AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods

Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 15; H. 7; S. 3021 - 3039
Hauptverfasser: Abbas, Ather, Boithias, Laurie, Pachepsky, Yakov, Kim, Kyunghyun, Chun, Jong Ahn, Cho, Kyung Hwa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 08.04.2022
European Geosciences Union
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine-learning-based hydrological models and automates the process of pre-processing hydrological data and post-processing model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model's results from a hydrological point of view. This framework will help increase the application of machine-learning-based modeling approaches in hydrological sciences.
AbstractList Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine-learning-based hydrological models and automates the process of pre-processing hydrological data and post-processing model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model's results from a hydrological point of view. This framework will help increase the application of machine-learning-based modeling approaches in hydrological sciences.
Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine-learning-based hydrological models and automates the process of pre-processing hydrological data and post-processing model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model's results from a hydrological point of view. This framework will help increase the application of machine-learning-based modeling approaches in hydrological sciences.
Audience Academic
Author Cho, Kyung Hwa
Pachepsky, Yakov
Abbas, Ather
Kim, Kyunghyun
Chun, Jong Ahn
Boithias, Laurie
Author_xml – sequence: 1
  givenname: Ather
  orcidid: 0000-0002-0031-745X
  surname: Abbas
  fullname: Abbas, Ather
– sequence: 2
  givenname: Laurie
  orcidid: 0000-0003-3414-7329
  surname: Boithias
  fullname: Boithias, Laurie
– sequence: 3
  givenname: Yakov
  orcidid: 0000-0003-0232-6090
  surname: Pachepsky
  fullname: Pachepsky, Yakov
– sequence: 4
  givenname: Kyunghyun
  surname: Kim
  fullname: Kim, Kyunghyun
– sequence: 5
  givenname: Jong Ahn
  orcidid: 0000-0001-8047-1811
  surname: Chun
  fullname: Chun, Jong Ahn
– sequence: 6
  givenname: Kyung Hwa
  surname: Cho
  fullname: Cho, Kyung Hwa
BackLink https://insu.hal.science/insu-03661482$$DView record in HAL
BookMark eNp1kt2PEyEUxSdmTdxdffeRxCdNpgIDM4NvzUbdJk1M_IiP5A5zmVJnhgq0sf-91Bq1RsMD5PI7hwucm-Jq9jMWxVNGF5Ip8XKY-pLJsqKclZxy_qC4ZkqxUtW0uvpj_ai4iXFLaa2aurkuxuVKfIaEgRzYgr4iMBO_w7mMfh8Mkt0xbfxMdmC-wIDE-kAm3-Po5oFsjn3wox-cgZEkNyGJGBxGso-n7R4SlH1wB5zJhNmmj4-LhxbGiE9-zrfFpzevP97dl-t3b1d3y3VpJJOpbARteiVFZWoruJCG20blEsMOoZVgjeDQCNM1Xau4VZY2trKdQFP1nbG8ui1WZ9_ew1bvgpsgHLUHp38UfBg0hOTMiLpD0bU1dArrWkiLANaytpVS5Ba4odnrxdlrA-OF1f1yrd0c95pWdc1Eyw8sw8_O8C74r3uMSW_zO875rprXolFSMV79pgbIHbjZ-hTATC4avayVaquW8iZTi39QefQ4OZM_37pcvxA8vxBkJuG3NMA-Rr368P6SpWfWBB9jQPvraozqU550zpNmUp_ypE95ypL6L4lxCZLLpwRw4_-F3wFhJ8-S
CitedBy_id crossref_primary_10_3390_antibiotics11111593
crossref_primary_10_1016_j_envsoft_2022_105609
crossref_primary_10_2166_hydro_2024_294
crossref_primary_10_5194_essd_17_4079_2025
crossref_primary_10_1016_j_ecoinf_2025_102994
crossref_primary_10_1016_j_jece_2024_112238
crossref_primary_10_3390_w16131904
crossref_primary_10_5194_essd_16_2741_2024
crossref_primary_10_5194_hess_28_1191_2024
crossref_primary_10_1016_j_jhazmat_2022_130031
crossref_primary_10_1016_j_jhazmat_2023_132995
crossref_primary_10_1016_j_scitotenv_2022_159158
crossref_primary_10_5194_essd_14_2883_2022
crossref_primary_10_1016_j_jhazmat_2023_132773
crossref_primary_10_1016_j_jhazmat_2024_133762
crossref_primary_10_1016_j_mser_2024_100880
crossref_primary_10_3390_w17030433
crossref_primary_10_1016_j_seppur_2023_124891
crossref_primary_10_1016_j_jenvman_2022_116969
crossref_primary_10_1016_j_jenvman_2025_126053
Cites_doi 10.1061/JRCEA4.0000287
10.1214/aos/1013203451
10.1016/j.trc.2020.102673
10.1162/neco.1997.9.8.1735
10.1007/s10994-006-6226-1
10.1111/jawr.12079
10.1038/s41598-020-80820-1
10.1145/3337821.3337892
10.1093/bioinformatics/17.6.520
10.1109/TKDE.2017.2720168
10.1007/s10208-009-9045-5
10.1016/j.watres.2019.115454
10.1016/j.ijforecast.2006.03.001
10.5194/hess-21-5293-2017
10.1016/j.neucom.2018.03.067
10.1007/978-3-030-28954-6_19
10.1109/34.709601
10.1080/00207543.2014.917771
10.1016/j.jhydrol.2020.125078
10.1029/2000JD900719
10.5194/hess-23-2647-2019
10.5194/gmd-2021-139
10.1016/j.atmosres.2012.11.003
10.1007/s00521-020-05010-6
10.1145/3380971
10.1016/j.jhydrol.2020.124901
10.1016/j.jhydrol.2020.125370
10.1002/2016WR019627
10.1007/978-3-030-26086-6_10
10.5194/gmd-14-1553-2021
10.1007/978-3-319-09235-5
10.1038/s41598-021-82891-0
10.3390/atmos10090555
10.1145/3292500.3330701
10.1038/s42256-019-0138-9
10.2166/wst.2020.369
10.1016/j.agwat.2020.106113
10.1145/2487575.2487629
10.5194/essd-13-4529-2021
10.1145/2939672.2939778
10.1016/j.jhydrol.2009.01.042
10.1038/s42256-019-0048-x
10.5194/hess-20-2611-2016
10.1016/j.ijforecast.2018.11.010
10.1016/j.scitotenv.2020.141107
10.5194/essd-13-3847-2021
10.1145/2939672.2939785
10.2134/jeq2017.11.0456
10.1016/j.ijforecast.2021.03.012
10.1016/0022-1694(83)90177-4
10.5194/essd-12-2459-2020
10.1111/gwat.12925
10.1002/hyp.14126
10.24963/ijcai.2017/366
10.1006/jcss.1997.1504
10.1016/j.watres.2021.117001
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.5194/gmd-15-3021-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1991-9603
1991-962X
1991-959X
EndPage 3039
ExternalDocumentID oai_doaj_org_article_be4b86ab9e6645feaaff1885547d92c0
oai:HAL:insu-03661482v1
A699838027
10_5194_gmd_15_3021_2022
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
1XC
C1A
IPNFZ
RIG
VOOES
ID FETCH-LOGICAL-c515t-7407d9543c6f4245c2f7907d1ebea85afc42a74cb7b892f9f07f3fb4ec3dbcf23
IEDL.DBID M7S
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:50:24 EDT 2025
Sat Oct 25 07:22:43 EDT 2025
Fri Jul 25 19:22:00 EDT 2025
Mon Oct 20 21:51:12 EDT 2025
Mon Oct 20 16:24:40 EDT 2025
Thu Oct 16 14:23:14 EDT 2025
Tue Nov 18 21:57:06 EST 2025
Sat Nov 29 05:37:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-7407d9543c6f4245c2f7907d1ebea85afc42a74cb7b892f9f07f3fb4ec3dbcf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8047-1811
0000-0003-0232-6090
0000-0002-0031-745X
0000-0003-3414-7329
OpenAccessLink https://www.proquest.com/docview/2647959123?pq-origsite=%requestingapplication%
PQID 2647959123
PQPubID 105726
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_be4b86ab9e6645feaaff1885547d92c0
hal_primary_oai_HAL_insu_03661482v1
proquest_journals_2647959123
gale_infotracmisc_A699838027
gale_infotracacademiconefile_A699838027
gale_incontextgauss_ISR_A699838027
crossref_primary_10_5194_gmd_15_3021_2022
crossref_citationtrail_10_5194_gmd_15_3021_2022
PublicationCentury 2000
PublicationDate 2022-04-08
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2022
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref37
– ident: ref62
– ident: ref41
  doi: 10.1061/JRCEA4.0000287
– ident: ref1
– ident: ref29
  doi: 10.1214/aos/1013203451
– ident: ref19
  doi: 10.1016/j.trc.2020.102673
– ident: ref89
– ident: ref35
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref30
  doi: 10.1007/s10994-006-6226-1
– ident: ref43
– ident: ref67
  doi: 10.1111/jawr.12079
– ident: ref79
  doi: 10.1038/s41598-020-80820-1
– ident: ref20
  doi: 10.1145/3337821.3337892
– ident: ref86
  doi: 10.1093/bioinformatics/17.6.520
– ident: ref42
  doi: 10.1109/TKDE.2017.2720168
– ident: ref69
– ident: ref9
– ident: ref14
  doi: 10.1007/s10208-009-9045-5
– ident: ref17
  doi: 10.1016/j.watres.2019.115454
– ident: ref38
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: ref57
– ident: ref53
– ident: ref4
  doi: 10.5194/hess-21-5293-2017
– ident: ref11
– ident: ref22
  doi: 10.1016/j.neucom.2018.03.067
– ident: ref46
  doi: 10.1007/978-3-030-28954-6_19
– ident: ref39
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: ref13
– ident: ref34
  doi: 10.1109/34.709601
– ident: ref70
  doi: 10.1080/00207543.2014.917771
– ident: ref66
  doi: 10.1016/j.jhydrol.2020.125078
– ident: ref6
– ident: ref84
  doi: 10.1029/2000JD900719
– ident: ref82
– ident: ref36
  doi: 10.5194/hess-23-2647-2019
– ident: ref3
  doi: 10.5194/gmd-2021-139
– ident: ref50
– ident: ref75
– ident: ref77
  doi: 10.1016/j.atmosres.2012.11.003
– ident: ref49
  doi: 10.1007/s00521-020-05010-6
– ident: ref54
– ident: ref71
– ident: ref12
– ident: ref33
– ident: ref87
  doi: 10.1145/3380971
– ident: ref64
– ident: ref65
  doi: 10.1016/j.jhydrol.2020.124901
– ident: ref2
  doi: 10.1016/j.jhydrol.2020.125370
– ident: ref31
  doi: 10.1002/2016WR019627
– ident: ref47
  doi: 10.1007/978-3-030-26086-6_10
– ident: ref58
– ident: ref83
– ident: ref7
– ident: ref48
  doi: 10.5194/gmd-14-1553-2021
– ident: ref68
– ident: ref73
  doi: 10.1007/978-3-319-09235-5
– ident: ref63
  doi: 10.1038/s41598-021-82891-0
– ident: ref60
– ident: ref16
  doi: 10.3390/atmos10090555
– ident: ref5
  doi: 10.1145/3292500.3330701
– ident: ref25
– ident: ref56
  doi: 10.1038/s42256-019-0138-9
– ident: ref81
  doi: 10.2166/wst.2020.369
– ident: ref26
  doi: 10.1016/j.agwat.2020.106113
– ident: ref85
  doi: 10.1145/2487575.2487629
– ident: ref32
– ident: ref55
– ident: ref45
  doi: 10.5194/essd-13-4529-2021
– ident: ref74
  doi: 10.1145/2939672.2939778
– ident: ref78
  doi: 10.1016/j.jhydrol.2009.01.042
– ident: ref76
  doi: 10.1038/s42256-019-0048-x
– ident: ref59
– ident: ref80
  doi: 10.5194/hess-20-2611-2016
– ident: ref88
  doi: 10.1016/j.ijforecast.2018.11.010
– ident: ref15
  doi: 10.1016/j.scitotenv.2020.141107
– ident: ref27
  doi: 10.5194/essd-13-3847-2021
– ident: ref21
– ident: ref18
  doi: 10.1145/2939672.2939785
– ident: ref52
– ident: ref44
  doi: 10.2134/jeq2017.11.0456
– ident: ref51
  doi: 10.1016/j.ijforecast.2021.03.012
– ident: ref61
  doi: 10.1016/0022-1694(83)90177-4
– ident: ref24
  doi: 10.5194/essd-12-2459-2020
– ident: ref8
– ident: ref23
  doi: 10.1111/gwat.12925
– ident: ref10
  doi: 10.1002/hyp.14126
– ident: ref72
  doi: 10.24963/ijcai.2017/366
– ident: ref28
  doi: 10.1006/jcss.1997.1504
– ident: ref40
  doi: 10.1016/j.watres.2021.117001
SSID ssj0069767
ssj0069768
Score 2.4185975
Snippet Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires...
Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3021
SubjectTerms Algorithms
Analysis
Business metrics
Datasets
Deep learning
Hydrologic data
Hydrologic models
Hydrologic processes
Hydrology
Learning algorithms
Libraries
Machine learning
Meteorological data
Methods
Modelling
Neural networks
Optimization
Sciences of the Universe
Testing equipment
Time series
Training
Utilities
Visualization
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAolL-RZbCrIACXGwdhPbic1tQZRWQhUqIPZm-XOLKGmVbCvtv2fGya4IBzjANZlEjt9kPC-ezCPkRYSU2PHSsTIoDwRFOqZTrZlPaha4CjHOfBabqI-P1WKhP_4i9YU1YX174H7ipi4KpyrrNNxVyBStTalQWFxVB116ZOvghqhdcIIabn0MrmCRzbIqWNejpV70G5SQrYjp8kdghWQcaxOA-ZejBSn37d9G5-unWBz5W4zOC8_B7X8Y8h2yO2SbdN5fcpdci809cvN9VvNd3ydn8yPxFZLNlgKJnb2mtqGopsX6L_r0Yo2NBSiw6u8QdSiktzQL58BqR0_Xod3ETYoC9RR9OXYUC-mXFAtPWWgxlNJepLp7QL4cvPv89pAN8gvMQ5KzYjVwvaCl4L5KuD_qSwARDhWAu1XSJi9KWwvvaqd0mXSa1YknJ6LnwflU8odkpzlv4iNCPVJwOKmTtEJzaasERK5WQI9D1KWakOkGA-OH3uQokXFmgKMgagZQM4U0iJpB1Cbk1faKi74vxx9s3yBGWzvsqJ0PAGhmAM38DbQJeYZOYbBnRoNFOUt72XXm6NOJmVfAWbkCgj8hLwejdA7j93b4xwFmAdtsjSz3R5bwUvvR6efge6MRH84_GPw_wUDOkbu3XhVwk41vmiH0dAYyXNSPh4xk738892NyC-cwFyupfbKzai_jE3LDX62-de3T_Nb9BI10LW0
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4ikWCrIoEuJg7cZ2EpvbgiithKqKh9ib5eduRUmrZFtp_z0zTnZFOMCFazKJnPFk_H3xZD5CXkWAxE5wx3hQHghK6ZhOtWY-qVkQKsQ481lsoj45UYuFPv1N6gtrwvr2wL3jpi5KpyrrNNxVlilam1KhsLiqDpr7zNYB9WzJVJ-DK1hks6wK1vXoUi_6DUpAK3K6_BlYUTKBtQnA_PloQcp9-3fZ-eYKiyP_yNF54Tm8R-4OiJHO-5HeJzdi84Dc_pgVeTcPyfn8WH4HwNhSIKKzt9Q2FBWxWP9Vnl5usDkABWb8AzIHBYhKs_gNrFh0tQntNvdRFJmnGI-xo1gMv6RYPMpCi-mQ9kLT3SPy7fDD1_dHbJBQYB6AyprVwNeCLqXwVcI9Ts9hIuBQAXNnVWmTl9zW0rvaKc2TTrM6ieRk9CI4n7h4TPaaiyY-IdQjjYaTOpVWalHaKgEZqxVQ3BA1VxMy3frR-KG_OMpcnBvgGeh5A543RWnQ8wY9PyFvdldc9r01_mL7DqdmZ4ddsfMBiBUzxIr5V6xMyEucWIN9LxosrFnaq64zx18-m3kFvFMoIOkT8nowShcwfm-H_xTAC9gqa2S5P7KEF9OPTh9A_IxGfDT_ZPAfAwO4IXdgvS7gJtv4MkP66AygVNSAB1Tx9H889zNyB32YC47UPtlbt1fxObnlr9dnXfsivzm_ALPCGr8
  priority: 102
  providerName: Directory of Open Access Journals
Title AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
URI https://www.proquest.com/docview/2647959123
https://insu.hal.science/insu-03661482
https://doaj.org/article/be4b86ab9e6645feaaff1885547d92c0
Volume 15
WOSCitedRecordID wos000792360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfE8URmUBEuLBauJ82bygFm2sAqqqA1GeLMexO8RIS9JN6n_PnZMUysNeeIx9rRLf-Xw_-3w_Ql5aCInziOeMF8IAQElyJl0mmXEiKCJRWBsYTzaRTSZiPpfTdsOtbtMqO5_oHXWxNLhHPoCFG2mxwdG-Xf1iyBqFp6sthcYeOcAqCdyn7p11njiFpTb7-8Hfi8NUH5nyeXNmCQFMPFj8LFiYsAjTFXjA-c4a5Uv5bx323jnmS_7jtv1adHL3f7_iHrnTRqF02JjNfXLDlg_Irfee5XfzkFwMx_FXCEIrCuA2eEN1SZFlizU7_XS1wYIDFND2D_BGFMJe6gl1YBWk55ui6vwpReJ6ijZua4oJ9guKCamsqNDF0oa8un5Evpwcf353ylpaBmYg-FmzDDBgIZM4MqnDc1PDQbnQFII9aJFoZ2Kus9jkWS4kd9IFmYtcHlsTFblxPDok--WytI8JNQjNoVO6RMcySnTqAOBlAmBzYSUXPTLoFKFMW7McqTMuFGAXVJ0C1akwUag6harrkdfbX6yaeh3XyI5Qt1s5rLTtG5bVQrUTV-U2zkWqcwlWHSfOau1cKDC5DwaBm6BHnqNlKKylUWKyzkJf1rUan83UMAUsGwkA_j3yqhVyS3h_o9u7DzAKWH5rR_JoRxImu9npfgEGuPPGp8OPCu8tKIhFfFXXqxD-pLM-1bqkWv0xvSfXdz8lt3F0fHqSOCL76-rSPiM3zdX6e131ycHoeDKd9f3mRd_PN2ibjj9Nv8HT7MPoNwsSMAU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENa0KQxceDMECmh4DgdNHMkPiRkOKRCSaZrhUaa5CVmW0g5tEuy0TP4Uv5Fdxw6EQ289cLS18Sjyar9da3c_Qp45cIlTwVPGM2khQIlSpnyimPUyyITMnAtsSTaRDIdyNFIfN8ivuhYG0yprm1ga6mxq8Rt5C4AbabHB0FYZlLtu8RPis-JN_x28zOecd9_vv-2xikKAWQDqOUsgXslUFAobezzjsxwmArfaMHcjI-NtyE0S2jRJpeJe-SDxwqehsyJLrceuBvzF7AdDlio8za0oOzbJloyVCBtka6e79-mgtv0xgHvy90VZiYfJRSrmo-UpKbhMYWt8krF2xAQmSPCA8zVULMkDVhCxeYgZmv8ARYl-3ev_27rdINcqP5t2lhvjJtlwk1vk8oeSx3hxmxx3-uEBuNk5hfA9eE3NhCKPGFueZdDZAlsq0Jmx38HeUnDsaUkZBDhPDxdZXiMGnR-dOIq72BUUSwjGFFNuWZYjiNAlPXdxh3y9kH9_lzQm04m7R6jFjw8wqHxkQiUiE3sIYRMppMic4rJJWvWL17bqyo7kIMcaojNUFQ2qotuRRlXRqCpN8mr1i9myI8k5sjuoSys57CVe3pjmY12ZJp26MJWxSRXs2zDyzhjv2xLTF2ERuA2a5AlqosZuIRNMRxqb06LQ_S-fdSeGaF3IgCdN8rIS8lOYvzVVdQesAjYYW5PcXpMEc2bXhp-Cwq_NuNcZaKzM0OBtlX1rz9rwkFrbdWV0C_1H1e-fP_yYXOnt7w30oD_cfUCu4kqVyVhymzTm-al7SC7Zs_lRkT-q9jcl3y56t_wGeRCLKg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKCogLb0SggMVDiIOVXe_LRkIobQmNWkVRAZGb8XrttKLdhN20KH-NX8fMPgLh0FsPHLN2ol3nm_lm1uP5CHlpISROA54yngkDCUqUMukSyYwTXhaIzFrPVGITyWgkJhM53iC_2rMwWFbZ-sTKUWczg-_Ie0DcKIsNjrbnmrKI8e7g_fwHQwUp3Glt5TRqiOzb5U9I38p3w134r19xPvjweWePNQoDzACPL1gC6UwmozAwscMtQMPhPuGSD4-mRaSdCblOQpMmqZDcSeclLnBpaE2QpcZh0wNw_5siBrvpkM3xznb_sOWBGIg--ftDdSoPC41kzCf1jimET2FvepoxP2IBFktwj_M1hqyEBFZ0ceUIqzX_IY2KCQe3_uc1vE1uNvE37dcGc4ds2Pwuufax0jde3iMn_WH4FcLvgkJa772lOqeoL8bqPQ46X2KrBTrX5jv4YQoBP62khID_6dEyK1omoYvjU0vRum1J8WjBlGIpLssKJBday3aX98mXS3nUB6STz3L7kFCDLyVgULpIhzKIdOwgtU1EIILMSi66pNeCQJmmWzuKhpwoyNoQNgpgo_xIIWwUwqZL3qy-Ma87lVwwdxtxtZqHPcarC7NiqhqXpVIbpiLWqQR7DiNntXbOF1jWCIvAjdclzxGVCruI5IilqT4rSzX8dKj6MWTxgfB40iWvm0luBvdvdHPqA1YBG4-tzdxamwluzqwNvwDwr93xXv9A4YkNBVFY1c_23IcfaZGvGmdcqj-wf3Tx8DNyHexBHQxH-4_JDVyoqkZLbJHOojizT8hVc744LounjalT8u2yLeM3mHqTuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI4Water+v1.0%3A+an+open-source+python+package+for+modeling+hydrological+time+series+using+data-driven+methods&rft.jtitle=Geoscientific+model+development&rft.au=Abbas%2C+Ather&rft.au=Boithias%2C+Laurie&rft.au=Pachepsky%2C+Yakov&rft.au=Kim%2C+Kyunghyun&rft.date=2022-04-08&rft.pub=Copernicus+GmbH&rft.issn=1991-959X&rft.volume=15&rft.issue=7&rft.spage=3021&rft_id=info:doi/10.5194%2Fgmd-15-3021-2022&rft.externalDBID=ISR&rft.externalDocID=A699838027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon