Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage

•The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Virus research Ročník 347; s. 199430
Hlavní autori: Bestle, Dorothea, Bittel, Linda, Werner, Anke-Dorothee, Kämper, Lennart, Dolnik, Olga, Krähling, Verena, Steinmetzer, Torsten, Böttcher-Friebertshäuser, Eva
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.09.2024
Elsevier
Predmet:
ISSN:0168-1702, 1872-7492, 1872-7492
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endosome or at later stages in the TGN.•Proteolytic activation of EBOV GP offers even greater flexibility than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
AbstractList A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell.Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP₂ by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
•The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endosome or at later stages in the TGN.•Proteolytic activation of EBOV GP offers even greater flexibility than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
ArticleNumber 199430
Author Krähling, Verena
Böttcher-Friebertshäuser, Eva
Kämper, Lennart
Bittel, Linda
Dolnik, Olga
Werner, Anke-Dorothee
Steinmetzer, Torsten
Bestle, Dorothea
Author_xml – sequence: 1
  givenname: Dorothea
  surname: Bestle
  fullname: Bestle, Dorothea
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 2
  givenname: Linda
  surname: Bittel
  fullname: Bittel, Linda
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 3
  givenname: Anke-Dorothee
  surname: Werner
  fullname: Werner, Anke-Dorothee
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 4
  givenname: Lennart
  surname: Kämper
  fullname: Kämper, Lennart
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 5
  givenname: Olga
  surname: Dolnik
  fullname: Dolnik, Olga
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 6
  givenname: Verena
  surname: Krähling
  fullname: Krähling, Verena
  organization: Institute of Virology, Philipps-University, Marburg, Germany
– sequence: 7
  givenname: Torsten
  surname: Steinmetzer
  fullname: Steinmetzer, Torsten
  organization: Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
– sequence: 8
  givenname: Eva
  orcidid: 0000-0002-0007-8110
  surname: Böttcher-Friebertshäuser
  fullname: Böttcher-Friebertshäuser, Eva
  email: friebertshaeuser@staff.uni-marburg.de
  organization: Institute of Virology, Philipps-University, Marburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38964470$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1u2zAQhYkiReO4vULAZTd2SFESRaCLFkH-ALcNmnRNjMiRQ0MWXZIy4Fv0yGXsJItuvCIw_N6bwcw7IyeDH5CQc87mnPH6YjXfujDGgHFesKKcc6VKwd6RCW9kMZOlKk7IJIPNjEtWnJKzGFeMsVrI-gM5FY2qy1KyCfn7w2-xp5vgE_p-l5yhYJLbQnJ-oL6jV63vYd-LLvud8XvSDfTmnrY7-vj9_tfDQ0FhsNRAesJNzH8LCimX6DiYJwgJLd346PaOJpeNX29wiJCQdj7QbgxZY3qELSzxI3nfQR_x08s7Jb-vrx4vb2eLnzd3l98WM1PxKs0qaxmWiK1QUpZVJ9vOdkoq1lYgOl6U2Jmm5sx2-eWqkBxtK6zCytQWlBFTcnfwtR5WehPcGsJOe3B6X_BhqfPoLo-lORdgBQLwlpUARdNYEKypWCMrYwvMXp8PXnk5f0aMSa9dNNj3MKAfoxa8EnWtirI6jjJZMy5V7jkl5y_o2K7Rvs34erwM1AfABB9zFLo3hDP9nBK90q8p0c8p0YeUZOGX_4TGpf3FUwDXH5d_Pcgx32frMOhoHA4GrQtoUl6gO2bxD3xg37k
CitedBy_id crossref_primary_10_1007_s44370_025_00024_x
crossref_primary_10_1021_acsomega_5c00408
crossref_primary_10_3389_fimmu_2025_1671173
Cites_doi 10.1099/0022-1317-36-1-151
10.1158/2159-8290.CD-13-1010
10.1128/JVI.02486-06
10.1073/pnas.95.10.5762
10.1111/2049-632X.12053
10.1038/nature10380
10.1128/JVI.76.24.12463-12472.2002
10.1128/JVI.78.10.5458-5465.2004
10.1038/sj.emboj.7600219
10.1128/JVI.80.8.4174-4178.2006
10.1128/JVI.01118-06
10.1016/S0140-6736(10)60667-8
10.1002/cmdc.201500103
10.1016/0042-6822(75)90284-6
10.1038/s41467-021-21171-x
10.1128/JVI.05708-11
10.1007/s00705-023-05834-2
10.1128/JVI.01815-18
10.26508/lsa.202000786
10.1371/journal.pntd.0001923
10.1038/nature10348
10.1073/pnas.1104760108
10.1128/JVI.00906-21
10.1073/pnas.1608147113
10.1371/journal.ppat.1001110
10.1128/JVI.00051-06
10.1128/spectrum.01908-23
10.1128/JVI.01956-08
10.1016/j.molcel.2020.04.022
10.1007/978-3-7091-9300-6_8
10.1016/0042-6822(92)90775-K
10.1128/JVI.76.1.406-410.2002
10.1128/JVI.73.2.1419-1426.1999
10.1128/JVI.01170-07
10.1016/S0021-9258(18)42016-9
10.1007/s00430-015-0438-6
10.1126/science.1110656
10.1371/journal.pbio.3000626
10.2217/fvl.09.56
10.1128/JVI.00649-19
10.1128/mBio.01857-15
10.1006/viro.1995.0052
10.1086/520592
10.1016/j.cell.2015.12.044
10.1016/j.bmcl.2011.06.033
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.virusres.2024.199430
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-7492
ExternalDocumentID oai_doaj_org_article_113ad3eaa1b04aa288da30850875cd2e
38964470
10_1016_j_virusres_2024_199430
S0168170224001230
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMG
HVGLF
HZ~
IH2
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPM
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WH7
WUQ
ZGI
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c515t-5dd0e4eeb397745f7bfdf9790b5a3f124efc8610dffc819271edb3d9e5c6da9c3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1702
1872-7492
IngestDate Fri Oct 03 12:39:11 EDT 2025
Thu Sep 25 08:47:50 EDT 2025
Sun Sep 28 01:32:12 EDT 2025
Thu Apr 17 08:37:54 EDT 2025
Sat Nov 29 03:02:01 EST 2025
Tue Nov 18 22:40:02 EST 2025
Sat Jul 27 15:43:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ebola virus
Furin
TMPRSS2
Endosomal cathepsins
GP cleavage
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-5dd0e4eeb397745f7bfdf9790b5a3f124efc8610dffc819271edb3d9e5c6da9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0007-8110
OpenAccessLink https://doaj.org/article/113ad3eaa1b04aa288da30850875cd2e
PMID 38964470
PQID 3076017911
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_113ad3eaa1b04aa288da30850875cd2e
proquest_miscellaneous_3153669245
proquest_miscellaneous_3076017911
pubmed_primary_38964470
crossref_primary_10_1016_j_virusres_2024_199430
crossref_citationtrail_10_1016_j_virusres_2024_199430
elsevier_sciencedirect_doi_10_1016_j_virusres_2024_199430
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Virus research
PublicationTitleAlternate Virus Res
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hierholzer, Killington (bib0049) 1996
Das, Bulow, Diehl, Durham, Senjobe, Chandran, Luban, Munro (bib0021) 2020; 18
Saeed, Kolokoltsov, Albrecht, Davey (bib0041) 2010; 6
Lucas, Heinlein, Kim, Hernandez, Malik, True, Morrissey, Corey, Montgomery, Mostaghel, Clegg, Coleman, Brown, Schneider, Craik, Simon, Bedalov, Nelson (bib0044) 2014; 4
Bestle, Heindl, Limburg, van Lam van, Pilgram, Moulton, Stein, Hardes, Eickmann, Dolnik, Rohde, Klenk, Garten, Steinmetzer, Böttcher-Friebertshäuser (bib0028) 2020; 3
Lee, Saphire (bib0011) 2009; 4
Feldmann, Klenk, Sanchez (bib0004) 1993; 7
Volchkov, Becker, Volchkova, Ternovoj, Kotov, Netesov, Klenk (bib0036) 1995; 214
Garbutt, Liebscher, Wahl-Jensen, Jones, Möller, Wagner, Volchkov, Klenk, Feldmann, Ströher (bib0047) 2004; 78
Volchkov, Feldmann, Volchkova, Klenk (bib0006) 1998; 95
Wang, Shi, Song, Qi, Lu, Yan, Gao (bib0017) 2016; 164
Krähling, Becker, Rohde, Eickmann, Eroğlu, Herwig, Kerber, Kowalski, Vergara-Alert, Becker (bib0048) 2016; 205
Feldmann, Geisbert (bib0002) 2011; 377
Côté, Misasi, Ren, Bruchez, Lee, Filone, Hensley, Li, Ory, Chandran, Cunningham (bib0019) 2011; 477
Wool-Lewis, Bates (bib0007) 1999; 73
Hoffmann, Kleine-Weber, Pöhlmann (bib0035) 2020; 78
Hoenen, Groseth, Kolesnikova, Theriault, Ebihara, Hartlieb, Bamberg, Feldmann, Ströher, Becker (bib0037) 2006; 80
Jeffers, Sanders, Sanchez (bib0009) 2002; 76
Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib0039) 2016; 113
Böttcher-Friebertshäuser, Klenk, Garten (bib0040) 2013; 69
Spence, Krause, Mittler, Jangra, Chandran (bib0042) 2016; 7
Bestle, Limburg, Kruhl, Harbig, Stein, Moulton, Matrosovich, Abdelwhab, Stech, Böttcher-Friebertshäuser (bib0027) 2021; 95
Neumann, Feldmann, Watanabe, Lukashevich, Kawaoka (bib0022) 2002; 76
Odongo, Habtegebrael, Kiessling, White, Tamm (bib0020) 2023; 11
Chandran, Sullivan, Felbor, Whelan, Cunningham (bib0013) 2005; 308
Volchkov, Klenk (bib0008) 2018
Klenk, Rott, Orlich (bib0025) 1977; 36
Marzi, Reinheckel, Feldmann (bib0024) 2012; 6
Kaletsky, Simmons, Bates (bib0015) 2007; 81
Vey, Orlich, Adler, Klenk, Rott, Garten (bib0031) 1992; 188
Böttcher, Matrosovich, Beyerle, Klenk, Garten, Matrosovich (bib0043) 2006; 80
Dube, Brecher, Delos, Rose, Park, Schornberg, Kuhn, White (bib0012) 2009; 83
Neumann, Geisbert, Ebihara, Geisbert, Daddario-DiCaprio, Feldmann, Kawaoka (bib0023) 2007; 81
Steinmetzer, Hardes (bib0033) 2018
Klenk, Rott, Orlich, Blödorn (bib0005) 1975; 68
Ströher, Willihnganz, Jean, Feldmann (bib0046) 2007; 196
Brecher, Schornberg, Delos, Fusco, Saphire, White (bib0016) 2012; 86
Carette, Raaben, Wong, Herbert, Obernosterer, Mulherkar, Kuehne, Kranzusch, Griffin, Ruthel, Dal Cin, Dye, Whelan, Chandran, Brummelkamp (bib0018) 2011; 477
(bib0003) 2019
Limburg, Harbig, Bestle, Stein, Moulton, Jaeger, Janga, Hardes, Koepke, Schulte, Koczulla, Schmeck, Klenk, Böttcher-Friebertshäuser (bib0026) 2019; 93
Gregory, Harada, Liang, Delos, White, Tamm (bib0010) 2011; 108
Iwata-Yoshikawa, Okamura, Shimizu, Hasegawa, Takeda, Nagata (bib0038) 2019
Biedenkopf, Bukreyev, Chandran, Di Paola, Formenty, Griffiths, Hume, Mühlberger, Netesov, Palacios, Pawęska, Smither, Takada, Wahl, Kuhn (bib0001) 2023; 168
Li, Han, Dai, Xu, He, Tao, Wu, Tong, Xia, Guo, Zhou, Li, Zhu, Zhang, Liu, Aji, Cai, Li, Qu, Chen, Jiang, Wang, Ji, Xie, Sun, Lu, Gao (bib0029) 2021; 12
Sielaff, Böttcher-Friebertshäuser, Meyer, Saupe, Volk, Garten, Steinmetzer (bib0034) 2011; 21
Molloy, Bresnahan, Leppla, Klimpel, Thomas (bib0030) 1992; 267
Schornberg, Matsuyama, Kabsch, Delos, Bouton, White (bib0014) 2006; 80
Hardes, Becker, Lu, Dahms, Köhler, Beyer, Sandvig, Yamamoto, Lindberg, Walz, von, Than, Garten, Steinmetzer (bib0032) 2015; 10
Dolnik, Volchkova, Garten, Carbonnelle, Becker, Kahnt, Ströher, Klenk, Volchkov (bib0045) 2004; 23
Park (10.1016/j.virusres.2024.199430_bib0039) 2016; 113
Gregory (10.1016/j.virusres.2024.199430_bib0010) 2011; 108
Jeffers (10.1016/j.virusres.2024.199430_bib0009) 2002; 76
Schornberg (10.1016/j.virusres.2024.199430_bib0014) 2006; 80
Vey (10.1016/j.virusres.2024.199430_bib0031) 1992; 188
Wool-Lewis (10.1016/j.virusres.2024.199430_bib0007) 1999; 73
Li (10.1016/j.virusres.2024.199430_bib0029) 2021; 12
Klenk (10.1016/j.virusres.2024.199430_bib0025) 1977; 36
Lucas (10.1016/j.virusres.2024.199430_bib0044) 2014; 4
Molloy (10.1016/j.virusres.2024.199430_bib0030) 1992; 267
Dube (10.1016/j.virusres.2024.199430_bib0012) 2009; 83
Volchkov (10.1016/j.virusres.2024.199430_bib0006) 1998; 95
Volchkov (10.1016/j.virusres.2024.199430_bib0008) 2018
Iwata-Yoshikawa (10.1016/j.virusres.2024.199430_bib0038) 2019
Böttcher (10.1016/j.virusres.2024.199430_bib0043) 2006; 80
Brecher (10.1016/j.virusres.2024.199430_bib0016) 2012; 86
Klenk (10.1016/j.virusres.2024.199430_bib0005) 1975; 68
Marzi (10.1016/j.virusres.2024.199430_bib0024) 2012; 6
Krähling (10.1016/j.virusres.2024.199430_bib0048) 2016; 205
Spence (10.1016/j.virusres.2024.199430_bib0042) 2016; 7
Dolnik (10.1016/j.virusres.2024.199430_bib0045) 2004; 23
Odongo (10.1016/j.virusres.2024.199430_bib0020) 2023; 11
Neumann (10.1016/j.virusres.2024.199430_bib0022) 2002; 76
Steinmetzer (10.1016/j.virusres.2024.199430_bib0033) 2018
Volchkov (10.1016/j.virusres.2024.199430_bib0036) 1995; 214
Limburg (10.1016/j.virusres.2024.199430_bib0026) 2019; 93
Hoffmann (10.1016/j.virusres.2024.199430_bib0035) 2020; 78
Carette (10.1016/j.virusres.2024.199430_bib0018) 2011; 477
Chandran (10.1016/j.virusres.2024.199430_bib0013) 2005; 308
Böttcher-Friebertshäuser (10.1016/j.virusres.2024.199430_bib0040) 2013; 69
Hardes (10.1016/j.virusres.2024.199430_bib0032) 2015; 10
Bestle (10.1016/j.virusres.2024.199430_bib0028) 2020; 3
Côté (10.1016/j.virusres.2024.199430_bib0019) 2011; 477
(10.1016/j.virusres.2024.199430_bib0003) 2019
Lee (10.1016/j.virusres.2024.199430_bib0011) 2009; 4
Ströher (10.1016/j.virusres.2024.199430_bib0046) 2007; 196
Feldmann (10.1016/j.virusres.2024.199430_bib0002) 2011; 377
Saeed (10.1016/j.virusres.2024.199430_bib0041) 2010; 6
Bestle (10.1016/j.virusres.2024.199430_bib0027) 2021; 95
Neumann (10.1016/j.virusres.2024.199430_bib0023) 2007; 81
Feldmann (10.1016/j.virusres.2024.199430_bib0004) 1993; 7
Wang (10.1016/j.virusres.2024.199430_bib0017) 2016; 164
Das (10.1016/j.virusres.2024.199430_bib0021) 2020; 18
Kaletsky (10.1016/j.virusres.2024.199430_bib0015) 2007; 81
Sielaff (10.1016/j.virusres.2024.199430_bib0034) 2011; 21
Garbutt (10.1016/j.virusres.2024.199430_bib0047) 2004; 78
Biedenkopf (10.1016/j.virusres.2024.199430_bib0001) 2023; 168
Hierholzer (10.1016/j.virusres.2024.199430_bib0049) 1996
Hoenen (10.1016/j.virusres.2024.199430_bib0037) 2006; 80
References_xml – volume: 36
  start-page: 151
  year: 1977
  end-page: 161
  ident: bib0025
  article-title: Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin
  publication-title: J. Gen. Virol.
– volume: 76
  start-page: 12463
  year: 2002
  end-page: 12472
  ident: bib0009
  article-title: Covalent modifications of the ebola virus glycoprotein
  publication-title: J. Virol.
– volume: 477
  start-page: 340
  year: 2011
  end-page: 343
  ident: bib0018
  article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
  publication-title: Nature
– volume: 80
  start-page: 9896
  year: 2006
  end-page: 9898
  ident: bib0043
  article-title: Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium
  publication-title: J. Virol.
– volume: 68
  start-page: 426
  year: 1975
  end-page: 439
  ident: bib0005
  article-title: Activation of influenza A viruses by trypsin treatment
  publication-title: Virology
– volume: 21
  start-page: 4860
  year: 2011
  end-page: 4864
  ident: bib0034
  article-title: Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 377
  start-page: 849
  year: 2011
  end-page: 862
  ident: bib0002
  article-title: Ebola haemorrhagic fever
  publication-title: Lancet
– volume: 3
  start-page: 2024
  year: 2020
  ident: bib0028
  article-title: TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells
  publication-title: Life Sci. Alliance
– volume: 80
  start-page: 4174
  year: 2006
  end-page: 4178
  ident: bib0014
  article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein
  publication-title: J. Virol.
– volume: 108
  start-page: 11211
  year: 2011
  end-page: 11216
  ident: bib0010
  article-title: Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 86
  start-page: 364
  year: 2012
  end-page: 372
  ident: bib0016
  article-title: Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change
  publication-title: J. Virol.
– start-page: 279
  year: 2018
  end-page: 325
  ident: bib0033
  article-title: The antiviral potential of host protease inhibitors
  publication-title: Activation of Viruses by Host Proteases
– volume: 10
  start-page: 1218
  year: 2015
  end-page: 1231
  ident: bib0032
  article-title: Novel furin inhibitors with potent anti-infectious activity
  publication-title: ChemMedChem
– volume: 6
  start-page: e1923
  year: 2012
  ident: bib0024
  article-title: Cathepsin B & L are not required for ebola virus replication
  publication-title: PLoS Negl. Trop. Dis.
– volume: 12
  start-page: 866
  year: 2021
  ident: bib0029
  article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide
  publication-title: Nat. Commun.
– volume: 6
  year: 2010
  ident: bib0041
  article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
  publication-title: PLoS Pathog.
– volume: 7
  start-page: 81
  year: 1993
  end-page: 100
  ident: bib0004
  article-title: Molecular biology and evolution of filoviruses
  publication-title: Arch. Virol. Suppl.
– volume: 168
  start-page: 1
  year: 2023
  end-page: 6
  ident: bib0001
  article-title: Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae
  publication-title: Arch. Virol.
– year: 2019
  ident: bib0003
  article-title: Ebola Virus Disease Distribution Map: cases of Ebola Virus Disease in Africa Since 1976; 2019
– volume: 80
  start-page: 7260
  year: 2006
  end-page: 7264
  ident: bib0037
  article-title: Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24
  publication-title: J. Virol.
– volume: 69
  start-page: 87
  year: 2013
  end-page: 100
  ident: bib0040
  article-title: Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium
  publication-title: Pathog. Dis.
– volume: 205
  start-page: 173
  year: 2016
  end-page: 183
  ident: bib0048
  article-title: Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus
  publication-title: Med. Microbiol. Immunol.
– volume: 81
  start-page: 13378
  year: 2007
  end-page: 13384
  ident: bib0015
  article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity
  publication-title: J. Virol.
– volume: 18
  year: 2020
  ident: bib0021
  article-title: Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding
  publication-title: PLoS Biol.
– volume: 78
  start-page: 779
  year: 2020
  end-page: 784
  ident: bib0035
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol. Cell
– volume: 308
  start-page: 1643
  year: 2005
  end-page: 1645
  ident: bib0013
  article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection
  publication-title: Science
– year: 2019
  ident: bib0038
  article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection
  publication-title: J. Virol.
– volume: 83
  start-page: 2883
  year: 2009
  end-page: 2891
  ident: bib0012
  article-title: The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding
  publication-title: J. Virol.
– volume: 23
  start-page: 2175
  year: 2004
  end-page: 2184
  ident: bib0045
  article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus
  publication-title: EMBO J.
– start-page: 25
  year: 1996
  end-page: 46
  ident: bib0049
  article-title: 2 - Virus isolation and quantitation
  publication-title: Virology Methods Manual
– volume: 188
  start-page: 408
  year: 1992
  end-page: 413
  ident: bib0031
  article-title: Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R
  publication-title: Virology
– volume: 4
  start-page: 621
  year: 2009
  end-page: 635
  ident: bib0011
  article-title: Ebolavirus glycoprotein structure and mechanism of entry
  publication-title: Fut. Virol.
– volume: 7
  year: 2016
  ident: bib0042
  article-title: Direct visualization of ebola virus fusion triggering in the endocytic pathway
  publication-title: MBio
– volume: 164
  start-page: 258
  year: 2016
  end-page: 268
  ident: bib0017
  article-title: Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1
  publication-title: Cell
– volume: 4
  start-page: 1310
  year: 2014
  end-page: 1325
  ident: bib0044
  article-title: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis
  publication-title: Cancer Discov.
– volume: 267
  start-page: 16396
  year: 1992
  end-page: 16402
  ident: bib0030
  article-title: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen
  publication-title: J. Biol. Chem.
– volume: 78
  start-page: 5458
  year: 2004
  end-page: 5465
  ident: bib0047
  article-title: Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses
  publication-title: J. Virol.
– volume: 95
  year: 2021
  ident: bib0027
  article-title: Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells
  publication-title: J. Virol.
– volume: 477
  start-page: 344
  year: 2011
  end-page: 348
  ident: bib0019
  article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for ebolavirus infection
  publication-title: Nature
– volume: 76
  start-page: 406
  year: 2002
  end-page: 410
  ident: bib0022
  article-title: Reverse genetics demonstrates that proteolytic processing of the ebola virus glycoprotein is not essential for replication in cell culture
  publication-title: J. Virol.
– volume: 214
  start-page: 421
  year: 1995
  end-page: 430
  ident: bib0036
  article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases
  publication-title: Virology
– volume: 95
  start-page: 5762
  year: 1998
  end-page: 5767
  ident: bib0006
  article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 73
  start-page: 1419
  year: 1999
  end-page: 1426
  ident: bib0007
  article-title: Endoproteolytic processing of the ebola virus envelope glycoprotein. Cleavage is not required for function
  publication-title: J. Virol.
– volume: 11
  year: 2023
  ident: bib0020
  article-title: A novel
  publication-title: Microbiol. Spectr.
– start-page: 99
  year: 2018
  end-page: 108
  ident: bib0008
  article-title: Proteolytic processing of filovirus glycoproteins
  publication-title: Activation of Viruses by Host Proteases
– volume: 81
  start-page: 2995
  year: 2007
  end-page: 2998
  ident: bib0023
  article-title: Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates
  publication-title: J. Virol.
– volume: 113
  start-page: 12262
  year: 2016
  end-page: 12267
  ident: bib0039
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 196
  start-page: S271
  year: 2007
  end-page: S275
  ident: bib0046
  article-title: Blockage of filoviral glycoprotein processing by use of a protein-based inhibitor
  publication-title: J Infect. Dis.
– volume: 93
  year: 2019
  ident: bib0026
  article-title: TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes
  publication-title: J. Virol.
– volume: 36
  start-page: 151
  year: 1977
  ident: 10.1016/j.virusres.2024.199430_bib0025
  article-title: Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-36-1-151
– volume: 4
  start-page: 1310
  year: 2014
  ident: 10.1016/j.virusres.2024.199430_bib0044
  article-title: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-1010
– volume: 81
  start-page: 2995
  year: 2007
  ident: 10.1016/j.virusres.2024.199430_bib0023
  article-title: Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates
  publication-title: J. Virol.
  doi: 10.1128/JVI.02486-06
– volume: 95
  start-page: 5762
  year: 1998
  ident: 10.1016/j.virusres.2024.199430_bib0006
  article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.10.5762
– volume: 69
  start-page: 87
  year: 2013
  ident: 10.1016/j.virusres.2024.199430_bib0040
  article-title: Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium
  publication-title: Pathog. Dis.
  doi: 10.1111/2049-632X.12053
– volume: 477
  start-page: 344
  year: 2011
  ident: 10.1016/j.virusres.2024.199430_bib0019
  article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for ebolavirus infection
  publication-title: Nature
  doi: 10.1038/nature10380
– volume: 76
  start-page: 12463
  year: 2002
  ident: 10.1016/j.virusres.2024.199430_bib0009
  article-title: Covalent modifications of the ebola virus glycoprotein
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.24.12463-12472.2002
– volume: 78
  start-page: 5458
  year: 2004
  ident: 10.1016/j.virusres.2024.199430_bib0047
  article-title: Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.10.5458-5465.2004
– volume: 23
  start-page: 2175
  year: 2004
  ident: 10.1016/j.virusres.2024.199430_bib0045
  article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600219
– start-page: 25
  year: 1996
  ident: 10.1016/j.virusres.2024.199430_bib0049
  article-title: 2 - Virus isolation and quantitation
– volume: 80
  start-page: 4174
  year: 2006
  ident: 10.1016/j.virusres.2024.199430_bib0014
  article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.8.4174-4178.2006
– volume: 80
  start-page: 9896
  year: 2006
  ident: 10.1016/j.virusres.2024.199430_bib0043
  article-title: Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium
  publication-title: J. Virol.
  doi: 10.1128/JVI.01118-06
– volume: 377
  start-page: 849
  year: 2011
  ident: 10.1016/j.virusres.2024.199430_bib0002
  article-title: Ebola haemorrhagic fever
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60667-8
– volume: 10
  start-page: 1218
  year: 2015
  ident: 10.1016/j.virusres.2024.199430_bib0032
  article-title: Novel furin inhibitors with potent anti-infectious activity
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201500103
– volume: 68
  start-page: 426
  year: 1975
  ident: 10.1016/j.virusres.2024.199430_bib0005
  article-title: Activation of influenza A viruses by trypsin treatment
  publication-title: Virology
  doi: 10.1016/0042-6822(75)90284-6
– volume: 12
  start-page: 866
  year: 2021
  ident: 10.1016/j.virusres.2024.199430_bib0029
  article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21171-x
– volume: 86
  start-page: 364
  year: 2012
  ident: 10.1016/j.virusres.2024.199430_bib0016
  article-title: Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change
  publication-title: J. Virol.
  doi: 10.1128/JVI.05708-11
– volume: 168
  start-page: 1
  year: 2023
  ident: 10.1016/j.virusres.2024.199430_bib0001
  article-title: Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-023-05834-2
– start-page: 279
  year: 2018
  ident: 10.1016/j.virusres.2024.199430_bib0033
  article-title: The antiviral potential of host protease inhibitors
– year: 2019
  ident: 10.1016/j.virusres.2024.199430_bib0038
  article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.01815-18
– volume: 3
  start-page: 2024
  year: 2020
  ident: 10.1016/j.virusres.2024.199430_bib0028
  article-title: TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.202000786
– volume: 6
  start-page: e1923
  year: 2012
  ident: 10.1016/j.virusres.2024.199430_bib0024
  article-title: Cathepsin B & L are not required for ebola virus replication
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001923
– volume: 477
  start-page: 340
  year: 2011
  ident: 10.1016/j.virusres.2024.199430_bib0018
  article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
  publication-title: Nature
  doi: 10.1038/nature10348
– volume: 108
  start-page: 11211
  year: 2011
  ident: 10.1016/j.virusres.2024.199430_bib0010
  article-title: Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1104760108
– volume: 95
  year: 2021
  ident: 10.1016/j.virusres.2024.199430_bib0027
  article-title: Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00906-21
– volume: 113
  start-page: 12262
  year: 2016
  ident: 10.1016/j.virusres.2024.199430_bib0039
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1608147113
– volume: 6
  year: 2010
  ident: 10.1016/j.virusres.2024.199430_bib0041
  article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001110
– volume: 80
  start-page: 7260
  year: 2006
  ident: 10.1016/j.virusres.2024.199430_bib0037
  article-title: Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24
  publication-title: J. Virol.
  doi: 10.1128/JVI.00051-06
– volume: 11
  year: 2023
  ident: 10.1016/j.virusres.2024.199430_bib0020
  article-title: A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry
  publication-title: Microbiol. Spectr.
  doi: 10.1128/spectrum.01908-23
– volume: 83
  start-page: 2883
  year: 2009
  ident: 10.1016/j.virusres.2024.199430_bib0012
  article-title: The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.01956-08
– volume: 78
  start-page: 779
  year: 2020
  ident: 10.1016/j.virusres.2024.199430_bib0035
  article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 7
  start-page: 81
  year: 1993
  ident: 10.1016/j.virusres.2024.199430_bib0004
  article-title: Molecular biology and evolution of filoviruses
  publication-title: Arch. Virol. Suppl.
  doi: 10.1007/978-3-7091-9300-6_8
– volume: 188
  start-page: 408
  year: 1992
  ident: 10.1016/j.virusres.2024.199430_bib0031
  article-title: Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R
  publication-title: Virology
  doi: 10.1016/0042-6822(92)90775-K
– volume: 76
  start-page: 406
  year: 2002
  ident: 10.1016/j.virusres.2024.199430_bib0022
  article-title: Reverse genetics demonstrates that proteolytic processing of the ebola virus glycoprotein is not essential for replication in cell culture
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.1.406-410.2002
– year: 2019
  ident: 10.1016/j.virusres.2024.199430_bib0003
– volume: 73
  start-page: 1419
  year: 1999
  ident: 10.1016/j.virusres.2024.199430_bib0007
  article-title: Endoproteolytic processing of the ebola virus envelope glycoprotein. Cleavage is not required for function
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.2.1419-1426.1999
– volume: 81
  start-page: 13378
  year: 2007
  ident: 10.1016/j.virusres.2024.199430_bib0015
  article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity
  publication-title: J. Virol.
  doi: 10.1128/JVI.01170-07
– volume: 267
  start-page: 16396
  year: 1992
  ident: 10.1016/j.virusres.2024.199430_bib0030
  article-title: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42016-9
– volume: 205
  start-page: 173
  year: 2016
  ident: 10.1016/j.virusres.2024.199430_bib0048
  article-title: Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus
  publication-title: Med. Microbiol. Immunol.
  doi: 10.1007/s00430-015-0438-6
– volume: 308
  start-page: 1643
  year: 2005
  ident: 10.1016/j.virusres.2024.199430_bib0013
  article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection
  publication-title: Science
  doi: 10.1126/science.1110656
– volume: 18
  year: 2020
  ident: 10.1016/j.virusres.2024.199430_bib0021
  article-title: Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000626
– start-page: 99
  year: 2018
  ident: 10.1016/j.virusres.2024.199430_bib0008
  article-title: Proteolytic processing of filovirus glycoproteins
– volume: 4
  start-page: 621
  year: 2009
  ident: 10.1016/j.virusres.2024.199430_bib0011
  article-title: Ebolavirus glycoprotein structure and mechanism of entry
  publication-title: Fut. Virol.
  doi: 10.2217/fvl.09.56
– volume: 93
  year: 2019
  ident: 10.1016/j.virusres.2024.199430_bib0026
  article-title: TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes
  publication-title: J. Virol.
  doi: 10.1128/JVI.00649-19
– volume: 7
  year: 2016
  ident: 10.1016/j.virusres.2024.199430_bib0042
  article-title: Direct visualization of ebola virus fusion triggering in the endocytic pathway
  publication-title: MBio
  doi: 10.1128/mBio.01857-15
– volume: 214
  start-page: 421
  year: 1995
  ident: 10.1016/j.virusres.2024.199430_bib0036
  article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases
  publication-title: Virology
  doi: 10.1006/viro.1995.0052
– volume: 196
  start-page: S271
  issue: Suppl 2
  year: 2007
  ident: 10.1016/j.virusres.2024.199430_bib0046
  article-title: Blockage of filoviral glycoprotein processing by use of a protein-based inhibitor
  publication-title: J Infect. Dis.
  doi: 10.1086/520592
– volume: 164
  start-page: 258
  year: 2016
  ident: 10.1016/j.virusres.2024.199430_bib0017
  article-title: Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.044
– volume: 21
  start-page: 4860
  year: 2011
  ident: 10.1016/j.virusres.2024.199430_bib0034
  article-title: Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.06.033
SSID ssj0006376
Score 2.4357653
Snippet •The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described...
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 199430
SubjectTerms Animals
cathepsin B
cathepsin L
Cathepsin L - genetics
Cathepsin L - metabolism
Cell Line
Chlorocebus aethiops
Ebola virus
Ebolavirus
Ebolavirus - genetics
Ebolavirus - metabolism
Ebolavirus - physiology
Endosomal cathepsins
Endosomes - metabolism
Endosomes - virology
fluorescence microscopy
Furin
Furin - genetics
Furin - metabolism
glycoproteins
GP cleavage
Humans
mutants
pathogenicity
Proteolysis
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
serine proteinases
TMPRSS2
Vero Cells
Vesiculovirus
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Virus Internalization
viruses
Title Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage
URI https://dx.doi.org/10.1016/j.virusres.2024.199430
https://www.ncbi.nlm.nih.gov/pubmed/38964470
https://www.proquest.com/docview/3076017911
https://www.proquest.com/docview/3153669245
https://doaj.org/article/113ad3eaa1b04aa288da30850875cd2e
Volume 347
WOSCitedRecordID wos001267712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-7492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006376
  issn: 0168-1702
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006376
  issn: 0168-1702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k0XqAaJa9i8nMTHBXV5aKkqdpF6s-zYXrqqklVfUv_F_mRm7KQqB-iFQxQpGUcTz9jzTTL-zNh77nhepEkRmaRwUS6SPNJEd6e4jblBh1CFXyh8Xo7H1XQqJntbfVFNWKAHDh13kiSZMplVKtFxrlRaVUZlxLOGQLs2qaXZF1FPn0x1c3CB42ZvPfD1h81sscaYQwTdaU5L9HKqe94LRZ6x_4-I9DfE6SPP2WP2qIOMcBpUfcLu2OYpexA2kdw-Y7fjdmPn4AkX2vkWhYAWK4RPrdA6GGlMX71mcDXf1q2XnDXweQJ6C5ffJz8uLlJQjQHP4XqzxHvnoFZ4CTDq_aKqTwN9dRcK4UFou1kiTgUEveDokz2gcmqD09Nz9vNsdPnpS9TtsxDViGZWETcmtrnFtJrAIHeldsaJUsSaq8whALCurhBmGYdnRIRlYo3OjLC8LowSdfaCHTVtY18xwPwrRTPpTNOTRKkof6y4ULzCxoIPGO-7XNYdCTnthTGXfbXZtexNJclUMphqwE527W4CDcfBFh_JojtpotH2F9C5ZOdc8pBzDZjo_UF2iCQgDXzU7KAC73oHkjhk6T-Mamy7XsqM_oYSLWzyDxmMREWByTF22cvgfbtXQYyJKLaMj__HK75mD0npUDb3hh2tFmv7lt2vN6vZcjFkd8tpNWT3Tr-Opt-Gfoz9BoMELKY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+proteolytic+activation+of+Ebolavirus+glycoprotein+GP+by+TMPRSS2+and+cathepsin+L+at+an+uncharted+position+can+compensate+for+furin+cleavage&rft.jtitle=Virus+research&rft.au=Bestle%2C+Dorothea&rft.au=Bittel%2C+Linda&rft.au=Werner%2C+Anke-Dorothee&rft.au=K%C3%A4mper%2C+Lennart&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=0168-1702&rft.eissn=1872-7492&rft.volume=347&rft_id=info:doi/10.1016%2Fj.virusres.2024.199430&rft.externalDocID=S0168170224001230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon