Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage
•The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endo...
Uložené v:
| Vydané v: | Virus research Ročník 347; s. 199430 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.09.2024
Elsevier |
| Predmet: | |
| ISSN: | 0168-1702, 1872-7492, 1872-7492 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endosome or at later stages in the TGN.•Proteolytic activation of EBOV GP offers even greater flexibility than previously assumed.
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell.
Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. |
|---|---|
| AbstractList | A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell.Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP₂ by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. •The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described as non-cleavable, is shown to be cleaved by TMPRSS2 and cathepsin L.•IF suggests that TMPRSS2 may cleave EBOV GP upon entry in the late endosome or at later stages in the TGN.•Proteolytic activation of EBOV GP offers even greater flexibility than previously assumed. A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed. |
| ArticleNumber | 199430 |
| Author | Krähling, Verena Böttcher-Friebertshäuser, Eva Kämper, Lennart Bittel, Linda Dolnik, Olga Werner, Anke-Dorothee Steinmetzer, Torsten Bestle, Dorothea |
| Author_xml | – sequence: 1 givenname: Dorothea surname: Bestle fullname: Bestle, Dorothea organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 2 givenname: Linda surname: Bittel fullname: Bittel, Linda organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 3 givenname: Anke-Dorothee surname: Werner fullname: Werner, Anke-Dorothee organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 4 givenname: Lennart surname: Kämper fullname: Kämper, Lennart organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 5 givenname: Olga surname: Dolnik fullname: Dolnik, Olga organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 6 givenname: Verena surname: Krähling fullname: Krähling, Verena organization: Institute of Virology, Philipps-University, Marburg, Germany – sequence: 7 givenname: Torsten surname: Steinmetzer fullname: Steinmetzer, Torsten organization: Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Germany – sequence: 8 givenname: Eva orcidid: 0000-0002-0007-8110 surname: Böttcher-Friebertshäuser fullname: Böttcher-Friebertshäuser, Eva email: friebertshaeuser@staff.uni-marburg.de organization: Institute of Virology, Philipps-University, Marburg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38964470$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1u2zAQhYkiReO4vULAZTd2SFESRaCLFkH-ALcNmnRNjMiRQ0MWXZIy4Fv0yGXsJItuvCIw_N6bwcw7IyeDH5CQc87mnPH6YjXfujDGgHFesKKcc6VKwd6RCW9kMZOlKk7IJIPNjEtWnJKzGFeMsVrI-gM5FY2qy1KyCfn7w2-xp5vgE_p-l5yhYJLbQnJ-oL6jV63vYd-LLvud8XvSDfTmnrY7-vj9_tfDQ0FhsNRAesJNzH8LCimX6DiYJwgJLd346PaOJpeNX29wiJCQdj7QbgxZY3qELSzxI3nfQR_x08s7Jb-vrx4vb2eLnzd3l98WM1PxKs0qaxmWiK1QUpZVJ9vOdkoq1lYgOl6U2Jmm5sx2-eWqkBxtK6zCytQWlBFTcnfwtR5WehPcGsJOe3B6X_BhqfPoLo-lORdgBQLwlpUARdNYEKypWCMrYwvMXp8PXnk5f0aMSa9dNNj3MKAfoxa8EnWtirI6jjJZMy5V7jkl5y_o2K7Rvs34erwM1AfABB9zFLo3hDP9nBK90q8p0c8p0YeUZOGX_4TGpf3FUwDXH5d_Pcgx32frMOhoHA4GrQtoUl6gO2bxD3xg37k |
| CitedBy_id | crossref_primary_10_1007_s44370_025_00024_x crossref_primary_10_1021_acsomega_5c00408 crossref_primary_10_3389_fimmu_2025_1671173 |
| Cites_doi | 10.1099/0022-1317-36-1-151 10.1158/2159-8290.CD-13-1010 10.1128/JVI.02486-06 10.1073/pnas.95.10.5762 10.1111/2049-632X.12053 10.1038/nature10380 10.1128/JVI.76.24.12463-12472.2002 10.1128/JVI.78.10.5458-5465.2004 10.1038/sj.emboj.7600219 10.1128/JVI.80.8.4174-4178.2006 10.1128/JVI.01118-06 10.1016/S0140-6736(10)60667-8 10.1002/cmdc.201500103 10.1016/0042-6822(75)90284-6 10.1038/s41467-021-21171-x 10.1128/JVI.05708-11 10.1007/s00705-023-05834-2 10.1128/JVI.01815-18 10.26508/lsa.202000786 10.1371/journal.pntd.0001923 10.1038/nature10348 10.1073/pnas.1104760108 10.1128/JVI.00906-21 10.1073/pnas.1608147113 10.1371/journal.ppat.1001110 10.1128/JVI.00051-06 10.1128/spectrum.01908-23 10.1128/JVI.01956-08 10.1016/j.molcel.2020.04.022 10.1007/978-3-7091-9300-6_8 10.1016/0042-6822(92)90775-K 10.1128/JVI.76.1.406-410.2002 10.1128/JVI.73.2.1419-1426.1999 10.1128/JVI.01170-07 10.1016/S0021-9258(18)42016-9 10.1007/s00430-015-0438-6 10.1126/science.1110656 10.1371/journal.pbio.3000626 10.2217/fvl.09.56 10.1128/JVI.00649-19 10.1128/mBio.01857-15 10.1006/viro.1995.0052 10.1086/520592 10.1016/j.cell.2015.12.044 10.1016/j.bmcl.2011.06.033 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
| DOI | 10.1016/j.virusres.2024.199430 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1872-7492 |
| ExternalDocumentID | oai_doaj_org_article_113ad3eaa1b04aa288da30850875cd2e 38964470 10_1016_j_virusres_2024_199430 S0168170224001230 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADVLN AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMG HVGLF HZ~ IH2 IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPM RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WH7 WUQ ZGI ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c515t-5dd0e4eeb397745f7bfdf9790b5a3f124efc8610dffc819271edb3d9e5c6da9c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1702 1872-7492 |
| IngestDate | Fri Oct 03 12:39:11 EDT 2025 Thu Sep 25 08:47:50 EDT 2025 Sun Sep 28 01:32:12 EDT 2025 Thu Apr 17 08:37:54 EDT 2025 Sat Nov 29 03:02:01 EST 2025 Tue Nov 18 22:40:02 EST 2025 Sat Jul 27 15:43:03 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ebola virus Furin TMPRSS2 Endosomal cathepsins GP cleavage |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c515t-5dd0e4eeb397745f7bfdf9790b5a3f124efc8610dffc819271edb3d9e5c6da9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0007-8110 |
| OpenAccessLink | https://doaj.org/article/113ad3eaa1b04aa288da30850875cd2e |
| PMID | 38964470 |
| PQID | 3076017911 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_113ad3eaa1b04aa288da30850875cd2e proquest_miscellaneous_3153669245 proquest_miscellaneous_3076017911 pubmed_primary_38964470 crossref_primary_10_1016_j_virusres_2024_199430 crossref_citationtrail_10_1016_j_virusres_2024_199430 elsevier_sciencedirect_doi_10_1016_j_virusres_2024_199430 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 20240901 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Virus research |
| PublicationTitleAlternate | Virus Res |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Hierholzer, Killington (bib0049) 1996 Das, Bulow, Diehl, Durham, Senjobe, Chandran, Luban, Munro (bib0021) 2020; 18 Saeed, Kolokoltsov, Albrecht, Davey (bib0041) 2010; 6 Lucas, Heinlein, Kim, Hernandez, Malik, True, Morrissey, Corey, Montgomery, Mostaghel, Clegg, Coleman, Brown, Schneider, Craik, Simon, Bedalov, Nelson (bib0044) 2014; 4 Bestle, Heindl, Limburg, van Lam van, Pilgram, Moulton, Stein, Hardes, Eickmann, Dolnik, Rohde, Klenk, Garten, Steinmetzer, Böttcher-Friebertshäuser (bib0028) 2020; 3 Lee, Saphire (bib0011) 2009; 4 Feldmann, Klenk, Sanchez (bib0004) 1993; 7 Volchkov, Becker, Volchkova, Ternovoj, Kotov, Netesov, Klenk (bib0036) 1995; 214 Garbutt, Liebscher, Wahl-Jensen, Jones, Möller, Wagner, Volchkov, Klenk, Feldmann, Ströher (bib0047) 2004; 78 Volchkov, Feldmann, Volchkova, Klenk (bib0006) 1998; 95 Wang, Shi, Song, Qi, Lu, Yan, Gao (bib0017) 2016; 164 Krähling, Becker, Rohde, Eickmann, Eroğlu, Herwig, Kerber, Kowalski, Vergara-Alert, Becker (bib0048) 2016; 205 Feldmann, Geisbert (bib0002) 2011; 377 Côté, Misasi, Ren, Bruchez, Lee, Filone, Hensley, Li, Ory, Chandran, Cunningham (bib0019) 2011; 477 Wool-Lewis, Bates (bib0007) 1999; 73 Hoffmann, Kleine-Weber, Pöhlmann (bib0035) 2020; 78 Hoenen, Groseth, Kolesnikova, Theriault, Ebihara, Hartlieb, Bamberg, Feldmann, Ströher, Becker (bib0037) 2006; 80 Jeffers, Sanders, Sanchez (bib0009) 2002; 76 Park, Li, Barlan, Fehr, Perlman, McCray, Gallagher (bib0039) 2016; 113 Böttcher-Friebertshäuser, Klenk, Garten (bib0040) 2013; 69 Spence, Krause, Mittler, Jangra, Chandran (bib0042) 2016; 7 Bestle, Limburg, Kruhl, Harbig, Stein, Moulton, Matrosovich, Abdelwhab, Stech, Böttcher-Friebertshäuser (bib0027) 2021; 95 Neumann, Feldmann, Watanabe, Lukashevich, Kawaoka (bib0022) 2002; 76 Odongo, Habtegebrael, Kiessling, White, Tamm (bib0020) 2023; 11 Chandran, Sullivan, Felbor, Whelan, Cunningham (bib0013) 2005; 308 Volchkov, Klenk (bib0008) 2018 Klenk, Rott, Orlich (bib0025) 1977; 36 Marzi, Reinheckel, Feldmann (bib0024) 2012; 6 Kaletsky, Simmons, Bates (bib0015) 2007; 81 Vey, Orlich, Adler, Klenk, Rott, Garten (bib0031) 1992; 188 Böttcher, Matrosovich, Beyerle, Klenk, Garten, Matrosovich (bib0043) 2006; 80 Dube, Brecher, Delos, Rose, Park, Schornberg, Kuhn, White (bib0012) 2009; 83 Neumann, Geisbert, Ebihara, Geisbert, Daddario-DiCaprio, Feldmann, Kawaoka (bib0023) 2007; 81 Steinmetzer, Hardes (bib0033) 2018 Klenk, Rott, Orlich, Blödorn (bib0005) 1975; 68 Ströher, Willihnganz, Jean, Feldmann (bib0046) 2007; 196 Brecher, Schornberg, Delos, Fusco, Saphire, White (bib0016) 2012; 86 Carette, Raaben, Wong, Herbert, Obernosterer, Mulherkar, Kuehne, Kranzusch, Griffin, Ruthel, Dal Cin, Dye, Whelan, Chandran, Brummelkamp (bib0018) 2011; 477 (bib0003) 2019 Limburg, Harbig, Bestle, Stein, Moulton, Jaeger, Janga, Hardes, Koepke, Schulte, Koczulla, Schmeck, Klenk, Böttcher-Friebertshäuser (bib0026) 2019; 93 Gregory, Harada, Liang, Delos, White, Tamm (bib0010) 2011; 108 Iwata-Yoshikawa, Okamura, Shimizu, Hasegawa, Takeda, Nagata (bib0038) 2019 Biedenkopf, Bukreyev, Chandran, Di Paola, Formenty, Griffiths, Hume, Mühlberger, Netesov, Palacios, Pawęska, Smither, Takada, Wahl, Kuhn (bib0001) 2023; 168 Li, Han, Dai, Xu, He, Tao, Wu, Tong, Xia, Guo, Zhou, Li, Zhu, Zhang, Liu, Aji, Cai, Li, Qu, Chen, Jiang, Wang, Ji, Xie, Sun, Lu, Gao (bib0029) 2021; 12 Sielaff, Böttcher-Friebertshäuser, Meyer, Saupe, Volk, Garten, Steinmetzer (bib0034) 2011; 21 Molloy, Bresnahan, Leppla, Klimpel, Thomas (bib0030) 1992; 267 Schornberg, Matsuyama, Kabsch, Delos, Bouton, White (bib0014) 2006; 80 Hardes, Becker, Lu, Dahms, Köhler, Beyer, Sandvig, Yamamoto, Lindberg, Walz, von, Than, Garten, Steinmetzer (bib0032) 2015; 10 Dolnik, Volchkova, Garten, Carbonnelle, Becker, Kahnt, Ströher, Klenk, Volchkov (bib0045) 2004; 23 Park (10.1016/j.virusres.2024.199430_bib0039) 2016; 113 Gregory (10.1016/j.virusres.2024.199430_bib0010) 2011; 108 Jeffers (10.1016/j.virusres.2024.199430_bib0009) 2002; 76 Schornberg (10.1016/j.virusres.2024.199430_bib0014) 2006; 80 Vey (10.1016/j.virusres.2024.199430_bib0031) 1992; 188 Wool-Lewis (10.1016/j.virusres.2024.199430_bib0007) 1999; 73 Li (10.1016/j.virusres.2024.199430_bib0029) 2021; 12 Klenk (10.1016/j.virusres.2024.199430_bib0025) 1977; 36 Lucas (10.1016/j.virusres.2024.199430_bib0044) 2014; 4 Molloy (10.1016/j.virusres.2024.199430_bib0030) 1992; 267 Dube (10.1016/j.virusres.2024.199430_bib0012) 2009; 83 Volchkov (10.1016/j.virusres.2024.199430_bib0006) 1998; 95 Volchkov (10.1016/j.virusres.2024.199430_bib0008) 2018 Iwata-Yoshikawa (10.1016/j.virusres.2024.199430_bib0038) 2019 Böttcher (10.1016/j.virusres.2024.199430_bib0043) 2006; 80 Brecher (10.1016/j.virusres.2024.199430_bib0016) 2012; 86 Klenk (10.1016/j.virusres.2024.199430_bib0005) 1975; 68 Marzi (10.1016/j.virusres.2024.199430_bib0024) 2012; 6 Krähling (10.1016/j.virusres.2024.199430_bib0048) 2016; 205 Spence (10.1016/j.virusres.2024.199430_bib0042) 2016; 7 Dolnik (10.1016/j.virusres.2024.199430_bib0045) 2004; 23 Odongo (10.1016/j.virusres.2024.199430_bib0020) 2023; 11 Neumann (10.1016/j.virusres.2024.199430_bib0022) 2002; 76 Steinmetzer (10.1016/j.virusres.2024.199430_bib0033) 2018 Volchkov (10.1016/j.virusres.2024.199430_bib0036) 1995; 214 Limburg (10.1016/j.virusres.2024.199430_bib0026) 2019; 93 Hoffmann (10.1016/j.virusres.2024.199430_bib0035) 2020; 78 Carette (10.1016/j.virusres.2024.199430_bib0018) 2011; 477 Chandran (10.1016/j.virusres.2024.199430_bib0013) 2005; 308 Böttcher-Friebertshäuser (10.1016/j.virusres.2024.199430_bib0040) 2013; 69 Hardes (10.1016/j.virusres.2024.199430_bib0032) 2015; 10 Bestle (10.1016/j.virusres.2024.199430_bib0028) 2020; 3 Côté (10.1016/j.virusres.2024.199430_bib0019) 2011; 477 (10.1016/j.virusres.2024.199430_bib0003) 2019 Lee (10.1016/j.virusres.2024.199430_bib0011) 2009; 4 Ströher (10.1016/j.virusres.2024.199430_bib0046) 2007; 196 Feldmann (10.1016/j.virusres.2024.199430_bib0002) 2011; 377 Saeed (10.1016/j.virusres.2024.199430_bib0041) 2010; 6 Bestle (10.1016/j.virusres.2024.199430_bib0027) 2021; 95 Neumann (10.1016/j.virusres.2024.199430_bib0023) 2007; 81 Feldmann (10.1016/j.virusres.2024.199430_bib0004) 1993; 7 Wang (10.1016/j.virusres.2024.199430_bib0017) 2016; 164 Das (10.1016/j.virusres.2024.199430_bib0021) 2020; 18 Kaletsky (10.1016/j.virusres.2024.199430_bib0015) 2007; 81 Sielaff (10.1016/j.virusres.2024.199430_bib0034) 2011; 21 Garbutt (10.1016/j.virusres.2024.199430_bib0047) 2004; 78 Biedenkopf (10.1016/j.virusres.2024.199430_bib0001) 2023; 168 Hierholzer (10.1016/j.virusres.2024.199430_bib0049) 1996 Hoenen (10.1016/j.virusres.2024.199430_bib0037) 2006; 80 |
| References_xml | – volume: 36 start-page: 151 year: 1977 end-page: 161 ident: bib0025 article-title: Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin publication-title: J. Gen. Virol. – volume: 76 start-page: 12463 year: 2002 end-page: 12472 ident: bib0009 article-title: Covalent modifications of the ebola virus glycoprotein publication-title: J. Virol. – volume: 477 start-page: 340 year: 2011 end-page: 343 ident: bib0018 article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 publication-title: Nature – volume: 80 start-page: 9896 year: 2006 end-page: 9898 ident: bib0043 article-title: Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium publication-title: J. Virol. – volume: 68 start-page: 426 year: 1975 end-page: 439 ident: bib0005 article-title: Activation of influenza A viruses by trypsin treatment publication-title: Virology – volume: 21 start-page: 4860 year: 2011 end-page: 4864 ident: bib0034 article-title: Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT publication-title: Bioorg. Med. Chem. Lett. – volume: 377 start-page: 849 year: 2011 end-page: 862 ident: bib0002 article-title: Ebola haemorrhagic fever publication-title: Lancet – volume: 3 start-page: 2024 year: 2020 ident: bib0028 article-title: TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells publication-title: Life Sci. Alliance – volume: 80 start-page: 4174 year: 2006 end-page: 4178 ident: bib0014 article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein publication-title: J. Virol. – volume: 108 start-page: 11211 year: 2011 end-page: 11216 ident: bib0010 article-title: Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 86 start-page: 364 year: 2012 end-page: 372 ident: bib0016 article-title: Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change publication-title: J. Virol. – start-page: 279 year: 2018 end-page: 325 ident: bib0033 article-title: The antiviral potential of host protease inhibitors publication-title: Activation of Viruses by Host Proteases – volume: 10 start-page: 1218 year: 2015 end-page: 1231 ident: bib0032 article-title: Novel furin inhibitors with potent anti-infectious activity publication-title: ChemMedChem – volume: 6 start-page: e1923 year: 2012 ident: bib0024 article-title: Cathepsin B & L are not required for ebola virus replication publication-title: PLoS Negl. Trop. Dis. – volume: 12 start-page: 866 year: 2021 ident: bib0029 article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide publication-title: Nat. Commun. – volume: 6 year: 2010 ident: bib0041 article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes publication-title: PLoS Pathog. – volume: 7 start-page: 81 year: 1993 end-page: 100 ident: bib0004 article-title: Molecular biology and evolution of filoviruses publication-title: Arch. Virol. Suppl. – volume: 168 start-page: 1 year: 2023 end-page: 6 ident: bib0001 article-title: Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae publication-title: Arch. Virol. – year: 2019 ident: bib0003 article-title: Ebola Virus Disease Distribution Map: cases of Ebola Virus Disease in Africa Since 1976; 2019 – volume: 80 start-page: 7260 year: 2006 end-page: 7264 ident: bib0037 article-title: Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24 publication-title: J. Virol. – volume: 69 start-page: 87 year: 2013 end-page: 100 ident: bib0040 article-title: Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium publication-title: Pathog. Dis. – volume: 205 start-page: 173 year: 2016 end-page: 183 ident: bib0048 article-title: Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus publication-title: Med. Microbiol. Immunol. – volume: 81 start-page: 13378 year: 2007 end-page: 13384 ident: bib0015 article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity publication-title: J. Virol. – volume: 18 year: 2020 ident: bib0021 article-title: Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding publication-title: PLoS Biol. – volume: 78 start-page: 779 year: 2020 end-page: 784 ident: bib0035 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol. Cell – volume: 308 start-page: 1643 year: 2005 end-page: 1645 ident: bib0013 article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection publication-title: Science – year: 2019 ident: bib0038 article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection publication-title: J. Virol. – volume: 83 start-page: 2883 year: 2009 end-page: 2891 ident: bib0012 article-title: The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding publication-title: J. Virol. – volume: 23 start-page: 2175 year: 2004 end-page: 2184 ident: bib0045 article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus publication-title: EMBO J. – start-page: 25 year: 1996 end-page: 46 ident: bib0049 article-title: 2 - Virus isolation and quantitation publication-title: Virology Methods Manual – volume: 188 start-page: 408 year: 1992 end-page: 413 ident: bib0031 article-title: Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R publication-title: Virology – volume: 4 start-page: 621 year: 2009 end-page: 635 ident: bib0011 article-title: Ebolavirus glycoprotein structure and mechanism of entry publication-title: Fut. Virol. – volume: 7 year: 2016 ident: bib0042 article-title: Direct visualization of ebola virus fusion triggering in the endocytic pathway publication-title: MBio – volume: 164 start-page: 258 year: 2016 end-page: 268 ident: bib0017 article-title: Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1 publication-title: Cell – volume: 4 start-page: 1310 year: 2014 end-page: 1325 ident: bib0044 article-title: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis publication-title: Cancer Discov. – volume: 267 start-page: 16396 year: 1992 end-page: 16402 ident: bib0030 article-title: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen publication-title: J. Biol. Chem. – volume: 78 start-page: 5458 year: 2004 end-page: 5465 ident: bib0047 article-title: Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses publication-title: J. Virol. – volume: 95 year: 2021 ident: bib0027 article-title: Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells publication-title: J. Virol. – volume: 477 start-page: 344 year: 2011 end-page: 348 ident: bib0019 article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for ebolavirus infection publication-title: Nature – volume: 76 start-page: 406 year: 2002 end-page: 410 ident: bib0022 article-title: Reverse genetics demonstrates that proteolytic processing of the ebola virus glycoprotein is not essential for replication in cell culture publication-title: J. Virol. – volume: 214 start-page: 421 year: 1995 end-page: 430 ident: bib0036 article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases publication-title: Virology – volume: 95 start-page: 5762 year: 1998 end-page: 5767 ident: bib0006 article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 73 start-page: 1419 year: 1999 end-page: 1426 ident: bib0007 article-title: Endoproteolytic processing of the ebola virus envelope glycoprotein. Cleavage is not required for function publication-title: J. Virol. – volume: 11 year: 2023 ident: bib0020 article-title: A novel publication-title: Microbiol. Spectr. – start-page: 99 year: 2018 end-page: 108 ident: bib0008 article-title: Proteolytic processing of filovirus glycoproteins publication-title: Activation of Viruses by Host Proteases – volume: 81 start-page: 2995 year: 2007 end-page: 2998 ident: bib0023 article-title: Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates publication-title: J. Virol. – volume: 113 start-page: 12262 year: 2016 end-page: 12267 ident: bib0039 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 196 start-page: S271 year: 2007 end-page: S275 ident: bib0046 article-title: Blockage of filoviral glycoprotein processing by use of a protein-based inhibitor publication-title: J Infect. Dis. – volume: 93 year: 2019 ident: bib0026 article-title: TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes publication-title: J. Virol. – volume: 36 start-page: 151 year: 1977 ident: 10.1016/j.virusres.2024.199430_bib0025 article-title: Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-36-1-151 – volume: 4 start-page: 1310 year: 2014 ident: 10.1016/j.virusres.2024.199430_bib0044 article-title: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-1010 – volume: 81 start-page: 2995 year: 2007 ident: 10.1016/j.virusres.2024.199430_bib0023 article-title: Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates publication-title: J. Virol. doi: 10.1128/JVI.02486-06 – volume: 95 start-page: 5762 year: 1998 ident: 10.1016/j.virusres.2024.199430_bib0006 article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.10.5762 – volume: 69 start-page: 87 year: 2013 ident: 10.1016/j.virusres.2024.199430_bib0040 article-title: Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium publication-title: Pathog. Dis. doi: 10.1111/2049-632X.12053 – volume: 477 start-page: 344 year: 2011 ident: 10.1016/j.virusres.2024.199430_bib0019 article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for ebolavirus infection publication-title: Nature doi: 10.1038/nature10380 – volume: 76 start-page: 12463 year: 2002 ident: 10.1016/j.virusres.2024.199430_bib0009 article-title: Covalent modifications of the ebola virus glycoprotein publication-title: J. Virol. doi: 10.1128/JVI.76.24.12463-12472.2002 – volume: 78 start-page: 5458 year: 2004 ident: 10.1016/j.virusres.2024.199430_bib0047 article-title: Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses publication-title: J. Virol. doi: 10.1128/JVI.78.10.5458-5465.2004 – volume: 23 start-page: 2175 year: 2004 ident: 10.1016/j.virusres.2024.199430_bib0045 article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus publication-title: EMBO J. doi: 10.1038/sj.emboj.7600219 – start-page: 25 year: 1996 ident: 10.1016/j.virusres.2024.199430_bib0049 article-title: 2 - Virus isolation and quantitation – volume: 80 start-page: 4174 year: 2006 ident: 10.1016/j.virusres.2024.199430_bib0014 article-title: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein publication-title: J. Virol. doi: 10.1128/JVI.80.8.4174-4178.2006 – volume: 80 start-page: 9896 year: 2006 ident: 10.1016/j.virusres.2024.199430_bib0043 article-title: Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium publication-title: J. Virol. doi: 10.1128/JVI.01118-06 – volume: 377 start-page: 849 year: 2011 ident: 10.1016/j.virusres.2024.199430_bib0002 article-title: Ebola haemorrhagic fever publication-title: Lancet doi: 10.1016/S0140-6736(10)60667-8 – volume: 10 start-page: 1218 year: 2015 ident: 10.1016/j.virusres.2024.199430_bib0032 article-title: Novel furin inhibitors with potent anti-infectious activity publication-title: ChemMedChem doi: 10.1002/cmdc.201500103 – volume: 68 start-page: 426 year: 1975 ident: 10.1016/j.virusres.2024.199430_bib0005 article-title: Activation of influenza A viruses by trypsin treatment publication-title: Virology doi: 10.1016/0042-6822(75)90284-6 – volume: 12 start-page: 866 year: 2021 ident: 10.1016/j.virusres.2024.199430_bib0029 article-title: Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide publication-title: Nat. Commun. doi: 10.1038/s41467-021-21171-x – volume: 86 start-page: 364 year: 2012 ident: 10.1016/j.virusres.2024.199430_bib0016 article-title: Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change publication-title: J. Virol. doi: 10.1128/JVI.05708-11 – volume: 168 start-page: 1 year: 2023 ident: 10.1016/j.virusres.2024.199430_bib0001 article-title: Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae publication-title: Arch. Virol. doi: 10.1007/s00705-023-05834-2 – start-page: 279 year: 2018 ident: 10.1016/j.virusres.2024.199430_bib0033 article-title: The antiviral potential of host protease inhibitors – year: 2019 ident: 10.1016/j.virusres.2024.199430_bib0038 article-title: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection publication-title: J. Virol. doi: 10.1128/JVI.01815-18 – volume: 3 start-page: 2024 year: 2020 ident: 10.1016/j.virusres.2024.199430_bib0028 article-title: TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells publication-title: Life Sci. Alliance doi: 10.26508/lsa.202000786 – volume: 6 start-page: e1923 year: 2012 ident: 10.1016/j.virusres.2024.199430_bib0024 article-title: Cathepsin B & L are not required for ebola virus replication publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001923 – volume: 477 start-page: 340 year: 2011 ident: 10.1016/j.virusres.2024.199430_bib0018 article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 publication-title: Nature doi: 10.1038/nature10348 – volume: 108 start-page: 11211 year: 2011 ident: 10.1016/j.virusres.2024.199430_bib0010 article-title: Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1104760108 – volume: 95 year: 2021 ident: 10.1016/j.virusres.2024.199430_bib0027 article-title: Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells publication-title: J. Virol. doi: 10.1128/JVI.00906-21 – volume: 113 start-page: 12262 year: 2016 ident: 10.1016/j.virusres.2024.199430_bib0039 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1608147113 – volume: 6 year: 2010 ident: 10.1016/j.virusres.2024.199430_bib0041 article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001110 – volume: 80 start-page: 7260 year: 2006 ident: 10.1016/j.virusres.2024.199430_bib0037 article-title: Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24 publication-title: J. Virol. doi: 10.1128/JVI.00051-06 – volume: 11 year: 2023 ident: 10.1016/j.virusres.2024.199430_bib0020 article-title: A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry publication-title: Microbiol. Spectr. doi: 10.1128/spectrum.01908-23 – volume: 83 start-page: 2883 year: 2009 ident: 10.1016/j.virusres.2024.199430_bib0012 article-title: The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding publication-title: J. Virol. doi: 10.1128/JVI.01956-08 – volume: 78 start-page: 779 year: 2020 ident: 10.1016/j.virusres.2024.199430_bib0035 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 7 start-page: 81 year: 1993 ident: 10.1016/j.virusres.2024.199430_bib0004 article-title: Molecular biology and evolution of filoviruses publication-title: Arch. Virol. Suppl. doi: 10.1007/978-3-7091-9300-6_8 – volume: 188 start-page: 408 year: 1992 ident: 10.1016/j.virusres.2024.199430_bib0031 article-title: Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R publication-title: Virology doi: 10.1016/0042-6822(92)90775-K – volume: 76 start-page: 406 year: 2002 ident: 10.1016/j.virusres.2024.199430_bib0022 article-title: Reverse genetics demonstrates that proteolytic processing of the ebola virus glycoprotein is not essential for replication in cell culture publication-title: J. Virol. doi: 10.1128/JVI.76.1.406-410.2002 – year: 2019 ident: 10.1016/j.virusres.2024.199430_bib0003 – volume: 73 start-page: 1419 year: 1999 ident: 10.1016/j.virusres.2024.199430_bib0007 article-title: Endoproteolytic processing of the ebola virus envelope glycoprotein. Cleavage is not required for function publication-title: J. Virol. doi: 10.1128/JVI.73.2.1419-1426.1999 – volume: 81 start-page: 13378 year: 2007 ident: 10.1016/j.virusres.2024.199430_bib0015 article-title: Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity publication-title: J. Virol. doi: 10.1128/JVI.01170-07 – volume: 267 start-page: 16396 year: 1992 ident: 10.1016/j.virusres.2024.199430_bib0030 article-title: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42016-9 – volume: 205 start-page: 173 year: 2016 ident: 10.1016/j.virusres.2024.199430_bib0048 article-title: Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus publication-title: Med. Microbiol. Immunol. doi: 10.1007/s00430-015-0438-6 – volume: 308 start-page: 1643 year: 2005 ident: 10.1016/j.virusres.2024.199430_bib0013 article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection publication-title: Science doi: 10.1126/science.1110656 – volume: 18 year: 2020 ident: 10.1016/j.virusres.2024.199430_bib0021 article-title: Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000626 – start-page: 99 year: 2018 ident: 10.1016/j.virusres.2024.199430_bib0008 article-title: Proteolytic processing of filovirus glycoproteins – volume: 4 start-page: 621 year: 2009 ident: 10.1016/j.virusres.2024.199430_bib0011 article-title: Ebolavirus glycoprotein structure and mechanism of entry publication-title: Fut. Virol. doi: 10.2217/fvl.09.56 – volume: 93 year: 2019 ident: 10.1016/j.virusres.2024.199430_bib0026 article-title: TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes publication-title: J. Virol. doi: 10.1128/JVI.00649-19 – volume: 7 year: 2016 ident: 10.1016/j.virusres.2024.199430_bib0042 article-title: Direct visualization of ebola virus fusion triggering in the endocytic pathway publication-title: MBio doi: 10.1128/mBio.01857-15 – volume: 214 start-page: 421 year: 1995 ident: 10.1016/j.virusres.2024.199430_bib0036 article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases publication-title: Virology doi: 10.1006/viro.1995.0052 – volume: 196 start-page: S271 issue: Suppl 2 year: 2007 ident: 10.1016/j.virusres.2024.199430_bib0046 article-title: Blockage of filoviral glycoprotein processing by use of a protein-based inhibitor publication-title: J Infect. Dis. doi: 10.1086/520592 – volume: 164 start-page: 258 year: 2016 ident: 10.1016/j.virusres.2024.199430_bib0017 article-title: Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1 publication-title: Cell doi: 10.1016/j.cell.2015.12.044 – volume: 21 start-page: 4860 year: 2011 ident: 10.1016/j.virusres.2024.199430_bib0034 article-title: Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2011.06.033 |
| SSID | ssj0006376 |
| Score | 2.4357653 |
| Snippet | •The necessity of EBOV GP cleavage at the furin cleavage site was and is a subject of debate.•The furin cleavage site mutant EBOV GP_AGTAA, which was described... A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 199430 |
| SubjectTerms | Animals cathepsin B cathepsin L Cathepsin L - genetics Cathepsin L - metabolism Cell Line Chlorocebus aethiops Ebola virus Ebolavirus Ebolavirus - genetics Ebolavirus - metabolism Ebolavirus - physiology Endosomal cathepsins Endosomes - metabolism Endosomes - virology fluorescence microscopy Furin Furin - genetics Furin - metabolism glycoproteins GP cleavage Humans mutants pathogenicity Proteolysis Serine Endopeptidases - genetics Serine Endopeptidases - metabolism serine proteinases TMPRSS2 Vero Cells Vesiculovirus Viral Envelope Proteins - genetics Viral Envelope Proteins - metabolism Virus Internalization viruses |
| Title | Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage |
| URI | https://dx.doi.org/10.1016/j.virusres.2024.199430 https://www.ncbi.nlm.nih.gov/pubmed/38964470 https://www.proquest.com/docview/3076017911 https://www.proquest.com/docview/3153669245 https://doaj.org/article/113ad3eaa1b04aa288da30850875cd2e |
| Volume | 347 |
| WOSCitedRecordID | wos001267712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1872-7492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006376 issn: 0168-1702 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006376 issn: 0168-1702 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k0XqAaJa9i8nMTHBXV5aKkqdpF6s-zYXrqqklVfUv_F_mRm7KQqB-iFQxQpGUcTz9jzTTL-zNh77nhepEkRmaRwUS6SPNJEd6e4jblBh1CFXyh8Xo7H1XQqJntbfVFNWKAHDh13kiSZMplVKtFxrlRaVUZlxLOGQLs2qaXZF1FPn0x1c3CB42ZvPfD1h81sscaYQwTdaU5L9HKqe94LRZ6x_4-I9DfE6SPP2WP2qIOMcBpUfcLu2OYpexA2kdw-Y7fjdmPn4AkX2vkWhYAWK4RPrdA6GGlMX71mcDXf1q2XnDXweQJ6C5ffJz8uLlJQjQHP4XqzxHvnoFZ4CTDq_aKqTwN9dRcK4UFou1kiTgUEveDokz2gcmqD09Nz9vNsdPnpS9TtsxDViGZWETcmtrnFtJrAIHeldsaJUsSaq8whALCurhBmGYdnRIRlYo3OjLC8LowSdfaCHTVtY18xwPwrRTPpTNOTRKkof6y4ULzCxoIPGO-7XNYdCTnthTGXfbXZtexNJclUMphqwE527W4CDcfBFh_JojtpotH2F9C5ZOdc8pBzDZjo_UF2iCQgDXzU7KAC73oHkjhk6T-Mamy7XsqM_oYSLWzyDxmMREWByTF22cvgfbtXQYyJKLaMj__HK75mD0npUDb3hh2tFmv7lt2vN6vZcjFkd8tpNWT3Tr-Opt-Gfoz9BoMELKY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+proteolytic+activation+of+Ebolavirus+glycoprotein+GP+by+TMPRSS2+and+cathepsin+L+at+an+uncharted+position+can+compensate+for+furin+cleavage&rft.jtitle=Virus+research&rft.au=Bestle%2C+Dorothea&rft.au=Bittel%2C+Linda&rft.au=Werner%2C+Anke-Dorothee&rft.au=K%C3%A4mper%2C+Lennart&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=0168-1702&rft.eissn=1872-7492&rft.volume=347&rft_id=info:doi/10.1016%2Fj.virusres.2024.199430&rft.externalDocID=S0168170224001230 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon |