanomed.
– volume: 7
  start-page: 4260
  year: 2019
  end-page: 4272
  ident: bib124
  article-title: Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment
  publication-title: Biomater. Sci.
– volume: 6
  start-page: 83
  year: 2020
  ident: bib120
  article-title: Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress
  publication-title: Cell Death Dis.
– volume: 1863
  start-page: 129285
  year: 2019
  ident: bib23
  article-title: Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay
  publication-title: BBA-Gen. Subjects
– volume: 25
  start-page: 4787
  year: 2015
  end-page: 4792
  ident: bib218
  article-title: Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility
  publication-title: Bioorg. Med. Chem. Lett
– volume: 7
  start-page: 71
  year: 2011
  end-page: 78
  ident: bib227
  article-title: Inhibiting glutathione metabolism in lung lining fluid as a strategy to augment antioxidant defense
  publication-title: Curr. Enzym. Inhib.
– volume: 274
  start-page: 56
  year: 2018
  end-page: 68
  ident: bib130
  article-title: Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy
  publication-title: J. Contr. Release
– volume: 58
  start-page: 14134
  year: 2019
  end-page: 14139
  ident: bib105
  article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 89
  start-page: 3070
  year: 1992
  end-page: 3074
  ident: bib26
  article-title: High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis
  publication-title: P. Natl. Acad. Sci. USA
– volume: 31
  start-page: 11
  year: 2003
  end-page: 15
  ident: bib210
  article-title: Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1)
  publication-title: Drug Metab. Dispos.
– volume: 458
  start-page: 780
  year: 2009
  end-page: 783
  ident: bib144
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
– volume: 90
  start-page: 235
  year: 2014
  end-page: 245
  ident: bib215
  article-title: Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux
  publication-title: Biochem. Pharmacol.
– volume: 23
  start-page: 1905
  year: 2010
  end-page: 1912
  ident: bib231
  article-title: Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters
  publication-title: Chem. Res. Toxicol.
– volume: 89
  start-page: 1
  year: 1986
  end-page: 8
  ident: bib155
  article-title: Role of membrane transport in metabolism and function of glutathione in mammals
  publication-title: J. Membr. Biol.
– volume: 51
  start-page: 474
  year: 2003
  end-page: 482
  ident: bib234
  article-title: Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion
  publication-title: Canc. Chemother. Pharmacol.
– volume: 11
  start-page: 13078
  year: 2019
  end-page: 13088
  ident: bib89
  article-title: Enhancement of ultralow-intensity NIR light-triggered photodynamic therapy based on exo- and endogenous synergistic effects through combined glutathione-depletion chemotherapy
  publication-title: Nanoscale
– volume: 27
  start-page: 438
  year: 2006
  end-page: 446
  ident: bib38
  article-title: Transport of glutathione and glutathione conjugates by MRP1
  publication-title: Trends Pharmacol. Sci.
– volume: 16
  start-page: 74
  year: 2018
  ident: bib238
  article-title: Advances in redox-responsive drug delivery systems of tumor microenvironment
  publication-title: J. Nanobiotechnol.
– volume: 2010
  start-page: 430939
  year: 2010
  ident: bib148
  article-title: Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy
  publication-title: Met. Base. Drugs
– volume: 217
  start-page: 2291
  year: 2018
  end-page: 2298
  ident: bib40
  article-title: Glutathione metabolism in cancer progression and treatment resistance
  publication-title: J. Cell Biol.
– volume: 55
  start-page: 6241
  year: 2019
  end-page: 6244
  ident: bib88
  article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework
  publication-title: Chem. Commun.
– start-page: 1
  year: 1985
  end-page: 8
  ident: bib4
  article-title: 1 - oxidative stress: introductory remarks
  publication-title: Oxidative Stress
– volume: 11
  start-page: 474
  year: 2016
  end-page: 480
  ident: bib149
  article-title: The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine
  publication-title: Oncol. Lett.
– volume: 6
  start-page: 225
  year: 1970
  end-page: 228
  ident: bib191
  article-title: Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP
  publication-title: FEBS Lett.
– volume: 60
  start-page: 3001
  year: 2021
  end-page: 3007
  ident: bib73
  article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 1661
  year: 2020
  end-page: 1670
  ident: bib109
  article-title: Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy
  publication-title: Bioconjugate Chem.
– volume: 88
  start-page: 193
  year: 1996
  end-page: 197
  ident: bib226
  article-title: Gamma-Glutamyl transpeptidase mediation of tumor glutathione utilization in vivo
  publication-title: J. Natl. Cancer Inst.
– volume: 11
  start-page: 6384
  year: 2019
  end-page: 6393
  ident: bib60
  article-title: Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC
  publication-title: Nanoscale
– volume: 104
  start-page: 144
  year: 2017
  end-page: 164
  ident: bib46
  article-title: Reactive oxygen species and cancer paradox: to promote or to suppress?
  publication-title: Free Radic. Biol. Med.
– volume: 9
  start-page: 1161
  year: 2020
  ident: bib202
  article-title: The anticancer drug 3-bromopyruvate induces DNA damage potentially through reactive oxygen species in yeast and in human cancer cells
  publication-title: Cells
– volume: 3
  start-page: 55
  year: 2001
  end-page: 62
  ident: bib243
  article-title: Verapamil revisited: a transition in novel drug delivery systems and outcomes
  publication-title: Heart Dis.
– volume: 49
  start-page: 11851
  year: 2020
  end-page: 11858
  ident: bib69
  article-title: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy
  publication-title: Dalton Trans.
– volume: 215
  start-page: 8
  year: 2019
  end-page: 19
  ident: bib12
  article-title: Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 572
  year: 2018
  ident: bib188
  article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo
  publication-title: Cell Death Dis.
– volume: 636
  start-page: 8
  year: 2010
  end-page: 17
  ident: bib43
  article-title: Reactive oxygen species and endothelial function in diabetes
  publication-title: Eur. J. Pharmacol.
– volume: 11
  start-page: 42988
  year: 2019
  end-page: 42997
  ident: bib140
  article-title: Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1
  year: 2018
  end-page: 18
  ident: bib237
  article-title: Current developments in Pt(IV) prodrugs conjugated with bioactive ligands
  publication-title: Bioinorgan. Chem. Appl.
– volume: 323
  start-page: 203
  year: 2020
  end-page: 224
  ident: bib1
  article-title: Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges
  publication-title: J. Contr. Release
– volume: 9
  start-page: 29538
  year: 2017
  end-page: 29546
  ident: bib195
  article-title: Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 489
  year: 2004
  end-page: 492
  ident: bib8
  article-title: Glutathione metabolism and its implications for health
  publication-title: J. Nutr.
– volume: 71
  start-page: 7048
  year: 2011
  end-page: 7060
  ident: bib48
  article-title: Increased skin papilloma formation in mice lacking glutathione transferase GSTP
  publication-title: Canc. Res.
– volume: 11
  start-page: 31671
  year: 2019
  end-page: 31680
  ident: bib77
  article-title: O-2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 67
  start-page: 162
  year: 2007
  end-page: 171
  ident: bib219
  article-title: Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy
  publication-title: Prostate
– volume: 14
  start-page: 874
  year: 2019
  end-page: 882
  ident: bib24
  article-title: Glutathione-mediated biotransformation in the liver modulates nanoparticle transport
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 14831
  year: 2020
  end-page: 14845
  ident: bib128
  article-title: Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy
  publication-title: ACS Nano
– volume: 9
  start-page: 2000864
  year: 2020
  ident: bib138
  article-title: Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance
  publication-title: Adv. Healthc. Mater.
– volume: 44
  start-page: 532
  year: 2017
  end-page: 553
  ident: bib7
  article-title: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species
  publication-title: Cell. Physiol. Biochem.
– volume: 572
  start-page: 118782
  year: 2019
  ident: bib134
  article-title: Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells
  publication-title: Int. J. Pharm.
– volume: 106
  start-page: 20859
  year: 2009
  end-page: 20864
  ident: bib49
  article-title: Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi
  publication-title: P. Natl. Acad. Sci. USA
– volume: 59
  start-page: 22537
  year: 2020
  end-page: 22543
  ident: bib72
  article-title: Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1906195
  year: 2019
  ident: bib81
  article-title: Ultrasound-activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 13536
  year: 2020
  end-page: 13547
  ident: bib127
  article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging
  publication-title: ACS Nano
– volume: 258
  start-page: 120278
  year: 2020
  ident: bib82
  article-title: Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem
  publication-title: Biomaterials
– volume: 15
  start-page: 1904870
  year: 2019
  ident: bib141
  article-title: Glutathione depletion in a benign manner by MoS2‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy
  publication-title: Small
– volume: 27
  start-page: 1217
  year: 2017
  end-page: 1234
  ident: bib6
  article-title: Huangmenger, multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance
  publication-title: Antioxidants Redox Signal.
– volume: 224
  start-page: 119498
  year: 2019
  ident: bib112
  article-title: Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy
  publication-title: Biomaterials
– volume: 572
  start-page: 402
  issue: 7769
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib152
  article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling
  publication-title: Nature
  doi: 10.1038/s41586-019-1426-6
– volume: 41
  start-page: 989
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib28
  article-title: Glutathione S-transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer
  publication-title: Oncol. Rep.
– volume: 14
  start-page: 13894
  issue: 10
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib31
  article-title: A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06290
– volume: 209
  start-page: 111955
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib161
  article-title: A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2020.111955
– volume: 12
  start-page: 44523
  issue: 40
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib83
  article-title: Inhibiting radiative transition-mediated multifunctional polymeric nanoplatforms for highly efficient tumor phototherapeutics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12756
– volume: 18
  start-page: 522
  issue: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib154
  article-title: The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2011.4391
– volume: 42
  start-page: 273
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib224
  article-title: Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2017.04.028
– volume: 12
  start-page: 4886
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib102
  article-title: All-in-One theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01893
– volume: 13
  start-page: 2658
  issue: 9
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121110_bib194
  article-title: Bcl-2 and glutathione depletion sensitizes B16 melanoma to combination therapy and eliminates metastatic disease
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-06-2642
– volume: 30
  start-page: 2002753
  issue: 49
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib99
  article-title: Bimetallic oxide FeWOX nanosheets as multifunctional cascade bioreactors for tumor microenvironment-modulation and enhanced multimodal cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002753
– volume: 45
  start-page: 152
  issue: 2
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib39
  article-title: Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways
  publication-title: Biofactors
  doi: 10.1002/biof.1476
– volume: 26
  start-page: 623
  issue: 5
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib171
  article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model
  publication-title: Chem. Biol.
– volume: 251
  start-page: 120079
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib101
  article-title: A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120079
– volume: 170
  start-page: 293
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib133
  article-title: Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: the depletion of intracellular GSH contents arouses chemosensitizing effects
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2018.06.029
– volume: 3
  start-page: 55
  issue: 1
  year: 2001
  ident: 10.1016/j.biomaterials.2021.121110_bib243
  article-title: Verapamil revisited: a transition in novel drug delivery systems and outcomes
  publication-title: Heart Dis.
  doi: 10.1097/00132580-200101000-00008
– volume: 56
  start-page: 14025
  issue: 45
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib118
  article-title: Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706964
– volume: 11
  start-page: 42988
  issue: 46
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib140
  article-title: Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16124
– volume: 24
  start-page: 2533
  issue: 7
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib15
  article-title: Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases
  publication-title: Faseb. J.
  doi: 10.1096/fj.09-149997
– volume: 19
  start-page: 323
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib175
  article-title: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway
  publication-title: Oncol. Lett.
– volume: 142
  start-page: 5177
  issue: 11
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib32
  article-title: Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12873
– volume: 24
  start-page: R453
  issue: 10
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib52
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 31
  start-page: 1808200
  issue: 15
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib93
  article-title: Biomimetic metal–organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808200
– volume: 41
  start-page: 509
  issue: 5
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib164
  article-title: Redox regulation of gamma-glutamyl transpeptidase
  publication-title: Am. J. Resp. Cell Mol.
  doi: 10.1165/rcmb.2009-0169TR
– volume: 10
  start-page: 9132
  issue: 20
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib107
  article-title: Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy
  publication-title: Theranostics
  doi: 10.7150/thno.46076
– volume: 201
  start-page: 92
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2021.121110_bib187
  article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.12.010
– volume: 67
  start-page: 162
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121110_bib219
  article-title: Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy
  publication-title: Prostate
  doi: 10.1002/pros.20508
– volume: 14
  start-page: 13500
  issue: 10
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib63
  article-title: Metal–organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05499
– volume: 73
  start-page: 1245
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib51
  article-title: Tumor suppressor function of the plasma glutathione peroxidase Gpx 3 in colitis-associated carcinoma
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-12-3150
– volume: 399
  start-page: 125667
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib71
  article-title: Bone-targeted oxidative stress nanoamplifier for synergetic chemo/chemodynamic therapy of bone metastases through increasing generation and reducing elimination of ROS
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125667
– volume: 58
  start-page: 1685
  issue: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib229
  article-title: Molecular targets of isothiocyanates in cancer: recent advances
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300684
– volume: 36
  start-page: 1900018
  issue: 6
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib75
  article-title: Self-assemble polymeric nanoparticle with GSH exhaustion for SPECT imaging–guided enhanced radioisotope therapy
  publication-title: Part. Part. Syst. Char.
  doi: 10.1002/ppsc.201900018
– volume: 6
  start-page: 83
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib120
  article-title: Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress
  publication-title: Cell Death Dis.
  doi: 10.1038/s41420-020-00314-x
– volume: 286
  start-page: 95
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2021.121110_bib160
  article-title: Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-005-9098-y
– volume: 57
  start-page: 4891
  issue: 18
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib33
  article-title: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710800
– volume: 11
  start-page: 30551
  issue: 34
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib20
  article-title: Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09323
– volume: 106
  start-page: 20859
  issue: 49
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib49
  article-title: Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911351106
– volume: 1019
  start-page: 346
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2021.121110_bib44
  article-title: Glutathione metabolism during aging and in alzheimer disease
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1196/annals.1297.059
– volume: 18
  start-page: 261
  issue: 2
  year: 1971
  ident: 10.1016/j.biomaterials.2021.121110_bib3
  article-title: Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(71)80459-3
– volume: 67
  start-page: 1248
  issue: 3
  year: 1970
  ident: 10.1016/j.biomaterials.2021.121110_bib165
  article-title: The gamma-glutamyl cycle: a possible transport system for amino acids
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.67.3.1248
– volume: 258
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib213
  article-title: Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2011.08.004
– volume: 73
  start-page: 1727
  issue: 11
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121110_bib211
  article-title: Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2007.02.005
– volume: 287
  start-page: 696
  issue: 3
  year: 2001
  ident: 10.1016/j.biomaterials.2021.121110_bib163
  article-title: Ryanodine receptor channel-dependent glutathione transport in the sarcoplasmic reticulum of skeletal muscle
  publication-title: Biochem. Bioph. Res. Co.
  doi: 10.1006/bbrc.2001.5648
– volume: 9
  start-page: 766
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib10
  article-title: Polyrotaxane-based supramolecular theranostics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03119-w
– volume: 59
  start-page: 22537
  issue: 50
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib72
  article-title: Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003653
– volume: 71
  start-page: 231
  issue: 3
  year: 2006
  ident: 10.1016/j.biomaterials.2021.121110_bib228
  article-title: Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2005.10.005
– volume: 130
  start-page: 346
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib214
  article-title: Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2017.02.064
– volume: 129
  start-page: 256
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib223
  article-title: Glutathione reductase-mediated thiol oxidative stress suppresses metastasis of murine melanoma cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.07.025
– volume: 6
  start-page: 1900848
  issue: 15
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib65
  article-title: Monodispersed copper(I)‐Based nano metal–organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900848
– volume: 32
  start-page: 2002439
  issue: 42
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib85
  article-title: GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002439
– volume: 16
  start-page: 74
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib238
  article-title: Advances in redox-responsive drug delivery systems of tumor microenvironment
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0398-2
– volume: 68
  start-page: 2159
  issue: 11
  year: 2004
  ident: 10.1016/j.biomaterials.2021.121110_bib217
  article-title: Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.08.010
– volume: 47
  start-page: 406
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib240
  article-title: MRP1 and its role in anticancer drug resistance
  publication-title: Drug Metab. Rev.
  doi: 10.3109/03602532.2015.1105253
– volume: 23
  start-page: 1905
  issue: 12
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib231
  article-title: Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx100226n
– volume: 10
  start-page: 967
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib244
  article-title: N-acetylcysteine (NAC): impacts on human health
  publication-title: Antioxidants
  doi: 10.3390/antiox10060967
– volume: 14
  start-page: 14831
  issue: 11
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib128
  article-title: Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03781
– volume: 15
  start-page: 2885
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib11
  article-title: Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S249205
– volume: 10
  start-page: 10601
  issue: 13
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib204
  article-title: Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00207
– volume: 10
  start-page: 22830
  issue: 48
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib14
  article-title: Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells
  publication-title: Nanoscale
  doi: 10.1039/C8NR08141G
– volume: 13
  start-page: 6561
  issue: 6
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib57
  article-title: A Mn(III)-Sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00300
– volume: 396
  start-page: 125294
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib104
  article-title: Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125294
– volume: 382
  start-page: 160
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib153
  article-title: Nanomaterial-induced ferroptosis for cancer specific therapy
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.12.015
– volume: 176
  start-page: 108207
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib182
  article-title: Lowering glutathione level by buthionine sulfoximine enhances in vivo photodynamic therapy using chlorin e6-loaded nanoparticles
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2020.108207
– volume: 29
  issue: 25
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib56
  article-title: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal-organic frameworks for enhanced photodynamic therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901417
– volume: 30
  start-page: 1907954
  issue: 4
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib80
  article-title: GSH‐Depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907954
– volume: 289
  start-page: 30880
  issue: 45
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib242
  article-title: Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R114.609248
– volume: 12
  start-page: 12380
  issue: 12
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib135
  article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06399
– volume: 11
  start-page: 8495
  issue: 32
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib251
  article-title: A ratiometric fluorescent probe for real-time monitoring of intracellular glutathione fluctuations in response to cisplatin
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02889D
– volume: 31
  start-page: 2006216
  issue: 5
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib103
  article-title: An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006216
– volume: 14
  start-page: 13536
  issue: 10
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib127
  article-title: Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05541
– volume: 9
  start-page: 133
  issue: 2
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib129
  article-title: Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance
  publication-title: Antioxidants
  doi: 10.3390/antiox9020133
– volume: 50
  start-page: 2424
  issue: 10
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121110_bib232
  article-title: Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin
  publication-title: J. Mater. Chem.
– volume: 179
  start-page: 93
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2021.121110_bib185
  article-title: Cellular responses induced by silver nanoparticles: in vitro studies
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2008.04.009
– volume: 27
  start-page: 423
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib13
  article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2018.1519029
– volume: 31
  start-page: 11
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2021.121110_bib210
  article-title: Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1)
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.31.1.11
– volume: 167
  start-page: 301
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib131
  article-title: Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux, Ecotox
  publication-title: Environ. Safe.
  doi: 10.1016/j.ecoenv.2018.10.013
– volume: 64
  start-page: 4950
  issue: 14
  year: 2004
  ident: 10.1016/j.biomaterials.2021.121110_bib208
  article-title: Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-04-0143
– volume: 95
  start-page: 1177
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib189
  article-title: Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.09.026
– volume: 7
  start-page: 61
  issue: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib18
  article-title: Oncologic photodynamic therapy photosensitizers: a clinical review
  publication-title: Photodiagn. Photodyn.
  doi: 10.1016/j.pdpdt.2010.02.001
– volume: 8
  start-page: 9251
  issue: 40
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib62
  article-title: A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01357A
– volume: 58
  start-page: 14134
  issue: 40
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib105
  article-title: Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907388
– volume: 321
  start-page: 734
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib84
  article-title: Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.03.007
– volume: 18
  start-page: 6265
  issue: 17
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib209
  article-title: Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2010.07.031
– volume: 47
  start-page: 176
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib225
  article-title: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.04.022
– volume: 8
  start-page: 968
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib169
  article-title: The ferroptosis inducer erastin irreversibly inhibits system x(c)- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19213-4
– volume: 189
  start-page: 110810
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib111
  article-title: A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2020.110810
– volume: 2010
  start-page: 430939
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib148
  article-title: Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy
  publication-title: Met. Base. Drugs
– volume: 55
  start-page: 6241
  issue: 44
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib88
  article-title: GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01957J
– volume: 114
  start-page: 113
  issue: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2021.121110_bib230
  article-title: Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer
  publication-title: Canc. Lett.
  doi: 10.1016/S0304-3835(97)04639-9
– volume: 141
  start-page: 849
  issue: 2
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib34
  article-title: Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08714
– volume: 25
  start-page: 4787
  issue: 21
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib218
  article-title: Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2015.07.018
– volume: 258
  start-page: 120278
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib82
  article-title: Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120278
– volume: 13
  start-page: 357
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib125
  article-title: Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06400
– volume: 30
  start-page: 2006098
  issue: 51
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib87
  article-title: Yolk-shell structured nanoflowers induced intracellular oxidative/thermal stress damage for cancer treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006098
– volume: 112
  start-page: 13608
  issue: 43
  year: 2008
  ident: 10.1016/j.biomaterials.2021.121110_bib186
  article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp712087m
– volume: 18
  start-page: 4618
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib30
  article-title: Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01924
– volume: 6
  start-page: 1391
  issue: 6
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib74
  article-title: Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress
  publication-title: Inside Chem.
– volume: 9
  start-page: 252
  issue: 3
  year: 2002
  ident: 10.1016/j.biomaterials.2021.121110_bib239
  article-title: Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4400959
– start-page: 1
  year: 1985
  ident: 10.1016/j.biomaterials.2021.121110_bib4
  article-title: 1 - oxidative stress: introductory remarks
– volume: 29
  start-page: 1905013
  issue: 44
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib106
  article-title: Reactive oxygen species–activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905013
– volume: 9
  start-page: 1161
  issue: 5
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib202
  article-title: The anticancer drug 3-bromopyruvate induces DNA damage potentially through reactive oxygen species in yeast and in human cancer cells
  publication-title: Cells
  doi: 10.3390/cells9051161
– volume: 58
  start-page: 9846
  issue: 29
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib115
  article-title: Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu‐TCPP nanosheets for cancer therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903981
– volume: 24
  start-page: 161
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib205
  article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
  publication-title: Toxicol. Mech. Methods
  doi: 10.3109/15376516.2013.869783
– volume: 29
  start-page: 1903850
  issue: 45
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib116
  article-title: Non-fenton-type hydroxyl radical generation and photothermal effect by mitochondria-targeted WSSe/MnO2 nanocomposite loaded with isoniazid for synergistic anticancer treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903850
– volume: 217
  start-page: 2291
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib40
  article-title: Glutathione metabolism in cancer progression and treatment resistance
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201804161
– volume: 254
  start-page: 120140
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib119
  article-title: Boosted photocatalytic activity induced NAMPT-Regulating therapy based on elemental bismuth-humic acids heterojunction for inhibiting tumor proliferation/migration/inflammation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120140
– volume: 60
  start-page: 3001
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib73
  article-title: Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008868
– volume: 234
  start-page: 7384
  issue: 5
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib193
  article-title: Exogenous glutathione improves intracellular glutathione synthesis via the gamma-glutamyl cycle in bovine zygotes and cleavage embryos
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27497
– volume: 368
  start-page: 85
  issue: 6486
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib180
  article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice
  publication-title: Science
  doi: 10.1126/science.aaw9872
– volume: 26
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121110_bib241
  article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology
  publication-title: Drug Resist. Updates
  doi: 10.1016/j.drup.2016.03.001
– volume: 35
  start-page: 100981
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib250
  article-title: Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100981
– volume: 17
  start-page: 275
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2021.121110_bib222
  article-title: Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-10-1983
– volume: 215
  start-page: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib12
  article-title: Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.03.064
– volume: 17
  start-page: 671
  issue: 8
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib147
  article-title: Glutathione levels in human tumors
  publication-title: Biomarkers
  doi: 10.3109/1354750X.2012.715672
– volume: 35
  start-page: 1372
  issue: 11
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib199
  article-title: Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A‐mediated ortho‐benzoquinone metabolite formation and glutathione depletion
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.3106
– volume: 27
  start-page: 438
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2021.121110_bib38
  article-title: Transport of glutathione and glutathione conjugates by MRP1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2006.06.008
– volume: 380
  start-page: 122369
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib78
  article-title: Three birds with one stone: a ferric pyrophosphate based nanoagent for synergetic NIR-triggered photo/chemodynamic therapy with glutathione depletion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122369
– volume: 10
  start-page: 2404
  issue: 12
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib236
  article-title: A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2020.07.018
– volume: 47
  start-page: 493
  issue: 6
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib201
  article-title: 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-015-9631-y
– volume: 187
  start-page: 55
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib94
  article-title: Nitric oxide as an all-rounder for enhanced photodynamic therapy: hypoxia relief, glutathione depletion and reactive nitrogen species generation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.043
– volume: 44
  start-page: 2578
  issue: 6
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib98
  article-title: Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ05427H
– volume: 1830
  start-page: 3143
  issue: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib156
  article-title: Glutathione synthesis
  publication-title: BBA-Gen. Subjects
  doi: 10.1016/j.bbagen.2012.09.008
– volume: 124
  start-page: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib212
  article-title: Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2016.10.013
– volume: 11
  start-page: 1735
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib79
  article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15591-4
– volume: 19
  start-page: 7866
  issue: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib136
  article-title: Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02904
– volume: 49
  start-page: 11851
  issue: 34
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib69
  article-title: A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01742F
– volume: 55
  start-page: 12956
  issue: 86
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib66
  article-title: A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06040E
– volume: 6
  issue: 36
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib113
  article-title: GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc4373
– volume: 403
  start-page: 126305
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib95
  article-title: A glutathione-activatable nanoplatform for enhanced photodynamic therapy with simultaneous hypoxia relief and glutathione depletion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126305
– volume: 11
  start-page: 6384
  issue: 13
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib60
  article-title: Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC
  publication-title: Nanoscale
  doi: 10.1039/C9NR01306G
– volume: 10
  start-page: 7068
  issue: 29
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib114
  article-title: An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01070J
– volume: 71
  start-page: 7048
  issue: 22
  year: 2011
  ident: 10.1016/j.biomaterials.2021.121110_bib48
  article-title: Increased skin papilloma formation in mice lacking glutathione transferase GSTP
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-11-0882
– volume: 28
  start-page: 1800706
  issue: 28
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib117
  article-title: Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800706
– volume: 6
  start-page: 225
  issue: 3
  year: 1970
  ident: 10.1016/j.biomaterials.2021.121110_bib191
  article-title: Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(70)80063-1
– volume: 13
  start-page: 13445
  issue: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib29
  article-title: Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07032
– volume: 10
  start-page: 682
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib179
  article-title: Metadherin enhances vulnerability of cancer cells to ferroptosis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1897-2
– volume: 12
  start-page: 17254
  issue: 15
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib100
  article-title: Fusiform-like copper(II)-Based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01539
– volume: 265
  start-page: 120456
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib108
  article-title: Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120456
– volume: 157
  start-page: 705
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib9
  article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.08.034
– volume: 27
  start-page: 1217
  issue: 15
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib6
  article-title: Huangmenger, multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7134
– volume: 48
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121110_bib200
  article-title: Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-015-9637-5
– volume: 407
  start-page: 127212
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib92
  article-title: Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127212
– volume: 106
  start-page: 175
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib197
  article-title: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death, Biomed
  publication-title: Pharmacother
  doi: 10.1016/j.biopha.2018.06.111
– volume: 10
  start-page: 915
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib176
  article-title: Identification of capsazepine as a novel inhibitor of system x(c)(-) and cancer-induced bone pain
  publication-title: J. Pain Res.
  doi: 10.2147/JPR.S125045
– volume: 159
  start-page: 90
  issue: 2
  year: 2006
  ident: 10.1016/j.biomaterials.2021.121110_bib145
  article-title: The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2005.10.044
– volume: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib220
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: eLife
  doi: 10.7554/eLife.02523
– volume: 636
  start-page: 8
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib43
  article-title: Reactive oxygen species and endothelial function in diabetes
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2010.03.048
– volume: 85
  start-page: 1715
  issue: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib235
  article-title: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-REC-12-11-20
– volume: 9
  start-page: 572
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib188
  article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0635-5
– volume: 7
  start-page: 5359
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib59
  article-title: H2O2-activated oxidative stress amplifier capable of GSH scavenging for enhancing tumor photodynamic therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01354G
– volume: 115
  start-page: 1541
  issue: 6
  year: 1998
  ident: 10.1016/j.biomaterials.2021.121110_bib42
  article-title: Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(98)70034-4
– volume: 149
  start-page: 1060
  issue: 5
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib150
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 22
  start-page: 744
  issue: 9
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib221
  article-title: Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2014.6142
– volume: 220
  start-page: 1170
  issue: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib2
  article-title: A radical shift in perspective: mitochondria as regulators of reactive oxygen species
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.132142
– volume: 57
  start-page: 4902
  issue: 18
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib97
  article-title: Simultaneous fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712027
– volume: 368
  start-page: 88
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib172
  article-title: Xc - inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2015.07.031
– volume: 12
  start-page: 17319
  issue: 33
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib67
  article-title: A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy
  publication-title: Nanoscale
  doi: 10.1039/D0NR03135F
– volume: 27
  start-page: 211
  issue: 2
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib54
  article-title: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
  publication-title: Canc. Cell
  doi: 10.1016/j.ccell.2014.11.019
– volume: 7
  start-page: 429
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib90
  article-title: Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM01042K
– volume: 89
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.biomaterials.2021.121110_bib155
  article-title: Role of membrane transport in metabolism and function of glutathione in mammals
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01870891
– start-page: 3150145
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib17
  article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy
  publication-title: Oxid. Med. Cell. Longev.
– volume: 55
  start-page: 5477
  issue: 18
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121110_bib19
  article-title: A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510748
– volume: 280
  start-page: 33766
  issue: 40
  year: 2005
  ident: 10.1016/j.biomaterials.2021.121110_bib158
  article-title: Glutamate cysteine ligase catalysis dependence ON ATP and modifier subunit for regulation OF tissue glutathione levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504604200
– volume: 572
  start-page: 118782
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib134
  article-title: Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118782
– volume: 18
  start-page: 2547
  issue: 11
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib181
  article-title: Oncogene-Selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.02.054
– volume: 12
  start-page: 15845
  issue: 29
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib86
  article-title: Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation
  publication-title: Nanoscale
  doi: 10.1039/D0NR03661G
– volume: 95
  start-page: 215
  issue: 2
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib123
  article-title: Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.13621
– volume: 38
  start-page: 438
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib50
  article-title: GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway
  publication-title: J. Exp. Clin. Canc. Res.
  doi: 10.1186/s13046-019-1459-6
– volume: 10
  start-page: 9865
  issue: 21
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib137
  article-title: Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis
  publication-title: Theranostics
  doi: 10.7150/thno.46771
– volume: 1864
  start-page: 129539
  issue: 4
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib246
  article-title: Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy
  publication-title: BBA-Gen. Subjects
  doi: 10.1016/j.bbagen.2020.129539
– volume: 274
  start-page: 56
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib130
  article-title: Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.01.034
– volume: 7
  start-page: 4260
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib124
  article-title: Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00797K
– volume: 30
  start-page: 13
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib168
  article-title: Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2008.08.004
– volume: 29
  start-page: 1904056
  issue: 36
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib110
  article-title: Fe(III)‐Porphyrin sonotheranostics: a green triple‐regulated ROS generation nanoplatform for enhanced cancer imaging and therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904056
– volume: 114
  start-page: 10869
  issue: 21
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib143
  article-title: Functional nanomaterials for phototherapies of cancer
  publication-title: Chem. Rev.
  doi: 10.1021/cr400532z
– volume: 44
  start-page: 532
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib7
  article-title: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000485089
– volume: 115
  start-page: 12797
  issue: 26
  year: 2011
  ident: 10.1016/j.biomaterials.2021.121110_bib203
  article-title: Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2025413
– volume: 19
  start-page: 805
  issue: 2
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib96
  article-title: Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03905
– volume: 110
  start-page: 3173
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib170
  article-title: Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells
  publication-title: Canc. Sci.
  doi: 10.1111/cas.14181
– volume: 14
  start-page: 874
  issue: 9
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib24
  article-title: Glutathione-mediated biotransformation in the liver modulates nanoparticle transport
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0499-6
– volume: 15
  start-page: 1904870
  issue: 51
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib141
  article-title: Glutathione depletion in a benign manner by MoS2‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy
  publication-title: Small
  doi: 10.1002/smll.201904870
– volume: 88
  start-page: 193
  issue: 3–4
  year: 1996
  ident: 10.1016/j.biomaterials.2021.121110_bib226
  article-title: Gamma-Glutamyl transpeptidase mediation of tumor glutathione utilization in vivo
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/88.3-4.193
– volume: 51
  start-page: 474
  issue: 6
  year: 2003
  ident: 10.1016/j.biomaterials.2021.121110_bib234
  article-title: Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion
  publication-title: Canc. Chemother. Pharmacol.
  doi: 10.1007/s00280-003-0609-9
– volume: 31
  start-page: 1900730
  issue: 23
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib21
  article-title: Ultrasmall oxygen‐deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900730
– volume: 11
  start-page: 1926
  issue: 8
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib167
  article-title: Targeting glutathione metabolism: partner in crime in anticancer therapy
  publication-title: Nutrients
  doi: 10.3390/nu11081926
– volume: 11
  start-page: 13078
  issue: 27
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib89
  article-title: Enhancement of ultralow-intensity NIR light-triggered photodynamic therapy based on exo- and endogenous synergistic effects through combined glutathione-depletion chemotherapy
  publication-title: Nanoscale
  doi: 10.1039/C9NR03052B
– volume: 11
  start-page: 474
  issue: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121110_bib149
  article-title: The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2015.3879
– volume: 323
  start-page: 203
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib1
  article-title: Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.04.026
– volume: 7
  start-page: 62
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib35
  article-title: Glutathione: antioxidant properties dedicated to nanotechnologies
  publication-title: Antioxidants
  doi: 10.3390/antiox7050062
– volume: 108
  start-page: 1843
  issue: 9
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib174
  article-title: Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non‐small‐cell lung cancer
  publication-title: Canc. Sci.
  doi: 10.1111/cas.13309
– volume: 7
  start-page: 71
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2021.121110_bib227
  article-title: Inhibiting glutathione metabolism in lung lining fluid as a strategy to augment antioxidant defense
  publication-title: Curr. Enzym. Inhib.
  doi: 10.2174/157340811796575308
– volume: 152
  start-page: ‏597
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib206
  article-title: A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells, Free Radical Bio
  publication-title: Med
– volume: 283
  start-page: 36071
  issue: 52
  year: 2008
  ident: 10.1016/j.biomaterials.2021.121110_bib16
  article-title: Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807061200
– volume: 49
  start-page: 1540
  issue: 9
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib233
  article-title: Thiol–ene click chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200903924
– volume: 257
  start-page: 120279
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib70
  article-title: Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120279
– volume: 77
  start-page: 76
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib216
  article-title: The role OF GSH efflux IN staurosporine-induced apoptosis IN colonic epithelial cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.09.011
– volume: 134
  start-page: 489
  issue: 3
  year: 2004
  ident: 10.1016/j.biomaterials.2021.121110_bib8
  article-title: Glutathione metabolism and its implications for health
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.3.489
– volume: 169
  start-page: 53
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib132
  article-title: Lenvatinib-zinc phthalocyanine conjugates as potential agents for enhancing synergistic therapy of multidrug-resistant cancer by glutathione depletion
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.02.065
– volume: 10
  start-page: 321
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2021.121110_bib45
  article-title: Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2007.1901
– volume: 9
  start-page: 2000864
  issue: 20
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib138
  article-title: Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202000864
– volume: 380
  start-page: 131
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2021.121110_bib146
  article-title: The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.04.066
– volume: 104
  start-page: 144
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib46
  article-title: Reactive oxygen species and cancer paradox: to promote or to suppress?
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.01.004
– volume: 9
  start-page: 2233
  issue: 11
  year: 1970
  ident: 10.1016/j.biomaterials.2021.121110_bib192
  article-title: On the specificity of steroid interaction with mammary glucose 6-phosphate dehydrogenase
  publication-title: Biochemistry
  doi: 10.1021/bi00813a003
– volume: 428
  start-page: 21
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib177
  article-title: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox 4 and inhibition of xCT
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2018.04.021
– volume: 14
  start-page: 347
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib248
  article-title: Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05493
– volume: 27
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib178
  article-title: Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy
  publication-title: Curr. Med. Chem.
– volume: 57
  start-page: 5725
  issue: 20
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib122
  article-title: Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801378
– volume: 82
  start-page: 291
  issue: 2
  year: 1997
  ident: 10.1016/j.biomaterials.2021.121110_bib5
  article-title: Oxidative stress: oxidants and antioxidants
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.1997.sp004024
– volume: 2018
  start-page: 2469486
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib245
  article-title: N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/2469486
– volume: 1863
  start-page: 129285
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib23
  article-title: Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay
  publication-title: BBA-Gen. Subjects
  doi: 10.1016/j.bbagen.2019.01.007
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib183
  article-title: Purine nucleoside analog-sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines
  publication-title: PloS One
  doi: 10.1371/journal.pone.0054044
– volume: 30
  start-page: 42
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib41
  article-title: Regulation of glutathione synthesis
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2008.05.005
– volume: 12
  start-page: 15767
  issue: 29
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib142
  article-title: Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy
  publication-title: Nanoscale
  doi: 10.1039/D0NR03138K
– volume: 8
  start-page: 478
  issue: 3
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib58
  article-title: Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02120E
– volume: 11
  start-page: 31671
  issue: 35
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib77
  article-title: O-2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10685
– volume: 9
  start-page: 29538
  issue: 35
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib195
  article-title: Integrated nanoparticles to synergistically elevate tumor oxidative stress and suppress antioxidative capability for amplified oxidation therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08347
– volume: 89
  start-page: 3070
  issue: 7
  year: 1992
  ident: 10.1016/j.biomaterials.2021.121110_bib26
  article-title: High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.7.3070
– volume: 458
  start-page: 780
  issue: 7239
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121110_bib144
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 105
  start-page: 53
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib25
  article-title: Drug metabolizing enzymes and their inhibitors' role in cancer resistance, Biomed
  publication-title: Pharmacother
  doi: 10.1016/j.biopha.2018.05.117
– volume: 6
  start-page: 30102
  issue: 30
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121110_bib190
  article-title: Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4945
– volume: 29
  start-page: 649
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib196
  article-title: Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2012.895
– volume: 30
  start-page: 440
  issue: 6
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib47
  article-title: The complex interplay between antioxidants and ROS in cancer
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.03.002
– volume: 9
  start-page: 1525
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib198
  article-title: Involvement of glutathione depletion in selective cytotoxicity of oridonin to p53-mutant esophageal squamous carcinoma cells
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01525
– volume: 16
  start-page: 2001251
  issue: 33
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib139
  article-title: Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy
  publication-title: Small
  doi: 10.1002/smll.202001251
– volume: 2012
  start-page: 736837
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib36
  article-title: Glutathione homeostasis and functions: potential targets for medical interventions
  publication-title: J. Amino Acids
  doi: 10.1155/2012/736837
– volume: 70
  start-page: 585
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib166
  article-title: The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle
  publication-title: IUBMB Life
  doi: 10.1002/iub.1756
– volume: 55
  start-page: 11467
  issue: 38
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121110_bib22
  article-title: Copper(II)–Graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605509
– volume: 8
  start-page: 5059
  issue: 18
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib61
  article-title: Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy
  publication-title: Theranostics
  doi: 10.7150/thno.28344
– volume: 13
  start-page: 4267
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib76
  article-title: Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09387
– volume: 29
  start-page: 1906195
  issue: 51
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib81
  article-title: Ultrasound-activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906195
– start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib237
  article-title: Current developments in Pt(IV) prodrugs conjugated with bioactive ligands
  publication-title: Bioinorgan. Chem. Appl.
– volume: 13
  start-page: 6879
  issue: 6
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib55
  article-title: Cancer-cell-activated photodynamic therapy assisted by Cu(II)-Based metal–organic framework
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01665
– volume: 14
  start-page: 11225
  issue: 9
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib64
  article-title: Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03080
– volume: 36
  start-page: 1302
  issue: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121110_bib157
  article-title: Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine
  publication-title: EMBO J.
  doi: 10.15252/embj.201696151
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib151
  article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0720-y
– volume: 35
  start-page: 102418
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib247
  article-title: Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: a redox and pH-responsive antimicrobial agent with photocatalytic activity
  publication-title: Photodiagn. Photodyn.
  doi: 10.1016/j.pdpdt.2021.102418
– volume: 273
  start-page: 30
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib126
  article-title: Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.01.019
– volume: 90
  start-page: 235
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121110_bib215
  article-title: Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.05.017
– volume: 7
  start-page: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib37
  article-title: Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases
  publication-title: Oncogenesis
  doi: 10.1038/s41389-017-0025-3
– volume: 124
  start-page: 342
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121110_bib207
  article-title: Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.06.021
– volume: 9
  start-page: 17639
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib27
  article-title: The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54065-6
– volume: 285
  start-page: 16116
  issue: 21
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121110_bib159
  article-title: Rapid activation of glutamate cysteine ligase following oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.116210
– volume: 26
  start-page: 238
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121110_bib184
  article-title: Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2011.12.004
– volume: 12
  start-page: 5680
  issue: 5
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib91
  article-title: Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23325
– volume: 31
  start-page: 1661
  issue: 6
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib109
  article-title: Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.0c00209
– volume: 2013
  start-page: 972913
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121110_bib53
  article-title: Role of glutathione in cancer progression and chemoresistance
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2013/972913
– volume: 422
  start-page: 130094
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib249
  article-title: Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130094
– volume: 43
  start-page: 95
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib173
  article-title: The Xc− inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-019-00474-8
– volume: 266
  start-page: 120457
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121110_bib68
  article-title: A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120457
– volume: 224
  start-page: 119498
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121110_bib112
  article-title: Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119498
– volume: 303
  start-page: 476
  issue: 2
  year: 2002
  ident: 10.1016/j.biomaterials.2021.121110_bib162
  article-title: Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter
  publication-title: J. Pharmacol. Exp. Therapeut.
  doi: 10.1124/jpet.102.040220
– volume: 259
  start-page: 120329
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121110_bib121
  article-title: Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120329
SSID ssj0014042
Score 2.74476
SecondaryResourceType review_article
Snippet Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121110
SubjectTerms biocompatible materials
Cancer therapy
drug delivery systems
Drug resistance
Ferroptosis
glutathione
Glutathione depletion
metabolism
Nanomaterials
oxidative stress
photochemotherapy
Reactive oxygen species
xenobiotics
Title Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S014296122100466X
https://dx.doi.org/10.1016/j.biomaterials.2021.121110
https://www.proquest.com/docview/2569615656
https://www.proquest.com/docview/2636617083
Volume 277
WOSCitedRecordID wos000701903900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoixAcEBQQ5VEZCXGhrrJ52QFxWKGtAC1bBCksXKxsYrOpIEn3gZZ_zzh2nBRRFA5copVjJ9l8X8YznvEMQo9BpZcCBB9xmQADxQ1SwlLfI6EvmHSTgXTqDHwfx3QyYdNp9M548Jd1OQFaFGyziar_CjW0Adhq6-w_wG0vCg3wG0CHI8AOx17AD1uXtNIEv8K9VIRhWagdUpXKta2jG1OFdx1iqNIKqJWBUTHX8QDvjz8QNb1l9iwAIcViUVarcqmzEtT74ebiu9nBdd47nJegCOs_2zo-1jWXyp-5DQLKk1JHdOSb3JL0y7yse36Gxpa6n7R4jJuZ1ixUuAMb8tauXbokCgfnhK9L6dNKpbgANYT8UaTr1YXTw1nn0Q_V9c2odiJrnPeTY350Mh7zeDSNn1RnRJUYU654U29lC-24NIhABO4MX4-mb6zTyXfqWkv2OZsctXU44EW3v0if-W1mr9WV-Aa6buwMPNT8uIkuiWIXXetkn9xFV96auIpb6KxDGlxK3CENtqTBeYE1abDB_BluKIMtZZpzB7hDmAMMdMFdutxGJ0ej-OUrYopxkBRU3hWhMhMspFkQiCBhXuImmSu9KKVOGjIqBHX8xGESLNA0BRkfRA40g-rDosydJdnMu4O2C3jquwjDi04kk0EGxoEvweT3vDAT1JcyomJGnT0UNa-UpyZTvSqY8o03IYmnvAsHV3BwDcce8uzYSudr6TXqeYMcb3YkwxzKgYO9Rr-wo43eqvXR3uMfNWThINyVxy4pRLmGTkEIRFQ211_6hF6oqiow716PPvfR1fbbfIC2V4u1eIgupz9W-XKxj7bolO2b7-IXEBrW0Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+glutathione+depletion+in+cancer+therapy%3A+Enhanced+ROS-based+therapy%2C+ferroptosis%2C+and+chemotherapy&rft.jtitle=Biomaterials&rft.au=Niu%2C+Boyi&rft.au=Liao%2C+Kaixin&rft.au=Zhou%2C+Yixian&rft.au=Wen%2C+Ting&rft.date=2021-10-01&rft.issn=0142-9612&rft.volume=277+p.121110-&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.121110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon