Single‐extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron‐derived EVs
Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or ab...
Saved in:
| Published in: | Journal of extracellular vesicles Vol. 13; no. 6; pp. e12459 - n/a |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
John Wiley & Sons, Inc
01.06.2024
John Wiley and Sons Inc Wiley |
| Subjects: | |
| ISSN: | 2001-3078, 2001-3078 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single‐EV techniques to establish the neuronal origin and determine the abundance of L1CAM‐positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co‐expressed on single‐EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs. Levels of L1CAM‐positive EVs carrying the neuronal proteins VAMP2 and β‐III‐tubulin range from 30% to 63%, in contrast to 0.8%–3.9% of L1CAM‐negative EVs. Plasma fluid‐phase L1CAM does not bind to single‐EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.
Previous research suggest that extracellular vesicles (EVs) secreted by brain neurons carry L1CAM and circulate in peripheral blood, coexisting with L1CAM‐positive EVs from peripheral cellular sources and free L1CAM peptides (top left). These other versions of L1CAM in blood challenge the approach of targeting L1CAM for the immunoaffinity isolation of neuronal EVs (top right), a methodology widely adopted to derive blood biomarkers for brain disorders. To further understand L1CAM‐positive EVs, we sought to establish their neuronal origin and determine the abundance of L1CAM‐positive neuronal EVs in human blood using single‐, intact‐EV techniques including flow cytometry, confocal microscopy and a novel Simoa® assay specific for L1CAM in EVs carrying tetraspanins CD9, CD63 and CD81 (bottom left). Results demonstrate that L1CAM ectodomain epitopes are co‐expressed on blood‐derived EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs via L1CAM immunocapture (bottom right). Results further validate the use of L1CAM as a target for the immunoaffinity isolation of neuron‐derived EVs from blood. |
|---|---|
| AbstractList | Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single‐EV techniques to establish the neuronal origin and determine the abundance of L1CAM‐positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co‐expressed on single‐EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs. Levels of L1CAM‐positive EVs carrying the neuronal proteins VAMP2 and β‐III‐tubulin range from 30% to 63%, in contrast to 0.8%–3.9% of L1CAM‐negative EVs. Plasma fluid‐phase L1CAM does not bind to single‐EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function. Abstract Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single‐EV techniques to establish the neuronal origin and determine the abundance of L1CAM‐positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co‐expressed on single‐EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs. Levels of L1CAM‐positive EVs carrying the neuronal proteins VAMP2 and β‐III‐tubulin range from 30% to 63%, in contrast to 0.8%–3.9% of L1CAM‐negative EVs. Plasma fluid‐phase L1CAM does not bind to single‐EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function. Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single‐EV techniques to establish the neuronal origin and determine the abundance of L1CAM‐positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co‐expressed on single‐EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs. Levels of L1CAM‐positive EVs carrying the neuronal proteins VAMP2 and β‐III‐tubulin range from 30% to 63%, in contrast to 0.8%–3.9% of L1CAM‐negative EVs. Plasma fluid‐phase L1CAM does not bind to single‐EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function. Previous research suggest that extracellular vesicles (EVs) secreted by brain neurons carry L1CAM and circulate in peripheral blood, coexisting with L1CAM‐positive EVs from peripheral cellular sources and free L1CAM peptides (top left). These other versions of L1CAM in blood challenge the approach of targeting L1CAM for the immunoaffinity isolation of neuronal EVs (top right), a methodology widely adopted to derive blood biomarkers for brain disorders. To further understand L1CAM‐positive EVs, we sought to establish their neuronal origin and determine the abundance of L1CAM‐positive neuronal EVs in human blood using single‐, intact‐EV techniques including flow cytometry, confocal microscopy and a novel Simoa® assay specific for L1CAM in EVs carrying tetraspanins CD9, CD63 and CD81 (bottom left). Results demonstrate that L1CAM ectodomain epitopes are co‐expressed on blood‐derived EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs via L1CAM immunocapture (bottom right). Results further validate the use of L1CAM as a target for the immunoaffinity isolation of neuron‐derived EVs from blood. Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins β-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and β-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins β-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and β-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function. Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single‐EV techniques to establish the neuronal origin and determine the abundance of L1CAM‐positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co‐expressed on single‐EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs. Levels of L1CAM‐positive EVs carrying the neuronal proteins VAMP2 and β‐III‐tubulin range from 30% to 63%, in contrast to 0.8%–3.9% of L1CAM‐negative EVs. Plasma fluid‐phase L1CAM does not bind to single‐EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function. Previous research suggest that extracellular vesicles (EVs) secreted by brain neurons carry L1CAM and circulate in peripheral blood, coexisting with L1CAM‐positive EVs from peripheral cellular sources and free L1CAM peptides (top left). These other versions of L1CAM in blood challenge the approach of targeting L1CAM for the immunoaffinity isolation of neuronal EVs (top right), a methodology widely adopted to derive blood biomarkers for brain disorders. To further understand L1CAM‐positive EVs, we sought to establish their neuronal origin and determine the abundance of L1CAM‐positive neuronal EVs in human blood using single‐, intact‐EV techniques including flow cytometry, confocal microscopy and a novel Simoa® assay specific for L1CAM in EVs carrying tetraspanins CD9, CD63 and CD81 (bottom left). Results demonstrate that L1CAM ectodomain epitopes are co‐expressed on blood‐derived EVs with the neuronal proteins β‐III‐tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM‐positive EVs via L1CAM immunocapture (bottom right). Results further validate the use of L1CAM as a target for the immunoaffinity isolation of neuron‐derived EVs from blood. |
| Author | Kapogiannis, Dimitrios Rubio, F Javier Hill, Andrew F Calzada, Elizabeth Goetzl, Edward J Nogueras‐Ortiz, Carlos J Delgado‐Peraza, Francheska Volpert, Olga Cheng, Lesley Eitan, Erez Vreones, Michael Yao, Pamela Mustapic, Maja Lyashkov, Alexey You, Yang Eren, Erden Dunn, Christopher Ikezu, Tsuneya |
| AuthorAffiliation | 3 NeuroDex Inc. Natick Maryland USA 7 Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA 1 Laboratory of Clinical Investigation, Intramural Research Program National Institute on Aging, National Institutes of Health (NIA/NIH) Baltimore Maryland USA 4 Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health Baltimore Maryland USA 8 Institute for Health and Sport Victoria University Melbourne Victoria Australia 10 San Francisco Campus for Jewish Living San Francisco California USA 11 Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland USA 2 Flow Cytometry Unit, Intramural Research Program National Institute on Aging, National Institutes of Health (NIA/NIH) Baltimore Maryland USA 5 La Trobe Institute for Molecular Science La Trobe University Bundoora Victoria Australia 9 Department of Medicine |
| AuthorAffiliation_xml | – name: 6 Department of Neuroscience Mayo Clinic Jacksonville Florida USA – name: 10 San Francisco Campus for Jewish Living San Francisco California USA – name: 1 Laboratory of Clinical Investigation, Intramural Research Program National Institute on Aging, National Institutes of Health (NIA/NIH) Baltimore Maryland USA – name: 11 Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland USA – name: 3 NeuroDex Inc. Natick Maryland USA – name: 4 Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health Baltimore Maryland USA – name: 9 Department of Medicine University of California San Francisco California USA – name: 5 La Trobe Institute for Molecular Science La Trobe University Bundoora Victoria Australia – name: 2 Flow Cytometry Unit, Intramural Research Program National Institute on Aging, National Institutes of Health (NIA/NIH) Baltimore Maryland USA – name: 7 Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA – name: 8 Institute for Health and Sport Victoria University Melbourne Victoria Australia |
| Author_xml | – sequence: 1 givenname: Carlos J orcidid: 0000-0003-2503-965X surname: Nogueras‐Ortiz fullname: Nogueras‐Ortiz, Carlos J email: carlos.nogueras-ortiz@nih.gov organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 2 givenname: Erden orcidid: 0000-0002-5190-9500 surname: Eren fullname: Eren, Erden organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 3 givenname: Pamela surname: Yao fullname: Yao, Pamela organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 4 givenname: Elizabeth surname: Calzada fullname: Calzada, Elizabeth organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 5 givenname: Christopher surname: Dunn fullname: Dunn, Christopher organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 6 givenname: Olga orcidid: 0000-0003-1381-5543 surname: Volpert fullname: Volpert, Olga organization: NeuroDex Inc – sequence: 7 givenname: Francheska surname: Delgado‐Peraza fullname: Delgado‐Peraza, Francheska organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 8 givenname: Maja surname: Mustapic fullname: Mustapic, Maja organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 9 givenname: Alexey surname: Lyashkov fullname: Lyashkov, Alexey organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 10 givenname: F Javier surname: Rubio fullname: Rubio, F Javier organization: Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health – sequence: 11 givenname: Michael orcidid: 0009-0003-1719-8156 surname: Vreones fullname: Vreones, Michael organization: National Institute on Aging, National Institutes of Health (NIA/NIH) – sequence: 12 givenname: Lesley surname: Cheng fullname: Cheng, Lesley organization: La Trobe University – sequence: 13 givenname: Yang surname: You fullname: You, Yang organization: Boston University School of Medicine – sequence: 14 givenname: Andrew F orcidid: 0000-0001-5581-2354 surname: Hill fullname: Hill, Andrew F organization: Victoria University – sequence: 15 givenname: Tsuneya orcidid: 0000-0002-3979-8596 surname: Ikezu fullname: Ikezu, Tsuneya organization: Boston University School of Medicine – sequence: 16 givenname: Erez surname: Eitan fullname: Eitan, Erez organization: NeuroDex Inc – sequence: 17 givenname: Edward J surname: Goetzl fullname: Goetzl, Edward J organization: San Francisco Campus for Jewish Living – sequence: 18 givenname: Dimitrios surname: Kapogiannis fullname: Kapogiannis, Dimitrios email: kapogiannisd@mail.nih.gov organization: Johns Hopkins School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38868956$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFuEzEUXKEiWkovfACyxKUgpTx77c36hKIoQFEqDkCulnf9NnFw1sXeDeTGJyA-kS_B25SqrRC-2BrPjMfvvcfZQetbzLKnFM4oAHu1xi07o4wL-SA7YgB0lMO4PLh1PsxOYlxDWpJTUcpH2WFelkUpRXGU_fpo26XD3z9-4vcu6Bqd650OZIvR1g7J6WzxguhWu13ESLbaWaM7JN0KSR-R-IbMKZkmFZmYVdL4llx4h3U_aOd0OrlI8kg0CeisrhJaWb_R4QuGQdxiH3ybXjcY7BYNmS3ik-xho13Ek-v9OPv8ZvZp-m40__D2fDqZj2pBhRw1FLkwUCETuSk5N2WJshYAWldMNgCi4ghjbqQEwzkrTM4Zq0QCBTZVmR9n53tf4_VaXQabYu2U11ZdAT4slQ7dUAVVmKaAJheMCuCyploz0GiaWhcNmponr9d7r8u-2iQE21RMd8f07k1rV2rpt4pSOgYYy-Rweu0Q_NceY6c2Ng7t0C36PqocirGkNGdD8Of3qGvfh9SjxKKSQpEXRZ5Yz25Husnyt_eJ8HJPqIOPMWBzQ6GghtlSw2ypq9lKZLhHrm2nu9Tv9B3r_i2he8k363D3H3P1frZge80fqjjhzA |
| CitedBy_id | crossref_primary_10_1002_acn3_70143 crossref_primary_10_1007_s12035_025_05247_z crossref_primary_10_1016_j_jpba_2025_116965 crossref_primary_10_1016_j_nbd_2025_106867 crossref_primary_10_1093_exposome_osaf007 crossref_primary_10_1002_ijc_35523 crossref_primary_10_1007_s12035_025_04909_2 crossref_primary_10_1038_s41598_025_06038_1 crossref_primary_10_1016_j_euroneuro_2025_02_009 crossref_primary_10_1002_alz_14497 crossref_primary_10_3390_ijms26157246 crossref_primary_10_1002_jev2_70140 crossref_primary_10_1016_j_bbrc_2024_150439 crossref_primary_10_1038_s41582_025_01080_z crossref_primary_10_1002_advs_202415289 crossref_primary_10_1111_acel_14369 crossref_primary_10_5582_bst_2025_01142 crossref_primary_10_1038_s41386_025_02204_1 crossref_primary_10_1002_alz_70380 crossref_primary_10_1186_s44330_025_00034_7 crossref_primary_10_1021_acsabm_5c00591 crossref_primary_10_1002_adsr_202500034 crossref_primary_10_1016_j_vascn_2025_108376 crossref_primary_10_1007_s12035_025_05010_4 crossref_primary_10_1523_JNEUROSCI_1170_24_2024 crossref_primary_10_3390_ijms26178272 crossref_primary_10_3390_ijms26157213 crossref_primary_10_3389_fimmu_2025_1569503 crossref_primary_10_1002_alz_70597 crossref_primary_10_1002_jex2_70059 crossref_primary_10_1021_acsnano_5c00706 |
| Cites_doi | 10.1038/s41598-019-39884-x 10.1097/QAD.0000000000001595 10.1002/hbm.23494 10.1096/fj.202200792RR 10.3389/fnins.2017.00278 10.1038/srep36338 10.3390/cells9071709 10.1523/JNEUROSCI.0146-18.2019 10.1093/braincomms/fcac262 10.1016/j.cell.2019.02.029 10.1002/jev2.12358 10.1186/s13195-023-01303-9 10.1186/s12964-023-01045-z 10.1002/neu.10052 10.1016/j.mcn.2010.11.004 10.3390/ijms20174180 10.1126/scisignal.aai7696 10.1007/s00401-014-1314-y 10.1091/mbc.e09-10-0900 10.1523/JNEUROSCI.0147-18.2019 10.1080/20013078.2018.1535750 10.1083/jcb.200101099 10.1039/C5OB01451D 10.1136/jnnp-2019-322588 10.1523/JNEUROSCI.18-14-05311.1998 10.3390/cells10050993 10.1016/j.neuron.2021.01.007 10.1080/15622975.2017.1375556 10.1038/s41592-021-01174-8 10.1111/jth.14154 10.1074/jbc.M112.346759 10.1177/1352458520924590 10.1038/ncb1800 10.1038/nbt.1807 10.1001/jamaneurol.2019.2462 10.1212/WNL.0000000000010087 10.1016/j.ymeth.2012.01.002 10.1002/jev2.12183 10.1007/s13365-018-0695-4 10.1080/20013078.2017.1348885 10.1080/20013078.2020.1713526 10.7554/eLife.44305 10.1002/eji.1830261035 10.1016/j.biomaterials.2022.121366 10.1093/hmg/9.6.879 10.3390/ijms22062951 10.1038/s41556-021-00693-y 10.1016/j.neurobiolaging.2020.09.022 10.1093/brain/awac258 10.1002/j.1460-2075.1984.tb01753.x 10.1016/j.addr.2022.114486 10.1096/fj.13-238980 10.1007/s00401-023-02557-1 10.1007/s13365-020-00877-6 10.1021/acs.analchem.0c03092 10.1101/2022.01.12.475897 10.1111/acel.13754 10.1073/pnas.1521230113 10.1074/jbc.M208351200 10.3390/cells9071618 10.1126/sciadv.adi3647 10.1002/jex2.35 10.1038/s41380-020-0804-7 10.1007/s00018-010-0339-1 10.1186/s12964-021-00730-1 10.1016/j.eurpsy.2019.08.012 10.1016/j.jalz.2014.06.008 10.1038/s41598-017-01731-2 10.4049/jimmunol.158.9.4413 10.1002/ijc.33111 10.15252/emmm.201606271 10.20517/evcna.2023.13 10.1016/j.mcn.2005.12.003 10.1111/ene.14208 10.1038/s41580-023-00576-0 10.1385/NCC:4:2:153 10.1002/jev2.12140 |
| ContentType | Journal Article |
| Copyright | 2024 Neurodex Inc. and The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Author(s). published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. |
| Copyright_xml | – notice: 2024 Neurodex Inc. and The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Author(s). published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1002/jev2.12459 |
| DatabaseName | Wiley Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | NOGUERAS‐ORTIZ et al |
| EISSN | 2001-3078 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_6df60f35215049c1aa20aedfca6fedc4 PMC11170079 38868956 10_1002_jev2_12459 JEV212459 |
| Genre | article Journal Article |
| GroupedDBID | 0R~ 0YH 1OC 24P 53G 5VS 8FE 8FH AAHJG AAMMB ABDBF ABMDY ABQXS ACCMX ACESK ACGFS ACPRK ACUHS ADBBV ADRAZ AEFGJ AEGXH AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IHR INH IPNFZ ITC KQ8 LK8 M48 M4Z M7P M~E OK1 PHGZM PHGZT PQGLB PROAC PUEGO RIG RNS RPM TDBHL TFW WIN AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7QP AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c5159-f1e45d0be253d844d88e9c500aab29f005b4e074d990d4426d3422b54e05efb83 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249447600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2001-3078 |
| IngestDate | Tue Oct 14 18:34:33 EDT 2025 Tue Nov 04 02:05:20 EST 2025 Fri Sep 05 07:47:43 EDT 2025 Wed Aug 13 10:01:52 EDT 2025 Mon Jul 21 06:06:03 EDT 2025 Sat Nov 29 07:06:24 EST 2025 Tue Nov 18 22:19:48 EST 2025 Tue Sep 09 05:10:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | blood biomarkers extracellular vesicles neuron‐derived extracellular vesicles L1CAM Alzheimer's disease |
| Language | English |
| License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2024 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5159-f1e45d0be253d844d88e9c500aab29f005b4e074d990d4426d3422b54e05efb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3979-8596 0000-0003-2503-965X 0009-0003-1719-8156 0000-0001-5581-2354 0000-0002-5190-9500 0000-0003-1381-5543 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12459 |
| PMID | 38868956 |
| PQID | 3191063663 |
| PQPubID | 2030046 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6df60f35215049c1aa20aedfca6fedc4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11170079 proquest_miscellaneous_3067911328 proquest_journals_3191063663 pubmed_primary_38868956 crossref_primary_10_1002_jev2_12459 crossref_citationtrail_10_1002_jev2_12459 wiley_primary_10_1002_jev2_12459_JEV212459 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 2024-Jun 20240601 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Abingdon – name: Hoboken |
| PublicationTitle | Journal of extracellular vesicles |
| PublicationTitleAlternate | J Extracell Vesicles |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 1997; 158 2017; 6 2021; 27 2017; 7 2021; 26 2006; 31 2012; 287 2021; 23 2021; 22 2013; 27 2023; 4 2002; 51 2023; 146 2023; 145 2000; 9 2023; 9 2011; 11 2003; 278 2012; 56 2010; 67 2018; 7 2023; 21 2010; 21 1998; 18 2017; 31 2014; 128 2023; 24 2019; 62 2022; 281 2023; 22 2019; 20 2020; 95 2017; 38 2020; 92 2020; 91 2020; 9 2019; 25 2016; 113 2022; 36 2011; 29 1996; 26 2019; 8 2015; 13 2021; 109 2019; 9 2023; 12 2023; 15 2019; 76 2022; 190 2015; 11 2019; 39 2008; 10 2006; 4 2020; 147 2001; 155 2018; 19 2016; 6 2021; 10 2021; 97 2022; 4 1984; 3 2022 2017; 11 2021; 18 2017; 10 2021; 19 2020; 27 2020; 26 2011; 46 2022; 1 2022; 11 2016; 8 2019; 177 2018; 16 e_1_2_8_28_1 Zander H. (e_1_2_8_78_1) 2011; 11 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 24 start-page: 454 issue: 7 year: 2023 end-page: 476 article-title: Context‐specific regulation of extracellular vesicle biogenesis and cargo selection publication-title: Nature Reviews Molecular Cell Biology – volume: 158 start-page: 4413 issue: 9 year: 1997 end-page: 4421 article-title: Expression and regulation of the neural cell adhesion molecule L1 on human cells of myelomonocytic and lymphoid origin publication-title: Journal of Immunology – volume: 281 year: 2022 article-title: Using genetically modified extracellular vesicles as a non‐invasive strategy to evaluate brain‐specific cargo publication-title: Biomaterials – volume: 11 start-page: 1 issue: 189 year: 2011 end-page: 7 article-title: Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients publication-title: BMC Cancer – volume: 4 issue: 6 year: 2022 article-title: Small extracellular vesicles in plasma reveal molecular effects of modified Mediterranean‐ketogenic diet in participants with mild cognitive impairment publication-title: Brain Communications – volume: 9 start-page: 3716 issue: 1 year: 2019 article-title: L1cam‐mediated developmental processes of the nervous system are differentially regulated by proteolytic processing publication-title: Scientific Reports – volume: 51 start-page: 177 issue: 3 year: 2002 end-page: 189 article-title: L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2 publication-title: Journal of Neurobiology – volume: 9 start-page: 879 issue: 6 year: 2000 end-page: 886 article-title: Neural cell recognition molecule L1: Relating biological complexity to human disease mutations publication-title: Human Molecular Genetics – volume: 19 start-page: 47 issue: 1 year: 2021 article-title: The exosome journey: From biogenesis to uptake and intracellular signalling publication-title: Cell Communication and Signaling – volume: 39 start-page: 9269 issue: 47 year: 2019 end-page: 9273 article-title: Extracellular Vesicles and Neurodegenerative Diseases publication-title: Journal of Neuroscience – volume: 91 start-page: 720 issue: 7 year: 2020 end-page: 729 article-title: Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism publication-title: Journal of Neurology, Neurosurgery, and Psychiatry – volume: 27 start-page: 967 issue: 6 year: 2020 end-page: 974 article-title: A longitudinal study on alpha‐synuclein in plasma neuronal exosomes as a biomarker for Parkinson's disease development and progression publication-title: European Journal of Neurology – volume: 109 start-page: 971 issue: 6 year: 2021 end-page: 983 e5 article-title: Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles publication-title: Neuron – volume: 278 start-page: 10381 issue: 12 year: 2003 end-page: 10388 article-title: The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1 publication-title: Journal of Biological Chemistry – volume: 3 start-page: 1 issue: 1 year: 1984 end-page: 10 article-title: Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion publication-title: Embo Journal – volume: 9 start-page: 1709 issue: 7 year: 2020 article-title: Revealing the proteome of motor cortex derived extracellular vesicles isolated from amyotrophic lateral sclerosis human postmortem tissues publication-title: Cells – volume: 21 start-page: 35 issue: 1 year: 2023 article-title: A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress‐driven brain pathology publication-title: Cell Communication and Signaling – volume: 11 issue: 1 year: 2022 article-title: Human neural cell type‐specific extracellular vesicle proteome defines disease‐related molecules associated with activated astrocytes in Alzheimer's disease brain publication-title: Journal of Extracellular Vesicles – volume: 92 start-page: 13647 issue: 20 year: 2020 end-page: 13651 article-title: Facile impedimetric analysis of neuronal exosome markers in Parkinson's Disease dagnostics publication-title: Analytical Chemistry – volume: 27 start-page: 5141 issue: 12 year: 2013 end-page: 5150 article-title: Aging enhances release of exosomal cytokine mRNAs by Abeta1‐42‐stimulated macrophages publication-title: Faseb Journal – volume: 36 issue: 8 year: 2022 article-title: Abnormal levels of mitochondrial Ca(2+) channel proteins in plasma neuron‐derived extracellular vesicles of early schizophrenia publication-title: Faseb Journal – volume: 113 start-page: E968 issue: 8 year: 2016 end-page: E977 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: PNAS – volume: 147 start-page: 2934 issue: 10 year: 2020 end-page: 2947 article-title: The exosome encapsulated microRNAs as circulating diagnostic marker for hepatocellular carcinoma with low alpha‐fetoprotein publication-title: International Journal of Cancer – volume: 26 start-page: 880 issue: 6 year: 2020 end-page: 887 article-title: Using neuronal extracellular vesicles and machine learning to predict cognitive deficits in HIV publication-title: Journal of Neurovirology – volume: 11 start-page: 600 issue: 6 year: 2015 end-page: 607e1 article-title: Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case‐control study publication-title: Alzheimers & Dementia – volume: 9 issue: 1 year: 2020 article-title: MIFlowCyt‐EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments publication-title: Journal of Extracellular Vesicles – volume: 145 start-page: 515 issue: 5 year: 2023 end-page: 540 article-title: Biomarkers for parkinsonian disorders in CNS‐originating EVs: Promise and challenges publication-title: Acta Neuropathologica – volume: 31 start-page: 642 issue: 4 year: 2006 end-page: 648 article-title: Exosomes are released by cultured cortical neurones publication-title: Molecular and Cellular Neuroscience – volume: 23 start-page: 631 issue: 6 year: 2021 end-page: 641 article-title: Quantitative proteomics identifies the core proteome of exosomes with syntenin‐1 as the highest abundant protein and a putative universal biomarker publication-title: Nature Cell Biology – volume: 10 issue: 473 year: 2017 article-title: Astrocyte‐shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions publication-title: Science Signaling – volume: 146 start-page: 195 issue: 1 year: 2023 end-page: 208 article-title: Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease publication-title: Brain – volume: 56 start-page: 293 issue: 2 year: 2012 end-page: 304 article-title: Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863‐derived exosomes publication-title: Methods (San Diego, Calif.) – year: 2022 – volume: 22 start-page: 2951 issue: 6 year: 2021 article-title: Proteomics profiling of neuron‐derived small extracellular vesicles from human plasma: enabling single‐subject analysis publication-title: International Journal of Molecular Sciences – volume: 38 start-page: 1933 issue: 4 year: 2017 end-page: 1940 article-title: Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease publication-title: Human Brain Mapping – volume: 9 issue: 37 year: 2023 article-title: ATP1A3 as a target for isolating neuron‐specific extracellular vesicles from human brain and biofluids publication-title: Science Advances – volume: 19 start-page: 244 issue: 4 year: 2018 end-page: 328 article-title: Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the consensus of the task force on biological markers in psychiatry of the World Federation of Societies of Biological Psychiatry publication-title: The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry – volume: 6 issue: 1 year: 2017 article-title: A rigorous method to enrich for exosomes from brain tissue publication-title: Journal of Extracellular Vesicles – volume: 11 start-page: 278 year: 2017 article-title: Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes publication-title: Frontiers in neuroscience – volume: 97 start-page: 65 year: 2021 end-page: 72 article-title: Neuronal insulin signaling and brain structure in nondemented older adults: The Atherosclerosis Risk in Communities Study publication-title: Neurobiology of Aging – volume: 95 start-page: e1126 issue: 9 year: 2020 end-page: e1133 article-title: Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans publication-title: Neurology – volume: 21 start-page: 1671 issue: 10 year: 2010 end-page: 1685 article-title: Inside‐out regulation of L1 conformation, integrin binding, proteolysis, and concomitant cell migration publication-title: Molecular Biology of the Cell – volume: 20 start-page: 4180 issue: 17 year: 2019 article-title: L1 cell adhesion molecule in cancer, a systematic review on domain‐specific functions publication-title: International Journal of Molecular Sciences – volume: 13 start-page: 9775 issue: 38 year: 2015 end-page: 9782 article-title: Differential detergent sensitivity of extracellular vesicle subpopulations publication-title: Organic & Biomolecular Chemistry – volume: 7 start-page: 1878 issue: 1 year: 2017 article-title: Labeling extracellular vesicles for nanoscale flow cytometry publication-title: Scientific Reports – volume: 15 start-page: 156 issue: 1 year: 2023 article-title: Neuron‐derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease publication-title: Alzheimer's Research & Therapy – volume: 4 start-page: 153 issue: 2 year: 2006 end-page: 162 article-title: Spectrophotometry for cerebrospinal fluid pigment analysis publication-title: Neurocritical Care – volume: 4 start-page: 133 issue: 1 year: 2023 end-page: 150 article-title: Synaptic proteins in neuron‐derived extracellular vesicles as biomarkers for Alzheimer's disease: Novel methodology and clinical proof of concept publication-title: Extracellular Vesicles and Circulating Nucleic Acids – volume: 10 issue: 11 year: 2021 article-title: Formation of a protein corona on the surface of extracellular vesicles in blood plasma publication-title: Journal of Extracellular Vesicles – volume: 1 issue: 3 year: 2022 article-title: L1CAM‐associated extracellular vesicles: A systematic review of nomenclature, sources, separation, and characterization publication-title: Journal of Extracellular Biology – volume: 62 start-page: 124 year: 2019 end-page: 129 article-title: Insulin‐signaling abnormalities in drug‐naive first‐episode schizophrenia: Transduction protein analyses in extracellular vesicles of putative neuronal origin publication-title: European Psychiatry – volume: 8 year: 2019 article-title: A novel L1CAM isoform with angiogenic activity generated by NOVA2‐mediated alternative splicing publication-title: Elife – volume: 27 start-page: 509 issue: 4 year: 2021 end-page: 518 article-title: Synaptic and complement markers in extracellular vesicles in multiple sclerosis publication-title: Multiple Sclerosis – volume: 31 start-page: F9 issue: 14 year: 2017 end-page: F17 article-title: Blood neuron‐derived exosomes as biomarkers of cognitive impairment in HIV publication-title: Aids – volume: 22 issue: 1 year: 2023 article-title: Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin publication-title: Aging Cell – volume: 9 start-page: 1618 issue: 7 year: 2020 article-title: Astrocyte‐ and neuron‐derived extracellular vesicles from Alzheimer's disease patients effect complement‐mediated neurotoxicity publication-title: Cells – volume: 18 start-page: 5311 issue: 14 year: 1998 end-page: 5321 article-title: The neural cell adhesion molecule L1 interacts with the AP‐2 adaptor and is endocytosed via the clathrin‐mediated pathway publication-title: Journal of Neuroscience – volume: 67 start-page: 2425 issue: 14 year: 2010 end-page: 2437 article-title: L1CAM malfunction in the nervous system and human carcinomas publication-title: Cellular and Molecular Life Sciences – volume: 287 start-page: 17161 issue: 21 year: 2012 end-page: 17175 article-title: Generation and nuclear translocation of sumoylated transmembrane fragment of cell adhesion molecule L1 publication-title: Journal of Biological Chemistry – volume: 29 start-page: 341 issue: 4 year: 2011 end-page: 345 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nature Biotechnology – volume: 155 start-page: 661 issue: 4 year: 2001 end-page: 673 article-title: Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins publication-title: Journal of Cell Biology – volume: 10 start-page: 993 issue: 5 year: 2021 article-title: Neuronal and astrocytic extracellular vesicle biomarkers in blood reflect brain pathology in mouse models of Alzheimer's disease publication-title: Cells – volume: 18 start-page: 631 issue: 6 year: 2021 end-page: 634 article-title: L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma publication-title: Nature Methods – volume: 16 start-page: 1423 issue: 7 year: 2018 end-page: 1436 article-title: Flow cytometric analysis of extracellular vesicle subsets in plasma: Impact of swarm by particles of non‐interest publication-title: Journal of Thrombosis and Haemostasis – volume: 76 start-page: 1340 issue: 11 year: 2019 end-page: 1351 article-title: Association of extracellular vesicle biomarkers with Alzheimer disease in the Baltimore longitudinal study of aging publication-title: JAMA neurology – volume: 190 year: 2022 article-title: Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer's disease publication-title: Advanced Drug Delivery Reviews – volume: 46 start-page: 409 issue: 2 year: 2011 end-page: 418 article-title: Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity publication-title: Molecular and Cellular Neuroscience – volume: 128 start-page: 639 issue: 5 year: 2014 end-page: 650 article-title: Plasma exosomal alpha‐synuclein is likely CNS‐derived and increased in Parkinson's disease publication-title: Acta Neuropathologica – volume: 26 start-page: 5140 issue: 9 year: 2021 end-page: 5149 article-title: Insulin receptor substrate in brain‐enriched exosomes in subjects with major depression: On the path of creation of biosignatures of central insulin resistance publication-title: Molecular Psychiatry – volume: 39 start-page: 9262 issue: 47 year: 2019 end-page: 9268 article-title: NeuroEVs: Characterizing extracellular vesicles generated in the neural domain publication-title: Journal of Neuroscience – volume: 12 issue: 8 year: 2023 article-title: Comprehensive characterization of human brain‐derived extracellular vesicles using multiple isolation methods: Implications for diagnostic and therapeutic applications publication-title: Journal of Extracellular Vesicles – volume: 26 start-page: 2508 issue: 10 year: 1996 end-page: 2516 article-title: L1 adhesion molecule on human lymphocytes and monocytes: Expression and involvement in binding to alpha v beta 3 integrin publication-title: European Journal of Immunology – volume: 177 start-page: 428 issue: 2 year: 2019 end-page: 445 article-title: Reassessment of Exosome Composition publication-title: Cell – volume: 7 issue: 1 year: 2018 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: Journal of Extracellular Vesicles – volume: 6 year: 2016 article-title: Detailed analysis of protein topology of extracellular vesicles‐evidence of unconventional membrane protein orientation publication-title: Scientific Reports – volume: 10 start-page: 1470 issue: 12 year: 2008 end-page: 1476 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nature Cell Biology – volume: 25 start-page: 702 issue: 5 year: 2019 end-page: 709 article-title: Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease publication-title: Journal of Neurovirology – volume: 8 start-page: 1162 issue: 10 year: 2016 end-page: 1183 article-title: Identification of a novel mechanism of blood‐brain communication during peripheral inflammation via choroid plexus‐derived extracellular vesicles publication-title: EMBO Molecular Medicine – ident: e_1_2_8_41_1 doi: 10.1038/s41598-019-39884-x – ident: e_1_2_8_64_1 doi: 10.1097/QAD.0000000000001595 – ident: e_1_2_8_47_1 doi: 10.1002/hbm.23494 – ident: e_1_2_8_22_1 doi: 10.1096/fj.202200792RR – ident: e_1_2_8_48_1 doi: 10.3389/fnins.2017.00278 – ident: e_1_2_8_9_1 doi: 10.1038/srep36338 – ident: e_1_2_8_69_1 doi: 10.3390/cells9071709 – ident: e_1_2_8_19_1 doi: 10.1523/JNEUROSCI.0146-18.2019 – ident: e_1_2_8_37_1 doi: 10.1093/braincomms/fcac262 – ident: e_1_2_8_28_1 doi: 10.1016/j.cell.2019.02.029 – ident: e_1_2_8_79_1 doi: 10.1002/jev2.12358 – ident: e_1_2_8_10_1 doi: 10.1186/s13195-023-01303-9 – ident: e_1_2_8_24_1 doi: 10.1186/s12964-023-01045-z – ident: e_1_2_8_27_1 doi: 10.1002/neu.10052 – ident: e_1_2_8_38_1 doi: 10.1016/j.mcn.2010.11.004 – ident: e_1_2_8_43_1 doi: 10.3390/ijms20174180 – ident: e_1_2_8_12_1 doi: 10.1126/scisignal.aai7696 – ident: e_1_2_8_62_1 doi: 10.1007/s00401-014-1314-y – ident: e_1_2_8_8_1 doi: 10.1091/mbc.e09-10-0900 – ident: e_1_2_8_26_1 doi: 10.1523/JNEUROSCI.0147-18.2019 – ident: e_1_2_8_66_1 doi: 10.1080/20013078.2018.1535750 – ident: e_1_2_8_44_1 doi: 10.1083/jcb.200101099 – ident: e_1_2_8_53_1 doi: 10.1039/C5OB01451D – ident: e_1_2_8_29_1 doi: 10.1136/jnnp-2019-322588 – ident: e_1_2_8_31_1 doi: 10.1523/JNEUROSCI.18-14-05311.1998 – ident: e_1_2_8_11_1 doi: 10.3390/cells10050993 – ident: e_1_2_8_71_1 doi: 10.1016/j.neuron.2021.01.007 – ident: e_1_2_8_39_1 doi: 10.1080/15622975.2017.1375556 – ident: e_1_2_8_52_1 doi: 10.1038/s41592-021-01174-8 – ident: e_1_2_8_40_1 doi: 10.1111/jth.14154 – ident: e_1_2_8_42_1 doi: 10.1074/jbc.M112.346759 – ident: e_1_2_8_6_1 doi: 10.1177/1352458520924590 – ident: e_1_2_8_63_1 doi: 10.1038/ncb1800 – ident: e_1_2_8_2_1 doi: 10.1038/nbt.1807 – ident: e_1_2_8_33_1 doi: 10.1001/jamaneurol.2019.2462 – ident: e_1_2_8_55_1 doi: 10.1212/WNL.0000000000010087 – ident: e_1_2_8_65_1 doi: 10.1016/j.ymeth.2012.01.002 – ident: e_1_2_8_76_1 doi: 10.1002/jev2.12183 – ident: e_1_2_8_58_1 doi: 10.1007/s13365-018-0695-4 – ident: e_1_2_8_70_1 doi: 10.1080/20013078.2017.1348885 – ident: e_1_2_8_75_1 doi: 10.1080/20013078.2020.1713526 – ident: e_1_2_8_4_1 doi: 10.7554/eLife.44305 – ident: e_1_2_8_15_1 doi: 10.1002/eji.1830261035 – ident: e_1_2_8_60_1 doi: 10.1016/j.biomaterials.2022.121366 – ident: e_1_2_8_34_1 doi: 10.1093/hmg/9.6.879 – ident: e_1_2_8_3_1 doi: 10.3390/ijms22062951 – ident: e_1_2_8_36_1 doi: 10.1038/s41556-021-00693-y – ident: e_1_2_8_74_1 doi: 10.1016/j.neurobiolaging.2020.09.022 – ident: e_1_2_8_7_1 doi: 10.1093/brain/awac258 – ident: e_1_2_8_59_1 doi: 10.1002/j.1460-2075.1984.tb01753.x – ident: e_1_2_8_68_1 doi: 10.1016/j.addr.2022.114486 – ident: e_1_2_8_45_1 doi: 10.1096/fj.13-238980 – ident: e_1_2_8_14_1 doi: 10.1007/s00401-023-02557-1 – ident: e_1_2_8_57_1 doi: 10.1007/s13365-020-00877-6 – ident: e_1_2_8_20_1 doi: 10.1021/acs.analchem.0c03092 – ident: e_1_2_8_72_1 doi: 10.1101/2022.01.12.475897 – volume: 11 start-page: 1 issue: 189 year: 2011 ident: e_1_2_8_78_1 article-title: Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients publication-title: BMC Cancer – ident: e_1_2_8_73_1 doi: 10.1111/acel.13754 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1521230113 – ident: e_1_2_8_30_1 doi: 10.1074/jbc.M208351200 – ident: e_1_2_8_51_1 doi: 10.3390/cells9071618 – ident: e_1_2_8_77_1 doi: 10.1126/sciadv.adi3647 – ident: e_1_2_8_23_1 doi: 10.1002/jex2.35 – ident: e_1_2_8_49_1 doi: 10.1038/s41380-020-0804-7 – ident: e_1_2_8_61_1 doi: 10.1007/s00018-010-0339-1 – ident: e_1_2_8_25_1 doi: 10.1186/s12964-021-00730-1 – ident: e_1_2_8_32_1 doi: 10.1016/j.eurpsy.2019.08.012 – ident: e_1_2_8_18_1 doi: 10.1016/j.jalz.2014.06.008 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-017-01731-2 – ident: e_1_2_8_54_1 doi: 10.4049/jimmunol.158.9.4413 – ident: e_1_2_8_21_1 doi: 10.1002/ijc.33111 – ident: e_1_2_8_5_1 doi: 10.15252/emmm.201606271 – ident: e_1_2_8_16_1 doi: 10.20517/evcna.2023.13 – ident: e_1_2_8_17_1 doi: 10.1016/j.mcn.2005.12.003 – ident: e_1_2_8_50_1 doi: 10.1111/ene.14208 – ident: e_1_2_8_13_1 doi: 10.1038/s41580-023-00576-0 – ident: e_1_2_8_56_1 doi: 10.1385/NCC:4:2:153 – ident: e_1_2_8_67_1 doi: 10.1002/jev2.12140 |
| SSID | ssj0000941589 |
| Score | 2.4516919 |
| Snippet | Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify blood... Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood... Abstract Isolation of neuron‐derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)‐specific antibodies has been widely used to identify... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e12459 |
| SubjectTerms | Alzheimer's disease Biomarkers Biomarkers - blood Biomarkers - metabolism blood biomarkers Brain diseases Cell adhesion & migration Cell adhesion molecules Cerebrospinal fluid Epitopes Extracellular vesicles Extracellular Vesicles - metabolism Humans L1CAM Ligands Microscopy Molecules Neural Cell Adhesion Molecule L1 - metabolism Neurons Neurons - metabolism neuron‐derived extracellular vesicles Pathology Plasma Proteins Tubulin Tubulin - metabolism Vesicle-Associated Membrane Protein 2 - metabolism |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA9yKPgi_rd6SkQfPKFem7bZ9HFd9hDZOwR1ubeSJhNuj6V7tLcLvvkRxI_oJ3Em6ZVdPPTFt9JO2rQzk_lNmP6GsddC6sxKY2M7SnWcS8RwmDbbuLbgRlIWWvsNt_lsdHKiTk_LT1utvqgmLNADhw93KK2TiUOYgMglL02qtUg0WGe0dGCNZwJF1LOVTJ2Herm0UOXARyoOz2Ej3mEwI1LSrQjkifqvQ5d_Fklug1cffY7usjs9bOTjMN177AY099mt0Ejy2wP28zNGoCX8-v4D19pW0248lZfyDXQkz99M5wdce_4R6Dga14ISfY7gj6874CvHZymf4Cg-tmdAG2j8OPTNxbGzdDI-xuEd17yF5YJ-tuL02z5V9rQ02JNiNvh0i_a8Acun8-4h-3o0_TL5EPfdFmJDmCZ2KeSFTWoQRWZVnluloDRFkmhdi9Kht9Y5IOCwGL9sjoHdZrkQdYEnC3C1yh6xvWbVwBPGNXq1RmRUWsy2NEJAnTlV481xeQEpTMQOrjRQmZ6KnDpiLKtAoiwq0lbltRWxV4PsRSDguFbqPSlykCDSbH8CTanqTan6lylFbP_KDKrek7sKlyjMmjMEZhF7OVxGHyRV6gZWa5Sh3bgU83oVscfBaoaZZEpJhUloxNSOPe1MdfdKszjzPN8pdQVKRvhyb73p_eX9q4_TufBHT__Hl3jGbgsEb6Ekbp_tXbZreM5ums3lomtfeFf7DSUhMPA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qVfDF_9ZolRV9sEJsstnsbcCX87gici0F9ehb2GR325OSk6R34JsfQfyI_SSd2eRSD4sgvoVkJtlN5s9vh81vAF5xqRMjSxOaQaxDIRHD4bLZhIWxbiBlqrUvuE0ng4MDdXSUHW7Au9W_MC0_RF9wI8_w8ZocXBfN7iVp6Fe75G8xO6XZNbgex4mixg1cHPYVFly4xKnvgef3DaExq56flO9eqq9lJE_cfxXa_HPT5O9g1mejvTv_N4-7cLtDoWzYms092LDVfbjZ9qX8_gB-fcKEdmrPf_zE0F1rKu7TblW2tA3Js9fj6Q7Tns7ENgxtdUZ1A4ZYki0ay-aOTWI2Qi02NCeW6nFsv23Di7qTeDTcR_WGaVbj2OnfLUYsALRRqCZlz7FZ4dMNusfSGjaeNg_hy9748-hD2DVvCEuCSKGLrUhNVFieJkYJYZSyWZlGkdYFzxw6fyEs4heD6dAIxAkmEZwXKZ5MrStU8gg2q3llHwPTGCQ0Aq3M4OJNI6LUiVMF3hyjlZW8DGBn9QHzsmM2pwYbp3nLycxzese5f8cBvOxlv7V8HldKvSc76CWIg9ufmNfHeefSuTRORg4BLGJqkZWx1jzS1rhSS4dmIgLYXllR3gWGJseIh4vwBHFeAC_6y-jS9Cl1ZecLlKHiHlo0VwFstUbXjyRRSipc0wag1sxxbajrV6rZiacNj6nJUDTAyb3x9viX-ecfx1Puj578i_BTuMUR87U76bZh86xe2Gdwo1yezZr6uffOC1UWPXY priority: 102 providerName: Wiley-Blackwell |
| Title | Single‐extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron‐derived EVs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12459 https://www.ncbi.nlm.nih.gov/pubmed/38868956 https://www.proquest.com/docview/3191063663 https://www.proquest.com/docview/3067911328 https://pubmed.ncbi.nlm.nih.gov/PMC11170079 https://doaj.org/article/6df60f35215049c1aa20aedfca6fedc4 |
| Volume | 13 |
| WOSCitedRecordID | wos001249447600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: TFW dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: WIN dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFiQuvB-GEi2CA0Vya68fWZ9QGrkClEYRj5CbtfauaVBkF7uJxAXxExA_kV_CzNoxjah64bKy7F1nVzs7881k_A3Acx5KT4WZslXflbYfIoZDt1nZqdJ5PwwDKU3AbTrqj8diNosmbcCtbtMq1zrRKGpVZhQjP0BRQe_FQwP56vSrTVWj6N_VtoTGFuwQS4JnUvcmXYwFXRc3EFHHSsoPvugV30eTRtSk5-yQoeu_CGP-myp5HsIaG3R0839nfwtutOiTDRpxuQ1XdHEHrjX1KL_dhV_v0ZAt9O8fP1FlV5KC-pSlyla6pv7sRTzdY9LQmOiaoYzOKV7AEEOyZa1ZmbORy4Y4ig3UiaY4HDtuyu_i2JE7HBzj8JpJVunFnL7ZYvT1PyUIVTTYcGsW-OsKj8VKKxZP63vw8Sj-MHxtt0Ub7IygkZ272g-Uk2oeeEr4vhJCR1ngOFKmPMrx0Ke-Rtyi0AwqH_GB8nzO0wBvBjpPhXcftouy0A-BSVQOEgFWpNBpk4gkpZeLFF-OWkqHPLNgb72FSdYymlNhjUXScDHzhLY7MdttwbOu72nD43Fhr0OShK4HcW-bG2X1OWmPchKqPHRyBK6Ipf0oc6XkjtQqz2SYo6D4FuyuZSBpFUKd_BUAC552j_Eo01bKQpdL7ENBPdf1uLDgQSN23Uw8IUKBvqwFYkMgN6a6-aSYnxi6cJeKCzl9XNxLI7uXrD95G0-5uXp0-SIew3WO6K7JmduF7bNqqZ_A1Wx1Nq-rHmxxf4JtfyZ6sHMYjyfveibY0TPnk9rvMbaf3oz_AFL1RBU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbpRAFD6prUZv_P9Bq45RE2uChWFghwtjtus2rd3dNFo3vcOBGeyaDVuhu6Z3PoLxQXwon8RzgMVubHrXC-8IzAAD3_nl8B2AZzxQng4SbeuWq2wRoA-HYbO2Y23SVhD4SpUJt2GvNRjI_f1wdwl-zf-FobLKuU4sFbWeJJQjX0eoYPTioYF8c_jVpq5R9HV13kKjgsWOOf6GIVvxevstvt_nnG929zpbdt1VwE7Idtupa4Svndhw39NSCC2lCRPfcZSKeZgiKmNh0LBq1NNaoAHTnuA89nGnb9JYenjeC7AiPNFCuVrZ6A523zdZHQyWXF-GDQ8qX_9iZvwVGlEiQz1h-coGAad5tf8WZ550mkurt3ntf3te1-Fq7V-zdiUQN2DJZDfhUtVx8_gW_PyApnpsfn__gUYpV_TZgupw2cwUNJ696A7XmCqJWkzBUApHlBFh6CWzaWHYJGU9l3VwFmvrA0OZRtavGgzj3J7bafdxesEUy814RH-lMeI3oBKonCaX7KEZXl2j4M-MZt1hcRs-nssDuQPL2SQz94ApVH8KXchQY1iq0FdWXipjPDnqYRPwxIK1OWSipOZsp9Yh46him-YRwSsq4WXB02bsYcVUcuqoDUJeM4LYxcsdk_xzVCurKNBp4KTommO0IMLEVYo7yug0UUGKwBQWrM4xF9Uqr4j-As6CJ81hVFb0KlVmJlMcQ2lL1_W4tOBuBfPmTjwpA4nRugVyQQAWbnXxSDY6KAnRXWqf5LRwcS9LWTlj_dG77pCXW_fPXsRjuLy11-9Fve3BzgO4wtGXrSoEV2H5KJ-ah3AxmR2NivxRrQMYfDpvMfoD3LWaEQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0q5SE2vB-GAoMAiSKZ2ONHxguEQpqI0jSKBETdmbFnTIMip9hNUHd8AuJz-By-hHvHjmlE1V0X7CJ7xpmxz336-lyApzyUngpTZau2K20_RB8Ow2ZlJ0pn7TAMpDQJt_GgPRyKvb1otAa_lt_CUFnlUicaRa1mKeXIWwgVjF48NJCtrC6LGG31Xx98tamDFL1pXbbTqCCyo4--YfhWvtrewmf9jPN-70P3rV13GLBTsuN25mo_UE6ieeAp4ftKCB2lgeNImfAoQ4QmvkYjq1BnKx-NmfJ8zpMADwY6S4SH1z0H59tEWm7KBkdNfgfDJjcQUcOIyltf9IK_RHNKtKjHbKBpFXCSf_tvmeZx99nYv_7V__nOXYMrtdfNOpWYXIc1nd-Ai1UfzqOb8PM9GvCp_v39B666kPQyg6pz2UKXNJ497403mTT0LbpkKJsTypMw9J3ZvNRslrGBy7o4i3XUvqb8I9ut2g7j3IHb7ezi9JJJVujphL5VY8R6QIVRBU02nKI5_rtCdbDQivXG5S34eCY35Das57Nc3wUmUSlKdCwjhcGqRA9aeplI8OKonXXIUws2l_CJ05rJnRqKTOOKg5rHBLXYQM2CJ83Yg4q_5MRRbwiFzQjiHDcHZsXnuFZhcaiy0MnQYccYwo9SV0ruSK2yVIYZgtS3YGOJv7hWhGX8F3wWPG5OowqjRylzPZvjGEpmuq7HhQV3Ksg3K_GECAXG8BaIFWFYWerqmXyyb2jSXWqq5LRxcy-M3Jyy__hdb8zNr3unb-IRXELZiQfbw537cJmjg1uVDW7A-mEx1w_gQro4nJTFQ6MMGHw6axn6A0rsoYI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90extracellular+vesicle+%28EV%29+analyses+validate+the+use+of+L1+Cell+Adhesion+Molecule+%28L1CAM%29+as+a+reliable+biomarker+of+neuron%E2%80%90derived+EVs&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Nogueras%E2%80%90Ortiz%2C+Carlos+J&rft.au=Eren%2C+Erden&rft.au=Yao%2C+Pamela&rft.au=Calzada%2C+Elizabeth&rft.date=2024-06-01&rft.issn=2001-3078&rft.eissn=2001-3078&rft.volume=13&rft.issue=6&rft_id=info:doi/10.1002%2Fjev2.12459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jev2_12459 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon |